Reindent and fix brace placement.
[libav.git] / libavcodec / aac.c
CommitLineData
71e9a1b8
RS
1/*
2 * AAC decoder
3 * Copyright (c) 2005-2006 Oded Shimon ( ods15 ods15 dyndns org )
4 * Copyright (c) 2006-2007 Maxim Gavrilov ( maxim.gavrilov gmail com )
5 *
6 * This file is part of FFmpeg.
7 *
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23/**
bad5537e 24 * @file libavcodec/aac.c
71e9a1b8
RS
25 * AAC decoder
26 * @author Oded Shimon ( ods15 ods15 dyndns org )
27 * @author Maxim Gavrilov ( maxim.gavrilov gmail com )
28 */
29
30/*
31 * supported tools
32 *
33 * Support? Name
34 * N (code in SoC repo) gain control
35 * Y block switching
36 * Y window shapes - standard
37 * N window shapes - Low Delay
38 * Y filterbank - standard
39 * N (code in SoC repo) filterbank - Scalable Sample Rate
40 * Y Temporal Noise Shaping
41 * N (code in SoC repo) Long Term Prediction
42 * Y intensity stereo
43 * Y channel coupling
7633a041 44 * Y frequency domain prediction
71e9a1b8
RS
45 * Y Perceptual Noise Substitution
46 * Y Mid/Side stereo
47 * N Scalable Inverse AAC Quantization
48 * N Frequency Selective Switch
49 * N upsampling filter
50 * Y quantization & coding - AAC
51 * N quantization & coding - TwinVQ
52 * N quantization & coding - BSAC
53 * N AAC Error Resilience tools
54 * N Error Resilience payload syntax
55 * N Error Protection tool
56 * N CELP
57 * N Silence Compression
58 * N HVXC
59 * N HVXC 4kbits/s VR
60 * N Structured Audio tools
61 * N Structured Audio Sample Bank Format
62 * N MIDI
63 * N Harmonic and Individual Lines plus Noise
64 * N Text-To-Speech Interface
65 * N (in progress) Spectral Band Replication
66 * Y (not in this code) Layer-1
67 * Y (not in this code) Layer-2
68 * Y (not in this code) Layer-3
69 * N SinuSoidal Coding (Transient, Sinusoid, Noise)
70 * N (planned) Parametric Stereo
71 * N Direct Stream Transfer
72 *
73 * Note: - HE AAC v1 comprises LC AAC with Spectral Band Replication.
74 * - HE AAC v2 comprises LC AAC with Spectral Band Replication and
75 Parametric Stereo.
76 */
77
78
79#include "avcodec.h"
dbbec0c2 80#include "internal.h"
9106a698 81#include "get_bits.h"
71e9a1b8 82#include "dsputil.h"
1be0fc29 83#include "lpc.h"
71e9a1b8
RS
84
85#include "aac.h"
86#include "aactab.h"
cc0591da 87#include "aacdectab.h"
71e9a1b8 88#include "mpeg4audio.h"
158b3912 89#include "aac_parser.h"
71e9a1b8
RS
90
91#include <assert.h>
92#include <errno.h>
93#include <math.h>
94#include <string.h>
95
798339fb
MR
96#if ARCH_ARM
97# include "arm/aac.h"
98#endif
99
577d383b
DB
100union float754 {
101 float f;
102 uint32_t i;
103};
4a39ccb4 104
71e9a1b8
RS
105static VLC vlc_scalefactors;
106static VLC vlc_spectral[11];
107
c816d3d0 108static uint32_t cbrt_tab[1<<13];
71e9a1b8 109
577d383b
DB
110static ChannelElement *get_che(AACContext *ac, int type, int elem_id)
111{
bb5c0988
AC
112 if (ac->tag_che_map[type][elem_id]) {
113 return ac->tag_che_map[type][elem_id];
114 }
115 if (ac->tags_mapped >= tags_per_config[ac->m4ac.chan_config]) {
116 return NULL;
117 }
118 switch (ac->m4ac.chan_config) {
577d383b
DB
119 case 7:
120 if (ac->tags_mapped == 3 && type == TYPE_CPE) {
121 ac->tags_mapped++;
122 return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][2];
123 }
124 case 6:
125 /* Some streams incorrectly code 5.1 audio as SCE[0] CPE[0] CPE[1] SCE[1]
126 instead of SCE[0] CPE[0] CPE[0] LFE[0]. If we seem to have
127 encountered such a stream, transfer the LFE[0] element to SCE[1] */
128 if (ac->tags_mapped == tags_per_config[ac->m4ac.chan_config] - 1 && (type == TYPE_LFE || type == TYPE_SCE)) {
129 ac->tags_mapped++;
130 return ac->tag_che_map[type][elem_id] = ac->che[TYPE_LFE][0];
131 }
132 case 5:
133 if (ac->tags_mapped == 2 && type == TYPE_CPE) {
134 ac->tags_mapped++;
135 return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][1];
136 }
137 case 4:
138 if (ac->tags_mapped == 2 && ac->m4ac.chan_config == 4 && type == TYPE_SCE) {
139 ac->tags_mapped++;
140 return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][1];
141 }
142 case 3:
143 case 2:
144 if (ac->tags_mapped == (ac->m4ac.chan_config != 2) && type == TYPE_CPE) {
145 ac->tags_mapped++;
146 return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][0];
147 } else if (ac->m4ac.chan_config == 2) {
bb5c0988 148 return NULL;
577d383b
DB
149 }
150 case 1:
151 if (!ac->tags_mapped && type == TYPE_SCE) {
152 ac->tags_mapped++;
153 return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][0];
154 }
155 default:
156 return NULL;
bb5c0988
AC
157 }
158}
159
9cc04edf 160/**
754ff9a7
RS
161 * Check for the channel element in the current channel position configuration.
162 * If it exists, make sure the appropriate element is allocated and map the
163 * channel order to match the internal FFmpeg channel layout.
164 *
165 * @param che_pos current channel position configuration
166 * @param type channel element type
167 * @param id channel element id
168 * @param channels count of the number of channels in the configuration
169 *
170 * @return Returns error status. 0 - OK, !0 - error
171 */
89584458 172static av_cold int che_configure(AACContext *ac,
754ff9a7
RS
173 enum ChannelPosition che_pos[4][MAX_ELEM_ID],
174 int type, int id,
175 int *channels)
176{
177 if (che_pos[type][id]) {
178 if (!ac->che[type][id] && !(ac->che[type][id] = av_mallocz(sizeof(ChannelElement))))
179 return AVERROR(ENOMEM);
180 if (type != TYPE_CCE) {
181 ac->output_data[(*channels)++] = ac->che[type][id]->ch[0].ret;
182 if (type == TYPE_CPE) {
183 ac->output_data[(*channels)++] = ac->che[type][id]->ch[1].ret;
184 }
185 }
186 } else
187 av_freep(&ac->che[type][id]);
188 return 0;
189}
190
191/**
62a57fae
RS
192 * Configure output channel order based on the current program configuration element.
193 *
194 * @param che_pos current channel position configuration
195 * @param new_che_pos New channel position configuration - we only do something if it differs from the current one.
196 *
197 * @return Returns error status. 0 - OK, !0 - error
198 */
ff98c17c 199static av_cold int output_configure(AACContext *ac,
577d383b
DB
200 enum ChannelPosition che_pos[4][MAX_ELEM_ID],
201 enum ChannelPosition new_che_pos[4][MAX_ELEM_ID],
981b8fd7 202 int channel_config, enum OCStatus oc_type)
577d383b 203{
62a57fae 204 AVCodecContext *avctx = ac->avccontext;
754ff9a7 205 int i, type, channels = 0, ret;
62a57fae 206
62a57fae
RS
207 memcpy(che_pos, new_che_pos, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
208
e22da6b6
RS
209 if (channel_config) {
210 for (i = 0; i < tags_per_config[channel_config]; i++) {
754ff9a7
RS
211 if ((ret = che_configure(ac, che_pos,
212 aac_channel_layout_map[channel_config - 1][i][0],
213 aac_channel_layout_map[channel_config - 1][i][1],
214 &channels)))
215 return ret;
e22da6b6
RS
216 }
217
218 memset(ac->tag_che_map, 0, 4 * MAX_ELEM_ID * sizeof(ac->che[0][0]));
219 ac->tags_mapped = 0;
220
221 avctx->channel_layout = aac_channel_layout[channel_config - 1];
222 } else {
2309923c
RS
223 /* Allocate or free elements depending on if they are in the
224 * current program configuration.
225 *
226 * Set up default 1:1 output mapping.
227 *
228 * For a 5.1 stream the output order will be:
229 * [ Center ] [ Front Left ] [ Front Right ] [ LFE ] [ Surround Left ] [ Surround Right ]
230 */
231
232 for (i = 0; i < MAX_ELEM_ID; i++) {
233 for (type = 0; type < 4; type++) {
754ff9a7
RS
234 if ((ret = che_configure(ac, che_pos, type, i, &channels)))
235 return ret;
2309923c 236 }
62a57fae 237 }
62a57fae 238
bb5c0988 239 memcpy(ac->tag_che_map, ac->che, 4 * MAX_ELEM_ID * sizeof(ac->che[0][0]));
577d383b 240 ac->tags_mapped = 4 * MAX_ELEM_ID;
e22da6b6
RS
241
242 avctx->channel_layout = 0;
bb5c0988
AC
243 }
244
62a57fae 245 avctx->channels = channels;
bb5c0988 246
981b8fd7 247 ac->output_configured = oc_type;
6308765c 248
62a57fae
RS
249 return 0;
250}
251
252/**
9cc04edf
RS
253 * Decode an array of 4 bit element IDs, optionally interleaved with a stereo/mono switching bit.
254 *
255 * @param cpe_map Stereo (Channel Pair Element) map, NULL if stereo bit is not present.
256 * @param sce_map mono (Single Channel Element) map
257 * @param type speaker type/position for these channels
258 */
259static void decode_channel_map(enum ChannelPosition *cpe_map,
577d383b
DB
260 enum ChannelPosition *sce_map,
261 enum ChannelPosition type,
262 GetBitContext *gb, int n)
263{
264 while (n--) {
9cc04edf
RS
265 enum ChannelPosition *map = cpe_map && get_bits1(gb) ? cpe_map : sce_map; // stereo or mono map
266 map[get_bits(gb, 4)] = type;
267 }
268}
269
270/**
271 * Decode program configuration element; reference: table 4.2.
272 *
273 * @param new_che_pos New channel position configuration - we only do something if it differs from the current one.
274 *
275 * @return Returns error status. 0 - OK, !0 - error
276 */
577d383b
DB
277static int decode_pce(AACContext *ac, enum ChannelPosition new_che_pos[4][MAX_ELEM_ID],
278 GetBitContext *gb)
279{
99665a21 280 int num_front, num_side, num_back, num_lfe, num_assoc_data, num_cc, sampling_index;
9cc04edf
RS
281
282 skip_bits(gb, 2); // object_type
283
99665a21 284 sampling_index = get_bits(gb, 4);
401a9950
AC
285 if (ac->m4ac.sampling_index != sampling_index)
286 av_log(ac->avccontext, AV_LOG_WARNING, "Sample rate index in program config element does not match the sample rate index configured by the container.\n");
287
71e9a1b8
RS
288 num_front = get_bits(gb, 4);
289 num_side = get_bits(gb, 4);
290 num_back = get_bits(gb, 4);
291 num_lfe = get_bits(gb, 2);
292 num_assoc_data = get_bits(gb, 3);
293 num_cc = get_bits(gb, 4);
294
cc0591da
RS
295 if (get_bits1(gb))
296 skip_bits(gb, 4); // mono_mixdown_tag
297 if (get_bits1(gb))
298 skip_bits(gb, 4); // stereo_mixdown_tag
71e9a1b8 299
cc0591da
RS
300 if (get_bits1(gb))
301 skip_bits(gb, 3); // mixdown_coeff_index and pseudo_surround
71e9a1b8 302
cc0591da
RS
303 decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_FRONT, gb, num_front);
304 decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_SIDE, gb, num_side );
305 decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_BACK, gb, num_back );
306 decode_channel_map(NULL, new_che_pos[TYPE_LFE], AAC_CHANNEL_LFE, gb, num_lfe );
71e9a1b8
RS
307
308 skip_bits_long(gb, 4 * num_assoc_data);
309
cc0591da 310 decode_channel_map(new_che_pos[TYPE_CCE], new_che_pos[TYPE_CCE], AAC_CHANNEL_CC, gb, num_cc );
71e9a1b8
RS
311
312 align_get_bits(gb);
313
314 /* comment field, first byte is length */
315 skip_bits_long(gb, 8 * get_bits(gb, 8));
cc0591da
RS
316 return 0;
317}
71e9a1b8 318
9cc04edf
RS
319/**
320 * Set up channel positions based on a default channel configuration
321 * as specified in table 1.17.
