aacdec: return consumed bits in decode_audio_specific_config
[libav.git] / libavcodec / aacdec.c
CommitLineData
71e9a1b8
RS
1/*
2 * AAC decoder
3 * Copyright (c) 2005-2006 Oded Shimon ( ods15 ods15 dyndns org )
4 * Copyright (c) 2006-2007 Maxim Gavrilov ( maxim.gavrilov gmail com )
5 *
6 * This file is part of FFmpeg.
7 *
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23/**
ba87f080 24 * @file
71e9a1b8
RS
25 * AAC decoder
26 * @author Oded Shimon ( ods15 ods15 dyndns org )
27 * @author Maxim Gavrilov ( maxim.gavrilov gmail com )
28 */
29
30/*
31 * supported tools
32 *
33 * Support? Name
34 * N (code in SoC repo) gain control
35 * Y block switching
36 * Y window shapes - standard
37 * N window shapes - Low Delay
38 * Y filterbank - standard
39 * N (code in SoC repo) filterbank - Scalable Sample Rate
40 * Y Temporal Noise Shaping
41 * N (code in SoC repo) Long Term Prediction
42 * Y intensity stereo
43 * Y channel coupling
7633a041 44 * Y frequency domain prediction
71e9a1b8
RS
45 * Y Perceptual Noise Substitution
46 * Y Mid/Side stereo
47 * N Scalable Inverse AAC Quantization
48 * N Frequency Selective Switch
49 * N upsampling filter
50 * Y quantization & coding - AAC
51 * N quantization & coding - TwinVQ
52 * N quantization & coding - BSAC
53 * N AAC Error Resilience tools
54 * N Error Resilience payload syntax
55 * N Error Protection tool
56 * N CELP
57 * N Silence Compression
58 * N HVXC
59 * N HVXC 4kbits/s VR
60 * N Structured Audio tools
61 * N Structured Audio Sample Bank Format
62 * N MIDI
63 * N Harmonic and Individual Lines plus Noise
64 * N Text-To-Speech Interface
ed492b61 65 * Y Spectral Band Replication
71e9a1b8
RS
66 * Y (not in this code) Layer-1
67 * Y (not in this code) Layer-2
68 * Y (not in this code) Layer-3
69 * N SinuSoidal Coding (Transient, Sinusoid, Noise)
a2063901 70 * Y Parametric Stereo
71e9a1b8
RS
71 * N Direct Stream Transfer
72 *
73 * Note: - HE AAC v1 comprises LC AAC with Spectral Band Replication.
74 * - HE AAC v2 comprises LC AAC with Spectral Band Replication and
75 Parametric Stereo.
76 */
77
78
79#include "avcodec.h"
dbbec0c2 80#include "internal.h"
9106a698 81#include "get_bits.h"
71e9a1b8 82#include "dsputil.h"
1429224b 83#include "fft.h"
1be0fc29 84#include "lpc.h"
71e9a1b8
RS
85
86#include "aac.h"
87#include "aactab.h"
cc0591da 88#include "aacdectab.h"
c26bce10 89#include "cbrt_tablegen.h"
ed492b61
AC
90#include "sbr.h"
91#include "aacsbr.h"
71e9a1b8 92#include "mpeg4audio.h"
3cac899a 93#include "aacadtsdec.h"
71e9a1b8
RS
94
95#include <assert.h>
96#include <errno.h>
97#include <math.h>
98#include <string.h>
99
798339fb
MR
100#if ARCH_ARM
101# include "arm/aac.h"
102#endif
103
577d383b
DB
104union float754 {
105 float f;
106 uint32_t i;
107};
4a39ccb4 108
71e9a1b8
RS
109static VLC vlc_scalefactors;
110static VLC vlc_spectral[11];
111
8d637124
AC
112static const char overread_err[] = "Input buffer exhausted before END element found\n";
113
577d383b
DB
114static ChannelElement *get_che(AACContext *ac, int type, int elem_id)
115{
bb2d8e9f
AC
116 // For PCE based channel configurations map the channels solely based on tags.
117 if (!ac->m4ac.chan_config) {
bb5c0988
AC
118 return ac->tag_che_map[type][elem_id];
119 }
bb2d8e9f 120 // For indexed channel configurations map the channels solely based on position.
bb5c0988 121 switch (ac->m4ac.chan_config) {
577d383b
DB
122 case 7:
123 if (ac->tags_mapped == 3 && type == TYPE_CPE) {
124 ac->tags_mapped++;
125 return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][2];
126 }
127 case 6:
128 /* Some streams incorrectly code 5.1 audio as SCE[0] CPE[0] CPE[1] SCE[1]
5d55bb9f
CR
129 instead of SCE[0] CPE[0] CPE[1] LFE[0]. If we seem to have
130 encountered such a stream, transfer the LFE[0] element to the SCE[1]'s mapping */
577d383b
DB
131 if (ac->tags_mapped == tags_per_config[ac->m4ac.chan_config] - 1 && (type == TYPE_LFE || type == TYPE_SCE)) {
132 ac->tags_mapped++;
133 return ac->tag_che_map[type][elem_id] = ac->che[TYPE_LFE][0];
134 }
135 case 5:
136 if (ac->tags_mapped == 2 && type == TYPE_CPE) {
137 ac->tags_mapped++;
138 return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][1];
139 }
140 case 4:
141 if (ac->tags_mapped == 2 && ac->m4ac.chan_config == 4 && type == TYPE_SCE) {
142 ac->tags_mapped++;
143 return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][1];
144 }
145 case 3:
146 case 2:
147 if (ac->tags_mapped == (ac->m4ac.chan_config != 2) && type == TYPE_CPE) {
148 ac->tags_mapped++;
149 return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][0];
150 } else if (ac->m4ac.chan_config == 2) {
bb5c0988 151 return NULL;
577d383b
DB
152 }
153 case 1:
154 if (!ac->tags_mapped && type == TYPE_SCE) {
155 ac->tags_mapped++;
156 return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][0];
157 }
158 default:
159 return NULL;
bb5c0988
AC
160 }
161}
162
9cc04edf 163/**
754ff9a7
RS
164 * Check for the channel element in the current channel position configuration.
165 * If it exists, make sure the appropriate element is allocated and map the
166 * channel order to match the internal FFmpeg channel layout.
167 *
168 * @param che_pos current channel position configuration
169 * @param type channel element type
170 * @param id channel element id
171 * @param channels count of the number of channels in the configuration
172 *
173 * @return Returns error status. 0 - OK, !0 - error
174 */
89584458 175static av_cold int che_configure(AACContext *ac,
754ff9a7
RS
176 enum ChannelPosition che_pos[4][MAX_ELEM_ID],
177 int type, int id,
178 int *channels)
179{
180 if (che_pos[type][id]) {
181 if (!ac->che[type][id] && !(ac->che[type][id] = av_mallocz(sizeof(ChannelElement))))
182 return AVERROR(ENOMEM);
ed492b61 183 ff_aac_sbr_ctx_init(&ac->che[type][id]->sbr);
754ff9a7
RS
184 if (type != TYPE_CCE) {
185 ac->output_data[(*channels)++] = ac->che[type][id]->ch[0].ret;
a2063901
AC
186 if (type == TYPE_CPE ||
187 (type == TYPE_SCE && ac->m4ac.ps == 1)) {
754ff9a7
RS
188 ac->output_data[(*channels)++] = ac->che[type][id]->ch[1].ret;
189 }
190 }
ed492b61
AC
191 } else {
192 if (ac->che[type][id])
193 ff_aac_sbr_ctx_close(&ac->che[type][id]->sbr);
754ff9a7 194 av_freep(&ac->che[type][id]);
ed492b61 195 }
754ff9a7
RS
196 return 0;
197}
198
199/**
62a57fae
RS
200 * Configure output channel order based on the current program configuration element.
201 *
202 * @param che_pos current channel position configuration
203 * @param new_che_pos New channel position configuration - we only do something if it differs from the current one.
204 *
205 * @return Returns error status. 0 - OK, !0 - error
206 */
ff98c17c 207static av_cold int output_configure(AACContext *ac,
577d383b
DB
208 enum ChannelPosition che_pos[4][MAX_ELEM_ID],
209 enum ChannelPosition new_che_pos[4][MAX_ELEM_ID],
981b8fd7 210 int channel_config, enum OCStatus oc_type)
577d383b 211{
dd8871a6 212 AVCodecContext *avctx = ac->avctx;
754ff9a7 213 int i, type, channels = 0, ret;
62a57fae 214
a2063901 215 if (new_che_pos != che_pos)
62a57fae
RS
216 memcpy(che_pos, new_che_pos, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
217
e22da6b6
RS
218 if (channel_config) {
219 for (i = 0; i < tags_per_config[channel_config]; i++) {
754ff9a7
RS
220 if ((ret = che_configure(ac, che_pos,
221 aac_channel_layout_map[channel_config - 1][i][0],
222 aac_channel_layout_map[channel_config - 1][i][1],
223 &channels)))
224 return ret;
e22da6b6
RS
225 }
226
227 memset(ac->tag_che_map, 0, 4 * MAX_ELEM_ID * sizeof(ac->che[0][0]));
e22da6b6
RS
228
229 avctx->channel_layout = aac_channel_layout[channel_config - 1];
230 } else {
2309923c
RS
231 /* Allocate or free elements depending on if they are in the
232 * current program configuration.
233 *
234 * Set up default 1:1 output mapping.
235 *
236 * For a 5.1 stream the output order will be:
237 * [ Center ] [ Front Left ] [ Front Right ] [ LFE ] [ Surround Left ] [ Surround Right ]
238 */
239
240 for (i = 0; i < MAX_ELEM_ID; i++) {
241 for (type = 0; type < 4; type++) {
754ff9a7
RS
242 if ((ret = che_configure(ac, che_pos, type, i, &channels)))
243 return ret;
2309923c 244 }
62a57fae 245 }
62a57fae 246
bb5c0988 247 memcpy(ac->tag_che_map, ac->che, 4 * MAX_ELEM_ID * sizeof(ac->che[0][0]));
e22da6b6
RS
248
249 avctx->channel_layout = 0;
bb5c0988
AC
250 }
251
62a57fae 252 avctx->channels = channels;
bb5c0988 253
981b8fd7 254 ac->output_configured = oc_type;
6308765c 255
62a57fae
RS
256 return 0;
257}
258
259/**
9cc04edf
RS
260 * Decode an array of 4 bit element IDs, optionally interleaved with a stereo/mono switching bit.
261 *
262 * @param cpe_map Stereo (Channel Pair Element) map, NULL if stereo bit is not present.
263 * @param sce_map mono (Single Channel Element) map
264 * @param type speaker type/position for these channels
265 */
266static void decode_channel_map(enum ChannelPosition *cpe_map,
577d383b
DB
267 enum ChannelPosition *sce_map,
268 enum ChannelPosition type,
269 GetBitContext *gb, int n)
270{
271 while (n--) {
9cc04edf
RS
272 enum ChannelPosition *map = cpe_map && get_bits1(gb) ? cpe_map : sce_map; // stereo or mono map
273 map[get_bits(gb, 4)] = type;
274 }
275}
276
277/**
278 * Decode program configuration element; reference: table 4.2.
279 *
280 * @param new_che_pos New channel position configuration - we only do something if it differs from the current one.
