Commit | Line | Data |
---|---|---|
ed492b61 AC |
1 | /* |
2 | * AAC Spectral Band Replication decoding functions | |
3 | * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl ) | |
4 | * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com> | |
5 | * | |
6 | * This file is part of FFmpeg. | |
7 | * | |
8 | * FFmpeg is free software; you can redistribute it and/or | |
9 | * modify it under the terms of the GNU Lesser General Public | |
10 | * License as published by the Free Software Foundation; either | |
11 | * version 2.1 of the License, or (at your option) any later version. | |
12 | * | |
13 | * FFmpeg is distributed in the hope that it will be useful, | |
14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
16 | * Lesser General Public License for more details. | |
17 | * | |
18 | * You should have received a copy of the GNU Lesser General Public | |
19 | * License along with FFmpeg; if not, write to the Free Software | |
20 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
21 | */ | |
22 | ||
23 | /** | |
ba87f080 | 24 | * @file |
ed492b61 AC |
25 | * AAC Spectral Band Replication decoding functions |
26 | * @author Robert Swain ( rob opendot cl ) | |
27 | */ | |
28 | ||
29 | #include "aac.h" | |
30 | #include "sbr.h" | |
31 | #include "aacsbr.h" | |
32 | #include "aacsbrdata.h" | |
e0be7630 | 33 | #include "fft.h" |
ed492b61 AC |
34 | |
35 | #include <stdint.h> | |
36 | #include <float.h> | |
37 | ||
38 | #define ENVELOPE_ADJUSTMENT_OFFSET 2 | |
39 | #define NOISE_FLOOR_OFFSET 6.0f | |
40 | ||
41 | /** | |
42 | * SBR VLC tables | |
43 | */ | |
44 | enum { | |
45 | T_HUFFMAN_ENV_1_5DB, | |
46 | F_HUFFMAN_ENV_1_5DB, | |
47 | T_HUFFMAN_ENV_BAL_1_5DB, | |
48 | F_HUFFMAN_ENV_BAL_1_5DB, | |
49 | T_HUFFMAN_ENV_3_0DB, | |
50 | F_HUFFMAN_ENV_3_0DB, | |
51 | T_HUFFMAN_ENV_BAL_3_0DB, | |
52 | F_HUFFMAN_ENV_BAL_3_0DB, | |
53 | T_HUFFMAN_NOISE_3_0DB, | |
54 | T_HUFFMAN_NOISE_BAL_3_0DB, | |
55 | }; | |
56 | ||
57 | /** | |
58 | * bs_frame_class - frame class of current SBR frame (14496-3 sp04 p98) | |
59 | */ | |
60 | enum { | |
61 | FIXFIX, | |
62 | FIXVAR, | |
63 | VARFIX, | |
64 | VARVAR, | |
65 | }; | |
66 | ||
67 | enum { | |
68 | EXTENSION_ID_PS = 2, | |
69 | }; | |
70 | ||
71 | static VLC vlc_sbr[10]; | |
72 | static const int8_t vlc_sbr_lav[10] = | |
73 | { 60, 60, 24, 24, 31, 31, 12, 12, 31, 12 }; | |
74 | static DECLARE_ALIGNED(16, float, analysis_cos_pre)[64]; | |
75 | static DECLARE_ALIGNED(16, float, analysis_sin_pre)[64]; | |
76 | static DECLARE_ALIGNED(16, float, analysis_cossin_post)[32][2]; | |
77 | static const DECLARE_ALIGNED(16, float, zero64)[64]; | |
78 | ||
79 | #define SBR_INIT_VLC_STATIC(num, size) \ | |
80 | INIT_VLC_STATIC(&vlc_sbr[num], 9, sbr_tmp[num].table_size / sbr_tmp[num].elem_size, \ | |
81 | sbr_tmp[num].sbr_bits , 1, 1, \ | |
82 | sbr_tmp[num].sbr_codes, sbr_tmp[num].elem_size, sbr_tmp[num].elem_size, \ | |
83 | size) | |
84 | ||
85 | #define SBR_VLC_ROW(name) \ | |
86 | { name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) } | |
87 | ||
88 | av_cold void ff_aac_sbr_init(void) | |
89 | { | |
90 | int n, k; | |
91 | static const struct { | |
92 | const void *sbr_codes, *sbr_bits; | |
93 | const unsigned int table_size, elem_size; | |
94 | } sbr_tmp[] = { | |
95 | SBR_VLC_ROW(t_huffman_env_1_5dB), | |
96 | SBR_VLC_ROW(f_huffman_env_1_5dB), | |
97 | SBR_VLC_ROW(t_huffman_env_bal_1_5dB), | |
98 | SBR_VLC_ROW(f_huffman_env_bal_1_5dB), | |
99 | SBR_VLC_ROW(t_huffman_env_3_0dB), | |
100 | SBR_VLC_ROW(f_huffman_env_3_0dB), | |
101 | SBR_VLC_ROW(t_huffman_env_bal_3_0dB), | |
102 | SBR_VLC_ROW(f_huffman_env_bal_3_0dB), | |
103 | SBR_VLC_ROW(t_huffman_noise_3_0dB), | |
104 | SBR_VLC_ROW(t_huffman_noise_bal_3_0dB), | |
105 | }; | |
106 | ||
107 | // SBR VLC table initialization | |
108 | SBR_INIT_VLC_STATIC(0, 1098); | |
109 | SBR_INIT_VLC_STATIC(1, 1092); | |
110 | SBR_INIT_VLC_STATIC(2, 768); | |
111 | SBR_INIT_VLC_STATIC(3, 1026); | |
112 | SBR_INIT_VLC_STATIC(4, 1058); | |
113 | SBR_INIT_VLC_STATIC(5, 1052); | |
114 | SBR_INIT_VLC_STATIC(6, 544); | |
115 | SBR_INIT_VLC_STATIC(7, 544); | |
116 | SBR_INIT_VLC_STATIC(8, 592); | |
117 | SBR_INIT_VLC_STATIC(9, 512); | |
118 | ||
119 | for (n = 0; n < 64; n++) { | |
120 | float pre = M_PI * n / 64; | |
121 | analysis_cos_pre[n] = cosf(pre); | |
122 | analysis_sin_pre[n] = sinf(pre); | |
123 | } | |
124 | for (k = 0; k < 32; k++) { | |
125 | float post = M_PI * (k + 0.5) / 128; | |
126 | analysis_cossin_post[k][0] = 4.0 * cosf(post); | |
127 | analysis_cossin_post[k][1] = -4.0 * sinf(post); | |
128 | } | |
129 | for (n = 1; n < 320; n++) | |
130 | sbr_qmf_window_us[320 + n] = sbr_qmf_window_us[320 - n]; | |
131 | sbr_qmf_window_us[384] = -sbr_qmf_window_us[384]; | |
132 | sbr_qmf_window_us[512] = -sbr_qmf_window_us[512]; | |
133 | ||
134 | for (n = 0; n < 320; n++) | |
135 | sbr_qmf_window_ds[n] = sbr_qmf_window_us[2*n]; | |
136 | } | |
137 | ||
138 | av_cold void ff_aac_sbr_ctx_init(SpectralBandReplication *sbr) | |
139 | { | |
140 | sbr->kx[0] = sbr->kx[1] = 32; //Typo in spec, kx' inits to 32 | |
46751a65 | 141 | sbr->data[0].e_a[1] = sbr->data[1].e_a[1] = -1; |
ed492b61 AC |
142 | sbr->data[0].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128); |
143 | sbr->data[1].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128); | |
144 | ff_mdct_init(&sbr->mdct, 7, 1, 1.0/64); | |
145 | ff_rdft_init(&sbr->rdft, 6, IDFT_R2C); | |