322 *
323 * @param new_che_pos New channel position configuration - we only do something if it differs from the current one.
324 *
325 * @return Returns error status. 0 - OK, !0 - error
326 */
ff98c17c 327static av_cold int set_default_channel_config(AACContext *ac,
577d383b
DB
328 enum ChannelPosition new_che_pos[4][MAX_ELEM_ID],
329 int channel_config)
9cc04edf 330{
577d383b 331 if (channel_config < 1 || channel_config > 7) {
9cc04edf
RS
332 av_log(ac->avccontext, AV_LOG_ERROR, "invalid default channel configuration (%d)\n",
333 channel_config);
334 return -1;
335 }
336
337 /* default channel configurations:
338 *
339 * 1ch : front center (mono)
340 * 2ch : L + R (stereo)
341 * 3ch : front center + L + R
342 * 4ch : front center + L + R + back center
343 * 5ch : front center + L + R + back stereo
344 * 6ch : front center + L + R + back stereo + LFE
345 * 7ch : front center + L + R + outer front left + outer front right + back stereo + LFE
346 */
347
577d383b 348 if (channel_config != 2)
9cc04edf 349 new_che_pos[TYPE_SCE][0] = AAC_CHANNEL_FRONT; // front center (or mono)
577d383b 350 if (channel_config > 1)
9cc04edf 351 new_che_pos[TYPE_CPE][0] = AAC_CHANNEL_FRONT; // L + R (or stereo)
577d383b 352 if (channel_config == 4)
9cc04edf 353 new_che_pos[TYPE_SCE][1] = AAC_CHANNEL_BACK; // back center
577d383b 354 if (channel_config > 4)
9cc04edf 355 new_che_pos[TYPE_CPE][(channel_config == 7) + 1]
577d383b
DB
356 = AAC_CHANNEL_BACK; // back stereo
357 if (channel_config > 5)
9cc04edf 358 new_che_pos[TYPE_LFE][0] = AAC_CHANNEL_LFE; // LFE
577d383b 359 if (channel_config == 7)
9cc04edf
RS
360 new_che_pos[TYPE_CPE][1] = AAC_CHANNEL_FRONT; // outer front left + outer front right
361
362 return 0;
363}
364
62a57fae
RS
365/**
366 * Decode GA "General Audio" specific configuration; reference: table 4.1.
367 *
368 * @return Returns error status. 0 - OK, !0 - error
369 */
577d383b
DB
370static int decode_ga_specific_config(AACContext *ac, GetBitContext *gb,
371 int channel_config)
372{
62a57fae
RS
373 enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
374 int extension_flag, ret;
375
577d383b 376 if (get_bits1(gb)) { // frameLengthFlag
ce863d7f 377 av_log_missing_feature(ac->avccontext, "960/120 MDCT window is", 1);
9cc04edf
RS
378 return -1;
379 }
380
381 if (get_bits1(gb)) // dependsOnCoreCoder
382 skip_bits(gb, 14); // coreCoderDelay
383 extension_flag = get_bits1(gb);
384
577d383b
DB
385 if (ac->m4ac.object_type == AOT_AAC_SCALABLE ||
386 ac->m4ac.object_type == AOT_ER_AAC_SCALABLE)
9cc04edf
RS
387 skip_bits(gb, 3); // layerNr
388
389 memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
390 if (channel_config == 0) {
391 skip_bits(gb, 4); // element_instance_tag
577d383b 392 if ((ret = decode_pce(ac, new_che_pos, gb)))
9cc04edf
RS
393 return ret;
394 } else {
577d383b 395 if ((ret = set_default_channel_config(ac, new_che_pos, channel_config)))
9cc04edf
RS
396 return ret;
397 }
4fab6627 398 if ((ret = output_configure(ac, ac->che_pos, new_che_pos, channel_config, OC_GLOBAL_HDR)))
9cc04edf
RS
399 return ret;
400
401 if (extension_flag) {
402 switch (ac->m4ac.object_type) {
577d383b
DB
403 case AOT_ER_BSAC:
404 skip_bits(gb, 5); // numOfSubFrame
405 skip_bits(gb, 11); // layer_length
406 break;
407 case AOT_ER_AAC_LC:
408 case AOT_ER_AAC_LTP:
409 case AOT_ER_AAC_SCALABLE:
410 case AOT_ER_AAC_LD:
411 skip_bits(gb, 3); /* aacSectionDataResilienceFlag
9cc04edf
RS
412 * aacScalefactorDataResilienceFlag
413 * aacSpectralDataResilienceFlag
414 */
577d383b 415 break;
9cc04edf
RS
416 }
417 skip_bits1(gb); // extensionFlag3 (TBD in version 3)
418 }
419 return 0;
420}
421
422/**
423 * Decode audio specific configuration; reference: table 1.13.
424 *
425 * @param data pointer to AVCodecContext extradata
426 * @param data_size size of AVCCodecContext extradata
427 *
428 * @return Returns error status. 0 - OK, !0 - error
429 */
577d383b
DB
430static int decode_audio_specific_config(AACContext *ac, void *data,
431 int data_size)
432{
9cc04edf
RS
433 GetBitContext gb;
434 int i;
435
436 init_get_bits(&gb, data, data_size * 8);
437
577d383b 438 if ((i = ff_mpeg4audio_get_config(&ac->m4ac, data, data_size)) < 0)
9cc04edf 439 return -1;
577d383b 440 if (ac->m4ac.sampling_index > 12) {
9cc04edf
RS
441 av_log(ac->avccontext, AV_LOG_ERROR, "invalid sampling rate index %d\n", ac->m4ac.sampling_index);
442 return -1;
443 }
444
445 skip_bits_long(&gb, i);
446
447 switch (ac->m4ac.object_type) {
7633a041 448 case AOT_AAC_MAIN:
9cc04edf
RS
449 case AOT_AAC_LC:
450 if (decode_ga_specific_config(ac, &gb, ac->m4ac.chan_config))
451 return -1;
452 break;
453 default:
454 av_log(ac->avccontext, AV_LOG_ERROR, "Audio object type %s%d is not supported.\n",
455 ac->m4ac.sbr == 1? "SBR+" : "", ac->m4ac.object_type);
456 return -1;
457 }
458 return 0;
459}
460
62a57fae
RS
461/**
462 * linear congruential pseudorandom number generator
463 *
464 * @param previous_val pointer to the current state of the generator
465 *
466 * @return Returns a 32-bit pseudorandom integer
467 */
577d383b
DB
468static av_always_inline int lcg_random(int previous_val)
469{
62a57fae
RS
470 return previous_val * 1664525 + 1013904223;
471}
472
577d383b
DB
473static void reset_predict_state(PredictorState *ps)
474{
475 ps->r0 = 0.0f;
476 ps->r1 = 0.0f;
7633a041
AC
477 ps->cor0 = 0.0f;
478 ps->cor1 = 0.0f;
479 ps->var0 = 1.0f;
480 ps->var1 = 1.0f;
481}
482
577d383b
DB
483static void reset_all_predictors(PredictorState *ps)
484{
7633a041
AC
485 int i;
486 for (i = 0; i < MAX_PREDICTORS; i++)
487 reset_predict_state(&ps[i]);
488}
489
577d383b
DB
490static void reset_predictor_group(PredictorState *ps, int group_num)
491{
7633a041 492 int i;
577d383b 493 for (i = group_num - 1; i < MAX_PREDICTORS; i += 30)
7633a041
AC
494 reset_predict_state(&ps[i]);
495}
496
577d383b
DB
497static av_cold int aac_decode_init(AVCodecContext *avccontext)
498{
499 AACContext *ac = avccontext->priv_data;
71e9a1b8
RS
500 int i;
501
502 ac->avccontext = avccontext;
503
158b3912 504 if (avccontext->extradata_size > 0) {
577d383b 505 if (decode_audio_specific_config(ac, avccontext->extradata, avccontext->extradata_size))
158b3912
RS
506 return -1;
507 avccontext->sample_rate = ac->m4ac.sample_rate;
508 } else if (avccontext->channels > 0) {
158b3912 509 ac->m4ac.sample_rate = avccontext->sample_rate;
158b3912 510 }
cc0591da 511
577d383b
DB
512 avccontext->sample_fmt = SAMPLE_FMT_S16;
513 avccontext->frame_size = 1024;
71e9a1b8 514
2ef21b91
MR
515 AAC_INIT_VLC_STATIC( 0, 304);
516 AAC_INIT_VLC_STATIC( 1, 270);
517 AAC_INIT_VLC_STATIC( 2, 550);
518 AAC_INIT_VLC_STATIC( 3, 300);
519 AAC_INIT_VLC_STATIC( 4, 328);
520 AAC_INIT_VLC_STATIC( 5, 294);
521 AAC_INIT_VLC_STATIC( 6, 306);
522 AAC_INIT_VLC_STATIC( 7, 268);
523 AAC_INIT_VLC_STATIC( 8, 510);
524 AAC_INIT_VLC_STATIC( 9, 366);
525 AAC_INIT_VLC_STATIC(10, 462);
71e9a1b8
RS
526
527 dsputil_init(&ac->dsp, avccontext);
528
9cc04edf
RS
529 ac->random_state = 0x1f2e3d4c;
530
71e9a1b8
RS
531 // -1024 - Compensate wrong IMDCT method.
532 // 32768 - Required to scale values to the correct range for the bias method
533 // for float to int16 conversion.
534
144fec83 535 if (ac->dsp.float_to_int16_interleave == ff_float_to_int16_interleave_c) {
577d383b
DB
536 ac->add_bias = 385.0f;
537 ac->sf_scale = 1. / (-1024. * 32768.);
71e9a1b8
RS
538 ac->sf_offset = 0;
539 } else {
577d383b
DB
540 ac->add_bias = 0.0f;
541 ac->sf_scale = 1. / -1024.;
71e9a1b8
RS
542 ac->sf_offset = 60;
543 }
544
b250f9c6 545#if !CONFIG_HARDCODED_TABLES
d0ee5021 546 for (i = 0; i < 428; i++)
577d383b 547 ff_aac_pow2sf_tab[i] = pow(2, (i - 200) / 4.);
71e9a1b8
RS
548#endif /* CONFIG_HARDCODED_TABLES */
549
37d3e066 550 INIT_VLC_STATIC(&vlc_scalefactors,7,FF_ARRAY_ELEMS(ff_aac_scalefactor_code),
577d383b
DB
551 ff_aac_scalefactor_bits, sizeof(ff_aac_scalefactor_bits[0]), sizeof(ff_aac_scalefactor_bits[0]),
552 ff_aac_scalefactor_code, sizeof(ff_aac_scalefactor_code[0]), sizeof(ff_aac_scalefactor_code[0]),
553 352);
71e9a1b8 554
7d485f16
SS
555 ff_mdct_init(&ac->mdct, 11, 1, 1.0);
556 ff_mdct_init(&ac->mdct_small, 8, 1, 1.0);
9ffd5c1c
RS
557 // window initialization
558 ff_kbd_window_init(ff_aac_kbd_long_1024, 4.0, 1024);
559 ff_kbd_window_init(ff_aac_kbd_short_128, 6.0, 128);
14b86070
RD
560 ff_init_ff_sine_windows(10);
561 ff_init_ff_sine_windows( 7);
9ffd5c1c 562
c816d3d0
MR
563 if (!cbrt_tab[(1<<13) - 1]) {
564 for (i = 0; i < 1<<13; i++) {
565 union float754 f;
566 f.f = cbrtf(i) * i;
567 cbrt_tab[i] = f.i;
568 }
569 }
dc0d86fa 570
71e9a1b8
RS
571 return 0;
572}
573
9cc04edf
RS
574/**
575 * Skip data_stream_element; reference: table 4.10.