281 *
282 * @return Returns error status. 0 - OK, !0 - error
283 */
577d383b
DB
284static int decode_pce(AACContext *ac, enum ChannelPosition new_che_pos[4][MAX_ELEM_ID],
285 GetBitContext *gb)
286{
99665a21 287 int num_front, num_side, num_back, num_lfe, num_assoc_data, num_cc, sampling_index;
8d637124 288 int comment_len;
9cc04edf
RS
289
290 skip_bits(gb, 2); // object_type
291
99665a21 292 sampling_index = get_bits(gb, 4);
401a9950 293 if (ac->m4ac.sampling_index != sampling_index)
dd8871a6 294 av_log(ac->avctx, AV_LOG_WARNING, "Sample rate index in program config element does not match the sample rate index configured by the container.\n");
401a9950 295
71e9a1b8
RS
296 num_front = get_bits(gb, 4);
297 num_side = get_bits(gb, 4);
298 num_back = get_bits(gb, 4);
299 num_lfe = get_bits(gb, 2);
300 num_assoc_data = get_bits(gb, 3);
301 num_cc = get_bits(gb, 4);
302
cc0591da
RS
303 if (get_bits1(gb))
304 skip_bits(gb, 4); // mono_mixdown_tag
305 if (get_bits1(gb))
306 skip_bits(gb, 4); // stereo_mixdown_tag
71e9a1b8 307
cc0591da
RS
308 if (get_bits1(gb))
309 skip_bits(gb, 3); // mixdown_coeff_index and pseudo_surround
71e9a1b8 310
cc0591da
RS
311 decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_FRONT, gb, num_front);
312 decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_SIDE, gb, num_side );
313 decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_BACK, gb, num_back );
314 decode_channel_map(NULL, new_che_pos[TYPE_LFE], AAC_CHANNEL_LFE, gb, num_lfe );
71e9a1b8
RS
315
316 skip_bits_long(gb, 4 * num_assoc_data);
317
cc0591da 318 decode_channel_map(new_che_pos[TYPE_CCE], new_che_pos[TYPE_CCE], AAC_CHANNEL_CC, gb, num_cc );
71e9a1b8
RS
319
320 align_get_bits(gb);
321
322 /* comment field, first byte is length */
8d637124
AC
323 comment_len = get_bits(gb, 8) * 8;
324 if (get_bits_left(gb) < comment_len) {
dd8871a6 325 av_log(ac->avctx, AV_LOG_ERROR, overread_err);
8d637124
AC
326 return -1;
327 }
328 skip_bits_long(gb, comment_len);
cc0591da
RS
329 return 0;
330}
71e9a1b8 331
9cc04edf
RS
332/**
333 * Set up channel positions based on a default channel configuration
334 * as specified in table 1.17.
335 *
336 * @param new_che_pos New channel position configuration - we only do something if it differs from the current one.
337 *
338 * @return Returns error status. 0 - OK, !0 - error
339 */
ff98c17c 340static av_cold int set_default_channel_config(AACContext *ac,
577d383b
DB
341 enum ChannelPosition new_che_pos[4][MAX_ELEM_ID],
342 int channel_config)
9cc04edf 343{
577d383b 344 if (channel_config < 1 || channel_config > 7) {
dd8871a6 345 av_log(ac->avctx, AV_LOG_ERROR, "invalid default channel configuration (%d)\n",
9cc04edf
RS
346 channel_config);
347 return -1;
348 }
349
350 /* default channel configurations:
351 *
352 * 1ch : front center (mono)
353 * 2ch : L + R (stereo)
354 * 3ch : front center + L + R
355 * 4ch : front center + L + R + back center
356 * 5ch : front center + L + R + back stereo
357 * 6ch : front center + L + R + back stereo + LFE
358 * 7ch : front center + L + R + outer front left + outer front right + back stereo + LFE
359 */
360
577d383b 361 if (channel_config != 2)
9cc04edf 362 new_che_pos[TYPE_SCE][0] = AAC_CHANNEL_FRONT; // front center (or mono)
577d383b 363 if (channel_config > 1)
9cc04edf 364 new_che_pos[TYPE_CPE][0] = AAC_CHANNEL_FRONT; // L + R (or stereo)
577d383b 365 if (channel_config == 4)
9cc04edf 366 new_che_pos[TYPE_SCE][1] = AAC_CHANNEL_BACK; // back center
577d383b 367 if (channel_config > 4)
9cc04edf 368 new_che_pos[TYPE_CPE][(channel_config == 7) + 1]
577d383b
DB
369 = AAC_CHANNEL_BACK; // back stereo
370 if (channel_config > 5)
9cc04edf 371 new_che_pos[TYPE_LFE][0] = AAC_CHANNEL_LFE; // LFE
577d383b 372 if (channel_config == 7)
9cc04edf
RS
373 new_che_pos[TYPE_CPE][1] = AAC_CHANNEL_FRONT; // outer front left + outer front right
374
375 return 0;
376}
377
62a57fae
RS
378/**
379 * Decode GA "General Audio" specific configuration; reference: table 4.1.
380 *
381 * @return Returns error status. 0 - OK, !0 - error
382 */
577d383b 383static int decode_ga_specific_config(AACContext *ac, GetBitContext *gb,
37d28953 384 MPEG4AudioConfig *m4ac,
577d383b
DB
385 int channel_config)
386{
62a57fae
RS
387 enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
388 int extension_flag, ret;
389
577d383b 390 if (get_bits1(gb)) { // frameLengthFlag
dd8871a6 391 av_log_missing_feature(ac->avctx, "960/120 MDCT window is", 1);
9cc04edf
RS
392 return -1;
393 }
394
395 if (get_bits1(gb)) // dependsOnCoreCoder
396 skip_bits(gb, 14); // coreCoderDelay
397 extension_flag = get_bits1(gb);
398
37d28953
JG
399 if (m4ac->object_type == AOT_AAC_SCALABLE ||
400 m4ac->object_type == AOT_ER_AAC_SCALABLE)
9cc04edf
RS
401 skip_bits(gb, 3); // layerNr
402
403 memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
404 if (channel_config == 0) {
405 skip_bits(gb, 4); // element_instance_tag
577d383b 406 if ((ret = decode_pce(ac, new_che_pos, gb)))
9cc04edf
RS
407 return ret;
408 } else {
577d383b 409 if ((ret = set_default_channel_config(ac, new_che_pos, channel_config)))
9cc04edf
RS
410 return ret;
411 }
4fab6627 412 if ((ret = output_configure(ac, ac->che_pos, new_che_pos, channel_config, OC_GLOBAL_HDR)))
9cc04edf
RS
413 return ret;
414
415 if (extension_flag) {
37d28953 416 switch (m4ac->object_type) {
577d383b
DB
417 case AOT_ER_BSAC:
418 skip_bits(gb, 5); // numOfSubFrame
419 skip_bits(gb, 11); // layer_length
420 break;
421 case AOT_ER_AAC_LC:
422 case AOT_ER_AAC_LTP:
423 case AOT_ER_AAC_SCALABLE:
424 case AOT_ER_AAC_LD:
425 skip_bits(gb, 3); /* aacSectionDataResilienceFlag
9cc04edf
RS
426 * aacScalefactorDataResilienceFlag
427 * aacSpectralDataResilienceFlag
428 */
577d383b 429 break;
9cc04edf
RS
430 }
431 skip_bits1(gb); // extensionFlag3 (TBD in version 3)
432 }
433 return 0;
434}
435
436/**
437 * Decode audio specific configuration; reference: table 1.13.
438 *
439 * @param data pointer to AVCodecContext extradata
440 * @param data_size size of AVCCodecContext extradata
441 *
be63b4ba 442 * @return Returns error status or number of consumed bits. <0 - error
9cc04edf 443 */
37d28953
JG
444static int decode_audio_specific_config(AACContext *ac,
445 MPEG4AudioConfig *m4ac, void *data,
577d383b
DB
446 int data_size)
447{
9cc04edf
RS
448 GetBitContext gb;
449 int i;
450
451 init_get_bits(&gb, data, data_size * 8);
452
37d28953 453 if ((i = ff_mpeg4audio_get_config(m4ac, data, data_size)) < 0)
9cc04edf 454 return -1;
37d28953
JG
455 if (m4ac->sampling_index > 12) {
456 av_log(ac->avctx, AV_LOG_ERROR, "invalid sampling rate index %d\n", m4ac->sampling_index);
9cc04edf
RS
457 return -1;
458 }
37d28953
JG
459 if (m4ac->sbr == 1 && m4ac->ps == -1)
460 m4ac->ps = 1;
9cc04edf
RS
461
462 skip_bits_long(&gb, i);
463
37d28953 464 switch (m4ac->object_type) {
7633a041 465 case AOT_AAC_MAIN:
9cc04edf 466 case AOT_AAC_LC:
37d28953 467 if (decode_ga_specific_config(ac, &gb, m4ac, m4ac->chan_config))
9cc04edf
RS
468 return -1;
469 break;
470 default:
dd8871a6 471 av_log(ac->avctx, AV_LOG_ERROR, "Audio object type %s%d is not supported.\n",
37d28953 472 m4ac->sbr == 1? "SBR+" : "", m4ac->object_type);
9cc04edf
RS
473 return -1;
474 }
37d28953 475
be63b4ba 476 return get_bits_count(&gb);
9cc04edf
RS
477}
478
62a57fae
RS
479/**
480 * linear congruential pseudorandom number generator
481 *
482 * @param previous_val pointer to the current state of the generator
483 *
484 * @return Returns a 32-bit pseudorandom integer
485 */
577d383b
DB
486static av_always_inline int lcg_random(int previous_val)
487{
62a57fae
RS
488 return previous_val * 1664525 + 1013904223;
489}
490
ab2a3028 491static av_always_inline void reset_predict_state(PredictorState *ps)
577d383b
DB
492{
493 ps->r0 = 0.0f;
494 ps->r1 = 0.0f;
7633a041
AC
495 ps->cor0 = 0.0f;
496 ps->cor1 = 0.0f;
497 ps->var0 = 1.0f;
498 ps->var1 = 1.0f;
499}
500
577d383b
DB
501static void reset_all_predictors(PredictorState *ps)
502{
7633a041
AC
503 int i;
504 for (i = 0; i < MAX_PREDICTORS; i++)
505 reset_predict_state(&ps[i]);
506}
507
577d383b
DB
508static void reset_predictor_group(PredictorState *ps, int group_num)
509{
7633a041 510 int i;
577d383b 511 for (i = group_num - 1; i < MAX_PREDICTORS; i += 30)
7633a041
AC
512 reset_predict_state(&ps[i]);
513}
514
8e5998f0
AC
515#define AAC_INIT_VLC_STATIC(num, size) \
516 INIT_VLC_STATIC(&vlc_spectral[num], 8, ff_aac_spectral_sizes[num], \
517 ff_aac_spectral_bits[num], sizeof( ff_aac_spectral_bits[num][0]), sizeof( ff_aac_spectral_bits[num][0]), \
518 ff_aac_spectral_codes[num], sizeof(ff_aac_spectral_codes[num][0]), sizeof(ff_aac_spectral_codes[num][0]), \
519 size);
520
dd8871a6 521static av_cold int aac_decode_init(AVCodecContext *avctx)
577d383b 522{
dd8871a6 523 AACContext *ac = avctx->priv_data;
71e9a1b8 524
dd8871a6
AC
525 ac->avctx = avctx;
526 ac->m4ac.sample_rate = avctx->sample_rate;
71e9a1b8 527
dd8871a6 528 if (avctx->extradata_size > 0) {
37d28953 529 if (decode_audio_specific_config(ac, &ac->m4ac, avctx->extradata, avctx->extradata_size) < 0)
158b3912 530 return -1;
158b3912 531 }
cc0591da 532
dd8871a6 533 avctx->sample_fmt = SAMPLE_FMT_S16;
71e9a1b8 534
2ef21b91
MR
535 AAC_INIT_VLC_STATIC( 0, 304);
536 AAC_INIT_VLC_STATIC( 1, 270);
537 AAC_INIT_VLC_STATIC( 2, 550);
538 AAC_INIT_VLC_STATIC( 3, 300);
539 AAC_INIT_VLC_STATIC( 4, 328);
540 AAC_INIT_VLC_STATIC( 5, 294);
541 AAC_INIT_VLC_STATIC( 6, 306);
542 AAC_INIT_VLC_STATIC( 7, 268);
543 AAC_INIT_VLC_STATIC( 8, 510);
544 AAC_INIT_VLC_STATIC( 9, 366);
545 AAC_INIT_VLC_STATIC(10, 462);
71e9a1b8 546
ed492b61
AC
547 ff_aac_sbr_init();
548
dd8871a6 549 dsputil_init(&ac->dsp, avctx);
71e9a1b8 550
9cc04edf
RS
551 ac->random_state = 0x1f2e3d4c;
552
71e9a1b8
RS
553 // -1024 - Compensate wrong IMDCT method.
554 // 32768 - Required to scale values to the correct range for the bias method
555 // for float to int16 conversion.
