Merge the AAC encoder from SoC svn. It is still considered experimental.
[libav.git] / libavcodec / aaccoder.c
CommitLineData
78e65cd7
AC
1/*
2 * AAC coefficients encoder
3 * Copyright (C) 2008-2009 Konstantin Shishkov
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22/**
23 * @file libavcodec/aaccoder.c
24 * AAC coefficients encoder
25 */
26
27/***********************************
28 * TODOs:
29 * speedup quantizer selection
30 * add sane pulse detection
31 ***********************************/
32
33#include "avcodec.h"
34#include "put_bits.h"
35#include "aac.h"
36#include "aacenc.h"
37#include "aactab.h"
38
39/** bits needed to code codebook run value for long windows */
40static const uint8_t run_value_bits_long[64] = {
41 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
42 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 10,
43 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
44 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 15
45};
46
47/** bits needed to code codebook run value for short windows */
48static const uint8_t run_value_bits_short[16] = {
49 3, 3, 3, 3, 3, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 9
50};
51
52static const uint8_t* run_value_bits[2] = {
53 run_value_bits_long, run_value_bits_short
54};
55
56
57/**
58 * Quantize one coefficient.
59 * @return absolute value of the quantized coefficient
60 * @see 3GPP TS26.403 5.6.2 "Scalefactor determination"
61 */
62static av_always_inline int quant(float coef, const float Q)
63{
64 return pow(coef * Q, 0.75) + 0.4054;
65}
66
67static void quantize_bands(int (*out)[2], const float *in, const float *scaled, int size, float Q34, int is_signed, int maxval)
68{
69 int i;
70 double qc;
71 for (i = 0; i < size; i++) {
72 qc = scaled[i] * Q34;
73 out[i][0] = (int)FFMIN((int)qc, maxval);
74 out[i][1] = (int)FFMIN((int)(qc + 0.4054), maxval);
75 if (is_signed && in[i] < 0.0f) {
76 out[i][0] = -out[i][0];
77 out[i][1] = -out[i][1];
78 }
79 }
80}
81
82static void abs_pow34_v(float *out, const float* in, const int size)
83{
84#ifndef USE_REALLY_FULL_SEARCH
85 int i;
86 for (i = 0; i < size; i++) {
87 out[i] = pow(fabsf(in[i]), 0.75);
88 }
89#endif /* USE_REALLY_FULL_SEARCH */
90}
91
92static av_always_inline int quant2(float coef, const float Q)
93{
94 return pow(coef * Q, 0.75);
95}
96
97static const uint8_t aac_cb_range [12] = {0, 3, 3, 3, 3, 9, 9, 8, 8, 13, 13, 17};
98static const uint8_t aac_cb_maxval[12] = {0, 1, 1, 2, 2, 4, 4, 7, 7, 12, 12, 16};
99
100/**
101 * Calculate rate distortion cost for quantizing with given codebook
102 *
103 * @return quantization distortion
104 */
105static float quantize_band_cost(struct AACEncContext *s, const float *in, const float *scaled, int size, int scale_idx, int cb,
106 const float lambda, const float uplim, int *bits)
107{
108 const float IQ = ff_aac_pow2sf_tab[200 + scale_idx - SCALE_ONE_POS + SCALE_DIV_512];
109 const float Q = ff_aac_pow2sf_tab[200 - scale_idx + SCALE_ONE_POS - SCALE_DIV_512];
110 const float CLIPPED_ESCAPE = 165140.0f*IQ;
111 int i, j, k;
112 float cost = 0;
113 const int dim = cb < FIRST_PAIR_BT ? 4 : 2;
114 int resbits = 0;
115#ifndef USE_REALLY_FULL_SEARCH
116 const float Q34 = pow(Q, 0.75);
117 const int range = aac_cb_range[cb];
118 const int maxval = aac_cb_maxval[cb];
119 int offs[4];
120#endif /* USE_REALLY_FULL_SEARCH */
121
122 if(!cb){
123 for(i = 0; i < size; i++)
124 cost += in[i]*in[i]*lambda;
125 return cost;
126 }
127#ifndef USE_REALLY_FULL_SEARCH
128 offs[0] = 1;
129 for(i = 1; i < dim; i++)
130 offs[i] = offs[i-1]*range;
131 quantize_bands(s->qcoefs, in, scaled, size, Q34, !IS_CODEBOOK_UNSIGNED(cb), maxval);
132#endif /* USE_REALLY_FULL_SEARCH */
133 for(i = 0; i < size; i += dim){
134 float mincost;
135 int minidx = 0;
136 int minbits = 0;
137 const float *vec;