576 */
577d383b
DB
577static void skip_data_stream_element(GetBitContext *gb)
578{
71e9a1b8
RS
579 int byte_align = get_bits1(gb);
580 int count = get_bits(gb, 8);
581 if (count == 255)
582 count += get_bits(gb, 8);
583 if (byte_align)
584 align_get_bits(gb);
585 skip_bits_long(gb, 8 * count);
586}
587
577d383b
DB
588static int decode_prediction(AACContext *ac, IndividualChannelStream *ics,
589 GetBitContext *gb)
590{
7633a041
AC
591 int sfb;
592 if (get_bits1(gb)) {
593 ics->predictor_reset_group = get_bits(gb, 5);
594 if (ics->predictor_reset_group == 0 || ics->predictor_reset_group > 30) {
595 av_log(ac->avccontext, AV_LOG_ERROR, "Invalid Predictor Reset Group.\n");
596 return -1;
597 }
598 }
599 for (sfb = 0; sfb < FFMIN(ics->max_sfb, ff_aac_pred_sfb_max[ac->m4ac.sampling_index]); sfb++) {
600 ics->prediction_used[sfb] = get_bits1(gb);
601 }
602 return 0;
603}
604
71e9a1b8 605/**
9cc04edf
RS
606 * Decode Individual Channel Stream info; reference: table 4.6.
607 *
608 * @param common_window Channels have independent [0], or shared [1], Individual Channel Stream information.
609 */
577d383b
DB
610static int decode_ics_info(AACContext *ac, IndividualChannelStream *ics,
611 GetBitContext *gb, int common_window)
612{
9cc04edf
RS
613 if (get_bits1(gb)) {
614 av_log(ac->avccontext, AV_LOG_ERROR, "Reserved bit set.\n");
615 memset(ics, 0, sizeof(IndividualChannelStream));
616 return -1;
617 }
618 ics->window_sequence[1] = ics->window_sequence[0];
619 ics->window_sequence[0] = get_bits(gb, 2);
577d383b
DB
620 ics->use_kb_window[1] = ics->use_kb_window[0];
621 ics->use_kb_window[0] = get_bits1(gb);
622 ics->num_window_groups = 1;
623 ics->group_len[0] = 1;
9ffd5c1c
RS
624 if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
625 int i;
626 ics->max_sfb = get_bits(gb, 4);
627 for (i = 0; i < 7; i++) {
628 if (get_bits1(gb)) {
577d383b 629 ics->group_len[ics->num_window_groups - 1]++;
9ffd5c1c
RS
630 } else {
631 ics->num_window_groups++;
577d383b 632 ics->group_len[ics->num_window_groups - 1] = 1;
9ffd5c1c
RS
633 }
634 }
577d383b
DB
635 ics->num_windows = 8;
636 ics->swb_offset = ff_swb_offset_128[ac->m4ac.sampling_index];
637 ics->num_swb = ff_aac_num_swb_128[ac->m4ac.sampling_index];
638 ics->tns_max_bands = ff_tns_max_bands_128[ac->m4ac.sampling_index];
7633a041 639 ics->predictor_present = 0;
9ffd5c1c 640 } else {
577d383b
DB
641 ics->max_sfb = get_bits(gb, 6);
642 ics->num_windows = 1;
643 ics->swb_offset = ff_swb_offset_1024[ac->m4ac.sampling_index];
644 ics->num_swb = ff_aac_num_swb_1024[ac->m4ac.sampling_index];
645 ics->tns_max_bands = ff_tns_max_bands_1024[ac->m4ac.sampling_index];
646 ics->predictor_present = get_bits1(gb);
7633a041
AC
647 ics->predictor_reset_group = 0;
648 if (ics->predictor_present) {
649 if (ac->m4ac.object_type == AOT_AAC_MAIN) {
650 if (decode_prediction(ac, ics, gb)) {
651 memset(ics, 0, sizeof(IndividualChannelStream));
652 return -1;
653 }
654 } else if (ac->m4ac.object_type == AOT_AAC_LC) {
655 av_log(ac->avccontext, AV_LOG_ERROR, "Prediction is not allowed in AAC-LC.\n");
656 memset(ics, 0, sizeof(IndividualChannelStream));
657 return -1;
658 } else {
ce863d7f 659 av_log_missing_feature(ac->avccontext, "Predictor bit set but LTP is", 1);
8f5aaa6d
RS
660 memset(ics, 0, sizeof(IndividualChannelStream));
661 return -1;
7633a041 662 }
62a57fae
RS
663 }
664 }
665
577d383b 666 if (ics->max_sfb > ics->num_swb) {
62a57fae 667 av_log(ac->avccontext, AV_LOG_ERROR,
577d383b
DB
668 "Number of scalefactor bands in group (%d) exceeds limit (%d).\n",
669 ics->max_sfb, ics->num_swb);
62a57fae
RS
670 memset(ics, 0, sizeof(IndividualChannelStream));
671 return -1;
672 }
673
9cc04edf
RS
674 return 0;
675}
676
677/**
9cc04edf
RS
678 * Decode band types (section_data payload); reference: table 4.46.
679 *
680 * @param band_type array of the used band type
681 * @param band_type_run_end array of the last scalefactor band of a band type run
682 *
683 * @return Returns error status. 0 - OK, !0 - error
684 */
577d383b
DB
685static int decode_band_types(AACContext *ac, enum BandType band_type[120],
686 int band_type_run_end[120], GetBitContext *gb,
687 IndividualChannelStream *ics)
688{
cc0591da
RS
689 int g, idx = 0;
690 const int bits = (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) ? 3 : 5;
691 for (g = 0; g < ics->num_window_groups; g++) {
692 int k = 0;
693 while (k < ics->max_sfb) {
01d19fbc 694 uint8_t sect_end = k;
cc0591da
RS
695 int sect_len_incr;
696 int sect_band_type = get_bits(gb, 4);
697 if (sect_band_type == 12) {
698 av_log(ac->avccontext, AV_LOG_ERROR, "invalid band type\n");
699 return -1;
700 }
577d383b 701 while ((sect_len_incr = get_bits(gb, bits)) == (1 << bits) - 1)
01d19fbc
AC
702 sect_end += sect_len_incr;
703 sect_end += sect_len_incr;
704 if (sect_end > ics->max_sfb) {
cc0591da 705 av_log(ac->avccontext, AV_LOG_ERROR,
577d383b 706 "Number of bands (%d) exceeds limit (%d).\n",
01d19fbc 707 sect_end, ics->max_sfb);
cc0591da
RS
708 return -1;
709 }
01d19fbc 710 for (; k < sect_end; k++) {
9ffd5c1c 711 band_type [idx] = sect_band_type;
01d19fbc 712 band_type_run_end[idx++] = sect_end;
9ffd5c1c 713 }
9cc04edf
RS
714 }
715 }
716 return 0;
717}
cc0591da 718
9cc04edf
RS
719/**
720 * Decode scalefactors; reference: table 4.47.
cc0591da 721 *
cc0591da
RS
722 * @param global_gain first scalefactor value as scalefactors are differentially coded
723 * @param band_type array of the used band type
724 * @param band_type_run_end array of the last scalefactor band of a band type run
725 * @param sf array of scalefactors or intensity stereo positions
726 *
727 * @return Returns error status. 0 - OK, !0 - error
728 */
577d383b
DB
729static int decode_scalefactors(AACContext *ac, float sf[120], GetBitContext *gb,
730 unsigned int global_gain,
731 IndividualChannelStream *ics,
732 enum BandType band_type[120],
733 int band_type_run_end[120])
734{
cc0591da
RS
735 const int sf_offset = ac->sf_offset + (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE ? 12 : 0);
736 int g, i, idx = 0;
737 int offset[3] = { global_gain, global_gain - 90, 100 };
738 int noise_flag = 1;
739 static const char *sf_str[3] = { "Global gain", "Noise gain", "Intensity stereo position" };
cc0591da
RS
740 for (g = 0; g < ics->num_window_groups; g++) {
741 for (i = 0; i < ics->max_sfb;) {
742 int run_end = band_type_run_end[idx];
743 if (band_type[idx] == ZERO_BT) {
577d383b 744 for (; i < run_end; i++, idx++)
cc0591da 745 sf[idx] = 0.;
577d383b
DB
746 } else if ((band_type[idx] == INTENSITY_BT) || (band_type[idx] == INTENSITY_BT2)) {
747 for (; i < run_end; i++, idx++) {
cc0591da 748 offset[2] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
577d383b 749 if (offset[2] > 255U) {
cc0591da 750 av_log(ac->avccontext, AV_LOG_ERROR,
577d383b 751 "%s (%d) out of range.\n", sf_str[2], offset[2]);
cc0591da
RS
752 return -1;
753 }
577d383b 754 sf[idx] = ff_aac_pow2sf_tab[-offset[2] + 300];
cc0591da 755 }
577d383b
DB
756 } else if (band_type[idx] == NOISE_BT) {
757 for (; i < run_end; i++, idx++) {
758 if (noise_flag-- > 0)
cc0591da
RS
759 offset[1] += get_bits(gb, 9) - 256;
760 else
761 offset[1] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
577d383b 762 if (offset[1] > 255U) {
cc0591da 763 av_log(ac->avccontext, AV_LOG_ERROR,
577d383b 764 "%s (%d) out of range.\n", sf_str[1], offset[1]);
cc0591da
RS
765 return -1;
766 }
577d383b 767 sf[idx] = -ff_aac_pow2sf_tab[offset[1] + sf_offset + 100];
cc0591da 768 }
577d383b
DB
769 } else {
770 for (; i < run_end; i++, idx++) {
cc0591da 771 offset[0] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
577d383b 772 if (offset[0] > 255U) {
cc0591da 773 av_log(ac->avccontext, AV_LOG_ERROR,
577d383b 774 "%s (%d) out of range.\n", sf_str[0], offset[0]);
cc0591da
RS
775 return -1;
776 }
777 sf[idx] = -ff_aac_pow2sf_tab[ offset[0] + sf_offset];
cc0591da
RS
778 }
779 }
780 }
781 }
782 return 0;
783}
784
785/**
786 * Decode pulse data; reference: table 4.7.
787 */
577d383b
DB
788static int decode_pulses(Pulse *pulse, GetBitContext *gb,
789 const uint16_t *swb_offset, int num_swb)
790{
aac0eda4 791 int i, pulse_swb;
cc0591da 792 pulse->num_pulse = get_bits(gb, 2) + 1;
aac0eda4
AC
793 pulse_swb = get_bits(gb, 6);
794 if (pulse_swb >= num_swb)
795 return -1;
796 pulse->pos[0] = swb_offset[pulse_swb];
408992ba 797 pulse->pos[0] += get_bits(gb, 5);
aac0eda4
AC
798 if (pulse->pos[0] > 1023)
799 return -1;
848a5815
RS
800 pulse->amp[0] = get_bits(gb, 4);
801 for (i = 1; i < pulse->num_pulse; i++) {
577d383b 802 pulse->pos[i] = get_bits(gb, 5) + pulse->pos[i - 1];
aac0eda4
AC
803 if (pulse->pos[i] > 1023)
804 return -1;
848a5815 805 pulse->amp[i] = get_bits(gb, 4);
cc0591da 806 }
aac0eda4 807 return 0;
cc0591da
RS
808}
809
810/**
1dece0d2
RS
811 * Decode Temporal Noise Shaping data; reference: table 4.48.