146 | } | |
147 | ||
148 | av_cold void ff_aac_sbr_ctx_close(SpectralBandReplication *sbr) | |
149 | { | |
150 | ff_mdct_end(&sbr->mdct); | |
151 | ff_rdft_end(&sbr->rdft); | |
152 | } | |
153 | ||
154 | static int qsort_comparison_function_int16(const void *a, const void *b) | |
155 | { | |
156 | return *(const int16_t *)a - *(const int16_t *)b; | |
157 | } | |
158 | ||
159 | static inline int in_table_int16(const int16_t *table, int last_el, int16_t needle) | |
160 | { | |
161 | int i; | |
162 | for (i = 0; i <= last_el; i++) | |
163 | if (table[i] == needle) | |
164 | return 1; | |
165 | return 0; | |
166 | } | |
167 | ||
168 | /// Limiter Frequency Band Table (14496-3 sp04 p198) | |
169 | static void sbr_make_f_tablelim(SpectralBandReplication *sbr) | |
170 | { | |
171 | int k; | |
172 | if (sbr->bs_limiter_bands > 0) { | |
173 | static const float bands_warped[3] = { 1.32715174233856803909f, //2^(0.49/1.2) | |
174 | 1.18509277094158210129f, //2^(0.49/2) | |
175 | 1.11987160404675912501f }; //2^(0.49/3) | |
176 | const float lim_bands_per_octave_warped = bands_warped[sbr->bs_limiter_bands - 1]; | |
10678e5c | 177 | int16_t patch_borders[7]; |
ed492b61 AC |
178 | uint16_t *in = sbr->f_tablelim + 1, *out = sbr->f_tablelim; |
179 | ||
180 | patch_borders[0] = sbr->kx[1]; | |
181 | for (k = 1; k <= sbr->num_patches; k++) | |
182 | patch_borders[k] = patch_borders[k-1] + sbr->patch_num_subbands[k-1]; | |
183 | ||
184 | memcpy(sbr->f_tablelim, sbr->f_tablelow, | |
185 | (sbr->n[0] + 1) * sizeof(sbr->f_tablelow[0])); | |
186 | if (sbr->num_patches > 1) | |
187 | memcpy(sbr->f_tablelim + sbr->n[0] + 1, patch_borders + 1, | |
188 | (sbr->num_patches - 1) * sizeof(patch_borders[0])); | |
189 | ||
190 | qsort(sbr->f_tablelim, sbr->num_patches + sbr->n[0], | |
191 | sizeof(sbr->f_tablelim[0]), | |
192 | qsort_comparison_function_int16); | |
193 | ||
194 | sbr->n_lim = sbr->n[0] + sbr->num_patches - 1; | |
195 | while (out < sbr->f_tablelim + sbr->n_lim) { | |
196 | if (*in >= *out * lim_bands_per_octave_warped) { | |
197 | *++out = *in++; | |
198 | } else if (*in == *out || | |
199 | !in_table_int16(patch_borders, sbr->num_patches, *in)) { | |
200 | in++; | |
201 | sbr->n_lim--; | |
202 | } else if (!in_table_int16(patch_borders, sbr->num_patches, *out)) { | |
203 | *out = *in++; | |
204 | sbr->n_lim--; | |
205 | } else { | |
206 | *++out = *in++; | |
207 | } | |
208 | } | |
209 | } else { | |
210 | sbr->f_tablelim[0] = sbr->f_tablelow[0]; | |
211 | sbr->f_tablelim[1] = sbr->f_tablelow[sbr->n[0]]; | |
212 | sbr->n_lim = 1; | |
213 | } | |
214 | } | |
215 | ||
216 | static unsigned int read_sbr_header(SpectralBandReplication *sbr, GetBitContext *gb) | |
217 | { | |
218 | unsigned int cnt = get_bits_count(gb); | |
219 | uint8_t bs_header_extra_1; | |
220 | uint8_t bs_header_extra_2; | |
221 | int old_bs_limiter_bands = sbr->bs_limiter_bands; | |
222 | SpectrumParameters old_spectrum_params; | |
223 | ||
224 | sbr->start = 1; | |
225 | ||
226 | // Save last spectrum parameters variables to compare to new ones | |
227 | memcpy(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters)); | |
228 | ||
229 | sbr->bs_amp_res_header = get_bits1(gb); | |
230 | sbr->spectrum_params.bs_start_freq = get_bits(gb, 4); | |
231 | sbr->spectrum_params.bs_stop_freq = get_bits(gb, 4); | |
232 | sbr->spectrum_params.bs_xover_band = get_bits(gb, 3); | |
233 | skip_bits(gb, 2); // bs_reserved | |
234 | ||
235 | bs_header_extra_1 = get_bits1(gb); | |
236 | bs_header_extra_2 = get_bits1(gb); | |
237 | ||
238 | if (bs_header_extra_1) { | |
239 | sbr->spectrum_params.bs_freq_scale = get_bits(gb, 2); | |
240 | sbr->spectrum_params.bs_alter_scale = get_bits1(gb); | |
241 | sbr->spectrum_params.bs_noise_bands = get_bits(gb, 2); | |
242 | } else { | |
243 | sbr->spectrum_params.bs_freq_scale = 2; | |
244 | sbr->spectrum_params.bs_alter_scale = 1; | |
245 | sbr->spectrum_params.bs_noise_bands = 2; | |
246 | } | |
247 | ||
248 | // Check if spectrum parameters changed | |
249 | if (memcmp(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters))) | |
250 | sbr->reset = 1; | |
251 | ||
252 | if (bs_header_extra_2) { | |
253 | sbr->bs_limiter_bands = get_bits(gb, 2); | |
254 | sbr->bs_limiter_gains = get_bits(gb, 2); | |
255 | sbr->bs_interpol_freq = get_bits1(gb); | |
256 | sbr->bs_smoothing_mode = get_bits1(gb); | |
257 | } else { | |
258 | sbr->bs_limiter_bands = 2; | |
259 | sbr->bs_limiter_gains = 2; | |
260 | sbr->bs_interpol_freq = 1; | |
261 | sbr->bs_smoothing_mode = 1; | |
262 | } | |
263 | ||
264 | if (sbr->bs_limiter_bands != old_bs_limiter_bands && !sbr->reset) | |
265 | sbr_make_f_tablelim(sbr); | |
266 | ||
267 | return get_bits_count(gb) - cnt; | |
268 | } | |
269 | ||
270 | static int array_min_int16(const int16_t *array, int nel) | |
271 | { | |
272 | int i, min = array[0]; | |
273 | for (i = 1; i < nel; i++) | |
274 | min = FFMIN(array[i], min); | |
275 | return min; | |
276 | } | |
277 | ||
278 | static void make_bands(int16_t* bands, int start, int stop, int num_bands) | |
279 | { | |
280 | int k, previous, present; | |
281 | float base, prod; | |
282 | ||
283 | base = powf((float)stop / start, 1.0f / num_bands); | |
284 | prod = start; | |
285 | previous = start; | |
286 | ||
287 | for (k = 0; k < num_bands-1; k++) { | |
288 | prod *= base; | |
289 | present = lrintf(prod); | |
290 | bands[k] = present - previous; | |