138#ifndef USE_REALLY_FULL_SEARCH
139 int (*quants)[2] = &s->qcoefs[i];
140 mincost = 0.0f;
141 for(j = 0; j < dim; j++){
142 mincost += in[i+j]*in[i+j]*lambda;
143 }
144 minidx = IS_CODEBOOK_UNSIGNED(cb) ? 0 : 40;
145 minbits = ff_aac_spectral_bits[cb-1][minidx];
146 mincost += minbits;
147 for(j = 0; j < (1<<dim); j++){
148 float rd = 0.0f;
149 int curbits;
150 int curidx = IS_CODEBOOK_UNSIGNED(cb) ? 0 : 40;
151 int same = 0;
152 for(k = 0; k < dim; k++){
153 if((j & (1 << k)) && quants[k][0] == quants[k][1]){
154 same = 1;
155 break;
156 }
157 }
158 if(same)
159 continue;
160 for(k = 0; k < dim; k++)
161 curidx += quants[k][!!(j & (1 << k))] * offs[dim - 1 - k];
162 curbits = ff_aac_spectral_bits[cb-1][curidx];
163 vec = &ff_aac_codebook_vectors[cb-1][curidx*dim];
164#else
165 mincost = INFINITY;
166 vec = ff_aac_codebook_vectors[cb-1];
167 for(j = 0; j < ff_aac_spectral_sizes[cb-1]; j++, vec += dim){
168 float rd = 0.0f;
169 int curbits = ff_aac_spectral_bits[cb-1][j];
170#endif /* USE_REALLY_FULL_SEARCH */
171 if(IS_CODEBOOK_UNSIGNED(cb)){
172 for(k = 0; k < dim; k++){
173 float t = fabsf(in[i+k]);
174 float di;
175 //do not code with escape sequence small values
176 if(vec[k] == 64.0f && t < 39.0f*IQ){
177 rd = INFINITY;
178 break;
179 }
180 if(vec[k] == 64.0f){//FIXME: slow
181 if (t >= CLIPPED_ESCAPE) {
182 di = t - CLIPPED_ESCAPE;
183 curbits += 21;
184 }else{
185 int c = av_clip(quant(t, Q), 0, 8191);
186 di = t - c*cbrt(c)*IQ;
187 curbits += av_log2(c)*2 - 4 + 1;
188 }
189 }else{
190 di = t - vec[k]*IQ;
191 }
192 if(vec[k] != 0.0f)
193 curbits++;
194 rd += di*di*lambda;
195 }
196 }else{
197 for(k = 0; k < dim; k++){
198 float di = in[i+k] - vec[k]*IQ;
199 rd += di*di*lambda;
200 }
201 }
202 rd += curbits;
203 if(rd < mincost){
204 mincost = rd;
205 minidx = j;
206 minbits = curbits;
207 }
208 }
209 cost += mincost;
210 resbits += minbits;
211 if(cost >= uplim)
212 return uplim;
213 }
214
215 if(bits)
216 *bits = resbits;
217 return cost;
218}
219
220static void quantize_and_encode_band(struct AACEncContext *s, PutBitContext *pb, const float *in, int size,
221 int scale_idx, int cb, const float lambda)
222{
223 const float IQ = ff_aac_pow2sf_tab[200 + scale_idx - SCALE_ONE_POS + SCALE_DIV_512];
224 const float Q = ff_aac_pow2sf_tab[200 - scale_idx + SCALE_ONE_POS - SCALE_DIV_512];
225 const float CLIPPED_ESCAPE = 165140.0f*IQ;
226 const int dim = (cb < FIRST_PAIR_BT) ? 4 : 2;
227 int i, j, k;
228#ifndef USE_REALLY_FULL_SEARCH
229 const float Q34 = pow(Q, 0.75);
230 const int range = aac_cb_range[cb];
231 const int maxval = aac_cb_maxval[cb];
232 int offs[4];
233 float *scaled = s->scoefs;
234#endif /* USE_REALLY_FULL_SEARCH */
235
236//START_TIMER
237 if(!cb)
238 return;
239
240#ifndef USE_REALLY_FULL_SEARCH
241 offs[0] = 1;
242 for(i = 1; i < dim; i++)
243 offs[i] = offs[i-1]*range;
244 abs_pow34_v(scaled, in, size);
245 quantize_bands(s->qcoefs, in, scaled, size, Q34, !IS_CODEBOOK_UNSIGNED(cb), maxval);
246#endif /* USE_REALLY_FULL_SEARCH */
247 for(i = 0; i < size; i += dim){
248 float mincost;
249 int minidx = 0;
250 int minbits = 0;
251 const float *vec;
252#ifndef USE_REALLY_FULL_SEARCH
253 int (*quants)[2] = &s->qcoefs[i];
254 mincost = 0.0f;
255 for(j = 0; j < dim; j++){
256 mincost += in[i+j]*in[i+j]*lambda;
257 }
258 minidx = IS_CODEBOOK_UNSIGNED(cb) ? 0 : 40;
259 minbits = ff_aac_spectral_bits[cb-1][minidx];
260 mincost += minbits;
261 for(j = 0; j < (1<<dim); j++){
262 float rd = 0.0f;
263 int curbits;
264 int curidx = IS_CODEBOOK_UNSIGNED(cb) ? 0 : 40;
265 int same = 0;
266 for(k = 0; k < dim; k++){
267 if((j & (1 << k)) && quants[k][0] == quants[k][1]){
268 same = 1;
269 break;
270 }
271 }
272 if(same)
273 continue;
274 for(k = 0; k < dim; k++)
275 curidx += quants[k][!!(j & (1 << k))] * offs[dim - 1 - k];
276 curbits = ff_aac_spectral_bits[cb-1][curidx];