556
144fec83 557 if (ac->dsp.float_to_int16_interleave == ff_float_to_int16_interleave_c) {
577d383b
DB
558 ac->add_bias = 385.0f;
559 ac->sf_scale = 1. / (-1024. * 32768.);
71e9a1b8
RS
560 ac->sf_offset = 0;
561 } else {
577d383b
DB
562 ac->add_bias = 0.0f;
563 ac->sf_scale = 1. / -1024.;
71e9a1b8
RS
564 ac->sf_offset = 60;
565 }
566
e29af818 567 ff_aac_tableinit();
71e9a1b8 568
37d3e066 569 INIT_VLC_STATIC(&vlc_scalefactors,7,FF_ARRAY_ELEMS(ff_aac_scalefactor_code),
577d383b
DB
570 ff_aac_scalefactor_bits, sizeof(ff_aac_scalefactor_bits[0]), sizeof(ff_aac_scalefactor_bits[0]),
571 ff_aac_scalefactor_code, sizeof(ff_aac_scalefactor_code[0]), sizeof(ff_aac_scalefactor_code[0]),
572 352);
71e9a1b8 573
7d485f16
SS
574 ff_mdct_init(&ac->mdct, 11, 1, 1.0);
575 ff_mdct_init(&ac->mdct_small, 8, 1, 1.0);
9ffd5c1c
RS
576 // window initialization
577 ff_kbd_window_init(ff_aac_kbd_long_1024, 4.0, 1024);
578 ff_kbd_window_init(ff_aac_kbd_short_128, 6.0, 128);
14b86070
RD
579 ff_init_ff_sine_windows(10);
580 ff_init_ff_sine_windows( 7);
9ffd5c1c 581
c26bce10 582 cbrt_tableinit();
dc0d86fa 583
71e9a1b8
RS
584 return 0;
585}
586
9cc04edf
RS
587/**
588 * Skip data_stream_element; reference: table 4.10.
589 */
8d637124 590static int skip_data_stream_element(AACContext *ac, GetBitContext *gb)
577d383b 591{
71e9a1b8
RS
592 int byte_align = get_bits1(gb);
593 int count = get_bits(gb, 8);
594 if (count == 255)
595 count += get_bits(gb, 8);
596 if (byte_align)
597 align_get_bits(gb);
8d637124
AC
598
599 if (get_bits_left(gb) < 8 * count) {
dd8871a6 600 av_log(ac->avctx, AV_LOG_ERROR, overread_err);
8d637124
AC
601 return -1;
602 }
71e9a1b8 603 skip_bits_long(gb, 8 * count);
8d637124 604 return 0;
71e9a1b8
RS
605}
606
577d383b
DB
607static int decode_prediction(AACContext *ac, IndividualChannelStream *ics,
608 GetBitContext *gb)
609{
7633a041
AC
610 int sfb;
611 if (get_bits1(gb)) {
612 ics->predictor_reset_group = get_bits(gb, 5);
613 if (ics->predictor_reset_group == 0 || ics->predictor_reset_group > 30) {
dd8871a6 614 av_log(ac->avctx, AV_LOG_ERROR, "Invalid Predictor Reset Group.\n");
7633a041
AC
615 return -1;
616 }
617 }
618 for (sfb = 0; sfb < FFMIN(ics->max_sfb, ff_aac_pred_sfb_max[ac->m4ac.sampling_index]); sfb++) {
619 ics->prediction_used[sfb] = get_bits1(gb);
620 }
621 return 0;
622}
623
71e9a1b8 624/**
9cc04edf
RS
625 * Decode Individual Channel Stream info; reference: table 4.6.
626 *
627 * @param common_window Channels have independent [0], or shared [1], Individual Channel Stream information.
628 */
577d383b
DB
629static int decode_ics_info(AACContext *ac, IndividualChannelStream *ics,
630 GetBitContext *gb, int common_window)
631{
9cc04edf 632 if (get_bits1(gb)) {
dd8871a6 633 av_log(ac->avctx, AV_LOG_ERROR, "Reserved bit set.\n");
9cc04edf
RS
634 memset(ics, 0, sizeof(IndividualChannelStream));
635 return -1;
636 }
637 ics->window_sequence[1] = ics->window_sequence[0];
638 ics->window_sequence[0] = get_bits(gb, 2);
577d383b
DB
639 ics->use_kb_window[1] = ics->use_kb_window[0];
640 ics->use_kb_window[0] = get_bits1(gb);
641 ics->num_window_groups = 1;
642 ics->group_len[0] = 1;
9ffd5c1c
RS
643 if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
644 int i;
645 ics->max_sfb = get_bits(gb, 4);
646 for (i = 0; i < 7; i++) {
647 if (get_bits1(gb)) {
577d383b 648 ics->group_len[ics->num_window_groups - 1]++;
9ffd5c1c
RS
649 } else {
650 ics->num_window_groups++;
577d383b 651 ics->group_len[ics->num_window_groups - 1] = 1;
9ffd5c1c
RS
652 }
653 }
577d383b
DB
654 ics->num_windows = 8;
655 ics->swb_offset = ff_swb_offset_128[ac->m4ac.sampling_index];
656 ics->num_swb = ff_aac_num_swb_128[ac->m4ac.sampling_index];
657 ics->tns_max_bands = ff_tns_max_bands_128[ac->m4ac.sampling_index];
7633a041 658 ics->predictor_present = 0;
9ffd5c1c 659 } else {
577d383b
DB
660 ics->max_sfb = get_bits(gb, 6);
661 ics->num_windows = 1;
662 ics->swb_offset = ff_swb_offset_1024[ac->m4ac.sampling_index];
663 ics->num_swb = ff_aac_num_swb_1024[ac->m4ac.sampling_index];
664 ics->tns_max_bands = ff_tns_max_bands_1024[ac->m4ac.sampling_index];
665 ics->predictor_present = get_bits1(gb);
7633a041
AC
666 ics->predictor_reset_group = 0;
667 if (ics->predictor_present) {
668 if (ac->m4ac.object_type == AOT_AAC_MAIN) {
669 if (decode_prediction(ac, ics, gb)) {
670 memset(ics, 0, sizeof(IndividualChannelStream));
671 return -1;
672 }
673 } else if (ac->m4ac.object_type == AOT_AAC_LC) {
dd8871a6 674 av_log(ac->avctx, AV_LOG_ERROR, "Prediction is not allowed in AAC-LC.\n");
7633a041
AC
675 memset(ics, 0, sizeof(IndividualChannelStream));
676 return -1;
677 } else {
dd8871a6 678 av_log_missing_feature(ac->avctx, "Predictor bit set but LTP is", 1);
8f5aaa6d
RS
679 memset(ics, 0, sizeof(IndividualChannelStream));
680 return -1;
7633a041 681 }
62a57fae
RS
682 }
683 }
684
577d383b 685 if (ics->max_sfb > ics->num_swb) {
dd8871a6 686 av_log(ac->avctx, AV_LOG_ERROR,
577d383b
DB
687 "Number of scalefactor bands in group (%d) exceeds limit (%d).\n",
688 ics->max_sfb, ics->num_swb);
62a57fae
RS
689 memset(ics, 0, sizeof(IndividualChannelStream));
690 return -1;
691 }
692
9cc04edf
RS
693 return 0;
694}
695
696/**
9cc04edf
RS
697 * Decode band types (section_data payload); reference: table 4.46.
698 *
699 * @param band_type array of the used band type
700 * @param band_type_run_end array of the last scalefactor band of a band type run
701 *
702 * @return Returns error status. 0 - OK, !0 - error
703 */
577d383b
DB
704static int decode_band_types(AACContext *ac, enum BandType band_type[120],
705 int band_type_run_end[120], GetBitContext *gb,
706 IndividualChannelStream *ics)
707{
cc0591da
RS
708 int g, idx = 0;
709 const int bits = (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) ? 3 : 5;
710 for (g = 0; g < ics->num_window_groups; g++) {
711 int k = 0;
712 while (k < ics->max_sfb) {
01d19fbc 713 uint8_t sect_end = k;
cc0591da
RS
714 int sect_len_incr;
715 int sect_band_type = get_bits(gb, 4);
716 if (sect_band_type == 12) {
dd8871a6 717 av_log(ac->avctx, AV_LOG_ERROR, "invalid band type\n");
cc0591da
RS
718 return -1;
719 }
577d383b 720 while ((sect_len_incr = get_bits(gb, bits)) == (1 << bits) - 1)
01d19fbc
AC
721 sect_end += sect_len_incr;
722 sect_end += sect_len_incr;
c4a90caa 723 if (get_bits_left(gb) < 0) {
dd8871a6 724 av_log(ac->avctx, AV_LOG_ERROR, overread_err);
c4a90caa
AC
725 return -1;
726 }
01d19fbc 727 if (sect_end > ics->max_sfb) {
dd8871a6 728 av_log(ac->avctx, AV_LOG_ERROR,
577d383b 729 "Number of bands (%d) exceeds limit (%d).\n",
01d19fbc 730 sect_end, ics->max_sfb);
cc0591da
RS
731 return -1;
732 }
01d19fbc 733 for (; k < sect_end; k++) {
9ffd5c1c 734 band_type [idx] = sect_band_type;
01d19fbc 735 band_type_run_end[idx++] = sect_end;
9ffd5c1c 736 }
9cc04edf
RS
737 }
738 }
739 return 0;
740}
cc0591da 741
9cc04edf
RS
742/**
743 * Decode scalefactors; reference: table 4.47.
cc0591da 744 *
cc0591da
RS
745 * @param global_gain first scalefactor value as scalefactors are differentially coded
746 * @param band_type array of the used band type
747 * @param band_type_run_end array of the last scalefactor band of a band type run
748 * @param sf array of scalefactors or intensity stereo positions
749 *
750 * @return Returns error status. 0 - OK, !0 - error
751 */
577d383b
DB
752static int decode_scalefactors(AACContext *ac, float sf[120], GetBitContext *gb,
753 unsigned int global_gain,
754 IndividualChannelStream *ics,
755 enum BandType band_type[120],
756 int band_type_run_end[120])
757{
cc0591da
RS
758 const int sf_offset = ac->sf_offset + (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE ? 12 : 0);
759 int g, i, idx = 0;
760 int offset[3] = { global_gain, global_gain - 90, 100 };
761 int noise_flag = 1;
762 static const char *sf_str[3] = { "Global gain", "Noise gain", "Intensity stereo position" };
cc0591da
RS
763 for (g = 0; g < ics->num_window_groups; g++) {
764 for (i = 0; i < ics->max_sfb;) {
765 int run_end = band_type_run_end[idx];
766 if (band_type[idx] == ZERO_BT) {
577d383b 767 for (; i < run_end; i++, idx++)
cc0591da 768 sf[idx] = 0.;
577d383b
DB
769 } else if ((band_type[idx] == INTENSITY_BT) || (band_type[idx] == INTENSITY_BT2)) {
770 for (; i < run_end; i++, idx++) {
cc0591da 771 offset[2] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
577d383b 772 if (offset[2] > 255U) {
dd8871a6 773 av_log(ac->avctx, AV_LOG_ERROR,
577d383b 774 "%s (%d) out of range.\n", sf_str[2], offset[2]);
cc0591da
RS
775 return -1;
776 }
577d383b 777 sf[idx] = ff_aac_pow2sf_tab[-offset[2] + 300];
cc0591da 778 }
577d383b
DB
779 } else if (band_type[idx] == NOISE_BT) {
780 for (; i < run_end; i++, idx++) {
781 if (noise_flag-- > 0)
cc0591da
RS
782 offset[1] += get_bits(gb, 9) - 256;
783 else
784 offset[1] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
577d383b 785 if (offset[1] > 255U) {
dd8871a6 786 av_log(ac->avctx, AV_LOG_ERROR,
577d383b 787 "%s (%d) out of range.\n", sf_str[1], offset[1]);
cc0591da
RS
788 return -1;
789 }
577d383b 790 sf[idx] = -ff_aac_pow2sf_tab[offset[1] + sf_offset + 100];
cc0591da 791 }
577d383b
DB
792 } else {
793 for (; i < run_end; i++, idx++) {
cc0591da 794 offset[0] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
577d383b 795 if (offset[0] > 255U) {
dd8871a6 796 av_log(ac->avctx, AV_LOG_ERROR,
577d383b 797 "%s (%d) out of range.\n", sf_str[0], offset[0]);
cc0591da
RS
798 return -1;
799 }
800 sf[idx] = -ff_aac_pow2sf_tab[ offset[0] + sf_offset];
cc0591da
RS
801 }
802 }
803 }
804 }
805 return 0;
806}
807
808/**
809 * Decode pulse data; reference: table 4.7.