291 | previous = present; | |
292 | } | |
293 | bands[num_bands-1] = stop - previous; | |
294 | } | |
295 | ||
296 | static int check_n_master(AVCodecContext *avccontext, int n_master, int bs_xover_band) | |
297 | { | |
298 | // Requirements (14496-3 sp04 p205) | |
299 | if (n_master <= 0) { | |
300 | av_log(avccontext, AV_LOG_ERROR, "Invalid n_master: %d\n", n_master); | |
301 | return -1; | |
302 | } | |
303 | if (bs_xover_band >= n_master) { | |
304 | av_log(avccontext, AV_LOG_ERROR, | |
305 | "Invalid bitstream, crossover band index beyond array bounds: %d\n", | |
306 | bs_xover_band); | |
307 | return -1; | |
308 | } | |
309 | return 0; | |
310 | } | |
311 | ||
312 | /// Master Frequency Band Table (14496-3 sp04 p194) | |
313 | static int sbr_make_f_master(AACContext *ac, SpectralBandReplication *sbr, | |
314 | SpectrumParameters *spectrum) | |
315 | { | |
316 | unsigned int temp, max_qmf_subbands; | |
317 | unsigned int start_min, stop_min; | |
318 | int k; | |
319 | const int8_t *sbr_offset_ptr; | |
320 | int16_t stop_dk[13]; | |
321 | ||
322 | if (sbr->sample_rate < 32000) { | |
323 | temp = 3000; | |
324 | } else if (sbr->sample_rate < 64000) { | |
325 | temp = 4000; | |
326 | } else | |
327 | temp = 5000; | |
328 | ||
329 | start_min = ((temp << 7) + (sbr->sample_rate >> 1)) / sbr->sample_rate; | |
330 | stop_min = ((temp << 8) + (sbr->sample_rate >> 1)) / sbr->sample_rate; | |
331 | ||
332 | switch (sbr->sample_rate) { | |
333 | case 16000: | |
334 | sbr_offset_ptr = sbr_offset[0]; | |
335 | break; | |
336 | case 22050: | |
337 | sbr_offset_ptr = sbr_offset[1]; | |
338 | break; | |
339 | case 24000: | |
340 | sbr_offset_ptr = sbr_offset[2]; | |
341 | break; | |
342 | case 32000: | |
343 | sbr_offset_ptr = sbr_offset[3]; | |
344 | break; | |
345 | case 44100: case 48000: case 64000: | |
346 | sbr_offset_ptr = sbr_offset[4]; | |
347 | break; | |
348 | case 88200: case 96000: case 128000: case 176400: case 192000: | |
349 | sbr_offset_ptr = sbr_offset[5]; | |
350 | break; | |
351 | default: | |
352 | av_log(ac->avccontext, AV_LOG_ERROR, | |
353 | "Unsupported sample rate for SBR: %d\n", sbr->sample_rate); | |
354 | return -1; | |
355 | } | |
356 | ||
357 | sbr->k[0] = start_min + sbr_offset_ptr[spectrum->bs_start_freq]; | |
358 | ||
359 | if (spectrum->bs_stop_freq < 14) { | |
360 | sbr->k[2] = stop_min; | |
361 | make_bands(stop_dk, stop_min, 64, 13); | |
362 | qsort(stop_dk, 13, sizeof(stop_dk[0]), qsort_comparison_function_int16); | |
363 | for (k = 0; k < spectrum->bs_stop_freq; k++) | |
364 | sbr->k[2] += stop_dk[k]; | |
365 | } else if (spectrum->bs_stop_freq == 14) { | |
366 | sbr->k[2] = 2*sbr->k[0]; | |
367 | } else if (spectrum->bs_stop_freq == 15) { | |
368 | sbr->k[2] = 3*sbr->k[0]; | |
369 | } else { | |
370 | av_log(ac->avccontext, AV_LOG_ERROR, | |
371 | "Invalid bs_stop_freq: %d\n", spectrum->bs_stop_freq); | |
372 | return -1; | |
373 | } | |
374 | sbr->k[2] = FFMIN(64, sbr->k[2]); | |
375 | ||
376 | // Requirements (14496-3 sp04 p205) | |
377 | if (sbr->sample_rate <= 32000) { | |
378 | max_qmf_subbands = 48; | |
379 | } else if (sbr->sample_rate == 44100) { | |
380 | max_qmf_subbands = 35; | |
381 | } else if (sbr->sample_rate >= 48000) | |
382 | max_qmf_subbands = 32; | |
383 | ||
384 | if (sbr->k[2] - sbr->k[0] > max_qmf_subbands) { | |
385 | av_log(ac->avccontext, AV_LOG_ERROR, | |
386 | "Invalid bitstream, too many QMF subbands: %d\n", sbr->k[2] - sbr->k[0]); | |
387 | return -1; | |
388 | } | |
389 | ||
390 | if (!spectrum->bs_freq_scale) { | |
391 | unsigned int dk; | |
392 | int k2diff; | |
393 | ||
394 | dk = spectrum->bs_alter_scale + 1; | |
395 | sbr->n_master = ((sbr->k[2] - sbr->k[0] + (dk&2)) >> dk) << 1; | |
396 | if (check_n_master(ac->avccontext, sbr->n_master, sbr->spectrum_params.bs_xover_band)) | |
397 | return -1; | |
398 | ||
399 | for (k = 1; k <= sbr->n_master; k++) | |
400 | sbr->f_master[k] = dk; | |
401 | ||
402 | k2diff = sbr->k[2] - sbr->k[0] - sbr->n_master * dk; | |
403 | if (k2diff < 0) { | |
404 | sbr->f_master[1]--; | |
405 | sbr->f_master[2]-= (k2diff < 1); | |
406 | } else if (k2diff) { | |
407 | sbr->f_master[sbr->n_master]++; | |
408 | } | |
409 | ||
410 | sbr->f_master[0] = sbr->k[0]; | |
411 | for (k = 1; k <= sbr->n_master; k++) | |
412 | sbr->f_master[k] += sbr->f_master[k - 1]; | |
413 | ||
414 | } else { | |
415 | int half_bands = 7 - spectrum->bs_freq_scale; // bs_freq_scale = {1,2,3} | |
416 | int two_regions, num_bands_0; | |
417 | int vdk0_max, vdk1_min; | |
418 | int16_t vk0[49]; | |
419 | ||
420 | if (49 * sbr->k[2] > 110 * sbr->k[0]) { | |
421 | two_regions = 1; | |
422 | sbr->k[1] = 2 * sbr->k[0]; | |
423 | } else { | |
424 | two_regions = 0; | |
425 | sbr->k[1] = sbr->k[2]; | |
426 | } | |
427 | ||
428 | num_bands_0 = lrintf(half_bands * log2f(sbr->k[1] / (float)sbr->k[0])) * 2; | |
429 | ||
430 | if (num_bands_0 <= 0) { // Requirements (14496-3 sp04 p205) | |
431 | av_log(ac->avccontext, AV_LOG_ERROR, "Invalid num_bands_0: %d\n", num_bands_0); | |
432 | return -1; | |
433 | } | |
434 | ||
435 | vk0[0] = 0; | |
436 | ||
437 | make_bands(vk0+1, sbr->k[0], sbr->k[1], num_bands_0); | |
438 | ||
439 | qsort(vk0 + 1, num_bands_0, sizeof(vk0[1]), qsort_comparison_function_int16); | |
440 | vdk0_max = vk0[num_bands_0]; | |
441 | ||
442 | vk0[0] = sbr->k[0]; | |
443 | for (k = 1; k <= num_bands_0; k++) { | |
444 | if (vk0[k] <= 0) { // Requirements (14496-3 sp04 p205) | |