812 *
813 * @return Returns error status. 0 - OK, !0 - error
814 */
577d383b
DB
815static int decode_tns(AACContext *ac, TemporalNoiseShaping *tns,
816 GetBitContext *gb, const IndividualChannelStream *ics)
817{
1dece0d2
RS
818 int w, filt, i, coef_len, coef_res, coef_compress;
819 const int is8 = ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE;
820 const int tns_max_order = is8 ? 7 : ac->m4ac.object_type == AOT_AAC_MAIN ? 20 : 12;
821 for (w = 0; w < ics->num_windows; w++) {
fbd91d7c 822 if ((tns->n_filt[w] = get_bits(gb, 2 - is8))) {
1dece0d2
RS
823 coef_res = get_bits1(gb);
824
65b20b24
RS
825 for (filt = 0; filt < tns->n_filt[w]; filt++) {
826 int tmp2_idx;
577d383b 827 tns->length[w][filt] = get_bits(gb, 6 - 2 * is8);
65b20b24 828
577d383b 829 if ((tns->order[w][filt] = get_bits(gb, 5 - 2 * is8)) > tns_max_order) {
65b20b24
RS
830 av_log(ac->avccontext, AV_LOG_ERROR, "TNS filter order %d is greater than maximum %d.",
831 tns->order[w][filt], tns_max_order);
832 tns->order[w][filt] = 0;
833 return -1;
834 }
51673647 835 if (tns->order[w][filt]) {
35445d29
RS
836 tns->direction[w][filt] = get_bits1(gb);
837 coef_compress = get_bits1(gb);
838 coef_len = coef_res + 3 - coef_compress;
577d383b 839 tmp2_idx = 2 * coef_compress + coef_res;
1dece0d2 840
35445d29
RS
841 for (i = 0; i < tns->order[w][filt]; i++)
842 tns->coef[w][filt][i] = tns_tmp2_map[tmp2_idx][get_bits(gb, coef_len)];
51673647 843 }
65b20b24 844 }
fbd91d7c 845 }
1dece0d2
RS
846 }
847 return 0;
848}
849
850/**
9cc04edf
RS
851 * Decode Mid/Side data; reference: table 4.54.
852 *
853 * @param ms_present Indicates mid/side stereo presence. [0] mask is all 0s;
854 * [1] mask is decoded from bitstream; [2] mask is all 1s;
855 * [3] reserved for scalable AAC
856 */
577d383b
DB
857static void decode_mid_side_stereo(ChannelElement *cpe, GetBitContext *gb,
858 int ms_present)
859{
62a57fae
RS
860 int idx;
861 if (ms_present == 1) {
862 for (idx = 0; idx < cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb; idx++)
863 cpe->ms_mask[idx] = get_bits1(gb);
864 } else if (ms_present == 2) {
865 memset(cpe->ms_mask, 1, cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb * sizeof(cpe->ms_mask[0]));
866 }
867}
9cc04edf 868
798339fb 869#ifndef VMUL2
c816d3d0
MR
870static inline float *VMUL2(float *dst, const float *v, unsigned idx,
871 const float *scale)
872{
873 float s = *scale;
874 *dst++ = v[idx & 15] * s;
875 *dst++ = v[idx>>4 & 15] * s;
876 return dst;
877}
798339fb 878#endif
c816d3d0 879
798339fb 880#ifndef VMUL4
c816d3d0
MR
881static inline float *VMUL4(float *dst, const float *v, unsigned idx,
882 const float *scale)
883{
884 float s = *scale;
885 *dst++ = v[idx & 3] * s;
886 *dst++ = v[idx>>2 & 3] * s;
887 *dst++ = v[idx>>4 & 3] * s;
888 *dst++ = v[idx>>6 & 3] * s;
889 return dst;
890}
798339fb 891#endif
c816d3d0 892
798339fb 893#ifndef VMUL2S
c816d3d0
MR
894static inline float *VMUL2S(float *dst, const float *v, unsigned idx,
895 unsigned sign, const float *scale)
896{
897 union float754 s0, s1;
898
899 s0.f = s1.f = *scale;
900 s0.i ^= sign >> 1 << 31;
901 s1.i ^= sign << 31;
902
903 *dst++ = v[idx & 15] * s0.f;
904 *dst++ = v[idx>>4 & 15] * s1.f;
905
906 return dst;
907}
798339fb 908#endif
c816d3d0 909
798339fb 910#ifndef VMUL4S
c816d3d0
MR
911static inline float *VMUL4S(float *dst, const float *v, unsigned idx,
912 unsigned sign, const float *scale)
913{
914 unsigned nz = idx >> 12;
915 union float754 s = { .f = *scale };
916 union float754 t;
917
918 t.i = s.i ^ (sign & 1<<31);
919 *dst++ = v[idx & 3] * t.f;
920
921 sign <<= nz & 1; nz >>= 1;
922 t.i = s.i ^ (sign & 1<<31);
923 *dst++ = v[idx>>2 & 3] * t.f;
924
925 sign <<= nz & 1; nz >>= 1;
926 t.i = s.i ^ (sign & 1<<31);
927 *dst++ = v[idx>>4 & 3] * t.f;
928
929 sign <<= nz & 1; nz >>= 1;
930 t.i = s.i ^ (sign & 1<<31);
931 *dst++ = v[idx>>6 & 3] * t.f;
932
933 return dst;
934}
798339fb 935#endif
c816d3d0 936
9cc04edf 937/**
9ffd5c1c
RS
938 * Decode spectral data; reference: table 4.50.
939 * Dequantize and scale spectral data; reference: 4.6.3.3.
940 *
941 * @param coef array of dequantized, scaled spectral data
942 * @param sf array of scalefactors or intensity stereo positions
943 * @param pulse_present set if pulses are present
944 * @param pulse pointer to pulse data struct
945 * @param band_type array of the used band type
946 *
947 * @return Returns error status. 0 - OK, !0 - error
948 */
577d383b 949static int decode_spectrum_and_dequant(AACContext *ac, float coef[1024],
3963a17d 950 GetBitContext *gb, const float sf[120],
577d383b
DB
951 int pulse_present, const Pulse *pulse,
952 const IndividualChannelStream *ics,
953 enum BandType band_type[120])
954{
9ffd5c1c 955 int i, k, g, idx = 0;
577d383b
DB
956 const int c = 1024 / ics->num_windows;
957 const uint16_t *offsets = ics->swb_offset;
9ffd5c1c 958 float *coef_base = coef;
c816d3d0 959 int err_idx;
9ffd5c1c
RS
960
961 for (g = 0; g < ics->num_windows; g++)
577d383b 962 memset(coef + g * 128 + offsets[ics->max_sfb], 0, sizeof(float) * (c - offsets[ics->max_sfb]));
9ffd5c1c
RS
963
964 for (g = 0; g < ics->num_window_groups; g++) {
05f9d8fc
MR
965 unsigned g_len = ics->group_len[g];
966
9ffd5c1c 967 for (i = 0; i < ics->max_sfb; i++, idx++) {
05f9d8fc
MR
968 const unsigned cbt_m1 = band_type[idx] - 1;
969 float *cfo = coef + offsets[i];
970 int off_len = offsets[i + 1] - offsets[i];
9ffd5c1c 971 int group;
05f9d8fc
MR
972
973 if (cbt_m1 >= INTENSITY_BT2 - 1) {
974 for (group = 0; group < g_len; group++, cfo+=128) {
975 memset(cfo, 0, off_len * sizeof(float));
9ffd5c1c 976 }
05f9d8fc
MR
977 } else if (cbt_m1 == NOISE_BT - 1) {
978 for (group = 0; group < g_len; group++, cfo+=128) {
d0ee5021 979 float scale;
b418a6ca 980 float band_energy;
42d3fbb3 981
05f9d8fc 982 for (k = 0; k < off_len; k++) {
9ffd5c1c 983 ac->random_state = lcg_random(ac->random_state);
05f9d8fc 984 cfo[k] = ac->random_state;
d0ee5021 985 }
42d3fbb3 986
05f9d8fc 987 band_energy = ac->dsp.scalarproduct_float(cfo, cfo, off_len);
d0ee5021 988 scale = sf[idx] / sqrtf(band_energy);
05f9d8fc 989 ac->dsp.vector_fmul_scalar(cfo, cfo, scale, off_len);
9ffd5c1c 990 }
577d383b 991 } else {
05f9d8fc
MR
992 const float *vq = ff_aac_codebook_vector_vals[cbt_m1];
993 const uint16_t *cb_vector_idx = ff_aac_codebook_vector_idx[cbt_m1];
994 VLC_TYPE (*vlc_tab)[2] = vlc_spectral[cbt_m1].table;
995 const int cb_size = ff_aac_spectral_sizes[cbt_m1];
d356a53f 996 OPEN_READER(re, gb);
c816d3d0 997
95dff4ac
MR
998 switch (cbt_m1 >> 1) {
999 case 0:
1000 for (group = 0; group < g_len; group++, cfo+=128) {
1001 float *cf = cfo;
1002 int len = off_len;
42d3fbb3 1003
c816d3d0 1004 do {
d356a53f 1005 int code;
c816d3d0
MR
1006 unsigned cb_idx;
1007
d356a53f
MR
1008 UPDATE_CACHE(re, gb);
1009 GET_VLC(code, re, gb, vlc_tab, 8, 2);
1010
1011 if (code >= cb_size) {
1012 err_idx = code;
c816d3d0
MR
1013 goto err_cb_overflow;
1014 }
1015
d356a53f 1016 cb_idx = cb_vector_idx[code];
c816d3d0
MR
1017 cf = VMUL4(cf, vq, cb_idx, sf + idx);
1018 } while (len -= 4);
95dff4ac
MR
1019 }
1020 break;
1021
1022 case 1:
1023 for (group = 0; group < g_len; group++, cfo+=128) {
1024 float *cf = cfo;
1025 int len = off_len;
1026
c816d3d0 1027 do {
d356a53f 1028 int code;
c816d3d0
MR
1029 unsigned nnz;
1030 unsigned cb_idx;
1031 uint32_t bits;
1032
d356a53f
MR
1033 UPDATE_CACHE(re, gb);
1034 GET_VLC(code, re, gb, vlc_tab, 8, 2);
1035
1036 if (code >= cb_size) {
1037 err_idx = code;
c816d3d0
MR
1038 goto err_cb_overflow;
1039 }
1040
d356a53f
MR
1041#if MIN_CACHE_BITS < 20
1042 UPDATE_CACHE(re, gb);
1043#endif
1044 cb_idx = cb_vector_idx[code];
c816d3d0 1045 nnz = cb_idx >> 8 & 15;
d356a53f
MR
1046 bits = SHOW_UBITS(re, gb, nnz) << (32-nnz);
1047 LAST_SKIP_BITS(re, gb, nnz);
c816d3d0
MR
1048 cf = VMUL4S(cf, vq, cb_idx, bits, sf + idx);
1049 } while (len -= 4);
95dff4ac
MR