277 vec = &ff_aac_codebook_vectors[cb-1][curidx*dim];
278#else
279 vec = ff_aac_codebook_vectors[cb-1];
280 mincost = INFINITY;
281 for(j = 0; j < ff_aac_spectral_sizes[cb-1]; j++, vec += dim){
282 float rd = 0.0f;
283 int curbits = ff_aac_spectral_bits[cb-1][j];
284 int curidx = j;
285#endif /* USE_REALLY_FULL_SEARCH */
286 if(IS_CODEBOOK_UNSIGNED(cb)){
287 for(k = 0; k < dim; k++){
288 float t = fabsf(in[i+k]);
289 float di;
290 //do not code with escape sequence small values
291 if(vec[k] == 64.0f && t < 39.0f*IQ){
292 rd = INFINITY;
293 break;
294 }
295 if(vec[k] == 64.0f){//FIXME: slow
296 if (t >= CLIPPED_ESCAPE) {
297 di = t - CLIPPED_ESCAPE;
298 curbits += 21;
299 }else{
300 int c = av_clip(quant(t, Q), 0, 8191);
301 di = t - c*cbrt(c)*IQ;
302 curbits += av_log2(c)*2 - 4 + 1;
303 }
304 }else{
305 di = t - vec[k]*IQ;
306 }
307 if(vec[k] != 0.0f)
308 curbits++;
309 rd += di*di*lambda;
310 }
311 }else{
312 for(k = 0; k < dim; k++){
313 float di = in[i+k] - vec[k]*IQ;
314 rd += di*di*lambda;
315 }
316 }
317 rd += curbits;
318 if(rd < mincost){
319 mincost = rd;
320 minidx = curidx;
321 minbits = curbits;
322 }
323 }
324 put_bits(pb, ff_aac_spectral_bits[cb-1][minidx], ff_aac_spectral_codes[cb-1][minidx]);
325 if(IS_CODEBOOK_UNSIGNED(cb))
326 for(j = 0; j < dim; j++)
327 if(ff_aac_codebook_vectors[cb-1][minidx*dim+j] != 0.0f)
328 put_bits(pb, 1, in[i+j] < 0.0f);
329 if(cb == ESC_BT){
330 for(j = 0; j < 2; j++){
331 if(ff_aac_codebook_vectors[cb-1][minidx*2+j] == 64.0f){
332 int coef = av_clip(quant(fabsf(in[i+j]), Q), 0, 8191);
333 int len = av_log2(coef);
334
335 put_bits(pb, len - 4 + 1, (1 << (len - 4 + 1)) - 2);
336 put_bits(pb, len, coef & ((1 << len) - 1));
337 }
338 }
339 }
340 }
341//STOP_TIMER("quantize_and_encode")
342}
343
344/**
345 * structure used in optimal codebook search
346 */
347typedef struct BandCodingPath {
348 int prev_idx; ///< pointer to the previous path point
349 int codebook; ///< codebook for coding band run
350 float cost; ///< path cost
351 int run;
352} BandCodingPath;
353
354/**
355 * Encode band info for single window group bands.
356 */
357static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce,
358 int win, int group_len, const float lambda)
359{
360 BandCodingPath path[120][12];
361 int w, swb, cb, start, start2, size;
362 int i, j;
363 const int max_sfb = sce->ics.max_sfb;
364 const int run_bits = sce->ics.num_windows == 1 ? 5 : 3;
365 const int run_esc = (1 << run_bits) - 1;
366 int idx, ppos, count;
367 int stackrun[120], stackcb[120], stack_len;
368 float next_minrd = INFINITY;
369 int next_mincb = 0;
370
371 abs_pow34_v(s->scoefs, sce->coeffs, 1024);
372 start = win*128;
373 for(cb = 0; cb < 12; cb++){
374 path[0][cb].cost = 0.0f;
375 path[0][cb].prev_idx = -1;
376 path[0][cb].run = 0;
377 }
378 for(swb = 0; swb < max_sfb; swb++){
379 start2 = start;
380 size = sce->ics.swb_sizes[swb];
381 if(sce->zeroes[win*16 + swb]){
382 for(cb = 0; cb < 12; cb++){
383 path[swb+1][cb].prev_idx = cb;
384 path[swb+1][cb].cost = path[swb][cb].cost;
385 path[swb+1][cb].run = path[swb][cb].run + 1;
386 }
387 }else{
388 float minrd = next_minrd;
389 int mincb = next_mincb;
390 next_minrd = INFINITY;
391 next_mincb = 0;
392 for(cb = 0; cb < 12; cb++){
393 float cost_stay_here, cost_get_here;
394 float rd = 0.0f;
395 for(w = 0; w < group_len; w++){
396 FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(win+w)*16+swb];
397 rd += quantize_band_cost(s, sce->coeffs + start + w*128,
398 s->scoefs + start + w*128, size,
399 sce->sf_idx[(win+w)*16+swb], cb,
400 lambda / band->threshold, INFINITY, NULL);
401 }
402 cost_stay_here = path[swb][cb].cost + rd;
403 cost_get_here = minrd + rd + run_bits + 4;
404 if( run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run]
405 != run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1])