445 | av_log(ac->avccontext, AV_LOG_ERROR, "Invalid vDk0[%d]: %d\n", k, vk0[k]); | |
446 | return -1; | |
447 | } | |
448 | vk0[k] += vk0[k-1]; | |
449 | } | |
450 | ||
451 | if (two_regions) { | |
452 | int16_t vk1[49]; | |
453 | float invwarp = spectrum->bs_alter_scale ? 0.76923076923076923077f | |
454 | : 1.0f; // bs_alter_scale = {0,1} | |
455 | int num_bands_1 = lrintf(half_bands * invwarp * | |
456 | log2f(sbr->k[2] / (float)sbr->k[1])) * 2; | |
457 | ||
458 | make_bands(vk1+1, sbr->k[1], sbr->k[2], num_bands_1); | |
459 | ||
460 | vdk1_min = array_min_int16(vk1 + 1, num_bands_1); | |
461 | ||
462 | if (vdk1_min < vdk0_max) { | |
463 | int change; | |
464 | qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16); | |
465 | change = FFMIN(vdk0_max - vk1[1], (vk1[num_bands_1] - vk1[1]) >> 1); | |
466 | vk1[1] += change; | |
467 | vk1[num_bands_1] -= change; | |
468 | } | |
469 | ||
470 | qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16); | |
471 | ||
472 | vk1[0] = sbr->k[1]; | |
473 | for (k = 1; k <= num_bands_1; k++) { | |
474 | if (vk1[k] <= 0) { // Requirements (14496-3 sp04 p205) | |
475 | av_log(ac->avccontext, AV_LOG_ERROR, "Invalid vDk1[%d]: %d\n", k, vk1[k]); | |
476 | return -1; | |
477 | } | |
478 | vk1[k] += vk1[k-1]; | |
479 | } | |
480 | ||
481 | sbr->n_master = num_bands_0 + num_bands_1; | |
482 | if (check_n_master(ac->avccontext, sbr->n_master, sbr->spectrum_params.bs_xover_band)) | |
483 | return -1; | |
484 | memcpy(&sbr->f_master[0], vk0, | |
485 | (num_bands_0 + 1) * sizeof(sbr->f_master[0])); | |
486 | memcpy(&sbr->f_master[num_bands_0 + 1], vk1 + 1, | |
487 | num_bands_1 * sizeof(sbr->f_master[0])); | |
488 | ||
489 | } else { | |
490 | sbr->n_master = num_bands_0; | |
491 | if (check_n_master(ac->avccontext, sbr->n_master, sbr->spectrum_params.bs_xover_band)) | |
492 | return -1; | |
493 | memcpy(sbr->f_master, vk0, (num_bands_0 + 1) * sizeof(sbr->f_master[0])); | |
494 | } | |
495 | } | |
496 | ||
497 | return 0; | |
498 | } | |
499 | ||
500 | /// High Frequency Generation - Patch Construction (14496-3 sp04 p216 fig. 4.46) | |
501 | static int sbr_hf_calc_npatches(AACContext *ac, SpectralBandReplication *sbr) | |
502 | { | |
503 | int i, k, sb = 0; | |
504 | int msb = sbr->k[0]; | |
505 | int usb = sbr->kx[1]; | |
506 | int goal_sb = ((1000 << 11) + (sbr->sample_rate >> 1)) / sbr->sample_rate; | |
507 | ||
508 | sbr->num_patches = 0; | |
509 | ||
510 | if (goal_sb < sbr->kx[1] + sbr->m[1]) { | |
511 | for (k = 0; sbr->f_master[k] < goal_sb; k++) ; | |
512 | } else | |
513 | k = sbr->n_master; | |
514 | ||
515 | do { | |
516 | int odd = 0; | |
517 | for (i = k; i == k || sb > (sbr->k[0] - 1 + msb - odd); i--) { | |
518 | sb = sbr->f_master[i]; | |
519 | odd = (sb + sbr->k[0]) & 1; | |
520 | } | |
521 | ||
a91d82b5 AC |
522 | // Requirements (14496-3 sp04 p205) sets the maximum number of patches to 5. |
523 | // After this check the final number of patches can still be six which is | |
524 | // illegal however the Coding Technologies decoder check stream has a final | |
525 | // count of 6 patches | |
526 | if (sbr->num_patches > 5) { | |
527 | av_log(ac->avccontext, AV_LOG_ERROR, "Too many patches: %d\n", sbr->num_patches); | |
528 | return -1; | |
529 | } | |
530 | ||
ed492b61 AC |
531 | sbr->patch_num_subbands[sbr->num_patches] = FFMAX(sb - usb, 0); |
532 | sbr->patch_start_subband[sbr->num_patches] = sbr->k[0] - odd - sbr->patch_num_subbands[sbr->num_patches]; | |
533 | ||
534 | if (sbr->patch_num_subbands[sbr->num_patches] > 0) { | |
535 | usb = sb; | |
536 | msb = sb; | |
537 | sbr->num_patches++; | |
538 | } else | |
539 | msb = sbr->kx[1]; | |
540 | ||
541 | if (sbr->f_master[k] - sb < 3) | |
542 | k = sbr->n_master; | |
543 | } while (sb != sbr->kx[1] + sbr->m[1]); | |
544 | ||
545 | if (sbr->patch_num_subbands[sbr->num_patches-1] < 3 && sbr->num_patches > 1) | |
546 | sbr->num_patches--; | |
547 | ||
ed492b61 AC |
548 | return 0; |
549 | } | |
550 | ||
551 | /// Derived Frequency Band Tables (14496-3 sp04 p197) | |
552 | static int sbr_make_f_derived(AACContext *ac, SpectralBandReplication *sbr) | |
553 | { | |
554 | int k, temp; | |
555 | ||
556 | sbr->n[1] = sbr->n_master - sbr->spectrum_params.bs_xover_band; | |
557 | sbr->n[0] = (sbr->n[1] + 1) >> 1; | |
558 | ||
559 | memcpy(sbr->f_tablehigh, &sbr->f_master[sbr->spectrum_params.bs_xover_band], | |
560 | (sbr->n[1] + 1) * sizeof(sbr->f_master[0])); | |
561 | sbr->m[1] = sbr->f_tablehigh[sbr->n[1]] - sbr->f_tablehigh[0]; | |
562 | sbr->kx[1] = sbr->f_tablehigh[0]; | |
563 | ||
564 | // Requirements (14496-3 sp04 p205) | |
565 | if (sbr->kx[1] + sbr->m[1] > 64) { | |
566 | av_log(ac->avccontext, AV_LOG_ERROR, | |
567 | "Stop frequency border too high: %d\n", sbr->kx[1] + sbr->m[1]); | |
568 | return -1; | |
569 | } | |
570 | if (sbr->kx[1] > 32) { | |
571 | av_log(ac->avccontext, AV_LOG_ERROR, "Start frequency border too high: %d\n", sbr->kx[1]); | |
572 | return -1; | |
573 | } | |
574 | ||
575 | sbr->f_tablelow[0] = sbr->f_tablehigh[0]; | |
576 | temp = sbr->n[1] & 1; | |
577 | for (k = 1; k <= sbr->n[0]; k++) | |
578 | sbr->f_tablelow[k] = sbr->f_tablehigh[2 * k - temp]; | |
579 | ||
580 | sbr->n_q = FFMAX(1, lrintf(sbr->spectrum_params.bs_noise_bands * | |
581 | log2f(sbr->k[2] / (float)sbr->kx[1]))); // 0 <= bs_noise_bands <= 3 | |
582 | if (sbr->n_q > 5) { | |