1050 }
1051 break;
1052
1053 case 2:
1054 for (group = 0; group < g_len; group++, cfo+=128) {
1055 float *cf = cfo;
1056 int len = off_len;
1057
c816d3d0 1058 do {
d356a53f 1059 int code;
c816d3d0
MR
1060 unsigned cb_idx;
1061
d356a53f
MR
1062 UPDATE_CACHE(re, gb);
1063 GET_VLC(code, re, gb, vlc_tab, 8, 2);
1064
1065 if (code >= cb_size) {
1066 err_idx = code;
c816d3d0 1067 goto err_cb_overflow;
c0893c3a 1068 }
c816d3d0 1069
d356a53f 1070 cb_idx = cb_vector_idx[code];
c816d3d0
MR
1071 cf = VMUL2(cf, vq, cb_idx, sf + idx);
1072 } while (len -= 2);
95dff4ac
MR
1073 }
1074 break;
1075
1076 case 3:
1077 case 4:
1078 for (group = 0; group < g_len; group++, cfo+=128) {
1079 float *cf = cfo;
1080 int len = off_len;
1081
c816d3d0 1082 do {
d356a53f 1083 int code;
c816d3d0
MR
1084 unsigned nnz;
1085 unsigned cb_idx;
1086 unsigned sign;
1087
d356a53f
MR
1088 UPDATE_CACHE(re, gb);
1089 GET_VLC(code, re, gb, vlc_tab, 8, 2);
1090
1091 if (code >= cb_size) {
1092 err_idx = code;
c816d3d0
MR
1093 goto err_cb_overflow;
1094 }
1095
d356a53f 1096 cb_idx = cb_vector_idx[code];
c816d3d0 1097 nnz = cb_idx >> 8 & 15;
d356a53f
MR
1098 sign = SHOW_UBITS(re, gb, nnz) << (cb_idx >> 12);
1099 LAST_SKIP_BITS(re, gb, nnz);
c816d3d0
MR
1100 cf = VMUL2S(cf, vq, cb_idx, sign, sf + idx);
1101 } while (len -= 2);
95dff4ac
MR
1102 }
1103 break;
1104
1105 default:
1106 for (group = 0; group < g_len; group++, cfo+=128) {
1107 float *cf = cfo;
1108 uint32_t *icf = (uint32_t *) cf;
1109 int len = off_len;
1110
05f9d8fc 1111 do {
d356a53f 1112 int code;
c816d3d0
MR
1113 unsigned nzt, nnz;
1114 unsigned cb_idx;
1115 uint32_t bits;
1116 int j;
1117
d356a53f
MR
1118 UPDATE_CACHE(re, gb);
1119 GET_VLC(code, re, gb, vlc_tab, 8, 2);
1120
1121 if (!code) {
05f9d8fc
MR
1122 *icf++ = 0;
1123 *icf++ = 0;
c816d3d0
MR
1124 continue;
1125 }
1126
d356a53f
MR
1127 if (code >= cb_size) {
1128 err_idx = code;
c816d3d0
MR
1129 goto err_cb_overflow;
1130 }
1131
d356a53f 1132 cb_idx = cb_vector_idx[code];
c816d3d0
MR
1133 nnz = cb_idx >> 12;
1134 nzt = cb_idx >> 8;
d356a53f
MR
1135 bits = SHOW_UBITS(re, gb, nnz) << (32-nnz);
1136 LAST_SKIP_BITS(re, gb, nnz);
c816d3d0
MR
1137
1138 for (j = 0; j < 2; j++) {
1139 if (nzt & 1<<j) {
d356a53f
MR
1140 uint32_t b;
1141 int n;
c816d3d0
MR
1142 /* The total length of escape_sequence must be < 22 bits according
1143 to the specification (i.e. max is 111111110xxxxxxxxxxxx). */
d356a53f
MR
1144 UPDATE_CACHE(re, gb);
1145 b = GET_CACHE(re, gb);
1146 b = 31 - av_log2(~b);
1147
1148 if (b > 8) {
c816d3d0
MR
1149 av_log(ac->avccontext, AV_LOG_ERROR, "error in spectral data, ESC overflow\n");
1150 return -1;
1151 }
d356a53f
MR
1152
1153#if MIN_CACHE_BITS < 21
1154 LAST_SKIP_BITS(re, gb, b + 1);
1155 UPDATE_CACHE(re, gb);
1156#else
1157 SKIP_BITS(re, gb, b + 1);
1158#endif
1159 b += 4;
1160 n = (1 << b) + SHOW_UBITS(re, gb, b);
1161 LAST_SKIP_BITS(re, gb, b);
05f9d8fc 1162 *icf++ = cbrt_tab[n] | (bits & 1<<31);
c816d3d0
MR
1163 bits <<= 1;
1164 } else {
1165 unsigned v = ((const uint32_t*)vq)[cb_idx & 15];
05f9d8fc 1166 *icf++ = (bits & 1<<31) | v;
c816d3d0 1167 bits <<= !!v;
e8d5c07b 1168 }
c816d3d0 1169 cb_idx >>= 4;
9ffd5c1c 1170 }
05f9d8fc 1171 } while (len -= 2);
42d3fbb3 1172
05f9d8fc 1173 ac->dsp.vector_fmul_scalar(cfo, cfo, sf[idx], off_len);
42d3fbb3 1174 }
9ffd5c1c 1175 }
d356a53f
MR
1176
1177 CLOSE_READER(re, gb);
9ffd5c1c
RS
1178 }
1179 }
05f9d8fc 1180 coef += g_len << 7;
9ffd5c1c
RS
1181 }
1182
1183 if (pulse_present) {
51436848 1184 idx = 0;
577d383b
DB
1185 for (i = 0; i < pulse->num_pulse; i++) {
1186 float co = coef_base[ pulse->pos[i] ];
1187 while (offsets[idx + 1] <= pulse->pos[i])
51436848
AC
1188 idx++;
1189 if (band_type[idx] != NOISE_BT && sf[idx]) {
70735a3f
RS
1190 float ico = -pulse->amp[i];
1191 if (co) {
1192 co /= sf[idx];
1193 ico = co / sqrtf(sqrtf(fabsf(co))) + (co > 0 ? -ico : ico);
1194 }
1195 coef_base[ pulse->pos[i] ] = cbrtf(fabsf(ico)) * ico * sf[idx];
51436848 1196 }
9ffd5c1c
RS
1197 }
1198 }
1199 return 0;
c816d3d0
MR
1200
1201err_cb_overflow:
1202 av_log(ac->avccontext, AV_LOG_ERROR,
1203 "Read beyond end of ff_aac_codebook_vectors[%d][]. index %d >= %d\n",
1204 band_type[idx], err_idx, ff_aac_spectral_sizes[band_type[idx]]);
1205 return -1;
9ffd5c1c
RS
1206}
1207
577d383b
DB
1208static av_always_inline float flt16_round(float pf)
1209{
4a39ccb4
AC
1210 union float754 tmp;
1211 tmp.f = pf;
1212 tmp.i = (tmp.i + 0x00008000U) & 0xFFFF0000U;
1213 return tmp.f;
7633a041
AC
1214}
1215
577d383b
DB
1216static av_always_inline float flt16_even(float pf)
1217{
4a39ccb4
AC
1218 union float754 tmp;
1219 tmp.f = pf;
577d383b 1220 tmp.i = (tmp.i + 0x00007FFFU + (tmp.i & 0x00010000U >> 16)) & 0xFFFF0000U;
4a39ccb4 1221 return tmp.f;
7633a041
AC
1222}
1223
577d383b
DB
1224static av_always_inline float flt16_trunc(float pf)
1225{
4a39ccb4
AC
1226 union float754 pun;
1227 pun.f = pf;
1228 pun.i &= 0xFFFF0000U;
1229 return pun.f;
7633a041
AC
1230}
1231
577d383b
DB
1232static void predict(AACContext *ac, PredictorState *ps, float *coef,
1233 int output_enable)
1234{
1235 const float a = 0.953125; // 61.0 / 64
1236 const float alpha = 0.90625; // 29.0 / 32
7633a041
AC
1237 float e0, e1;
1238 float pv;
1239 float k1, k2;
1240
1241 k1 = ps->var0 > 1 ? ps->cor0 * flt16_even(a / ps->var0) : 0;
1242 k2 = ps->var1 > 1 ? ps->cor1 * flt16_even(a / ps->var1) : 0;
1243
1244 pv = flt16_round(k1 * ps->r0 + k2 * ps->r1);
1245 if (output_enable)
1246 *coef += pv * ac->sf_scale;
1247
1248 e0 = *coef / ac->sf_scale;
1249 e1 = e0 - k1 * ps->r0;
1250
1251 ps->cor1 = flt16_trunc(alpha * ps->cor1 + ps->r1 * e1);
1252 ps->var1 = flt16_trunc(alpha * ps->var1 + 0.5 * (ps->r1 * ps->r1 + e1 * e1));
1253 ps->cor0 = flt16_trunc(alpha * ps->cor0 + ps->r0 * e0);
1254 ps->var0 = flt16_trunc(alpha * ps->var0 + 0.5 * (ps->r0 * ps->r0 + e0 * e0));
1255
1256 ps->r1 = flt16_trunc(a * (ps->r0 - k1 * e0));
1257 ps->r0 = flt16_trunc(a * e0);
1258}
1259
1260/**
1261 * Apply AAC-Main style frequency domain prediction.
1262 */
577d383b
DB
1263static void apply_prediction(AACContext *ac, SingleChannelElement *sce)
1264{
7633a041
AC
1265 int sfb, k;
1266
1267 if (!sce->ics.predictor_initialized) {
aab54133 1268 reset_all_predictors(sce->predictor_state);
7633a041
AC
1269 sce->ics.predictor_initialized = 1;
1270 }
1271
1272 if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE) {
1273 for (sfb = 0; sfb < ff_aac_pred_sfb_max[ac->m4ac.sampling_index]; sfb++) {
1274 for (k = sce->ics.swb_offset[sfb]; k < sce->ics.swb_offset[sfb + 1]; k++) {
aab54133 1275 predict(ac, &sce->predictor_state[k], &sce->coeffs[k],
577d383b 1276 sce->ics.predictor_present && sce->ics.prediction_used[sfb]);
7633a041
AC
1277 }
1278 }
1279 if (sce->ics.predictor_reset_group)
aab54133 1280 reset_predictor_group(sce->predictor_state, sce->ics.predictor_reset_group);
7633a041 1281 } else
aab54133 1282 reset_all_predictors(sce->predictor_state);
7633a041
AC
1283}
1284
9ffd5c1c 1285/**
9cc04edf
RS
1286 * Decode an individual_channel_stream payload; reference: table 4.44.
1287 *
1288 * @param common_window Channels have independent [0], or shared [1], Individual Channel Stream information.
1289 * @param scale_flag scalable [1] or non-scalable [0] AAC (Unused until scalable AAC is implemented.)
1290 *
1291 * @return Returns error status. 0 - OK, !0 - error
1292 */
577d383b
DB
1293static int decode_ics(AACContext *ac, SingleChannelElement *sce,
1294 GetBitContext *gb, int common_window, int scale_flag)
1295{
9cc04edf 1296 Pulse pulse;
577d383b
DB
1297 TemporalNoiseShaping *tns = &sce->tns;
1298 IndividualChannelStream *ics = &sce->ics;
1299 float *out = sce->coeffs;
9cc04edf
RS
1300 int global_gain, pulse_present = 0;
1301
848a5815
RS
1302 /* This assignment is to silence a GCC warning about the variable being used
1303 * uninitialized when in fact it always is.