406 cost_stay_here += run_bits;
407 if (cost_get_here < cost_stay_here) {
408 path[swb+1][cb].prev_idx = mincb;
409 path[swb+1][cb].cost = cost_get_here;
410 path[swb+1][cb].run = 1;
411 } else {
412 path[swb+1][cb].prev_idx = cb;
413 path[swb+1][cb].cost = cost_stay_here;
414 path[swb+1][cb].run = path[swb][cb].run + 1;
415 }
416 if (path[swb+1][cb].cost < next_minrd) {
417 next_minrd = path[swb+1][cb].cost;
418 next_mincb = cb;
419 }
420 }
421 }
422 start += sce->ics.swb_sizes[swb];
423 }
424
425 //convert resulting path from backward-linked list
426 stack_len = 0;
427 idx = 0;
428 for(cb = 1; cb < 12; cb++){
429 if(path[max_sfb][cb].cost < path[max_sfb][idx].cost)
430 idx = cb;
431 }
432 ppos = max_sfb;
433 while(ppos > 0){
434 cb = idx;
435 stackrun[stack_len] = path[ppos][cb].run;
436 stackcb [stack_len] = cb;
437 idx = path[ppos-path[ppos][cb].run+1][cb].prev_idx;
438 ppos -= path[ppos][cb].run;
439 stack_len++;
440 }
441 //perform actual band info encoding
442 start = 0;
443 for(i = stack_len - 1; i >= 0; i--){
444 put_bits(&s->pb, 4, stackcb[i]);
445 count = stackrun[i];
446 memset(sce->zeroes + win*16 + start, !stackcb[i], count);
447 //XXX: memset when band_type is also uint8_t
448 for(j = 0; j < count; j++){
449 sce->band_type[win*16 + start] = stackcb[i];
450 start++;
451 }
452 while(count >= run_esc){
453 put_bits(&s->pb, run_bits, run_esc);
454 count -= run_esc;
455 }
456 put_bits(&s->pb, run_bits, count);
457 }
458}
459
460static void encode_window_bands_info_fixed(AACEncContext *s, SingleChannelElement *sce,
461 int win, int group_len, const float lambda)
462{
463 encode_window_bands_info(s, sce, win, group_len, 1.0f);
464}
465
466
467typedef struct TrellisPath {
468 float cost;
469 int prev;
470 int min_val;
471 int max_val;
472} TrellisPath;
473
474static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s,
475 SingleChannelElement *sce, const float lambda)
476{
477 int q, w, w2, g, start = 0;
478 int i;
479 int idx;
480 TrellisPath paths[256*121];
481 int bandaddr[121];
482 int minq;
483 float mincost;
484
485 for(i = 0; i < 256; i++){
486 paths[i].cost = 0.0f;
487 paths[i].prev = -1;
488 paths[i].min_val = i;
489 paths[i].max_val = i;
490 }
491 for(i = 256; i < 256*121; i++){
492 paths[i].cost = INFINITY;
493 paths[i].prev = -2;
494 paths[i].min_val = INT_MAX;
495 paths[i].max_val = 0;
496 }
497 idx = 256;
498 abs_pow34_v(s->scoefs, sce->coeffs, 1024);
499 for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){
500 start = w*128;
501 for(g = 0; g < sce->ics.num_swb; g++){
502 const float *coefs = sce->coeffs + start;
503 float qmin, qmax;
504 int nz = 0;
505
506 bandaddr[idx >> 8] = w*16+g;
507 qmin = INT_MAX;
508 qmax = 0.0f;
509 for(w2 = 0; w2 < sce->ics.group_len[w]; w2++){
510 FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
511 if(band->energy <= band->threshold || band->threshold == 0.0f){
512 sce->zeroes[(w+w2)*16+g] = 1;
513 continue;
514 }
515 sce->zeroes[(w+w2)*16+g] = 0;
516 nz = 1;
517 for(i = 0; i < sce->ics.swb_sizes[g]; i++){
518 float t = fabsf(coefs[w2*128+i]);
519 if(t > 0.0f) qmin = fminf(qmin, t);
520 qmax = fmaxf(qmax, t);
521 }
522 }
523 if(nz){
524 int minscale, maxscale;
525 float minrd = INFINITY;
526 //minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped
527 minscale = av_clip_uint8(log2(qmin)*4 - 69 + SCALE_ONE_POS - SCALE_DIV_512);
528 //maximum scalefactor index is when maximum coefficient after quantizing is still not zero
529 maxscale = av_clip_uint8(log2(qmax)*4 + 6 + SCALE_ONE_POS - SCALE_DIV_512);
530 for(q = minscale; q < maxscale; q++){
531 float dists[12], dist;
532 memset(dists, 0, sizeof(dists));
533 for(w2 = 0; w2 < sce->ics.group_len[w]; w2++){
534 FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
535 int cb;
536 for(cb = 0; cb <= ESC_BT; cb++){