583 | av_log(ac->avccontext, AV_LOG_ERROR, "Too many noise floor scale factors: %d\n", sbr->n_q); | |
584 | return -1; | |
585 | } | |
586 | ||
587 | sbr->f_tablenoise[0] = sbr->f_tablelow[0]; | |
588 | temp = 0; | |
589 | for (k = 1; k <= sbr->n_q; k++) { | |
590 | temp += (sbr->n[0] - temp) / (sbr->n_q + 1 - k); | |
591 | sbr->f_tablenoise[k] = sbr->f_tablelow[temp]; | |
592 | } | |
593 | ||
594 | if (sbr_hf_calc_npatches(ac, sbr) < 0) | |
595 | return -1; | |
596 | ||
597 | sbr_make_f_tablelim(sbr); | |
598 | ||
599 | sbr->data[0].f_indexnoise = 0; | |
600 | sbr->data[1].f_indexnoise = 0; | |
601 | ||
602 | return 0; | |
603 | } | |
604 | ||
605 | static av_always_inline void get_bits1_vector(GetBitContext *gb, uint8_t *vec, | |
606 | int elements) | |
607 | { | |
608 | int i; | |
609 | for (i = 0; i < elements; i++) { | |
610 | vec[i] = get_bits1(gb); | |
611 | } | |
612 | } | |
613 | ||
614 | /** ceil(log2(index+1)) */ | |
615 | static const int8_t ceil_log2[] = { | |
616 | 0, 1, 2, 2, 3, 3, | |
617 | }; | |
618 | ||
619 | static int read_sbr_grid(AACContext *ac, SpectralBandReplication *sbr, | |
620 | GetBitContext *gb, SBRData *ch_data) | |
621 | { | |
622 | int i; | |
134b8cbb | 623 | unsigned bs_pointer = 0; |
79350786 AC |
624 | // frameLengthFlag ? 15 : 16; 960 sample length frames unsupported; this value is numTimeSlots |
625 | int abs_bord_trail = 16; | |
626 | int num_rel_lead, num_rel_trail; | |
ecc1f8c3 | 627 | unsigned bs_num_env_old = ch_data->bs_num_env; |
ed492b61 | 628 | |
ecc1f8c3 | 629 | ch_data->bs_freq_res[0] = ch_data->bs_freq_res[ch_data->bs_num_env]; |
ed492b61 | 630 | ch_data->bs_amp_res = sbr->bs_amp_res_header; |
ac8d655a | 631 | ch_data->t_env_num_env_old = ch_data->t_env[bs_num_env_old]; |
ed492b61 AC |
632 | |
633 | switch (ch_data->bs_frame_class = get_bits(gb, 2)) { | |
634 | case FIXFIX: | |
134b8cbb AC |
635 | ch_data->bs_num_env = 1 << get_bits(gb, 2); |
636 | num_rel_lead = ch_data->bs_num_env - 1; | |
ecc1f8c3 | 637 | if (ch_data->bs_num_env == 1) |
ed492b61 AC |
638 | ch_data->bs_amp_res = 0; |
639 | ||
ecc1f8c3 | 640 | if (ch_data->bs_num_env > 4) { |
ed1d1129 AC |
641 | av_log(ac->avccontext, AV_LOG_ERROR, |
642 | "Invalid bitstream, too many SBR envelopes in FIXFIX type SBR frame: %d\n", | |
ecc1f8c3 | 643 | ch_data->bs_num_env); |
ed1d1129 AC |
644 | return -1; |
645 | } | |
646 | ||
ac8d655a AC |
647 | ch_data->t_env[0] = 0; |
648 | ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail; | |
649 | ||
650 | abs_bord_trail = (abs_bord_trail + (ch_data->bs_num_env >> 1)) / | |
651 | ch_data->bs_num_env; | |
652 | for (i = 0; i < num_rel_lead; i++) | |
653 | ch_data->t_env[i + 1] = ch_data->t_env[i] + abs_bord_trail; | |
654 | ||
ed492b61 | 655 | ch_data->bs_freq_res[1] = get_bits1(gb); |
ecc1f8c3 | 656 | for (i = 1; i < ch_data->bs_num_env; i++) |
ed492b61 AC |
657 | ch_data->bs_freq_res[i + 1] = ch_data->bs_freq_res[1]; |
658 | break; | |
659 | case FIXVAR: | |
134b8cbb AC |
660 | abs_bord_trail += get_bits(gb, 2); |
661 | num_rel_trail = get_bits(gb, 2); | |
662 | ch_data->bs_num_env = num_rel_trail + 1; | |
663 | ch_data->t_env[0] = 0; | |
ac8d655a | 664 | ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail; |
ed492b61 | 665 | |
79350786 | 666 | for (i = 0; i < num_rel_trail; i++) |
134b8cbb AC |
667 | ch_data->t_env[ch_data->bs_num_env - 1 - i] = |
668 | ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2; | |
ed492b61 | 669 | |
ecc1f8c3 | 670 | bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]); |
ed492b61 | 671 | |
ecc1f8c3 AC |
672 | for (i = 0; i < ch_data->bs_num_env; i++) |
673 | ch_data->bs_freq_res[ch_data->bs_num_env - i] = get_bits1(gb); | |
ed492b61 AC |
674 | break; |
675 | case VARFIX: | |
134b8cbb AC |
676 | ch_data->t_env[0] = get_bits(gb, 2); |
677 | num_rel_lead = get_bits(gb, 2); | |
678 | ch_data->bs_num_env = num_rel_lead + 1; | |
ac8d655a | 679 | ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail; |
ed492b61 | 680 | |
79350786 | 681 | for (i = 0; i < num_rel_lead; i++) |
ac8d655a | 682 | ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2; |
ed492b61 | 683 | |
ecc1f8c3 | 684 | bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]); |
ed492b61 | 685 | |
ecc1f8c3 | 686 | get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env); |
ed492b61 AC |
687 | break; |
688 | case VARVAR: | |
134b8cbb AC |
689 | ch_data->t_env[0] = get_bits(gb, 2); |
690 | abs_bord_trail += get_bits(gb, 2); | |
691 | num_rel_lead = get_bits(gb, 2); | |
692 | num_rel_trail = get_bits(gb, 2); | |
693 | ch_data->bs_num_env = num_rel_lead + num_rel_trail + 1; | |
ed492b61 | 694 | |
ecc1f8c3 | 695 | if (ch_data->bs_num_env > 5) { |
ed1d1129 AC |
696 | av_log(ac->avccontext, AV_LOG_ERROR, |
697 | "Invalid bitstream, too many SBR envelopes in VARVAR type SBR frame: %d\n", | |
ecc1f8c3 | 698 | ch_data->bs_num_env); |
ed1d1129 AC |
699 | return -1; |
700 | } | |
701 | ||
6ebc7240 AC |
702 | ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail; |
703 | ||
79350786 | 704 | for (i = 0; i < num_rel_lead; i++) |
ac8d655a | 705 | ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2; |
79350786 | 706 | for (i = 0; i < num_rel_trail; i++) |
134b8cbb AC |
707 | ch_data->t_env[ch_data->bs_num_env - 1 - i] = |
708 | ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2; | |
ed492b61 | 709 | |
ecc1f8c3 | 710 | bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]); |
ed492b61 | 711 | |