9cc04edf
RS
1304 */
1305 pulse.num_pulse = 0;
9cc04edf
RS
1306
1307 global_gain = get_bits(gb, 8);
1308
1309 if (!common_window && !scale_flag) {
1310 if (decode_ics_info(ac, ics, gb, 0) < 0)
1311 return -1;
1312 }
1313
1314 if (decode_band_types(ac, sce->band_type, sce->band_type_run_end, gb, ics) < 0)
1315 return -1;
1316 if (decode_scalefactors(ac, sce->sf, gb, global_gain, ics, sce->band_type, sce->band_type_run_end) < 0)
1317 return -1;
1318
1319 pulse_present = 0;
1320 if (!scale_flag) {
1321 if ((pulse_present = get_bits1(gb))) {
1322 if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
1323 av_log(ac->avccontext, AV_LOG_ERROR, "Pulse tool not allowed in eight short sequence.\n");
1324 return -1;
1325 }
aac0eda4
AC
1326 if (decode_pulses(&pulse, gb, ics->swb_offset, ics->num_swb)) {
1327 av_log(ac->avccontext, AV_LOG_ERROR, "Pulse data corrupt or invalid.\n");
1328 return -1;
1329 }
9cc04edf
RS
1330 }
1331 if ((tns->present = get_bits1(gb)) && decode_tns(ac, tns, gb, ics))
1332 return -1;
1333 if (get_bits1(gb)) {
ce863d7f 1334 av_log_missing_feature(ac->avccontext, "SSR", 1);
9cc04edf
RS
1335 return -1;
1336 }
1337 }
1338
848a5815 1339 if (decode_spectrum_and_dequant(ac, out, gb, sce->sf, pulse_present, &pulse, ics, sce->band_type) < 0)
9cc04edf 1340 return -1;
7633a041 1341
577d383b 1342 if (ac->m4ac.object_type == AOT_AAC_MAIN && !common_window)
7633a041
AC
1343 apply_prediction(ac, sce);
1344
9cc04edf
RS
1345 return 0;
1346}
1347
1348/**
9ffd5c1c
RS
1349 * Mid/Side stereo decoding; reference: 4.6.8.1.3.
1350 */
42d3fbb3 1351static void apply_mid_side_stereo(AACContext *ac, ChannelElement *cpe)
577d383b
DB
1352{
1353 const IndividualChannelStream *ics = &cpe->ch[0].ics;
9ffd5c1c
RS
1354 float *ch0 = cpe->ch[0].coeffs;
1355 float *ch1 = cpe->ch[1].coeffs;
42d3fbb3 1356 int g, i, group, idx = 0;
577d383b 1357 const uint16_t *offsets = ics->swb_offset;
9ffd5c1c
RS
1358 for (g = 0; g < ics->num_window_groups; g++) {
1359 for (i = 0; i < ics->max_sfb; i++, idx++) {
1360 if (cpe->ms_mask[idx] &&
577d383b 1361 cpe->ch[0].band_type[idx] < NOISE_BT && cpe->ch[1].band_type[idx] < NOISE_BT) {
9ffd5c1c 1362 for (group = 0; group < ics->group_len[g]; group++) {
42d3fbb3
MR
1363 ac->dsp.butterflies_float(ch0 + group * 128 + offsets[i],
1364 ch1 + group * 128 + offsets[i],
1365 offsets[i+1] - offsets[i]);
9ffd5c1c
RS
1366 }
1367 }
1368 }
577d383b
DB
1369 ch0 += ics->group_len[g] * 128;
1370 ch1 += ics->group_len[g] * 128;
9ffd5c1c
RS
1371 }
1372}
1373
1374/**
1375 * intensity stereo decoding; reference: 4.6.8.2.3
1376 *
1377 * @param ms_present Indicates mid/side stereo presence. [0] mask is all 0s;
1378 * [1] mask is decoded from bitstream; [2] mask is all 1s;
1379 * [3] reserved for scalable AAC
1380 */
577d383b
DB
1381static void apply_intensity_stereo(ChannelElement *cpe, int ms_present)
1382{
1383 const IndividualChannelStream *ics = &cpe->ch[1].ics;
1384 SingleChannelElement *sce1 = &cpe->ch[1];
9ffd5c1c 1385 float *coef0 = cpe->ch[0].coeffs, *coef1 = cpe->ch[1].coeffs;
577d383b 1386 const uint16_t *offsets = ics->swb_offset;
9ffd5c1c
RS
1387 int g, group, i, k, idx = 0;
1388 int c;
1389 float scale;
1390 for (g = 0; g < ics->num_window_groups; g++) {
1391 for (i = 0; i < ics->max_sfb;) {
1392 if (sce1->band_type[idx] == INTENSITY_BT || sce1->band_type[idx] == INTENSITY_BT2) {
1393 const int bt_run_end = sce1->band_type_run_end[idx];
1394 for (; i < bt_run_end; i++, idx++) {
1395 c = -1 + 2 * (sce1->band_type[idx] - 14);
1396 if (ms_present)
1397 c *= 1 - 2 * cpe->ms_mask[idx];
1398 scale = c * sce1->sf[idx];
1399 for (group = 0; group < ics->group_len[g]; group++)
577d383b
DB
1400 for (k = offsets[i]; k < offsets[i + 1]; k++)
1401 coef1[group * 128 + k] = scale * coef0[group * 128 + k];
9ffd5c1c
RS
1402 }
1403 } else {
1404 int bt_run_end = sce1->band_type_run_end[idx];
1405 idx += bt_run_end - i;
1406 i = bt_run_end;
1407 }
1408 }
577d383b
DB
1409 coef0 += ics->group_len[g] * 128;
1410 coef1 += ics->group_len[g] * 128;
9ffd5c1c
RS
1411 }
1412}
1413
1414/**
9cc04edf
RS
1415 * Decode a channel_pair_element; reference: table 4.4.
1416 *
1417 * @param elem_id Identifies the instance of a syntax element.
1418 *
1419 * @return Returns error status. 0 - OK, !0 - error
1420 */
577d383b
DB
1421static int decode_cpe(AACContext *ac, GetBitContext *gb, ChannelElement *cpe)
1422{
9cc04edf 1423 int i, ret, common_window, ms_present = 0;
9cc04edf 1424
9cc04edf
RS
1425 common_window = get_bits1(gb);
1426 if (common_window) {
1427 if (decode_ics_info(ac, &cpe->ch[0].ics, gb, 1))
1428 return -1;
1429 i = cpe->ch[1].ics.use_kb_window[0];
1430 cpe->ch[1].ics = cpe->ch[0].ics;
1431 cpe->ch[1].ics.use_kb_window[1] = i;
1432 ms_present = get_bits(gb, 2);
577d383b 1433 if (ms_present == 3) {
9cc04edf
RS
1434 av_log(ac->avccontext, AV_LOG_ERROR, "ms_present = 3 is reserved.\n");
1435 return -1;
577d383b 1436 } else if (ms_present)
9cc04edf
RS
1437 decode_mid_side_stereo(cpe, gb, ms_present);
1438 }
1439 if ((ret = decode_ics(ac, &cpe->ch[0], gb, common_window, 0)))
1440 return ret;
1441 if ((ret = decode_ics(ac, &cpe->ch[1], gb, common_window, 0)))
1442 return ret;
1443
aab54133
AC
1444 if (common_window) {
1445 if (ms_present)
42d3fbb3 1446 apply_mid_side_stereo(ac, cpe);
aab54133
AC
1447 if (ac->m4ac.object_type == AOT_AAC_MAIN) {
1448 apply_prediction(ac, &cpe->ch[0]);
1449 apply_prediction(ac, &cpe->ch[1]);
1450 }
1451 }
9cc04edf 1452
848a5815 1453 apply_intensity_stereo(cpe, ms_present);
9cc04edf
RS
1454 return 0;
1455}
1456
9ffd5c1c
RS
1457/**
1458 * Decode coupling_channel_element; reference: table 4.8.
1459 *
1460 * @param elem_id Identifies the instance of a syntax element.
1461 *
1462 * @return Returns error status. 0 - OK, !0 - error
1463 */
577d383b
DB
1464static int decode_cce(AACContext *ac, GetBitContext *gb, ChannelElement *che)
1465{
9ffd5c1c 1466 int num_gain = 0;
341b28c0 1467 int c, g, sfb, ret;
9ffd5c1c
RS
1468 int sign;
1469 float scale;
577d383b
DB
1470 SingleChannelElement *sce = &che->ch[0];
1471 ChannelCoupling *coup = &che->coup;
9ffd5c1c 1472
577d383b 1473 coup->coupling_point = 2 * get_bits1(gb);
62a57fae
RS
1474 coup->num_coupled = get_bits(gb, 3);
1475 for (c = 0; c <= coup->num_coupled; c++) {
1476 num_gain++;
1477 coup->type[c] = get_bits1(gb) ? TYPE_CPE : TYPE_SCE;
1478 coup->id_select[c] = get_bits(gb, 4);
1479 if (coup->type[c] == TYPE_CPE) {
1480 coup->ch_select[c] = get_bits(gb, 2);
1481 if (coup->ch_select[c] == 3)
1482 num_gain++;
1483 } else
88de95c2 1484 coup->ch_select[c] = 2;
62a57fae 1485 }
577d383b 1486 coup->coupling_point += get_bits1(gb) || (coup->coupling_point >> 1);
62a57fae 1487
577d383b 1488 sign = get_bits(gb, 1);
c8947a56 1489 scale = pow(2., pow(2., (int)get_bits(gb, 2) - 3));
62a57fae
RS
1490
1491 if ((ret = decode_ics(ac, sce, gb, 0, 0)))
1492 return ret;
1493
1494 for (c = 0; c < num_gain; c++) {
577d383b
DB
1495 int idx = 0;
1496 int cge = 1;
62a57fae
RS
1497 int gain = 0;
1498 float gain_cache = 1.;
1499 if (c) {
1500 cge = coup->coupling_point == AFTER_IMDCT ? 1 : get_bits1(gb);
1501 gain = cge ? get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60: 0;
88de95c2 1502 gain_cache = pow(scale, -gain);
62a57fae 1503 }
f1ade11e
AC
1504 if (coup->coupling_point == AFTER_IMDCT) {
1505 coup->gain[c][0] = gain_cache;
1506 } else {
03b12747
AC
1507 for (g = 0; g < sce->ics.num_window_groups; g++) {
1508 for (sfb = 0; sfb < sce->ics.max_sfb; sfb++, idx++) {
1509 if (sce->band_type[idx] != ZERO_BT) {
1510 if (!cge) {
1511 int t = get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
577d383b 1512 if (t) {
03b12747
AC
1513 int s = 1;
1514 t = gain += t;
1515 if (sign) {
1516 s -= 2 * (t & 0x1);
1517 t >>= 1;
1518 }
1519 gain_cache = pow(scale, -t) * s;
62a57fae 1520 }
62a57fae 1521 }
03b12747 1522 coup->gain[c][idx] = gain_cache;
62a57fae 1523 }
62a57fae 1524 }
f80a8ca5
RS
1525 }
1526 }
62a57fae
RS
1527 }
1528 return 0;
1529}
1530
9cc04edf
RS
1531/**
1532 * Decode Spectral Band Replication extension data; reference: table 4.55.
cc0591da
RS
1533 *
1534 * @param crc flag indicating the presence of CRC checksum
1535 * @param cnt length of TYPE_FIL syntactic element in bytes
9cc04edf 1536 *
cc0591da
RS
1537 * @return Returns number of bytes consumed from the TYPE_FIL element.
1538 */
577d383b
DB
1539static int decode_sbr_extension(AACContext *ac, GetBitContext *gb,
1540 int crc, int cnt)
1541{
cc0591da 1542 // TODO : sbr_extension implementation
ce863d7f 1543 av_log_missing_feature(ac->avccontext, "SBR", 0);
577d383b 1544 skip_bits_long(gb, 8 * cnt - 4); // -4 due to reading extension type
cc0591da
RS
1545 return cnt;
1546}
1547
9cc04edf 1548/**
62a57fae
RS
1549 * Parse whether channels are to be excluded from Dynamic Range Compression; reference: table 4.53.
1550 *
1551 * @return Returns number of bytes consumed.
1552 */
577d383b
DB
1553static int decode_drc_channel_exclusions(DynamicRangeControl *che_drc,
1554 GetBitContext *gb)
1555{
62a57fae
RS
1556 int i;
1557 int num_excl_chan = 0;
1558
1559 do {
1560 for (i = 0; i < 7; i++)
1561 che_drc->exclude_mask[num_excl_chan++] = get_bits1(gb);
1562 } while (num_excl_chan < MAX_CHANNELS - 7 && get_bits1(gb));
1563
1564 return num_excl_chan / 7;
1565}
1566
1567/**
9cc04edf
RS
1568 * Decode dynamic range information; reference: table 4.52.