810 */
577d383b
DB
811static int decode_pulses(Pulse *pulse, GetBitContext *gb,
812 const uint16_t *swb_offset, int num_swb)
813{
aac0eda4 814 int i, pulse_swb;
cc0591da 815 pulse->num_pulse = get_bits(gb, 2) + 1;
aac0eda4
AC
816 pulse_swb = get_bits(gb, 6);
817 if (pulse_swb >= num_swb)
818 return -1;
819 pulse->pos[0] = swb_offset[pulse_swb];
408992ba 820 pulse->pos[0] += get_bits(gb, 5);
aac0eda4
AC
821 if (pulse->pos[0] > 1023)
822 return -1;
848a5815
RS
823 pulse->amp[0] = get_bits(gb, 4);
824 for (i = 1; i < pulse->num_pulse; i++) {
577d383b 825 pulse->pos[i] = get_bits(gb, 5) + pulse->pos[i - 1];
aac0eda4
AC
826 if (pulse->pos[i] > 1023)
827 return -1;
848a5815 828 pulse->amp[i] = get_bits(gb, 4);
cc0591da 829 }
aac0eda4 830 return 0;
cc0591da
RS
831}
832
833/**
1dece0d2
RS
834 * Decode Temporal Noise Shaping data; reference: table 4.48.
835 *
836 * @return Returns error status. 0 - OK, !0 - error
837 */
577d383b
DB
838static int decode_tns(AACContext *ac, TemporalNoiseShaping *tns,
839 GetBitContext *gb, const IndividualChannelStream *ics)
840{
1dece0d2
RS
841 int w, filt, i, coef_len, coef_res, coef_compress;
842 const int is8 = ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE;
843 const int tns_max_order = is8 ? 7 : ac->m4ac.object_type == AOT_AAC_MAIN ? 20 : 12;
844 for (w = 0; w < ics->num_windows; w++) {
fbd91d7c 845 if ((tns->n_filt[w] = get_bits(gb, 2 - is8))) {
1dece0d2
RS
846 coef_res = get_bits1(gb);
847
65b20b24
RS
848 for (filt = 0; filt < tns->n_filt[w]; filt++) {
849 int tmp2_idx;
577d383b 850 tns->length[w][filt] = get_bits(gb, 6 - 2 * is8);
65b20b24 851
577d383b 852 if ((tns->order[w][filt] = get_bits(gb, 5 - 2 * is8)) > tns_max_order) {
dd8871a6 853 av_log(ac->avctx, AV_LOG_ERROR, "TNS filter order %d is greater than maximum %d.\n",
65b20b24
RS
854 tns->order[w][filt], tns_max_order);
855 tns->order[w][filt] = 0;
856 return -1;
857 }
51673647 858 if (tns->order[w][filt]) {
35445d29
RS
859 tns->direction[w][filt] = get_bits1(gb);
860 coef_compress = get_bits1(gb);
861 coef_len = coef_res + 3 - coef_compress;
577d383b 862 tmp2_idx = 2 * coef_compress + coef_res;
1dece0d2 863
35445d29
RS
864 for (i = 0; i < tns->order[w][filt]; i++)
865 tns->coef[w][filt][i] = tns_tmp2_map[tmp2_idx][get_bits(gb, coef_len)];
51673647 866 }
65b20b24 867 }
fbd91d7c 868 }
1dece0d2
RS
869 }
870 return 0;
871}
872
873/**
9cc04edf
RS
874 * Decode Mid/Side data; reference: table 4.54.
875 *
876 * @param ms_present Indicates mid/side stereo presence. [0] mask is all 0s;
877 * [1] mask is decoded from bitstream; [2] mask is all 1s;
878 * [3] reserved for scalable AAC
879 */
577d383b
DB
880static void decode_mid_side_stereo(ChannelElement *cpe, GetBitContext *gb,
881 int ms_present)
882{
62a57fae
RS
883 int idx;
884 if (ms_present == 1) {
885 for (idx = 0; idx < cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb; idx++)
886 cpe->ms_mask[idx] = get_bits1(gb);
887 } else if (ms_present == 2) {
888 memset(cpe->ms_mask, 1, cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb * sizeof(cpe->ms_mask[0]));
889 }
890}
9cc04edf 891
798339fb 892#ifndef VMUL2
c816d3d0
MR
893static inline float *VMUL2(float *dst, const float *v, unsigned idx,
894 const float *scale)
895{
896 float s = *scale;
897 *dst++ = v[idx & 15] * s;
898 *dst++ = v[idx>>4 & 15] * s;
899 return dst;
900}
798339fb 901#endif
c816d3d0 902
798339fb 903#ifndef VMUL4
c816d3d0
MR
904static inline float *VMUL4(float *dst, const float *v, unsigned idx,
905 const float *scale)
906{
907 float s = *scale;
908 *dst++ = v[idx & 3] * s;
909 *dst++ = v[idx>>2 & 3] * s;
910 *dst++ = v[idx>>4 & 3] * s;
911 *dst++ = v[idx>>6 & 3] * s;
912 return dst;
913}
798339fb 914#endif
c816d3d0 915
798339fb 916#ifndef VMUL2S
c816d3d0
MR
917static inline float *VMUL2S(float *dst, const float *v, unsigned idx,
918 unsigned sign, const float *scale)
919{
920 union float754 s0, s1;
921
922 s0.f = s1.f = *scale;
923 s0.i ^= sign >> 1 << 31;
924 s1.i ^= sign << 31;
925
926 *dst++ = v[idx & 15] * s0.f;
927 *dst++ = v[idx>>4 & 15] * s1.f;
928
929 return dst;
930}
798339fb 931#endif
c816d3d0 932
798339fb 933#ifndef VMUL4S
c816d3d0
MR
934static inline float *VMUL4S(float *dst, const float *v, unsigned idx,
935 unsigned sign, const float *scale)
936{
937 unsigned nz = idx >> 12;
938 union float754 s = { .f = *scale };
939 union float754 t;
940
941 t.i = s.i ^ (sign & 1<<31);
942 *dst++ = v[idx & 3] * t.f;
943
944 sign <<= nz & 1; nz >>= 1;
945 t.i = s.i ^ (sign & 1<<31);
946 *dst++ = v[idx>>2 & 3] * t.f;
947
948 sign <<= nz & 1; nz >>= 1;
949 t.i = s.i ^ (sign & 1<<31);
950 *dst++ = v[idx>>4 & 3] * t.f;
951
952 sign <<= nz & 1; nz >>= 1;
953 t.i = s.i ^ (sign & 1<<31);
954 *dst++ = v[idx>>6 & 3] * t.f;
955
956 return dst;
957}
798339fb 958#endif
c816d3d0 959
9cc04edf 960/**
9ffd5c1c
RS
961 * Decode spectral data; reference: table 4.50.
962 * Dequantize and scale spectral data; reference: 4.6.3.3.
963 *
964 * @param coef array of dequantized, scaled spectral data
965 * @param sf array of scalefactors or intensity stereo positions
966 * @param pulse_present set if pulses are present
967 * @param pulse pointer to pulse data struct
968 * @param band_type array of the used band type
969 *
970 * @return Returns error status. 0 - OK, !0 - error
971 */
577d383b 972static int decode_spectrum_and_dequant(AACContext *ac, float coef[1024],
3963a17d 973 GetBitContext *gb, const float sf[120],
577d383b
DB
974 int pulse_present, const Pulse *pulse,
975 const IndividualChannelStream *ics,
976 enum BandType band_type[120])
977{
9ffd5c1c 978 int i, k, g, idx = 0;
577d383b
DB
979 const int c = 1024 / ics->num_windows;
980 const uint16_t *offsets = ics->swb_offset;
9ffd5c1c
RS
981 float *coef_base = coef;
982
983 for (g = 0; g < ics->num_windows; g++)
577d383b 984 memset(coef + g * 128 + offsets[ics->max_sfb], 0, sizeof(float) * (c - offsets[ics->max_sfb]));
9ffd5c1c
RS
985
986 for (g = 0; g < ics->num_window_groups; g++) {
05f9d8fc
MR
987 unsigned g_len = ics->group_len[g];
988
9ffd5c1c 989 for (i = 0; i < ics->max_sfb; i++, idx++) {
05f9d8fc
MR
990 const unsigned cbt_m1 = band_type[idx] - 1;
991 float *cfo = coef + offsets[i];
992 int off_len = offsets[i + 1] - offsets[i];
9ffd5c1c 993 int group;
05f9d8fc
MR
994
995 if (cbt_m1 >= INTENSITY_BT2 - 1) {
996 for (group = 0; group < g_len; group++, cfo+=128) {
997 memset(cfo, 0, off_len * sizeof(float));
9ffd5c1c 998 }
05f9d8fc
MR
999 } else if (cbt_m1 == NOISE_BT - 1) {
1000 for (group = 0; group < g_len; group++, cfo+=128) {
d0ee5021 1001 float scale;
b418a6ca 1002 float band_energy;
42d3fbb3 1003
05f9d8fc 1004 for (k = 0; k < off_len; k++) {
9ffd5c1c 1005 ac->random_state = lcg_random(ac->random_state);
05f9d8fc 1006 cfo[k] = ac->random_state;
d0ee5021 1007 }
42d3fbb3 1008
05f9d8fc 1009 band_energy = ac->dsp.scalarproduct_float(cfo, cfo, off_len);
d0ee5021 1010 scale = sf[idx] / sqrtf(band_energy);
05f9d8fc 1011 ac->dsp.vector_fmul_scalar(cfo, cfo, scale, off_len);
9ffd5c1c 1012 }
577d383b 1013 } else {
05f9d8fc
MR
1014 const float *vq = ff_aac_codebook_vector_vals[cbt_m1];
1015 const uint16_t *cb_vector_idx = ff_aac_codebook_vector_idx[cbt_m1];
1016 VLC_TYPE (*vlc_tab)[2] = vlc_spectral[cbt_m1].table;
d356a53f 1017 OPEN_READER(re, gb);
c816d3d0 1018
95dff4ac
MR
1019 switch (cbt_m1 >> 1) {
1020 case 0:
1021 for (group = 0; group < g_len; group++, cfo+=128) {
1022 float *cf = cfo;
1023 int len = off_len;
42d3fbb3 1024
c816d3d0 1025 do {
d356a53f 1026 int code;
c816d3d0
MR
1027 unsigned cb_idx;
1028
d356a53f
MR
1029 UPDATE_CACHE(re, gb);
1030 GET_VLC(code, re, gb, vlc_tab, 8, 2);
d356a53f 1031 cb_idx = cb_vector_idx[code];
c816d3d0
MR
1032 cf = VMUL4(cf, vq, cb_idx, sf + idx);
1033 } while (len -= 4);
95dff4ac
MR
1034 }
1035 break;
1036
1037 case 1:
1038 for (group = 0; group < g_len; group++, cfo+=128) {
1039 float *cf = cfo;
1040 int len = off_len;
1041
c816d3d0 1042 do {
d356a53f 1043 int code;
c816d3d0
MR
1044 unsigned nnz;
1045 unsigned cb_idx;
1046 uint32_t bits;
1047
d356a53f
MR
1048 UPDATE_CACHE(re, gb);
1049 GET_VLC(code, re, gb, vlc_tab, 8, 2);
d356a53f
MR
1050#if MIN_CACHE_BITS < 20
1051 UPDATE_CACHE(re, gb);
1052#endif
1053 cb_idx = cb_vector_idx[code];
c816d3d0 1054 nnz = cb_idx >> 8 & 15;
d356a53f
MR
1055 bits = SHOW_UBITS(re, gb, nnz) << (32-nnz);
1056 LAST_SKIP_BITS(re, gb, nnz);
c816d3d0
MR
1057 cf = VMUL4S(cf, vq, cb_idx, bits, sf + idx);
1058 } while (len -= 4);
95dff4ac
MR
1059 }
1060 break;
1061
1062 case 2:
1063 for (group = 0; group < g_len; group++, cfo+=128) {
1064 float *cf = cfo;
1065 int len = off_len;
1066
c816d3d0 1067 do {
d356a53f 1068 int code;
c816d3d0
MR
1069 unsigned cb_idx;
1070
d356a53f
MR
1071 UPDATE_CACHE(re, gb);
1072 GET_VLC(code, re, gb, vlc_tab, 8, 2);
d356a53f 1073 cb_idx = cb_vector_idx[code];
c816d3d0
MR