ecc1f8c3 | 712 | get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env); |
ed492b61 AC |
713 | break; |
714 | } | |
715 | ||
ecc1f8c3 | 716 | if (bs_pointer > ch_data->bs_num_env + 1) { |
8a9ee4b1 AC |
717 | av_log(ac->avccontext, AV_LOG_ERROR, |
718 | "Invalid bitstream, bs_pointer points to a middle noise border outside the time borders table: %d\n", | |
79350786 | 719 | bs_pointer); |
b9c3e3b6 AC |
720 | return -1; |
721 | } | |
722 | ||
2d23fecd AC |
723 | for (i = 1; i <= ch_data->bs_num_env; i++) { |
724 | if (ch_data->t_env[i-1] > ch_data->t_env[i]) { | |
725 | av_log(ac->avccontext, AV_LOG_ERROR, "Non monotone time borders\n"); | |
726 | return -1; | |
727 | } | |
728 | } | |
729 | ||
ecc1f8c3 | 730 | ch_data->bs_num_noise = (ch_data->bs_num_env > 1) + 1; |
ed492b61 | 731 | |
134b8cbb | 732 | ch_data->t_q[0] = ch_data->t_env[0]; |
f7e7888b | 733 | ch_data->t_q[ch_data->bs_num_noise] = ch_data->t_env[ch_data->bs_num_env]; |
afd96c34 | 734 | if (ch_data->bs_num_noise > 1) { |
b9c3e3b6 AC |
735 | unsigned int idx; |
736 | if (ch_data->bs_frame_class == FIXFIX) { | |
ecc1f8c3 | 737 | idx = ch_data->bs_num_env >> 1; |
b9c3e3b6 | 738 | } else if (ch_data->bs_frame_class & 1) { // FIXVAR or VARVAR |
ecc1f8c3 | 739 | idx = ch_data->bs_num_env - FFMAX(bs_pointer - 1, 1); |
b9c3e3b6 | 740 | } else { // VARFIX |
79350786 | 741 | if (!bs_pointer) |
b9c3e3b6 | 742 | idx = 1; |
79350786 | 743 | else if (bs_pointer == 1) |
ecc1f8c3 | 744 | idx = ch_data->bs_num_env - 1; |
b9c3e3b6 | 745 | else // bs_pointer > 1 |
79350786 | 746 | idx = bs_pointer - 1; |
b9c3e3b6 AC |
747 | } |
748 | ch_data->t_q[1] = ch_data->t_env[idx]; | |
f7e7888b | 749 | } |
b9c3e3b6 | 750 | |
ecc1f8c3 | 751 | ch_data->e_a[0] = -(ch_data->e_a[1] != bs_num_env_old); // l_APrev |
7333f849 | 752 | ch_data->e_a[1] = -1; |
79350786 | 753 | if ((ch_data->bs_frame_class & 1) && bs_pointer) { // FIXVAR or VARVAR and bs_pointer != 0 |
ecc1f8c3 | 754 | ch_data->e_a[1] = ch_data->bs_num_env + 1 - bs_pointer; |
79350786 AC |
755 | } else if ((ch_data->bs_frame_class == 2) && (bs_pointer > 1)) // VARFIX and bs_pointer > 1 |
756 | ch_data->e_a[1] = bs_pointer - 1; | |
7333f849 | 757 | |
ed492b61 AC |
758 | return 0; |
759 | } | |
760 | ||
761 | static void copy_sbr_grid(SBRData *dst, const SBRData *src) { | |
762 | //These variables are saved from the previous frame rather than copied | |
134b8cbb | 763 | dst->bs_freq_res[0] = dst->bs_freq_res[dst->bs_num_env]; |
ecc1f8c3 | 764 | dst->t_env_num_env_old = dst->t_env[dst->bs_num_env]; |
134b8cbb | 765 | dst->e_a[0] = -(dst->e_a[1] != dst->bs_num_env); |
ed492b61 AC |
766 | |
767 | //These variables are read from the bitstream and therefore copied | |
768 | memcpy(dst->bs_freq_res+1, src->bs_freq_res+1, sizeof(dst->bs_freq_res)-sizeof(*dst->bs_freq_res)); | |
b9c3e3b6 AC |
769 | memcpy(dst->t_env, src->t_env, sizeof(dst->t_env)); |
770 | memcpy(dst->t_q, src->t_q, sizeof(dst->t_q)); | |
134b8cbb AC |
771 | dst->bs_num_env = src->bs_num_env; |
772 | dst->bs_amp_res = src->bs_amp_res; | |
773 | dst->bs_num_noise = src->bs_num_noise; | |
774 | dst->bs_frame_class = src->bs_frame_class; | |
775 | dst->e_a[1] = src->e_a[1]; | |
ed492b61 AC |
776 | } |
777 | ||
778 | /// Read how the envelope and noise floor data is delta coded | |
779 | static void read_sbr_dtdf(SpectralBandReplication *sbr, GetBitContext *gb, | |
780 | SBRData *ch_data) | |
781 | { | |
ecc1f8c3 | 782 | get_bits1_vector(gb, ch_data->bs_df_env, ch_data->bs_num_env); |
ed492b61 AC |
783 | get_bits1_vector(gb, ch_data->bs_df_noise, ch_data->bs_num_noise); |
784 | } | |
785 | ||
786 | /// Read inverse filtering data | |
787 | static void read_sbr_invf(SpectralBandReplication *sbr, GetBitContext *gb, | |
788 | SBRData *ch_data) | |
789 | { | |
790 | int i; | |
791 | ||
792 | memcpy(ch_data->bs_invf_mode[1], ch_data->bs_invf_mode[0], 5 * sizeof(uint8_t)); | |
793 | for (i = 0; i < sbr->n_q; i++) | |
794 | ch_data->bs_invf_mode[0][i] = get_bits(gb, 2); | |
795 | } | |
796 | ||
797 | static void read_sbr_envelope(SpectralBandReplication *sbr, GetBitContext *gb, | |
798 | SBRData *ch_data, int ch) | |
799 | { | |
800 | int bits; | |
801 | int i, j, k; | |
802 | VLC_TYPE (*t_huff)[2], (*f_huff)[2]; | |
803 | int t_lav, f_lav; | |
804 | const int delta = (ch == 1 && sbr->bs_coupling == 1) + 1; | |
805 | const int odd = sbr->n[1] & 1; | |
806 | ||
807 | if (sbr->bs_coupling && ch) { | |
808 | if (ch_data->bs_amp_res) { | |
809 | bits = 5; | |
810 | t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_3_0DB].table; | |
811 | t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_3_0DB]; | |
812 | f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table; | |
813 | f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB]; | |
814 | } else { | |
815 | bits = 6; | |
816 | t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_1_5DB].table; | |
817 | t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_1_5DB]; | |
818 | f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_1_5DB].table; | |
819 | f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_1_5DB]; | |
820 | } | |
821 | } else { | |
822 | if (ch_data->bs_amp_res) { | |
823 | bits = 6; | |
824 | t_huff = vlc_sbr[T_HUFFMAN_ENV_3_0DB].table; | |
825 | t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_3_0DB]; | |
826 | f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table; | |