1569 *
1570 * @param cnt length of TYPE_FIL syntactic element in bytes
1571 *
1572 * @return Returns number of bytes consumed.
1573 */
577d383b
DB
1574static int decode_dynamic_range(DynamicRangeControl *che_drc,
1575 GetBitContext *gb, int cnt)
1576{
1577 int n = 1;
9cc04edf
RS
1578 int drc_num_bands = 1;
1579 int i;
1580
1581 /* pce_tag_present? */
577d383b 1582 if (get_bits1(gb)) {
9cc04edf
RS
1583 che_drc->pce_instance_tag = get_bits(gb, 4);
1584 skip_bits(gb, 4); // tag_reserved_bits
1585 n++;
1586 }
1587
1588 /* excluded_chns_present? */
577d383b 1589 if (get_bits1(gb)) {
9cc04edf
RS
1590 n += decode_drc_channel_exclusions(che_drc, gb);
1591 }
1592
1593 /* drc_bands_present? */
1594 if (get_bits1(gb)) {
1595 che_drc->band_incr = get_bits(gb, 4);
1596 che_drc->interpolation_scheme = get_bits(gb, 4);
1597 n++;
1598 drc_num_bands += che_drc->band_incr;
1599 for (i = 0; i < drc_num_bands; i++) {
1600 che_drc->band_top[i] = get_bits(gb, 8);
1601 n++;
1602 }
1603 }
1604
1605 /* prog_ref_level_present? */
1606 if (get_bits1(gb)) {
1607 che_drc->prog_ref_level = get_bits(gb, 7);
1608 skip_bits1(gb); // prog_ref_level_reserved_bits
1609 n++;
1610 }
1611
1612 for (i = 0; i < drc_num_bands; i++) {
1613 che_drc->dyn_rng_sgn[i] = get_bits1(gb);
1614 che_drc->dyn_rng_ctl[i] = get_bits(gb, 7);
1615 n++;
1616 }
1617
1618 return n;
1619}
1620
1621/**
1622 * Decode extension data (incomplete); reference: table 4.51.
1623 *
1624 * @param cnt length of TYPE_FIL syntactic element in bytes
1625 *
1626 * @return Returns number of bytes consumed
1627 */
577d383b
DB
1628static int decode_extension_payload(AACContext *ac, GetBitContext *gb, int cnt)
1629{
cc0591da
RS
1630 int crc_flag = 0;
1631 int res = cnt;
1632 switch (get_bits(gb, 4)) { // extension type
577d383b
DB
1633 case EXT_SBR_DATA_CRC:
1634 crc_flag++;
1635 case EXT_SBR_DATA:
1636 res = decode_sbr_extension(ac, gb, crc_flag, cnt);
1637 break;
1638 case EXT_DYNAMIC_RANGE:
1639 res = decode_dynamic_range(&ac->che_drc, gb, cnt);
1640 break;
1641 case EXT_FILL:
1642 case EXT_FILL_DATA:
1643 case EXT_DATA_ELEMENT:
1644 default:
1645 skip_bits_long(gb, 8 * cnt - 4);
1646 break;
cc0591da
RS
1647 };
1648 return res;
1649}
1650
7d8f3de4
RS
1651/**
1652 * Decode Temporal Noise Shaping filter coefficients and apply all-pole filters; reference: 4.6.9.3.
1653 *
1654 * @param decode 1 if tool is used normally, 0 if tool is used in LTP.
1655 * @param coef spectral coefficients
1656 */
577d383b
DB
1657static void apply_tns(float coef[1024], TemporalNoiseShaping *tns,
1658 IndividualChannelStream *ics, int decode)
1659{
1660 const int mmm = FFMIN(ics->tns_max_bands, ics->max_sfb);
1098e8d2 1661 int w, filt, m, i;
7d8f3de4
RS
1662 int bottom, top, order, start, end, size, inc;
1663 float lpc[TNS_MAX_ORDER];
1664
1665 for (w = 0; w < ics->num_windows; w++) {
1666 bottom = ics->num_swb;
1667 for (filt = 0; filt < tns->n_filt[w]; filt++) {
1668 top = bottom;
1669 bottom = FFMAX(0, top - tns->length[w][filt]);
1670 order = tns->order[w][filt];
1671 if (order == 0)
1672 continue;
1673
1be0fc29
VS
1674 // tns_decode_coef
1675 compute_lpc_coefs(tns->coef[w][filt], order, lpc, 0, 0, 0);
7d8f3de4 1676
1dece0d2
RS
1677 start = ics->swb_offset[FFMIN(bottom, mmm)];
1678 end = ics->swb_offset[FFMIN( top, mmm)];
1679 if ((size = end - start) <= 0)
1680 continue;
1681 if (tns->direction[w][filt]) {
577d383b
DB
1682 inc = -1;
1683 start = end - 1;
1dece0d2
RS
1684 } else {
1685 inc = 1;
1686 }
1687 start += w * 128;
1688
1689 // ar filter
1690 for (m = 0; m < size; m++, start += inc)
1691 for (i = 1; i <= FFMIN(m, order); i++)
577d383b 1692 coef[start] -= coef[start - i * inc] * lpc[i - 1];
1dece0d2
RS
1693 }
1694 }
1695}
1696
cc0591da 1697/**
9cc04edf
RS
1698 * Conduct IMDCT and windowing.
1699 */
577d383b
DB
1700static void imdct_and_windowing(AACContext *ac, SingleChannelElement *sce)
1701{
1702 IndividualChannelStream *ics = &sce->ics;
1703 float *in = sce->coeffs;
1704 float *out = sce->ret;
1705 float *saved = sce->saved;
1706 const float *swindow = ics->use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
1707 const float *lwindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_sine_1024;
1708 const float *swindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128;
1709 float *buf = ac->buf_mdct;
1710 float *temp = ac->temp;
9cc04edf
RS
1711 int i;
1712
f4990558 1713 // imdct
62a57fae
RS
1714 if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
1715 if (ics->window_sequence[1] == ONLY_LONG_SEQUENCE || ics->window_sequence[1] == LONG_STOP_SEQUENCE)
1716 av_log(ac->avccontext, AV_LOG_WARNING,
1717 "Transition from an ONLY_LONG or LONG_STOP to an EIGHT_SHORT sequence detected. "
1718 "If you heard an audible artifact, please submit the sample to the FFmpeg developers.\n");
b0f5852a
RS
1719 for (i = 0; i < 1024; i += 128)
1720 ff_imdct_half(&ac->mdct_small, buf + i, in + i);
f4990558 1721 } else
b0f5852a 1722 ff_imdct_half(&ac->mdct, buf, in);
f4990558
RS
1723
1724 /* window overlapping
1725 * NOTE: To simplify the overlapping code, all 'meaningless' short to long
1726 * and long to short transitions are considered to be short to short
1727 * transitions. This leaves just two cases (long to long and short to short)
1728 * with a little special sauce for EIGHT_SHORT_SEQUENCE.
1729 */
1730 if ((ics->window_sequence[1] == ONLY_LONG_SEQUENCE || ics->window_sequence[1] == LONG_STOP_SEQUENCE) &&
577d383b 1731 (ics->window_sequence[0] == ONLY_LONG_SEQUENCE || ics->window_sequence[0] == LONG_START_SEQUENCE)) {
b0f5852a 1732 ac->dsp.vector_fmul_window( out, saved, buf, lwindow_prev, ac->add_bias, 512);
f4990558 1733 } else {
db38c386
RS
1734 for (i = 0; i < 448; i++)
1735 out[i] = saved[i] + ac->add_bias;
62a57fae 1736
f4990558 1737 if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
b0f5852a
RS
1738 ac->dsp.vector_fmul_window(out + 448 + 0*128, saved + 448, buf + 0*128, swindow_prev, ac->add_bias, 64);
1739 ac->dsp.vector_fmul_window(out + 448 + 1*128, buf + 0*128 + 64, buf + 1*128, swindow, ac->add_bias, 64);
1740 ac->dsp.vector_fmul_window(out + 448 + 2*128, buf + 1*128 + 64, buf + 2*128, swindow, ac->add_bias, 64);
1741 ac->dsp.vector_fmul_window(out + 448 + 3*128, buf + 2*128 + 64, buf + 3*128, swindow, ac->add_bias, 64);
1742 ac->dsp.vector_fmul_window(temp, buf + 3*128 + 64, buf + 4*128, swindow, ac->add_bias, 64);
1743 memcpy( out + 448 + 4*128, temp, 64 * sizeof(float));
f4990558 1744 } else {
b0f5852a 1745 ac->dsp.vector_fmul_window(out + 448, saved + 448, buf, swindow_prev, ac->add_bias, 64);
db38c386 1746 for (i = 576; i < 1024; i++)
b0f5852a 1747 out[i] = buf[i-512] + ac->add_bias;
f4990558
RS
1748 }
1749 }
62a57fae 1750
f4990558
RS
1751 // buffer update
1752 if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
b0f5852a
RS
1753 for (i = 0; i < 64; i++)
1754 saved[i] = temp[64 + i] - ac->add_bias;
1755 ac->dsp.vector_fmul_window(saved + 64, buf + 4*128 + 64, buf + 5*128, swindow, 0, 64);
1756 ac->dsp.vector_fmul_window(saved + 192, buf + 5*128 + 64, buf + 6*128, swindow, 0, 64);
1757 ac->dsp.vector_fmul_window(saved + 320, buf + 6*128 + 64, buf + 7*128, swindow, 0, 64);
1758 memcpy( saved + 448, buf + 7*128 + 64, 64 * sizeof(float));
f4990558 1759 } else if (ics->window_sequence[0] == LONG_START_SEQUENCE) {
b0f5852a
RS
1760 memcpy( saved, buf + 512, 448 * sizeof(float));
1761 memcpy( saved + 448, buf + 7*128 + 64, 64 * sizeof(float));
f4990558 1762 } else { // LONG_STOP or ONLY_LONG
b0f5852a 1763 memcpy( saved, buf + 512, 512 * sizeof(float));
62a57fae
RS
1764 }
1765}
1766
9cc04edf 1767/**
cc0591da
RS
1768 * Apply dependent channel coupling (applied before IMDCT).
1769 *
1770 * @param index index into coupling gain array
1771 */
577d383b
DB
1772static void apply_dependent_coupling(AACContext *ac,
1773 SingleChannelElement *target,
1774 ChannelElement *cce, int index)
1775{
1776 IndividualChannelStream *ics = &cce->ch[0].ics;
1777 const uint16_t *offsets = ics->swb_offset;
1778 float *dest = target->coeffs;
1779 const float *src = cce->ch[0].coeffs;
cc0591da 1780 int g, i, group, k, idx = 0;
577d383b 1781 if (ac->m4ac.object_type == AOT_AAC_LTP) {
cc0591da
RS
1782 av_log(ac->avccontext, AV_LOG_ERROR,
1783 "Dependent coupling is not supported together with LTP\n");
1784 return;
1785 }
1786 for (g = 0; g < ics->num_window_groups; g++) {
1787 for (i = 0; i < ics->max_sfb; i++, idx++) {
fbdae895 1788 if (cce->ch[0].band_type[idx] != ZERO_BT) {
cfd937b0 1789 const float gain = cce->coup.gain[index][idx];
cc0591da 1790 for (group = 0; group < ics->group_len[g]; group++) {
577d383b 1791 for (k = offsets[i]; k < offsets[i + 1]; k++) {
cc0591da 1792 // XXX dsputil-ize
577d383b 1793 dest[group * 128 + k] += gain * src[group * 128 + k];
cc0591da
RS
1794 }
1795 }
1796 }
1797 }
577d383b
DB
1798 dest += ics->group_len[g] * 128;
1799 src += ics->group_len[g] * 128;
cc0591da
RS
1800 }
1801}
1802
1803/**
1804 * Apply independent channel coupling (applied after IMDCT).