537 dists[cb] += quantize_band_cost(s, coefs + w2*128, s->scoefs + start + w2*128, sce->ics.swb_sizes[g],
538 q, cb, lambda / band->threshold, INFINITY, NULL);
539 }
540 }
541 dist = dists[0];
542 for(i = 1; i <= ESC_BT; i++)
543 dist = fminf(dist, dists[i]);
544 minrd = fminf(minrd, dist);
545
546 for(i = FFMAX(q - SCALE_MAX_DIFF, 0); i < FFMIN(q + SCALE_MAX_DIFF, 256); i++){
547 float cost;
548 int minv, maxv;
549 if(isinf(paths[idx - 256 + i].cost))
550 continue;
551 cost = paths[idx - 256 + i].cost + dist
552 + ff_aac_scalefactor_bits[q - i + SCALE_DIFF_ZERO];
553 minv = FFMIN(paths[idx - 256 + i].min_val, q);
554 maxv = FFMAX(paths[idx - 256 + i].max_val, q);
555 if(cost < paths[idx + q].cost && maxv-minv < SCALE_MAX_DIFF){
556 paths[idx + q].cost = cost;
557 paths[idx + q].prev = idx - 256 + i;
558 paths[idx + q].min_val = minv;
559 paths[idx + q].max_val = maxv;
560 }
561 }
562 }
563 }else{
564 for(q = 0; q < 256; q++){
565 if(!isinf(paths[idx - 256 + q].cost)){
566 paths[idx + q].cost = paths[idx - 256 + q].cost + 1;
567 paths[idx + q].prev = idx - 256 + q;
568 paths[idx + q].min_val = FFMIN(paths[idx - 256 + q].min_val, q);
569 paths[idx + q].max_val = FFMAX(paths[idx - 256 + q].max_val, q);
570 continue;
571 }
572 for(i = FFMAX(q - SCALE_MAX_DIFF, 0); i < FFMIN(q + SCALE_MAX_DIFF, 256); i++){
573 float cost;
574 int minv, maxv;
575 if(isinf(paths[idx - 256 + i].cost))
576 continue;
577 cost = paths[idx - 256 + i].cost + ff_aac_scalefactor_bits[q - i + SCALE_DIFF_ZERO];
578 minv = FFMIN(paths[idx - 256 + i].min_val, q);
579 maxv = FFMAX(paths[idx - 256 + i].max_val, q);
580 if(cost < paths[idx + q].cost && maxv-minv < SCALE_MAX_DIFF){
581 paths[idx + q].cost = cost;
582 paths[idx + q].prev = idx - 256 + i;
583 paths[idx + q].min_val = minv;
584 paths[idx + q].max_val = maxv;
585 }
586 }
587 }
588 }
589 sce->zeroes[w*16+g] = !nz;
590 start += sce->ics.swb_sizes[g];
591 idx += 256;
592 }
593 }
594 idx -= 256;
595 mincost = paths[idx].cost;
596 minq = idx;
597 for(i = 1; i < 256; i++){
598 if(paths[idx + i].cost < mincost){
599 mincost = paths[idx + i].cost;
600 minq = idx + i;
601 }
602 }
603 while(minq >= 256){
604 sce->sf_idx[bandaddr[minq>>8]] = minq & 0xFF;
605 minq = paths[minq].prev;
606 }
607 //set the same quantizers inside window groups
608 for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
609 for(g = 0; g < sce->ics.num_swb; g++)
610 for(w2 = 1; w2 < sce->ics.group_len[w]; w2++)
611 sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
612}
613
614/**
615 * two-loop quantizers search taken from ISO 13818-7 Appendix C
616 */
617static void search_for_quantizers_twoloop(AVCodecContext *avctx, AACEncContext *s,
618 SingleChannelElement *sce, const float lambda)
619{
620 int start = 0, i, w, w2, g;
621 int destbits = avctx->bit_rate * 1024.0 / avctx->sample_rate / avctx->channels;
622 float dists[128], uplims[128];
623 int fflag, minscaler;
624 int its = 0;
625 int allz = 0;
626 float minthr = INFINITY;
627
628 //XXX: some heuristic to determine initial quantizers will reduce search time
629 memset(dists, 0, sizeof(dists));
630 //determine zero bands and upper limits
631 for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){
632 for(g = 0; g < sce->ics.num_swb; g++){
633 int nz = 0;
634 float uplim = 0.0f;
635 for(w2 = 0; w2 < sce->ics.group_len[w]; w2++){
636 FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
637 uplim += band->threshold;
638 if(band->energy <= band->threshold || band->threshold == 0.0f){
639 sce->zeroes[(w+w2)*16+g] = 1;
640 continue;
641 }
642 nz = 1;
643 }
644 uplims[w*16+g] = uplim *512;
645 sce->zeroes[w*16+g] = !nz;
646 if(nz)
647 minthr = fminf(minthr, uplim);
648 allz = FFMAX(allz, nz);
649 }
650 }
651 for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){
652 for(g = 0; g < sce->ics.num_swb; g++){