827 | f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB]; | |
828 | } else { | |
829 | bits = 7; | |
830 | t_huff = vlc_sbr[T_HUFFMAN_ENV_1_5DB].table; | |
831 | t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_1_5DB]; | |
832 | f_huff = vlc_sbr[F_HUFFMAN_ENV_1_5DB].table; | |
833 | f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_1_5DB]; | |
834 | } | |
835 | } | |
836 | ||
ecc1f8c3 | 837 | for (i = 0; i < ch_data->bs_num_env; i++) { |
ed492b61 | 838 | if (ch_data->bs_df_env[i]) { |
ecc1f8c3 | 839 | // bs_freq_res[0] == bs_freq_res[bs_num_env] from prev frame |
ed492b61 AC |
840 | if (ch_data->bs_freq_res[i + 1] == ch_data->bs_freq_res[i]) { |
841 | for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) | |
842 | ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav); | |
843 | } else if (ch_data->bs_freq_res[i + 1]) { | |
844 | for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) { | |
845 | k = (j + odd) >> 1; // find k such that f_tablelow[k] <= f_tablehigh[j] < f_tablelow[k + 1] | |
846 | ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav); | |
847 | } | |
848 | } else { | |
849 | for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) { | |
850 | k = j ? 2*j - odd : 0; // find k such that f_tablehigh[k] == f_tablelow[j] | |
851 | ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav); | |
852 | } | |
853 | } | |
854 | } else { | |
855 | ch_data->env_facs[i + 1][0] = delta * get_bits(gb, bits); // bs_env_start_value_balance | |
856 | for (j = 1; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) | |
857 | ch_data->env_facs[i + 1][j] = ch_data->env_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav); | |
858 | } | |
859 | } | |
860 | ||
861 | //assign 0th elements of env_facs from last elements | |
ecc1f8c3 | 862 | memcpy(ch_data->env_facs[0], ch_data->env_facs[ch_data->bs_num_env], |
ed492b61 AC |
863 | sizeof(ch_data->env_facs[0])); |
864 | } | |
865 | ||
866 | static void read_sbr_noise(SpectralBandReplication *sbr, GetBitContext *gb, | |
867 | SBRData *ch_data, int ch) | |
868 | { | |
869 | int i, j; | |
870 | VLC_TYPE (*t_huff)[2], (*f_huff)[2]; | |
871 | int t_lav, f_lav; | |
872 | int delta = (ch == 1 && sbr->bs_coupling == 1) + 1; | |
873 | ||
874 | if (sbr->bs_coupling && ch) { | |
875 | t_huff = vlc_sbr[T_HUFFMAN_NOISE_BAL_3_0DB].table; | |
876 | t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_BAL_3_0DB]; | |
877 | f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table; | |
878 | f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB]; | |
879 | } else { | |
880 | t_huff = vlc_sbr[T_HUFFMAN_NOISE_3_0DB].table; | |
881 | t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_3_0DB]; | |
882 | f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table; | |
883 | f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB]; | |
884 | } | |
885 | ||
886 | for (i = 0; i < ch_data->bs_num_noise; i++) { | |
887 | if (ch_data->bs_df_noise[i]) { | |
888 | for (j = 0; j < sbr->n_q; j++) | |
889 | ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 2) - t_lav); | |
890 | } else { | |
891 | ch_data->noise_facs[i + 1][0] = delta * get_bits(gb, 5); // bs_noise_start_value_balance or bs_noise_start_value_level | |
892 | for (j = 1; j < sbr->n_q; j++) | |
893 | ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav); | |
894 | } | |
895 | } | |
896 | ||
897 | //assign 0th elements of noise_facs from last elements | |
898 | memcpy(ch_data->noise_facs[0], ch_data->noise_facs[ch_data->bs_num_noise], | |
899 | sizeof(ch_data->noise_facs[0])); | |
900 | } | |
901 | ||
902 | static void read_sbr_extension(AACContext *ac, SpectralBandReplication *sbr, | |
903 | GetBitContext *gb, | |
ba659bed | 904 | int bs_extension_id, int *num_bits_left) |
ed492b61 AC |
905 | { |
906 | //TODO - implement ps_data for parametric stereo parsing | |
907 | switch (bs_extension_id) { | |
908 | case EXTENSION_ID_PS: | |
73c27046 AC |
909 | if (!ac->m4ac.ps) { |
910 | av_log(ac->avccontext, AV_LOG_ERROR, "Parametric Stereo signaled to be not-present but was found in the bitstream.\n"); | |
ba659bed AC |
911 | skip_bits_long(gb, *num_bits_left); // bs_fill_bits |
912 | *num_bits_left = 0; | |
73c27046 | 913 | } else { |
ed492b61 | 914 | #if 0 |
ba659bed | 915 | *num_bits_left -= ff_ps_data(gb, ps); |
ed492b61 | 916 | #else |
ba659bed AC |
917 | av_log_missing_feature(ac->avccontext, "Parametric Stereo is", 0); |
918 | skip_bits_long(gb, *num_bits_left); // bs_fill_bits | |
919 | *num_bits_left = 0; | |
ed492b61 | 920 | #endif |
73c27046 | 921 | } |
ed492b61 AC |
922 | break; |
923 | default: | |
924 | av_log_missing_feature(ac->avccontext, "Reserved SBR extensions are", 1); | |
925 | skip_bits_long(gb, *num_bits_left); // bs_fill_bits | |
926 | *num_bits_left = 0; | |
927 | break; | |
928 | } | |
929 | } | |
930 | ||
58b1cba0 | 931 | static int read_sbr_single_channel_element(AACContext *ac, |
ed492b61 AC |
932 | SpectralBandReplication *sbr, |
933 | GetBitContext *gb) | |
934 | { | |
935 | if (get_bits1(gb)) // bs_data_extra | |
936 | skip_bits(gb, 4); // bs_reserved | |
937 | ||
58b1cba0 AC |
938 | if (read_sbr_grid(ac, sbr, gb, &sbr->data[0])) |
939 | return -1; | |
ed492b61 AC |
940 | read_sbr_dtdf(sbr, gb, &sbr->data[0]); |
941 | read_sbr_invf(sbr, gb, &sbr->data[0]); | |
942 | read_sbr_envelope(sbr, gb, &sbr->data[0], 0); | |
943 | read_sbr_noise(sbr, gb, &sbr->data[0], 0); | |
944 | ||