1074 cf = VMUL2(cf, vq, cb_idx, sf + idx);
1075 } while (len -= 2);
95dff4ac
MR
1076 }
1077 break;
1078
1079 case 3:
1080 case 4:
1081 for (group = 0; group < g_len; group++, cfo+=128) {
1082 float *cf = cfo;
1083 int len = off_len;
1084
c816d3d0 1085 do {
d356a53f 1086 int code;
c816d3d0
MR
1087 unsigned nnz;
1088 unsigned cb_idx;
1089 unsigned sign;
1090
d356a53f
MR
1091 UPDATE_CACHE(re, gb);
1092 GET_VLC(code, re, gb, vlc_tab, 8, 2);
d356a53f 1093 cb_idx = cb_vector_idx[code];
c816d3d0 1094 nnz = cb_idx >> 8 & 15;
d356a53f
MR
1095 sign = SHOW_UBITS(re, gb, nnz) << (cb_idx >> 12);
1096 LAST_SKIP_BITS(re, gb, nnz);
c816d3d0
MR
1097 cf = VMUL2S(cf, vq, cb_idx, sign, sf + idx);
1098 } while (len -= 2);
95dff4ac
MR
1099 }
1100 break;
1101
1102 default:
1103 for (group = 0; group < g_len; group++, cfo+=128) {
1104 float *cf = cfo;
1105 uint32_t *icf = (uint32_t *) cf;
1106 int len = off_len;
1107
05f9d8fc 1108 do {
d356a53f 1109 int code;
c816d3d0
MR
1110 unsigned nzt, nnz;
1111 unsigned cb_idx;
1112 uint32_t bits;
1113 int j;
1114
d356a53f
MR
1115 UPDATE_CACHE(re, gb);
1116 GET_VLC(code, re, gb, vlc_tab, 8, 2);
1117
1118 if (!code) {
05f9d8fc
MR
1119 *icf++ = 0;
1120 *icf++ = 0;
c816d3d0
MR
1121 continue;
1122 }
1123
d356a53f 1124 cb_idx = cb_vector_idx[code];
c816d3d0
MR
1125 nnz = cb_idx >> 12;
1126 nzt = cb_idx >> 8;
d356a53f
MR
1127 bits = SHOW_UBITS(re, gb, nnz) << (32-nnz);
1128 LAST_SKIP_BITS(re, gb, nnz);
c816d3d0
MR
1129
1130 for (j = 0; j < 2; j++) {
1131 if (nzt & 1<<j) {
d356a53f
MR
1132 uint32_t b;
1133 int n;
c816d3d0
MR
1134 /* The total length of escape_sequence must be < 22 bits according
1135 to the specification (i.e. max is 111111110xxxxxxxxxxxx). */
d356a53f
MR
1136 UPDATE_CACHE(re, gb);
1137 b = GET_CACHE(re, gb);
1138 b = 31 - av_log2(~b);
1139
1140 if (b > 8) {
dd8871a6 1141 av_log(ac->avctx, AV_LOG_ERROR, "error in spectral data, ESC overflow\n");
c816d3d0
MR
1142 return -1;
1143 }
d356a53f
MR
1144
1145#if MIN_CACHE_BITS < 21
1146 LAST_SKIP_BITS(re, gb, b + 1);
1147 UPDATE_CACHE(re, gb);
1148#else
1149 SKIP_BITS(re, gb, b + 1);
1150#endif
1151 b += 4;
1152 n = (1 << b) + SHOW_UBITS(re, gb, b);
1153 LAST_SKIP_BITS(re, gb, b);
05f9d8fc 1154 *icf++ = cbrt_tab[n] | (bits & 1<<31);
c816d3d0
MR
1155 bits <<= 1;
1156 } else {
1157 unsigned v = ((const uint32_t*)vq)[cb_idx & 15];
05f9d8fc 1158 *icf++ = (bits & 1<<31) | v;
c816d3d0 1159 bits <<= !!v;
e8d5c07b 1160 }
c816d3d0 1161 cb_idx >>= 4;
9ffd5c1c 1162 }
05f9d8fc 1163 } while (len -= 2);
42d3fbb3 1164
05f9d8fc 1165 ac->dsp.vector_fmul_scalar(cfo, cfo, sf[idx], off_len);
42d3fbb3 1166 }
9ffd5c1c 1167 }
d356a53f
MR
1168
1169 CLOSE_READER(re, gb);
9ffd5c1c
RS
1170 }
1171 }
05f9d8fc 1172 coef += g_len << 7;
9ffd5c1c
RS
1173 }
1174
1175 if (pulse_present) {
51436848 1176 idx = 0;
577d383b
DB
1177 for (i = 0; i < pulse->num_pulse; i++) {
1178 float co = coef_base[ pulse->pos[i] ];
1179 while (offsets[idx + 1] <= pulse->pos[i])
51436848
AC
1180 idx++;
1181 if (band_type[idx] != NOISE_BT && sf[idx]) {
70735a3f
RS
1182 float ico = -pulse->amp[i];
1183 if (co) {
1184 co /= sf[idx];
1185 ico = co / sqrtf(sqrtf(fabsf(co))) + (co > 0 ? -ico : ico);
1186 }
1187 coef_base[ pulse->pos[i] ] = cbrtf(fabsf(ico)) * ico * sf[idx];
51436848 1188 }
9ffd5c1c
RS
1189 }
1190 }
1191 return 0;
1192}
1193
577d383b
DB
1194static av_always_inline float flt16_round(float pf)
1195{
4a39ccb4
AC
1196 union float754 tmp;
1197 tmp.f = pf;
1198 tmp.i = (tmp.i + 0x00008000U) & 0xFFFF0000U;
1199 return tmp.f;
7633a041
AC
1200}
1201
577d383b
DB
1202static av_always_inline float flt16_even(float pf)
1203{
4a39ccb4
AC
1204 union float754 tmp;
1205 tmp.f = pf;
577d383b 1206 tmp.i = (tmp.i + 0x00007FFFU + (tmp.i & 0x00010000U >> 16)) & 0xFFFF0000U;
4a39ccb4 1207 return tmp.f;
7633a041
AC
1208}
1209
577d383b
DB
1210static av_always_inline float flt16_trunc(float pf)
1211{
4a39ccb4
AC
1212 union float754 pun;
1213 pun.f = pf;
1214 pun.i &= 0xFFFF0000U;
1215 return pun.f;
7633a041
AC
1216}
1217
70c99adb
AC
1218static av_always_inline void predict(PredictorState *ps, float *coef,
1219 float sf_scale, float inv_sf_scale,
577d383b
DB
1220 int output_enable)
1221{
1222 const float a = 0.953125; // 61.0 / 64
1223 const float alpha = 0.90625; // 29.0 / 32
7633a041
AC
1224 float e0, e1;
1225 float pv;
1226 float k1, k2;
81824fe0
AC
1227 float r0 = ps->r0, r1 = ps->r1;
1228 float cor0 = ps->cor0, cor1 = ps->cor1;
1229 float var0 = ps->var0, var1 = ps->var1;
7633a041 1230
81824fe0
AC
1231 k1 = var0 > 1 ? cor0 * flt16_even(a / var0) : 0;
1232 k2 = var1 > 1 ? cor1 * flt16_even(a / var1) : 0;
7633a041 1233
81824fe0 1234 pv = flt16_round(k1 * r0 + k2 * r1);
7633a041 1235 if (output_enable)
70c99adb 1236 *coef += pv * sf_scale;
7633a041 1237
70c99adb 1238 e0 = *coef * inv_sf_scale;
81824fe0 1239 e1 = e0 - k1 * r0;
7633a041 1240
81824fe0
AC
1241 ps->cor1 = flt16_trunc(alpha * cor1 + r1 * e1);
1242 ps->var1 = flt16_trunc(alpha * var1 + 0.5f * (r1 * r1 + e1 * e1));
1243 ps->cor0 = flt16_trunc(alpha * cor0 + r0 * e0);
1244 ps->var0 = flt16_trunc(alpha * var0 + 0.5f * (r0 * r0 + e0 * e0));
7633a041 1245
81824fe0 1246 ps->r1 = flt16_trunc(a * (r0 - k1 * e0));
7633a041
AC
1247 ps->r0 = flt16_trunc(a * e0);
1248}
1249
1250/**
1251 * Apply AAC-Main style frequency domain prediction.
1252 */
577d383b
DB
1253static void apply_prediction(AACContext *ac, SingleChannelElement *sce)
1254{
7633a041 1255 int sfb, k;
70c99adb 1256 float sf_scale = ac->sf_scale, inv_sf_scale = 1 / ac->sf_scale;
7633a041
AC
1257
1258 if (!sce->ics.predictor_initialized) {
aab54133 1259 reset_all_predictors(sce->predictor_state);
7633a041
AC
1260 sce->ics.predictor_initialized = 1;
1261 }
1262
1263 if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE) {
1264 for (sfb = 0; sfb < ff_aac_pred_sfb_max[ac->m4ac.sampling_index]; sfb++) {
1265 for (k = sce->ics.swb_offset[sfb]; k < sce->ics.swb_offset[sfb + 1]; k++) {
70c99adb
AC
1266 predict(&sce->predictor_state[k], &sce->coeffs[k],
1267 sf_scale, inv_sf_scale,
577d383b 1268 sce->ics.predictor_present && sce->ics.prediction_used[sfb]);
7633a041
AC
1269 }
1270 }
1271 if (sce->ics.predictor_reset_group)
aab54133 1272 reset_predictor_group(sce->predictor_state, sce->ics.predictor_reset_group);
7633a041 1273 } else
aab54133 1274 reset_all_predictors(sce->predictor_state);
7633a041
AC
1275}
1276
9ffd5c1c 1277/**
9cc04edf
RS
1278 * Decode an individual_channel_stream payload; reference: table 4.44.
1279 *
1280 * @param common_window Channels have independent [0], or shared [1], Individual Channel Stream information.
1281 * @param scale_flag scalable [1] or non-scalable [0] AAC (Unused until scalable AAC is implemented.)
1282 *
1283 * @return Returns error status. 0 - OK, !0 - error
1284 */
577d383b
DB
1285static int decode_ics(AACContext *ac, SingleChannelElement *sce,
1286 GetBitContext *gb, int common_window, int scale_flag)
1287{
9cc04edf 1288 Pulse pulse;
577d383b
DB
1289 TemporalNoiseShaping *tns = &sce->tns;
1290 IndividualChannelStream *ics = &sce->ics;
1291 float *out = sce->coeffs;
9cc04edf
RS
1292 int global_gain, pulse_present = 0;
1293
848a5815
RS
1294 /* This assignment is to silence a GCC warning about the variable being used
1295 * uninitialized when in fact it always is.
9cc04edf
RS
1296 */
1297 pulse.num_pulse = 0;
9cc04edf
RS
1298
1299 global_gain = get_bits(gb, 8);
1300
1301 if (!common_window && !scale_flag) {
1302 if (decode_ics_info(ac, ics, gb, 0) < 0)
1303 return -1;
1304 }
1305
1306 if (decode_band_types(ac, sce->band_type, sce->band_type_run_end, gb, ics) < 0)
1307 return -1;
1308 if (decode_scalefactors(ac, sce->sf, gb, global_gain, ics, sce->band_type, sce->band_type_run_end) < 0)
1309 return -1;
1310
1311 pulse_present = 0;
1312 if (!scale_flag) {
1313 if ((pulse_present = get_bits1(gb))) {
1314 if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
dd8871a6 1315 av_log(ac->avctx, AV_LOG_ERROR, "Pulse tool not allowed in eight short sequence.\n");
9cc04edf
RS
1316 return -1;
1317 }
aac0eda4 1318 if (decode_pulses(&pulse, gb, ics->swb_offset, ics->num_swb)) {
dd8871a6 1319 av_log(ac->avctx, AV_LOG_ERROR, "Pulse data corrupt or invalid.\n");
aac0eda4
AC
1320 return -1;
1321 }
9cc04edf
RS
1322 }
1323 if ((tns->present = get_bits1(gb)) && decode_tns(ac, tns, gb, ics))
1324 return -1;
1325 if (get_bits1(gb)) {
dd8871a6 1326 av_log_missing_feature(ac->avctx, "SSR", 1);
9cc04edf
RS
1327 return -1;
1328 }
1329 }
1330
848a5815 1331 if (decode_spectrum_and_dequant(ac, out, gb, sce->sf, pulse_present, &pulse, ics, sce->band_type) < 0)
9cc04edf 1332 return -1;
7633a041 1333
577d383b 1334 if (ac->m4ac.object_type == AOT_AAC_MAIN && !common_window)
7633a041
AC
1335 apply_prediction(ac, sce);
1336
9cc04edf
RS
1337 return 0;
1338}
1339
1340/**
9ffd5c1c
RS
1341 * Mid/Side stereo decoding; reference: 4.6.8.1.3.