653 if(sce->zeroes[w*16+g]){
654 sce->sf_idx[w*16+g] = SCALE_ONE_POS;
655 continue;
656 }
657 sce->sf_idx[w*16+g] = SCALE_ONE_POS + fminf(log2(uplims[w*16+g]/minthr)*4,59);
658 }
659 }
660
661 if(!allz)
662 return;
663 abs_pow34_v(s->scoefs, sce->coeffs, 1024);
664 //perform two-loop search
665 //outer loop - improve quality
666 do{
667 int tbits, qstep;
668 minscaler = sce->sf_idx[0];
669 //inner loop - quantize spectrum to fit into given number of bits
670 qstep = its ? 1 : 32;
671 do{
672 int prev = -1;
673 tbits = 0;
674 fflag = 0;
675 for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){
676 start = w*128;
677 for(g = 0; g < sce->ics.num_swb; g++){
678 const float *coefs = sce->coeffs + start;
679 const float *scaled = s->scoefs + start;
680 int bits = 0;
681 int cb;
682 float mindist = INFINITY;
683 int minbits = 0;
684
685 if(sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218)
686 continue;
687 minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]);
688 for(cb = 0; cb <= ESC_BT; cb++){
689 float dist = 0.0f;
690 int bb = 0;
691 for(w2 = 0; w2 < sce->ics.group_len[w]; w2++){
692 int b;
693 dist += quantize_band_cost(s, coefs + w2*128,
694 scaled + w2*128,
695 sce->ics.swb_sizes[g],
696 sce->sf_idx[w*16+g],
697 ESC_BT,
698 1.0,
699 INFINITY,
700 &b);
701 bb += b;
702 }
703 if(dist < mindist){
704 mindist = dist;
705 minbits = bb;
706 }
707 }
708 dists[w*16+g] = mindist - minbits;
709 bits = minbits;
710 if(prev != -1){
711 bits += ff_aac_scalefactor_bits[sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO];
712 }
713 tbits += bits;
714 start += sce->ics.swb_sizes[g];
715 prev = sce->sf_idx[w*16+g];
716 }
717 }
718 if(tbits > destbits){
719 for(i = 0; i < 128; i++){
720 if(sce->sf_idx[i] < 218 - qstep){
721 sce->sf_idx[i] += qstep;
722 }
723 }
724 }else{
725 for(i = 0; i < 128; i++){
726 if(sce->sf_idx[i] > 60 - qstep){
727 sce->sf_idx[i] -= qstep;
728 }
729 }
730 }
731 qstep >>= 1;
732 if(!qstep && tbits > destbits*1.02)
733 qstep = 1;
734 if(sce->sf_idx[0] >= 217)break;
735 }while(qstep);
736
737 fflag = 0;
738 minscaler = av_clip(minscaler, 60, 255 - SCALE_MAX_DIFF);
739 for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){
740 start = w*128;
741 for(g = 0; g < sce->ics.num_swb; g++){
742 int prevsc = sce->sf_idx[w*16+g];
743 if(dists[w*16+g] > uplims[w*16+g] && sce->sf_idx[w*16+g] > 60)
744 sce->sf_idx[w*16+g]--;
745 sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler, minscaler + SCALE_MAX_DIFF);
746 sce->sf_idx[w*16+g] = FFMIN(sce->sf_idx[w*16+g], 219);
747 if(sce->sf_idx[w*16+g] != prevsc)
748 fflag = 1;
749 }
750 }
751 its++;
752 }while(fflag && its < 10);
753}
754
755static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s,
756 SingleChannelElement *sce, const float lambda)
757{
758 int start = 0, i, w, w2, g;
759 float uplim[128], maxq[128];
760 int minq, maxsf;
761 float distfact = ((sce->ics.num_windows > 1) ? 85.80 : 147.84) / lambda;
762 int last = 0, lastband = 0, curband = 0;
763 float avg_energy = 0.0;
764 if(sce->ics.num_windows == 1){
765 start = 0;
766 for(i = 0; i < 1024; i++){
767 if(i - start >= sce->ics.swb_sizes[curband]){
768 start += sce->ics.swb_sizes[curband];
769 curband++;
770 }
771 if(sce->coeffs[i]){
772 avg_energy += sce->coeffs[i] * sce->coeffs[i];
773 last = i;
774 lastband = curband;
775 }
776 }
777 }else{
778 for(w = 0; w < 8; w++){
779 const float *coeffs = sce->coeffs + w*128;
780 start = 0;
781 for(i = 0; i < 128; i++){
782 if(i - start >= sce->ics.swb_sizes[curband]){
783 start += sce->ics.swb_sizes[curband];
784 curband++;
785 }
786 if(coeffs[i]){
787 avg_energy += coeffs[i] * coeffs[i];
788 last = FFMAX(last, i);
789 lastband = FFMAX(lastband, curband);
790 }
791 }
792 }
793 }
794 last++;
795 avg_energy /= last;
796 if(avg_energy == 0.0f){