1805 *
1806 * @param index index into coupling gain array
1807 */
577d383b
DB
1808static void apply_independent_coupling(AACContext *ac,
1809 SingleChannelElement *target,
1810 ChannelElement *cce, int index)
1811{
cc0591da 1812 int i;
039821a8
AC
1813 const float gain = cce->coup.gain[index][0];
1814 const float bias = ac->add_bias;
577d383b
DB
1815 const float *src = cce->ch[0].ret;
1816 float *dest = target->ret;
039821a8 1817
cc0591da 1818 for (i = 0; i < 1024; i++)
039821a8 1819 dest[i] += gain * (src[i] - bias);
cc0591da
RS
1820}
1821
9ffd5c1c
RS
1822/**
1823 * channel coupling transformation interface
1824 *
1825 * @param index index into coupling gain array
1826 * @param apply_coupling_method pointer to (in)dependent coupling function
1827 */
577d383b
DB
1828static void apply_channel_coupling(AACContext *ac, ChannelElement *cc,
1829 enum RawDataBlockType type, int elem_id,
1830 enum CouplingPoint coupling_point,
1831 void (*apply_coupling_method)(AACContext *ac, SingleChannelElement *target, ChannelElement *cce, int index))
9ffd5c1c 1832{
88de95c2
AC
1833 int i, c;
1834
1835 for (i = 0; i < MAX_ELEM_ID; i++) {
1836 ChannelElement *cce = ac->che[TYPE_CCE][i];
1837 int index = 0;
1838
1839 if (cce && cce->coup.coupling_point == coupling_point) {
577d383b 1840 ChannelCoupling *coup = &cce->coup;
88de95c2
AC
1841
1842 for (c = 0; c <= coup->num_coupled; c++) {
1843 if (coup->type[c] == type && coup->id_select[c] == elem_id) {
1844 if (coup->ch_select[c] != 1) {
1845 apply_coupling_method(ac, &cc->ch[0], cce, index);
1846 if (coup->ch_select[c] != 0)
1847 index++;
1848 }
1849 if (coup->ch_select[c] != 2)
1850 apply_coupling_method(ac, &cc->ch[1], cce, index++);
1851 } else
1852 index += 1 + (coup->ch_select[c] == 3);
9ffd5c1c 1853 }
9ffd5c1c
RS
1854 }
1855 }
1856}
1857
1858/**
1859 * Convert spectral data to float samples, applying all supported tools as appropriate.
1860 */
577d383b
DB
1861static void spectral_to_sample(AACContext *ac)
1862{
b0bc928b
CEH
1863 int i, type;
1864 for (type = 3; type >= 0; type--) {
88de95c2 1865 for (i = 0; i < MAX_ELEM_ID; i++) {
9ffd5c1c 1866 ChannelElement *che = ac->che[type][i];
577d383b
DB
1867 if (che) {
1868 if (type <= TYPE_CPE)
88de95c2 1869 apply_channel_coupling(ac, che, type, i, BEFORE_TNS, apply_dependent_coupling);
577d383b 1870 if (che->ch[0].tns.present)
9ffd5c1c 1871 apply_tns(che->ch[0].coeffs, &che->ch[0].tns, &che->ch[0].ics, 1);
577d383b 1872 if (che->ch[1].tns.present)
9ffd5c1c 1873 apply_tns(che->ch[1].coeffs, &che->ch[1].tns, &che->ch[1].ics, 1);
577d383b 1874 if (type <= TYPE_CPE)
88de95c2 1875 apply_channel_coupling(ac, che, type, i, BETWEEN_TNS_AND_IMDCT, apply_dependent_coupling);
577d383b 1876 if (type != TYPE_CCE || che->coup.coupling_point == AFTER_IMDCT)
88de95c2 1877 imdct_and_windowing(ac, &che->ch[0]);
577d383b 1878 if (type == TYPE_CPE)
9ffd5c1c 1879 imdct_and_windowing(ac, &che->ch[1]);
577d383b 1880 if (type <= TYPE_CCE)
88de95c2 1881 apply_channel_coupling(ac, che, type, i, AFTER_IMDCT, apply_independent_coupling);
62a57fae
RS
1882 }
1883 }
1884 }
1885}
1886
577d383b
DB
1887static int parse_adts_frame_header(AACContext *ac, GetBitContext *gb)
1888{
158b3912
RS
1889 int size;
1890 AACADTSHeaderInfo hdr_info;
1891
1892 size = ff_aac_parse_header(gb, &hdr_info);
1893 if (size > 0) {
981b8fd7 1894 if (ac->output_configured != OC_LOCKED && hdr_info.chan_config) {
6308765c
AC
1895 enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
1896 memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
158b3912 1897 ac->m4ac.chan_config = hdr_info.chan_config;
6308765c
AC
1898 if (set_default_channel_config(ac, new_che_pos, hdr_info.chan_config))
1899 return -7;
981b8fd7 1900 if (output_configure(ac, ac->che_pos, new_che_pos, hdr_info.chan_config, OC_TRIAL_FRAME))
6308765c 1901 return -7;
981b8fd7
AC
1902 } else if (ac->output_configured != OC_LOCKED) {
1903 ac->output_configured = OC_NONE;
6308765c 1904 }
38610d92
AC
1905 if (ac->output_configured != OC_LOCKED)
1906 ac->m4ac.sbr = -1;
158b3912
RS
1907 ac->m4ac.sample_rate = hdr_info.sample_rate;
1908 ac->m4ac.sampling_index = hdr_info.sampling_index;
1909 ac->m4ac.object_type = hdr_info.object_type;
f6586314
1910 if (!ac->avccontext->sample_rate)
1911 ac->avccontext->sample_rate = hdr_info.sample_rate;
7d87e2ce
AC
1912 if (hdr_info.num_aac_frames == 1) {
1913 if (!hdr_info.crc_absent)
1914 skip_bits(gb, 16);
1915 } else {
ce863d7f 1916 av_log_missing_feature(ac->avccontext, "More than one AAC RDB per ADTS frame is", 0);
7d87e2ce
AC
1917 return -1;
1918 }
51741a82 1919 }
158b3912
RS
1920 return size;
1921}
1922
577d383b
DB
1923static int aac_decode_frame(AVCodecContext *avccontext, void *data,
1924 int *data_size, AVPacket *avpkt)
1925{
7a00bbad
TB
1926 const uint8_t *buf = avpkt->data;
1927 int buf_size = avpkt->size;
577d383b
DB
1928 AACContext *ac = avccontext->priv_data;
1929 ChannelElement *che = NULL;
62a57fae
RS
1930 GetBitContext gb;
1931 enum RawDataBlockType elem_type;
1932 int err, elem_id, data_size_tmp;
1933
577d383b 1934 init_get_bits(&gb, buf, buf_size * 8);
62a57fae 1935
158b3912 1936 if (show_bits(&gb, 12) == 0xfff) {
5967e141 1937 if (parse_adts_frame_header(ac, &gb) < 0) {
158b3912
RS
1938 av_log(avccontext, AV_LOG_ERROR, "Error decoding AAC frame header.\n");
1939 return -1;
1940 }
30272450 1941 if (ac->m4ac.sampling_index > 12) {
f418b861
JM
1942 av_log(ac->avccontext, AV_LOG_ERROR, "invalid sampling rate index %d\n", ac->m4ac.sampling_index);
1943 return -1;
1944 }
158b3912
RS
1945 }
1946
62a57fae
RS
1947 // parse
1948 while ((elem_type = get_bits(&gb, 3)) != TYPE_END) {
1949 elem_id = get_bits(&gb, 4);
62a57fae 1950
577d383b 1951 if (elem_type < TYPE_DSE && !(che=get_che(ac, elem_type, elem_id))) {
5f401ee0
RS
1952 av_log(ac->avccontext, AV_LOG_ERROR, "channel element %d.%d is not allocated\n", elem_type, elem_id);
1953 return -1;
62a57fae
RS
1954 }
1955
1956 switch (elem_type) {
1957
1958 case TYPE_SCE:
bb5c0988 1959 err = decode_ics(ac, &che->ch[0], &gb, 0, 0);
62a57fae
RS
1960 break;
1961
1962 case TYPE_CPE:
bb5c0988 1963 err = decode_cpe(ac, &gb, che);
62a57fae
RS
1964 break;
1965
1966 case TYPE_CCE:
bb5c0988 1967 err = decode_cce(ac, &gb, che);
62a57fae
RS
1968 break;
1969
1970 case TYPE_LFE:
bb5c0988 1971 err = decode_ics(ac, &che->ch[0], &gb, 0, 0);
62a57fae
RS
1972 break;
1973
1974 case TYPE_DSE:
1975 skip_data_stream_element(&gb);
1976 err = 0;
1977 break;
1978
577d383b 1979 case TYPE_PCE: {
62a57fae
RS
1980 enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
1981 memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
577d383b 1982 if ((err = decode_pce(ac, new_che_pos, &gb)))
62a57fae 1983 break;
4e878a18 1984 if (ac->output_configured > OC_TRIAL_PCE)
6308765c
AC
1985 av_log(avccontext, AV_LOG_ERROR,
1986 "Not evaluating a further program_config_element as this construct is dubious at best.\n");
1987 else
981b8fd7 1988 err = output_configure(ac, ac->che_pos, new_che_pos, 0, OC_TRIAL_PCE);
62a57fae
RS
1989 break;
1990 }
1991
1992 case TYPE_FIL:
1993 if (elem_id == 15)
1994 elem_id += get_bits(&gb, 8) - 1;
1995 while (elem_id > 0)
1996 elem_id -= decode_extension_payload(ac, &gb, elem_id);
1997 err = 0; /* FIXME */
1998 break;
1999
2000 default:
2001 err = -1; /* should not happen, but keeps compiler happy */
2002 break;
2003 }
2004
577d383b 2005 if (err)
62a57fae
RS
2006 return err;
2007 }
2008
2009 spectral_to_sample(ac);
2010
9cc04edf 2011 data_size_tmp = 1024 * avccontext->channels * sizeof(int16_t);
577d383b 2012 if (*data_size < data_size_tmp) {
9cc04edf
RS
2013 av_log(avccontext, AV_LOG_ERROR,
2014 "Output buffer too small (%d) or trying to output too many samples (%d) for this frame.\n",
2015 *data_size, data_size_tmp);
2016 return -1;
2017 }
2018 *data_size = data_size_tmp;
2019
2020 ac->dsp.float_to_int16_interleave(data, (const float **)ac->output_data, 1024, avccontext->channels);
2021
981b8fd7
AC
2022 if (ac->output_configured)
2023 ac->output_configured = OC_LOCKED;
2024
9cc04edf
RS
2025 return buf_size;
2026}
2027
577d383b
DB
2028static av_cold int aac_decode_close(AVCodecContext *avccontext)
2029{
2030 AACContext *ac = avccontext->priv_data;
9edae4ad 2031 int i, type;
71e9a1b8 2032
cc0591da 2033 for (i = 0; i < MAX_ELEM_ID; i++) {
577d383b 2034 for (type = 0; type < 4; type++)
9edae4ad 2035 av_freep(&ac->che[type][i]);
71e9a1b8
RS
2036 }
2037
2038 ff_mdct_end(&ac->mdct);
2039 ff_mdct_end(&ac->mdct_small);
577d383b 2040 return 0;
71e9a1b8
RS
2041}
2042
2043AVCodec aac_decoder = {
2044 "aac",
2045 CODEC_TYPE_AUDIO,
2046 CODEC_ID_AAC,
2047 sizeof(AACContext),
2048 aac_decode_init,
2049 NULL,
2050 aac_decode_close,
2051 aac_decode_frame,
2052 .long_name = NULL_IF_CONFIG_SMALL("Advanced Audio Coding"),
b5f09d31 2053 .sample_fmts = (const enum SampleFormat[]) {
577d383b
DB
2054 SAMPLE_FMT_S16,SAMPLE_FMT_NONE
2055 },
e22da6b6 2056 .channel_layouts = aac_channel_layout,
71e9a1b8 2057};