1342 */
42d3fbb3 1343static void apply_mid_side_stereo(AACContext *ac, ChannelElement *cpe)
577d383b
DB
1344{
1345 const IndividualChannelStream *ics = &cpe->ch[0].ics;
9ffd5c1c
RS
1346 float *ch0 = cpe->ch[0].coeffs;
1347 float *ch1 = cpe->ch[1].coeffs;
42d3fbb3 1348 int g, i, group, idx = 0;
577d383b 1349 const uint16_t *offsets = ics->swb_offset;
9ffd5c1c
RS
1350 for (g = 0; g < ics->num_window_groups; g++) {
1351 for (i = 0; i < ics->max_sfb; i++, idx++) {
1352 if (cpe->ms_mask[idx] &&
577d383b 1353 cpe->ch[0].band_type[idx] < NOISE_BT && cpe->ch[1].band_type[idx] < NOISE_BT) {
9ffd5c1c 1354 for (group = 0; group < ics->group_len[g]; group++) {
42d3fbb3
MR
1355 ac->dsp.butterflies_float(ch0 + group * 128 + offsets[i],
1356 ch1 + group * 128 + offsets[i],
1357 offsets[i+1] - offsets[i]);
9ffd5c1c
RS
1358 }
1359 }
1360 }
577d383b
DB
1361 ch0 += ics->group_len[g] * 128;
1362 ch1 += ics->group_len[g] * 128;
9ffd5c1c
RS
1363 }
1364}
1365
1366/**
1367 * intensity stereo decoding; reference: 4.6.8.2.3
1368 *
1369 * @param ms_present Indicates mid/side stereo presence. [0] mask is all 0s;
1370 * [1] mask is decoded from bitstream; [2] mask is all 1s;
1371 * [3] reserved for scalable AAC
1372 */
577d383b
DB
1373static void apply_intensity_stereo(ChannelElement *cpe, int ms_present)
1374{
1375 const IndividualChannelStream *ics = &cpe->ch[1].ics;
1376 SingleChannelElement *sce1 = &cpe->ch[1];
9ffd5c1c 1377 float *coef0 = cpe->ch[0].coeffs, *coef1 = cpe->ch[1].coeffs;
577d383b 1378 const uint16_t *offsets = ics->swb_offset;
9ffd5c1c
RS
1379 int g, group, i, k, idx = 0;
1380 int c;
1381 float scale;
1382 for (g = 0; g < ics->num_window_groups; g++) {
1383 for (i = 0; i < ics->max_sfb;) {
1384 if (sce1->band_type[idx] == INTENSITY_BT || sce1->band_type[idx] == INTENSITY_BT2) {
1385 const int bt_run_end = sce1->band_type_run_end[idx];
1386 for (; i < bt_run_end; i++, idx++) {
1387 c = -1 + 2 * (sce1->band_type[idx] - 14);
1388 if (ms_present)
1389 c *= 1 - 2 * cpe->ms_mask[idx];
1390 scale = c * sce1->sf[idx];
1391 for (group = 0; group < ics->group_len[g]; group++)
577d383b
DB
1392 for (k = offsets[i]; k < offsets[i + 1]; k++)
1393 coef1[group * 128 + k] = scale * coef0[group * 128 + k];
9ffd5c1c
RS
1394 }
1395 } else {
1396 int bt_run_end = sce1->band_type_run_end[idx];
1397 idx += bt_run_end - i;
1398 i = bt_run_end;
1399 }
1400 }
577d383b
DB
1401 coef0 += ics->group_len[g] * 128;
1402 coef1 += ics->group_len[g] * 128;
9ffd5c1c
RS
1403 }
1404}
1405
1406/**
9cc04edf
RS
1407 * Decode a channel_pair_element; reference: table 4.4.
1408 *
9cc04edf
RS
1409 * @return Returns error status. 0 - OK, !0 - error
1410 */
577d383b
DB
1411static int decode_cpe(AACContext *ac, GetBitContext *gb, ChannelElement *cpe)
1412{
9cc04edf 1413 int i, ret, common_window, ms_present = 0;
9cc04edf 1414
9cc04edf
RS
1415 common_window = get_bits1(gb);
1416 if (common_window) {
1417 if (decode_ics_info(ac, &cpe->ch[0].ics, gb, 1))
1418 return -1;
1419 i = cpe->ch[1].ics.use_kb_window[0];
1420 cpe->ch[1].ics = cpe->ch[0].ics;
1421 cpe->ch[1].ics.use_kb_window[1] = i;
1422 ms_present = get_bits(gb, 2);
577d383b 1423 if (ms_present == 3) {
dd8871a6 1424 av_log(ac->avctx, AV_LOG_ERROR, "ms_present = 3 is reserved.\n");
9cc04edf 1425 return -1;
577d383b 1426 } else if (ms_present)
9cc04edf
RS
1427 decode_mid_side_stereo(cpe, gb, ms_present);
1428 }
1429 if ((ret = decode_ics(ac, &cpe->ch[0], gb, common_window, 0)))
1430 return ret;
1431 if ((ret = decode_ics(ac, &cpe->ch[1], gb, common_window, 0)))
1432 return ret;
1433
aab54133
AC
1434 if (common_window) {
1435 if (ms_present)
42d3fbb3 1436 apply_mid_side_stereo(ac, cpe);
aab54133
AC
1437 if (ac->m4ac.object_type == AOT_AAC_MAIN) {
1438 apply_prediction(ac, &cpe->ch[0]);
1439 apply_prediction(ac, &cpe->ch[1]);
1440 }
1441 }
9cc04edf 1442
848a5815 1443 apply_intensity_stereo(cpe, ms_present);
9cc04edf
RS
1444 return 0;
1445}
1446
93c6ff6c
AC
1447static const float cce_scale[] = {
1448 1.09050773266525765921, //2^(1/8)
1449 1.18920711500272106672, //2^(1/4)
1450 M_SQRT2,
1451 2,
1452};
1453
9ffd5c1c
RS
1454/**
1455 * Decode coupling_channel_element; reference: table 4.8.
1456 *
9ffd5c1c
RS
1457 * @return Returns error status. 0 - OK, !0 - error
1458 */
577d383b
DB
1459static int decode_cce(AACContext *ac, GetBitContext *gb, ChannelElement *che)
1460{
9ffd5c1c 1461 int num_gain = 0;
341b28c0 1462 int c, g, sfb, ret;
9ffd5c1c
RS
1463 int sign;
1464 float scale;
577d383b
DB
1465 SingleChannelElement *sce = &che->ch[0];
1466 ChannelCoupling *coup = &che->coup;
9ffd5c1c 1467
577d383b 1468 coup->coupling_point = 2 * get_bits1(gb);
62a57fae
RS
1469 coup->num_coupled = get_bits(gb, 3);
1470 for (c = 0; c <= coup->num_coupled; c++) {
1471 num_gain++;
1472 coup->type[c] = get_bits1(gb) ? TYPE_CPE : TYPE_SCE;
1473 coup->id_select[c] = get_bits(gb, 4);
1474 if (coup->type[c] == TYPE_CPE) {
1475 coup->ch_select[c] = get_bits(gb, 2);
1476 if (coup->ch_select[c] == 3)
1477 num_gain++;
1478 } else
88de95c2 1479 coup->ch_select[c] = 2;
62a57fae 1480 }
577d383b 1481 coup->coupling_point += get_bits1(gb) || (coup->coupling_point >> 1);
62a57fae 1482
577d383b 1483 sign = get_bits(gb, 1);
93c6ff6c 1484 scale = cce_scale[get_bits(gb, 2)];
62a57fae
RS
1485
1486 if ((ret = decode_ics(ac, sce, gb, 0, 0)))
1487 return ret;
1488
1489 for (c = 0; c < num_gain; c++) {
577d383b
DB
1490 int idx = 0;
1491 int cge = 1;
62a57fae
RS
1492 int gain = 0;
1493 float gain_cache = 1.;
1494 if (c) {
1495 cge = coup->coupling_point == AFTER_IMDCT ? 1 : get_bits1(gb);
1496 gain = cge ? get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60: 0;
531cfe6e 1497 gain_cache = powf(scale, -gain);
62a57fae 1498 }
f1ade11e
AC
1499 if (coup->coupling_point == AFTER_IMDCT) {
1500 coup->gain[c][0] = gain_cache;
1501 } else {
03b12747
AC
1502 for (g = 0; g < sce->ics.num_window_groups; g++) {
1503 for (sfb = 0; sfb < sce->ics.max_sfb; sfb++, idx++) {
1504 if (sce->band_type[idx] != ZERO_BT) {
1505 if (!cge) {
1506 int t = get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
577d383b 1507 if (t) {
03b12747
AC
1508 int s = 1;
1509 t = gain += t;
1510 if (sign) {
1511 s -= 2 * (t & 0x1);
1512 t >>= 1;
1513 }
531cfe6e 1514 gain_cache = powf(scale, -t) * s;
62a57fae 1515 }
62a57fae 1516 }
03b12747 1517 coup->gain[c][idx] = gain_cache;
62a57fae 1518 }
62a57fae 1519 }
f80a8ca5
RS
1520 }
1521 }
62a57fae
RS
1522 }
1523 return 0;
1524}
1525
9cc04edf 1526/**
62a57fae
RS
1527 * Parse whether channels are to be excluded from Dynamic Range Compression; reference: table 4.53.
1528 *
1529 * @return Returns number of bytes consumed.
1530 */
577d383b
DB
1531static int decode_drc_channel_exclusions(DynamicRangeControl *che_drc,
1532 GetBitContext *gb)
1533{
62a57fae
RS
1534 int i;
1535 int num_excl_chan = 0;
1536
1537 do {
1538 for (i = 0; i < 7; i++)
1539 che_drc->exclude_mask[num_excl_chan++] = get_bits1(gb);
1540 } while (num_excl_chan < MAX_CHANNELS - 7 && get_bits1(gb));
1541
1542 return num_excl_chan / 7;
1543}
1544
1545/**
9cc04edf
RS
1546 * Decode dynamic range information; reference: table 4.52.
1547 *
1548 * @param cnt length of TYPE_FIL syntactic element in bytes
1549 *
1550 * @return Returns number of bytes consumed.
1551 */
577d383b
DB
1552static int decode_dynamic_range(DynamicRangeControl *che_drc,
1553 GetBitContext *gb, int cnt)
1554{
1555 int n = 1;
9cc04edf
RS
1556 int drc_num_bands = 1;
1557 int i;
1558
1559 /* pce_tag_present? */
577d383b 1560 if (get_bits1(gb)) {
9cc04edf
RS
1561 che_drc->pce_instance_tag = get_bits(gb, 4);
1562 skip_bits(gb, 4); // tag_reserved_bits
1563 n++;
1564 }
1565
1566 /* excluded_chns_present? */
577d383b 1567 if (get_bits1(gb)) {
9cc04edf
RS
1568 n += decode_drc_channel_exclusions(che_drc, gb);
1569 }
1570
1571 /* drc_bands_present? */
1572 if (get_bits1(gb)) {
1573 che_drc->band_incr = get_bits(gb, 4);
1574 che_drc->interpolation_scheme = get_bits(gb, 4);
1575 n++;
1576 drc_num_bands += che_drc->band_incr;
1577 for (i = 0; i < drc_num_bands; i++) {
1578 che_drc->band_top[i] = get_bits(gb, 8);
1579 n++;
1580 }
1581 }
1582
1583 /* prog_ref_level_present? */
1584 if (get_bits1(gb)) {
1585 che_drc->prog_ref_level = get_bits(gb, 7);
1586 skip_bits1(gb); // prog_ref_level_reserved_bits
1587 n++;
1588 }
1589
1590 for (i = 0; i < drc_num_bands; i++) {
1591 che_drc->dyn_rng_sgn[i] = get_bits1(gb);
1592 che_drc->dyn_rng_ctl[i] = get_bits(gb, 7);
1593 n++;
1594 }
1595
1596 return n;
1597}
1598
1599/**
1600 * Decode extension data (incomplete); reference: table 4.51.