797 for(i = 0; i < FF_ARRAY_ELEMS(sce->sf_idx); i++)
798 sce->sf_idx[i] = SCALE_ONE_POS;
799 return;
800 }
801 for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){
802 start = w*128;
803 for(g = 0; g < sce->ics.num_swb; g++){
804 float *coefs = sce->coeffs + start;
805 const int size = sce->ics.swb_sizes[g];
806 int start2 = start, end2 = start + size, peakpos = start;
807 float maxval = -1, thr = 0.0f, t;
808 maxq[w*16+g] = 0.0f;
809 if(g > lastband){
810 maxq[w*16+g] = 0.0f;
811 start += size;
812 for(w2 = 0; w2 < sce->ics.group_len[w]; w2++)
813 memset(coefs + w2*128, 0, sizeof(coefs[0])*size);
814 continue;
815 }
816 for(w2 = 0; w2 < sce->ics.group_len[w]; w2++){
817 for(i = 0; i < size; i++){
818 float t = coefs[w2*128+i]*coefs[w2*128+i];
819 maxq[w*16+g] = fmaxf(maxq[w*16+g], fabsf(coefs[w2*128 + i]));
820 thr += t;
821 if(sce->ics.num_windows == 1 && maxval < t){
822 maxval = t;
823 peakpos = start+i;
824 }
825 }
826 }
827 if(sce->ics.num_windows == 1){
828 start2 = FFMAX(peakpos - 2, start2);
829 end2 = FFMIN(peakpos + 3, end2);
830 }else{
831 start2 -= start;
832 end2 -= start;
833 }
834 start += size;
835 thr = pow(thr / (avg_energy * (end2 - start2)), 0.3 + 0.1*(lastband - g) / lastband);
836 t = 1.0 - (1.0 * start2 / last);
837 uplim[w*16+g] = distfact / (1.4 * thr + t*t*t + 0.075);
838 }
839 }
840 memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
841 abs_pow34_v(s->scoefs, sce->coeffs, 1024);
842 for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){
843 start = w*128;
844 for(g = 0; g < sce->ics.num_swb; g++){
845 const float *coefs = sce->coeffs + start;
846 const float *scaled = s->scoefs + start;
847 const int size = sce->ics.swb_sizes[g];
848 int scf, prev_scf, step;
849 int min_scf = 0, max_scf = 255;
850 float curdiff;
851 if(maxq[w*16+g] < 21.544){
852 sce->zeroes[w*16+g] = 1;
853 start += size;
854 continue;
855 }
856 sce->zeroes[w*16+g] = 0;
857 scf = prev_scf = av_clip(SCALE_ONE_POS - SCALE_DIV_512 - log2(1/maxq[w*16+g])*16/3, 60, 218);
858 step = 16;
859 for(;;){
860 float dist = 0.0f;
861 int quant_max;
862
863 for(w2 = 0; w2 < sce->ics.group_len[w]; w2++){
864 int b;
865 dist += quantize_band_cost(s, coefs + w2*128,
866 scaled + w2*128,
867 sce->ics.swb_sizes[g],
868 scf,
869 ESC_BT,
870 1.0,
871 INFINITY,
872 &b);
873 dist -= b;
874 }
875 dist *= 1.0f/512.0f;
876 quant_max = quant(maxq[w*16+g], ff_aac_pow2sf_tab[200 - scf + SCALE_ONE_POS - SCALE_DIV_512]);
877 if(quant_max >= 8191){ // too much, return to the previous quantizer
878 sce->sf_idx[w*16+g] = prev_scf;
879 break;
880 }
881 prev_scf = scf;
882 curdiff = fabsf(dist - uplim[w*16+g]);
883 if(curdiff == 0.0f)
884 step = 0;
885 else
886 step = fabsf(log2(curdiff));
887 if(dist > uplim[w*16+g])
888 step = -step;
889 if(FFABS(step) <= 1 || (step > 0 && scf >= max_scf) || (step < 0 && scf <= min_scf)){
890 sce->sf_idx[w*16+g] = scf;
891 break;
892 }
893 scf += step;
894 if(step > 0)
895 min_scf = scf;
896 else
897 max_scf = scf;
898 }
899 start += size;
900 }
901 }
902 minq = sce->sf_idx[0] ? sce->sf_idx[0] : INT_MAX;
903 for(i = 1; i < 128; i++){
904 if(!sce->sf_idx[i])
905 sce->sf_idx[i] = sce->sf_idx[i-1];
906 else
907 minq = FFMIN(minq, sce->sf_idx[i]);
908 }
909 if(minq == INT_MAX) minq = 0;
910 minq = FFMIN(minq, SCALE_MAX_POS);
911 maxsf = FFMIN(minq + SCALE_MAX_DIFF, SCALE_MAX_POS);
912 for(i = 126; i >= 0; i--){
913 if(!sce->sf_idx[i])
914 sce->sf_idx[i] = sce->sf_idx[i+1];
915 sce->sf_idx[i] = av_clip(sce->sf_idx[i], minq, maxsf);
916 }
917}
918
919static void search_for_quantizers_fast(AVCodecContext *avctx, AACEncContext *s,
920 SingleChannelElement *sce, const float lambda)
921{
922 int start = 0, i, w, w2, g;
923 int minq = 255;
924
925 memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
926 for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]){