1601 *
1602 * @param cnt length of TYPE_FIL syntactic element in bytes
1603 *
1604 * @return Returns number of bytes consumed
1605 */
ed492b61
AC
1606static int decode_extension_payload(AACContext *ac, GetBitContext *gb, int cnt,
1607 ChannelElement *che, enum RawDataBlockType elem_type)
577d383b 1608{
cc0591da
RS
1609 int crc_flag = 0;
1610 int res = cnt;
1611 switch (get_bits(gb, 4)) { // extension type
577d383b
DB
1612 case EXT_SBR_DATA_CRC:
1613 crc_flag++;
1614 case EXT_SBR_DATA:
ed492b61 1615 if (!che) {
dd8871a6 1616 av_log(ac->avctx, AV_LOG_ERROR, "SBR was found before the first channel element.\n");
ed492b61
AC
1617 return res;
1618 } else if (!ac->m4ac.sbr) {
dd8871a6 1619 av_log(ac->avctx, AV_LOG_ERROR, "SBR signaled to be not-present but was found in the bitstream.\n");
ed492b61
AC
1620 skip_bits_long(gb, 8 * cnt - 4);
1621 return res;
1622 } else if (ac->m4ac.sbr == -1 && ac->output_configured == OC_LOCKED) {
dd8871a6 1623 av_log(ac->avctx, AV_LOG_ERROR, "Implicit SBR was found with a first occurrence after the first frame.\n");
ed492b61
AC
1624 skip_bits_long(gb, 8 * cnt - 4);
1625 return res;
a2063901
AC
1626 } else if (ac->m4ac.ps == -1 && ac->output_configured < OC_LOCKED && ac->avctx->channels == 1) {
1627 ac->m4ac.sbr = 1;
1628 ac->m4ac.ps = 1;
1629 output_configure(ac, ac->che_pos, ac->che_pos, ac->m4ac.chan_config, ac->output_configured);
ed492b61
AC
1630 } else {
1631 ac->m4ac.sbr = 1;
1632 }
1633 res = ff_decode_sbr_extension(ac, &che->sbr, gb, crc_flag, cnt, elem_type);
577d383b
DB
1634 break;
1635 case EXT_DYNAMIC_RANGE:
1636 res = decode_dynamic_range(&ac->che_drc, gb, cnt);
1637 break;
1638 case EXT_FILL:
1639 case EXT_FILL_DATA:
1640 case EXT_DATA_ELEMENT:
1641 default:
1642 skip_bits_long(gb, 8 * cnt - 4);
1643 break;
cc0591da
RS
1644 };
1645 return res;
1646}
1647
7d8f3de4
RS
1648/**
1649 * Decode Temporal Noise Shaping filter coefficients and apply all-pole filters; reference: 4.6.9.3.
1650 *
1651 * @param decode 1 if tool is used normally, 0 if tool is used in LTP.
1652 * @param coef spectral coefficients
1653 */
577d383b
DB
1654static void apply_tns(float coef[1024], TemporalNoiseShaping *tns,
1655 IndividualChannelStream *ics, int decode)
1656{
1657 const int mmm = FFMIN(ics->tns_max_bands, ics->max_sfb);
1098e8d2 1658 int w, filt, m, i;
7d8f3de4
RS
1659 int bottom, top, order, start, end, size, inc;
1660 float lpc[TNS_MAX_ORDER];
1661
1662 for (w = 0; w < ics->num_windows; w++) {
1663 bottom = ics->num_swb;
1664 for (filt = 0; filt < tns->n_filt[w]; filt++) {
1665 top = bottom;
1666 bottom = FFMAX(0, top - tns->length[w][filt]);
1667 order = tns->order[w][filt];
1668 if (order == 0)
1669 continue;
1670
1be0fc29
VS
1671 // tns_decode_coef
1672 compute_lpc_coefs(tns->coef[w][filt], order, lpc, 0, 0, 0);
7d8f3de4 1673
1dece0d2
RS
1674 start = ics->swb_offset[FFMIN(bottom, mmm)];
1675 end = ics->swb_offset[FFMIN( top, mmm)];
1676 if ((size = end - start) <= 0)
1677 continue;
1678 if (tns->direction[w][filt]) {
577d383b
DB
1679 inc = -1;
1680 start = end - 1;
1dece0d2
RS
1681 } else {
1682 inc = 1;
1683 }
1684 start += w * 128;
1685
1686 // ar filter
1687 for (m = 0; m < size; m++, start += inc)
1688 for (i = 1; i <= FFMIN(m, order); i++)
577d383b 1689 coef[start] -= coef[start - i * inc] * lpc[i - 1];
1dece0d2
RS
1690 }
1691 }
1692}
1693
cc0591da 1694/**
9cc04edf
RS
1695 * Conduct IMDCT and windowing.
1696 */
f8a93a20 1697static void imdct_and_windowing(AACContext *ac, SingleChannelElement *sce, float bias)
577d383b
DB
1698{
1699 IndividualChannelStream *ics = &sce->ics;
1700 float *in = sce->coeffs;
1701 float *out = sce->ret;
1702 float *saved = sce->saved;
1703 const float *swindow = ics->use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
1704 const float *lwindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_sine_1024;
1705 const float *swindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128;
1706 float *buf = ac->buf_mdct;
1707 float *temp = ac->temp;
9cc04edf
RS
1708 int i;
1709
f4990558 1710 // imdct
62a57fae 1711 if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
b0f5852a
RS
1712 for (i = 0; i < 1024; i += 128)
1713 ff_imdct_half(&ac->mdct_small, buf + i, in + i);
f4990558 1714 } else
b0f5852a 1715 ff_imdct_half(&ac->mdct, buf, in);
f4990558
RS
1716
1717 /* window overlapping
1718 * NOTE: To simplify the overlapping code, all 'meaningless' short to long
1719 * and long to short transitions are considered to be short to short
1720 * transitions. This leaves just two cases (long to long and short to short)
1721 * with a little special sauce for EIGHT_SHORT_SEQUENCE.
1722 */
1723 if ((ics->window_sequence[1] == ONLY_LONG_SEQUENCE || ics->window_sequence[1] == LONG_STOP_SEQUENCE) &&
577d383b 1724 (ics->window_sequence[0] == ONLY_LONG_SEQUENCE || ics->window_sequence[0] == LONG_START_SEQUENCE)) {
f8a93a20 1725 ac->dsp.vector_fmul_window( out, saved, buf, lwindow_prev, bias, 512);
f4990558 1726 } else {
db38c386 1727 for (i = 0; i < 448; i++)
f8a93a20 1728 out[i] = saved[i] + bias;
62a57fae 1729
f4990558 1730 if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
f8a93a20
AC
1731 ac->dsp.vector_fmul_window(out + 448 + 0*128, saved + 448, buf + 0*128, swindow_prev, bias, 64);
1732 ac->dsp.vector_fmul_window(out + 448 + 1*128, buf + 0*128 + 64, buf + 1*128, swindow, bias, 64);
1733 ac->dsp.vector_fmul_window(out + 448 + 2*128, buf + 1*128 + 64, buf + 2*128, swindow, bias, 64);
1734 ac->dsp.vector_fmul_window(out + 448 + 3*128, buf + 2*128 + 64, buf + 3*128, swindow, bias, 64);
1735 ac->dsp.vector_fmul_window(temp, buf + 3*128 + 64, buf + 4*128, swindow, bias, 64);
b0f5852a 1736 memcpy( out + 448 + 4*128, temp, 64 * sizeof(float));
f4990558 1737 } else {
f8a93a20 1738 ac->dsp.vector_fmul_window(out + 448, saved + 448, buf, swindow_prev, bias, 64);
db38c386 1739 for (i = 576; i < 1024; i++)
f8a93a20 1740 out[i] = buf[i-512] + bias;
f4990558
RS
1741 }
1742 }
62a57fae 1743
f4990558
RS
1744 // buffer update
1745 if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
b0f5852a 1746 for (i = 0; i < 64; i++)
f8a93a20 1747 saved[i] = temp[64 + i] - bias;
b0f5852a
RS
1748 ac->dsp.vector_fmul_window(saved + 64, buf + 4*128 + 64, buf + 5*128, swindow, 0, 64);
1749 ac->dsp.vector_fmul_window(saved + 192, buf + 5*128 + 64, buf + 6*128, swindow, 0, 64);
1750 ac->dsp.vector_fmul_window(saved + 320, buf + 6*128 + 64, buf + 7*128, swindow, 0, 64);
1751 memcpy( saved + 448, buf + 7*128 + 64, 64 * sizeof(float));
f4990558 1752 } else if (ics->window_sequence[0] == LONG_START_SEQUENCE) {
b0f5852a
RS
1753 memcpy( saved, buf + 512, 448 * sizeof(float));
1754 memcpy( saved + 448, buf + 7*128 + 64, 64 * sizeof(float));
f4990558 1755 } else { // LONG_STOP or ONLY_LONG
b0f5852a 1756 memcpy( saved, buf + 512, 512 * sizeof(float));
62a57fae
RS
1757 }
1758}
1759
9cc04edf 1760/**
cc0591da
RS
1761 * Apply dependent channel coupling (applied before IMDCT).
1762 *
1763 * @param index index into coupling gain array
1764 */
577d383b
DB
1765static void apply_dependent_coupling(AACContext *ac,
1766 SingleChannelElement *target,
1767 ChannelElement *cce, int index)
1768{
1769 IndividualChannelStream *ics = &cce->ch[0].ics;
1770 const uint16_t *offsets = ics->swb_offset;
1771 float *dest = target->coeffs;
1772 const float *src = cce->ch[0].coeffs;
cc0591da 1773 int g, i, group, k, idx = 0;
577d383b 1774 if (ac->m4ac.object_type == AOT_AAC_LTP) {
dd8871a6 1775 av_log(ac->avctx, AV_LOG_ERROR,
cc0591da
RS
1776 "Dependent coupling is not supported together with LTP\n");
1777 return;
1778 }
1779 for (g = 0; g < ics->num_window_groups; g++) {
1780 for (i = 0; i < ics->max_sfb; i++, idx++) {
fbdae895 1781 if (cce->ch[0].band_type[idx] != ZERO_BT) {
cfd937b0 1782 const float gain = cce->coup.gain[index][idx];
cc0591da 1783 for (group = 0; group < ics->group_len[g]; group++) {
577d383b 1784 for (k = offsets[i]; k < offsets[i + 1]; k++) {
cc0591da 1785 // XXX dsputil-ize
577d383b 1786 dest[group * 128 + k] += gain * src[group * 128 + k];
cc0591da
RS
1787 }
1788 }
1789 }
1790 }
577d383b
DB
1791 dest += ics->group_len[g] * 128;
1792 src += ics->group_len[g] * 128;
cc0591da
RS
1793 }
1794}
1795
1796/**
1797 * Apply independent channel coupling (applied after IMDCT).
1798 *
1799 * @param index index into coupling gain array
1800 */
577d383b
DB
1801static void apply_independent_coupling(AACContext *ac,
1802 SingleChannelElement *target,
1803 ChannelElement *cce, int index)
1804{
cc0591da 1805 int i;
039821a8
AC
1806 const float gain = cce->coup.gain[index][0];
1807 const float bias = ac->add_bias;
577d383b
DB
1808 const float *src = cce->ch[0].ret;
1809 float *dest = target->ret;
ed492b61 1810 const int len = 1024 << (ac->m4ac.sbr == 1);
039821a8 1811
ed492b61 1812 for (i = 0; i < len; i++)
039821a8 1813 dest[i] += gain * (src[i] - bias);
cc0591da
RS
1814}
1815
9ffd5c1c
RS
1816/**
1817 * channel coupling transformation interface
1818 *
9ffd5c1c
RS
1819 * @param apply_coupling_method pointer to (in)dependent coupling function
1820 */
577d383b
DB
1821static void apply_channel_coupling(AACContext *ac, ChannelElement *cc,
1822 enum RawDataBlockType type, int elem_id,
1823 enum CouplingPoint coupling_point,
1824 void (*apply_coupling_method)(AACContext *ac, SingleChannelElement *target, ChannelElement *cce, int index))
9ffd5c1c 1825{
88de95c2
AC
1826 int i, c;
1827
1828 for (i = 0; i < MAX_ELEM_ID; i++) {
1829 ChannelElement *cce = ac->che[TYPE_CCE][i];
1830 int index = 0;
1831
1832 if (cce && cce->coup.coupling_point == coupling_point) {
577d383b 1833 ChannelCoupling *coup = &cce->coup;
88de95c2
AC
1834
1835 for (c = 0; c <= coup->num_coupled; c++) {
1836 if (coup->type[c] == type && coup->id_select[c] == elem_id) {
1837 if (coup->ch_select[c] != 1) {
1838 apply_coupling_method(ac, &cc->ch[0], cce, index);
1839 if (coup->ch_select[c] != 0)
1840 index++;
1841 }
1842 if (coup->ch_select[c] != 2)
1843 apply_coupling_method(ac, &cc->ch[1], cce, index++);
1844 } else
1845 index += 1 + (coup->ch_select[c] == 3);
9ffd5c1c 1846 }
9ffd5c1c
RS
1847 }
1848 }
1849}
1850
1851/**
1852 * Convert spectral data to float samples, applying all supported tools as appropriate.
1853 */
577d383b
DB
1854static void spectral_to_sample(AACContext *ac)
1855{
b0bc928b 1856 int i, type;
f8a93a20 1857 float imdct_bias = (ac->m4ac.sbr <= 0) ? ac->add_bias : 0.0f;
b0bc928b 1858 for (type = 3; type >= 0; type--) {
88de95c2 1859 for (i = 0; i < MAX_ELEM_ID; i++) {
9ffd5c1c 1860 ChannelElement *che = ac->che[type][i];
577d383b
DB
1861 if (che) {
1862 if (type <= TYPE_CPE)
88de95c2 1863 apply_channel_coupling(ac, che, type, i, BEFORE_TNS, apply_dependent_coupling);
577d383b 1864 if (che->ch[0].tns.present)
9ffd5c1c 1865 apply_tns(che->ch[0].coeffs, &che->ch[0].tns, &che->ch[0].ics, 1);
577d383b 1866 if (che->ch[1].tns.present)
9ffd5c1c 1867 apply_tns(che->ch[1].coeffs, &che->ch[1].tns, &che->ch[1].ics, 1);
577d383b 1868 if (type <= TYPE_CPE)
88de95c2 1869 apply_channel_coupling(ac, che, type, i, BETWEEN_TNS_AND_IMDCT, apply_dependent_coupling);
ed492b61 1870 if (type != TYPE_CCE || che->coup.coupling_point == AFTER_IMDCT) {
f8a93a20 1871 imdct_and_windowing(ac, &che->ch[0], imdct_bias);
d0dedce7
AC
1872 if (type == TYPE_CPE) {
1873 imdct_and_windowing(ac, &che->ch[1], imdct_bias);
1874 }
ca6d3f23
AC
1875 if (ac->m4ac.sbr > 0) {
1876 ff_sbr_apply(ac, &che->sbr, type, che->ch[0].ret, che->ch[1].ret);
1877 }
ed492b61 1878 }
577d383b 1879 if (type <= TYPE_CCE)
88de95c2 1880 apply_channel_coupling(ac, che, type, i, AFTER_IMDCT, apply_independent_coupling);
62a57fae
RS
1881 }
1882 }
1883 }
1884}
1885
577d383b
DB
1886static int parse_adts_frame_header(AACContext *ac, GetBitContext *gb)
1887{
158b3912
RS
1888 int size;
1889 AACADTSHeaderInfo hdr_info;
1890
1891 size = ff_aac_parse_header(gb, &hdr_info);
1892 if (size > 0) {
981b8fd7 1893 if (ac->output_configured != OC_LOCKED && hdr_info.chan_config) {
6308765c
AC
1894 enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
1895 memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
158b3912 1896 ac->m4ac.chan_config = hdr_info.chan_config;
6308765c
AC
1897 if (set_default_channel_config(ac, new_che_pos, hdr_info.chan_config))
1898 return -7;
981b8fd7 1899 if (output_configure(ac, ac->che_pos, new_che_pos, hdr_info.chan_config, OC_TRIAL_FRAME))
6308765c 1900 return -7;
981b8fd7
AC
1901 } else if (ac->output_configured != OC_LOCKED) {
1902 ac->output_configured = OC_NONE;
6308765c 1903 }
a2063901 1904 if (ac->output_configured != OC_LOCKED) {
38610d92 1905 ac->m4ac.sbr = -1;
a2063901
AC
1906 ac->m4ac.ps = -1;
1907 }
158b3912
RS
1908 ac->m4ac.sample_rate = hdr_info.sample_rate;
1909 ac->m4ac.sampling_index = hdr_info.sampling_index;
1910 ac->m4ac.object_type = hdr_info.object_type;
dd8871a6
AC
1911 if (!ac->avctx->sample_rate)
1912 ac->avctx->sample_rate = hdr_info.sample_rate;
7d87e2ce
AC
1913 if (hdr_info.num_aac_frames == 1) {
1914 if (!hdr_info.crc_absent)
1915 skip_bits(gb, 16);
1916 } else {
dd8871a6 1917 av_log_missing_feature(ac->avctx, "More than one AAC RDB per ADTS frame is", 0);
7d87e2ce
AC
1918 return -1;
1919 }
51741a82 1920 }
158b3912
RS
1921 return size;
1922}
1923
dd8871a6 1924static int aac_decode_frame(AVCodecContext *avctx, void *data,
577d383b
DB
1925 int *data_size, AVPacket *avpkt)
1926{
7a00bbad
TB
1927 const uint8_t *buf = avpkt->data;
1928 int buf_size = avpkt->size;
dd8871a6 1929 AACContext *ac = avctx->priv_data;
ed492b61 1930 ChannelElement *che = NULL, *che_prev = NULL;
62a57fae 1931 GetBitContext gb;
ed492b61 1932 enum RawDataBlockType elem_type, elem_type_prev = TYPE_END;
62a57fae 1933 int err, elem_id, data_size_tmp;
b5e2bb8c 1934 int buf_consumed;
fda36b59 1935 int samples = 0, multiplier;
c16d5a6f 1936 int buf_offset;
62a57fae 1937
577d383b 1938 init_get_bits(&gb, buf, buf_size * 8);
62a57fae 1939
158b3912 1940 if (show_bits(&gb, 12) == 0xfff) {
5967e141 1941 if (parse_adts_frame_header(ac, &gb) < 0) {
dd8871a6 1942 av_log(avctx, AV_LOG_ERROR, "Error decoding AAC frame header.\n");
158b3912
RS
1943 return -1;
1944 }
30272450 1945 if (ac->m4ac.sampling_index > 12) {
dd8871a6 1946 av_log(ac->avctx, AV_LOG_ERROR, "invalid sampling rate index %d\n", ac->m4ac.sampling_index);
f418b861
JM
1947 return -1;
1948 }
158b3912
RS
1949 }
1950
bb2d8e9f 1951 ac->tags_mapped = 0;
62a57fae
RS
1952 // parse
1953 while ((elem_type = get_bits(&gb, 3)) != TYPE_END) {
1954 elem_id = get_bits(&gb, 4);
62a57fae 1955
ed99e54d 1956 if (elem_type < TYPE_DSE) {
d4e355d5
AC
1957 if (!(che=get_che(ac, elem_type, elem_id))) {
1958 av_log(ac->avctx, AV_LOG_ERROR, "channel element %d.%d is not allocated\n",
1959 elem_type, elem_id);
1960 return -1;
1961 }
fda36b59 1962 samples = 1024;
ed99e54d 1963 }
fda36b59 1964
62a57fae
RS
1965 switch (elem_type) {
1966
1967 case TYPE_SCE:
bb5c0988 1968 err = decode_ics(ac, &che->ch[0], &gb, 0, 0);
62a57fae
RS
1969 break;
1970
1971 case TYPE_CPE:
bb5c0988 1972 err = decode_cpe(ac, &gb, che);
62a57fae
RS
1973 break;
1974
1975 case TYPE_CCE:
bb5c0988 1976 err = decode_cce(ac, &gb, che);
62a57fae
RS
1977 break;
1978
1979 case TYPE_LFE:
bb5c0988 1980 err = decode_ics(ac, &che->ch[0], &gb, 0, 0);
62a57fae
RS
1981 break;
1982
1983 case TYPE_DSE:
8d637124 1984 err = skip_data_stream_element(ac, &gb);
62a57fae
RS
1985 break;
1986
577d383b 1987 case TYPE_PCE: {
62a57fae
RS
1988 enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
1989 memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
577d383b 1990 if ((err = decode_pce(ac, new_che_pos, &gb)))
62a57fae 1991 break;
4e878a18 1992 if (ac->output_configured > OC_TRIAL_PCE)
dd8871a6 1993 av_log(avctx, AV_LOG_ERROR,
6308765c
AC
1994 "Not evaluating a further program_config_element as this construct is dubious at best.\n");
1995 else
981b8fd7 1996 err = output_configure(ac, ac->che_pos, new_che_pos, 0, OC_TRIAL_PCE);
62a57fae
RS
1997 break;
1998 }
1999
2000 case TYPE_FIL:
2001 if (elem_id == 15)
2002 elem_id += get_bits(&gb, 8) - 1;
8d637124 2003 if (get_bits_left(&gb) < 8 * elem_id) {
dd8871a6 2004 av_log(avctx, AV_LOG_ERROR, overread_err);
8d637124
AC
2005 return -1;
2006 }
62a57fae 2007 while (elem_id > 0)
ed492b61 2008 elem_id -= decode_extension_payload(ac, &gb, elem_id, che_prev, elem_type_prev);
62a57fae
RS
2009 err = 0; /* FIXME */
2010 break;
2011
2012 default:
2013 err = -1; /* should not happen, but keeps compiler happy */
2014 break;
2015 }
2016
ed492b61
AC
2017 che_prev = che;
2018 elem_type_prev = elem_type;
2019
577d383b 2020 if (err)
62a57fae 2021 return err;
8d637124
AC
2022
2023 if (get_bits_left(&gb) < 3) {
dd8871a6 2024 av_log(avctx, AV_LOG_ERROR, overread_err);
8d637124
AC
2025 return -1;
2026 }
62a57fae
RS
2027 }
2028
2029 spectral_to_sample(ac);
2030
ed492b61 2031 multiplier = (ac->m4ac.sbr == 1) ? ac->m4ac.ext_sample_rate > ac->m4ac.sample_rate : 0;
54f158bd
AC
2032 samples <<= multiplier;
2033 if (ac->output_configured < OC_LOCKED) {
dd8871a6
AC
2034 avctx->sample_rate = ac->m4ac.sample_rate << multiplier;
2035 avctx->frame_size = samples;
54f158bd
AC
2036 }
2037
dd8871a6 2038 data_size_tmp = samples * avctx->channels * sizeof(int16_t);
577d383b 2039 if (*data_size < data_size_tmp) {
dd8871a6 2040 av_log(avctx, AV_LOG_ERROR,
9cc04edf
RS
2041 "Output buffer too small (%d) or trying to output too many samples (%d) for this frame.\n",
2042 *data_size, data_size_tmp);
2043 return -1;
2044 }
2045 *data_size = data_size_tmp;
2046
fda36b59 2047 if (samples)
19ed4b86 2048 ac->dsp.float_to_int16_interleave(data, (const float **)ac->output_data, samples, avctx->channels);
9cc04edf 2049
981b8fd7
AC
2050 if (ac->output_configured)
2051 ac->output_configured = OC_LOCKED;
2052
b5e2bb8c 2053 buf_consumed = (get_bits_count(&gb) + 7) >> 3;
c16d5a6f
AC
2054 for (buf_offset = buf_consumed; buf_offset < buf_size; buf_offset++)
2055 if (buf[buf_offset])
2056 break;
2057
2058 return buf_size > buf_offset ? buf_consumed : buf_size;
9cc04edf
RS
2059}
2060
dd8871a6 2061static av_cold int aac_decode_close(AVCodecContext *avctx)
577d383b 2062{
dd8871a6 2063 AACContext *ac = avctx->priv_data;
9edae4ad 2064 int i, type;
71e9a1b8 2065
cc0591da 2066 for (i = 0; i < MAX_ELEM_ID; i++) {
ed492b61
AC
2067 for (type = 0; type < 4; type++) {
2068 if (ac->che[type][i])
2069 ff_aac_sbr_ctx_close(&ac->che[type][i]->sbr);
9edae4ad 2070 av_freep(&ac->che[type][i]);
ed492b61 2071 }
71e9a1b8
RS
2072 }
2073
2074 ff_mdct_end(&ac->mdct);
2075 ff_mdct_end(&ac->mdct_small);
577d383b 2076 return 0;
71e9a1b8
RS
2077}
2078
2079AVCodec aac_decoder = {
2080 "aac",
72415b2a 2081 AVMEDIA_TYPE_AUDIO,
71e9a1b8
RS
2082 CODEC_ID_AAC,
2083 sizeof(AACContext),
2084 aac_decode_init,
2085 NULL,
2086 aac_decode_close,
2087 aac_decode_frame,
2088 .long_name = NULL_IF_CONFIG_SMALL("Advanced Audio Coding"),
b5f09d31 2089 .sample_fmts = (const enum SampleFormat[]) {
577d383b
DB
2090 SAMPLE_FMT_S16,SAMPLE_FMT_NONE
2091 },
e22da6b6 2092 .channel_layouts = aac_channel_layout,
71e9a1b8 2093};