927 start = w*128;
928 for(g = 0; g < sce->ics.num_swb; g++){
929 for(w2 = 0; w2 < sce->ics.group_len[w]; w2++){
930 FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
931 if(band->energy <= band->threshold){
932 sce->sf_idx[(w+w2)*16+g] = 218;
933 sce->zeroes[(w+w2)*16+g] = 1;
934 }else{
935 sce->sf_idx[(w+w2)*16+g] = av_clip(SCALE_ONE_POS - SCALE_DIV_512 + log2(band->threshold), 80, 218);
936 sce->zeroes[(w+w2)*16+g] = 0;
937 }
938 minq = FFMIN(minq, sce->sf_idx[(w+w2)*16+g]);
939 }
940 }
941 }
942 for(i = 0; i < 128; i++){
943 sce->sf_idx[i] = 140;//av_clip(sce->sf_idx[i], minq, minq + SCALE_MAX_DIFF - 1);
944 }
945 //set the same quantizers inside window groups
946 for(w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
947 for(g = 0; g < sce->ics.num_swb; g++)
948 for(w2 = 1; w2 < sce->ics.group_len[w]; w2++)
949 sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
950}
951
952static void search_for_ms(AACEncContext *s, ChannelElement *cpe, const float lambda)
953{
954 int start = 0, i, w, w2, g;
955 float M[128], S[128];
956 float *L34 = s->scoefs, *R34 = s->scoefs + 128, *M34 = s->scoefs + 128*2, *S34 = s->scoefs + 128*3;
957 SingleChannelElement *sce0 = &cpe->ch[0];
958 SingleChannelElement *sce1 = &cpe->ch[1];
959 if(!cpe->common_window)
960 return;
961 for(w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]){
962 for(g = 0; g < sce0->ics.num_swb; g++){
963 if(!cpe->ch[0].zeroes[w*16+g] && !cpe->ch[1].zeroes[w*16+g]){
964 float dist1 = 0.0f, dist2 = 0.0f;
965 for(w2 = 0; w2 < sce0->ics.group_len[w]; w2++){
966 FFPsyBand *band0 = &s->psy.psy_bands[(s->cur_channel+0)*PSY_MAX_BANDS+(w+w2)*16+g];
967 FFPsyBand *band1 = &s->psy.psy_bands[(s->cur_channel+1)*PSY_MAX_BANDS+(w+w2)*16+g];
968 float minthr = fminf(band0->threshold, band1->threshold);
969 float maxthr = fmaxf(band0->threshold, band1->threshold);
970 for(i = 0; i < sce0->ics.swb_sizes[g]; i++){
971 M[i] = (sce0->coeffs[start+w2*128+i]
972 + sce1->coeffs[start+w2*128+i])*0.5;
973 S[i] = sce0->coeffs[start+w2*128+i]
974 - sce1->coeffs[start+w2*128+i];
975 }
976 abs_pow34_v(L34, sce0->coeffs+start+w2*128, sce0->ics.swb_sizes[g]);
977 abs_pow34_v(R34, sce1->coeffs+start+w2*128, sce0->ics.swb_sizes[g]);
978 abs_pow34_v(M34, M, sce0->ics.swb_sizes[g]);
979 abs_pow34_v(S34, S, sce0->ics.swb_sizes[g]);
980 dist1 += quantize_band_cost(s, sce0->coeffs + start + w2*128,
981 L34,
982 sce0->ics.swb_sizes[g],
983 sce0->sf_idx[(w+w2)*16+g],
984 sce0->band_type[(w+w2)*16+g],
985 lambda / band0->threshold, INFINITY, NULL);
986 dist1 += quantize_band_cost(s, sce1->coeffs + start + w2*128,
987 R34,
988 sce1->ics.swb_sizes[g],
989 sce1->sf_idx[(w+w2)*16+g],
990 sce1->band_type[(w+w2)*16+g],
991 lambda / band1->threshold, INFINITY, NULL);
992 dist2 += quantize_band_cost(s, M,
993 M34,
994 sce0->ics.swb_sizes[g],
995 sce0->sf_idx[(w+w2)*16+g],
996 sce0->band_type[(w+w2)*16+g],
997 lambda / maxthr, INFINITY, NULL);
998 dist2 += quantize_band_cost(s, S,
999 S34,
1000 sce1->ics.swb_sizes[g],
1001 sce1->sf_idx[(w+w2)*16+g],
1002 sce1->band_type[(w+w2)*16+g],
1003 lambda / minthr, INFINITY, NULL);
1004 }
1005 cpe->ms_mask[w*16+g] = dist2 < dist1;
1006 }
1007 start += sce0->ics.swb_sizes[g];
1008 }
1009 }
1010}
1011
1012AACCoefficientsEncoder ff_aac_coders[] = {
1013 {
1014 search_for_quantizers_faac,
1015 encode_window_bands_info_fixed,
1016 quantize_and_encode_band,
1017// search_for_ms,
1018 },
1019 {
1020 search_for_quantizers_anmr,
1021 encode_window_bands_info,
1022 quantize_and_encode_band,
1023// search_for_ms,
1024 },
1025 {
1026 search_for_quantizers_twoloop,
1027 encode_window_bands_info,
1028 quantize_and_encode_band,
1029// search_for_ms,
1030 },
1031 {
1032 search_for_quantizers_fast,
1033 encode_window_bands_info,
1034 quantize_and_encode_band,
1035// search_for_ms,
1036 },
1037};