945 | if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb))) | |
946 | get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]); | |
bf3d904c AC |
947 | |
948 | return 0; | |
ed492b61 AC |
949 | } |
950 | ||
58b1cba0 | 951 | static int read_sbr_channel_pair_element(AACContext *ac, |
ed492b61 AC |
952 | SpectralBandReplication *sbr, |
953 | GetBitContext *gb) | |
954 | { | |
955 | if (get_bits1(gb)) // bs_data_extra | |
956 | skip_bits(gb, 8); // bs_reserved | |
957 | ||
958 | if ((sbr->bs_coupling = get_bits1(gb))) { | |
58b1cba0 AC |
959 | if (read_sbr_grid(ac, sbr, gb, &sbr->data[0])) |
960 | return -1; | |
ed492b61 AC |
961 | copy_sbr_grid(&sbr->data[1], &sbr->data[0]); |
962 | read_sbr_dtdf(sbr, gb, &sbr->data[0]); | |
963 | read_sbr_dtdf(sbr, gb, &sbr->data[1]); | |
964 | read_sbr_invf(sbr, gb, &sbr->data[0]); | |
965 | memcpy(sbr->data[1].bs_invf_mode[1], sbr->data[1].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0])); | |
966 | memcpy(sbr->data[1].bs_invf_mode[0], sbr->data[0].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0])); | |
967 | read_sbr_envelope(sbr, gb, &sbr->data[0], 0); | |
968 | read_sbr_noise(sbr, gb, &sbr->data[0], 0); | |
969 | read_sbr_envelope(sbr, gb, &sbr->data[1], 1); | |
970 | read_sbr_noise(sbr, gb, &sbr->data[1], 1); | |
971 | } else { | |
58b1cba0 AC |
972 | if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]) || |
973 | read_sbr_grid(ac, sbr, gb, &sbr->data[1])) | |
974 | return -1; | |
ed492b61 AC |
975 | read_sbr_dtdf(sbr, gb, &sbr->data[0]); |
976 | read_sbr_dtdf(sbr, gb, &sbr->data[1]); | |
977 | read_sbr_invf(sbr, gb, &sbr->data[0]); | |
978 | read_sbr_invf(sbr, gb, &sbr->data[1]); | |
979 | read_sbr_envelope(sbr, gb, &sbr->data[0], 0); | |
980 | read_sbr_envelope(sbr, gb, &sbr->data[1], 1); | |
981 | read_sbr_noise(sbr, gb, &sbr->data[0], 0); | |
982 | read_sbr_noise(sbr, gb, &sbr->data[1], 1); | |
983 | } | |
984 | ||
985 | if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb))) | |
986 | get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]); | |
987 | if ((sbr->data[1].bs_add_harmonic_flag = get_bits1(gb))) | |
988 | get_bits1_vector(gb, sbr->data[1].bs_add_harmonic, sbr->n[1]); | |
bf3d904c AC |
989 | |
990 | return 0; | |
ed492b61 AC |
991 | } |
992 | ||
993 | static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr, | |
994 | GetBitContext *gb, int id_aac) | |
995 | { | |
996 | unsigned int cnt = get_bits_count(gb); | |
997 | ||
998 | if (id_aac == TYPE_SCE || id_aac == TYPE_CCE) { | |
58b1cba0 AC |
999 | if (read_sbr_single_channel_element(ac, sbr, gb)) { |
1000 | sbr->start = 0; | |
1001 | return get_bits_count(gb) - cnt; | |
1002 | } | |
ed492b61 | 1003 | } else if (id_aac == TYPE_CPE) { |
58b1cba0 AC |
1004 | if (read_sbr_channel_pair_element(ac, sbr, gb)) { |
1005 | sbr->start = 0; | |
1006 | return get_bits_count(gb) - cnt; | |
1007 | } | |
ed492b61 AC |
1008 | } else { |
1009 | av_log(ac->avccontext, AV_LOG_ERROR, | |
1010 | "Invalid bitstream - cannot apply SBR to element type %d\n", id_aac); | |
1011 | sbr->start = 0; | |
1012 | return get_bits_count(gb) - cnt; | |
1013 | } | |
1014 | if (get_bits1(gb)) { // bs_extended_data | |
1015 | int num_bits_left = get_bits(gb, 4); // bs_extension_size | |
1016 | if (num_bits_left == 15) | |
1017 | num_bits_left += get_bits(gb, 8); // bs_esc_count | |
1018 | ||
1019 | num_bits_left <<= 3; | |
1020 | while (num_bits_left > 7) { | |
1021 | num_bits_left -= 2; | |
1022 | read_sbr_extension(ac, sbr, gb, get_bits(gb, 2), &num_bits_left); // bs_extension_id | |
1023 | } | |
1024 | } | |
1025 | ||
1026 | return get_bits_count(gb) - cnt; | |
1027 | } | |
1028 | ||
1029 | static void sbr_reset(AACContext *ac, SpectralBandReplication *sbr) | |
1030 | { | |
1031 | int err; | |
1032 | err = sbr_make_f_master(ac, sbr, &sbr->spectrum_params); | |
1033 | if (err >= 0) | |
1034 | err = sbr_make_f_derived(ac, sbr); | |
1035 | if (err < 0) { | |
1036 | av_log(ac->avccontext, AV_LOG_ERROR, | |
1037 | "SBR reset failed. Switching SBR to pure upsampling mode.\n"); | |
1038 | sbr->start = 0; | |
1039 | } | |
1040 | } | |
1041 | ||
1042 | /** | |
1043 | * Decode Spectral Band Replication extension data; reference: table 4.55. | |
1044 | * | |
1045 | * @param crc flag indicating the presence of CRC checksum | |
1046 | * @param cnt length of TYPE_FIL syntactic element in bytes | |
1047 | * | |
1048 | * @return Returns number of bytes consumed from the TYPE_FIL element. | |
1049 | */ | |
1050 | int ff_decode_sbr_extension(AACContext *ac, SpectralBandReplication *sbr, | |
1051 | GetBitContext *gb_host, int crc, int cnt, int id_aac) | |
1052 | { | |
1053 | unsigned int num_sbr_bits = 0, num_align_bits; | |
1054 | unsigned bytes_read; | |
1055 | GetBitContext gbc = *gb_host, *gb = &gbc; | |
1056 | skip_bits_long(gb_host, cnt*8 - 4); | |
1057 | ||
1058 | sbr->reset = 0; | |
1059 | ||
1060 | if (!sbr->sample_rate) | |
1061 | sbr->sample_rate = 2 * ac->m4ac.sample_rate; //TODO use the nominal sample rate for arbitrary sample rate support | |
1062 | if (!ac->m4ac.ext_sample_rate) | |
1063 | ac->m4ac.ext_sample_rate = 2 * ac->m4ac.sample_rate; | |
1064 | ||
1065 | if (crc) { | |
1066 | skip_bits(gb, 10); // bs_sbr_crc_bits; TODO - implement CRC check | |
1067 | num_sbr_bits += 10; | |
1068 | } | |
1069 | ||
1070 | //Save some state from the previous frame. | |
1071 | sbr->kx[0] = sbr->kx[1]; | |
1072 | sbr->m[0] = sbr->m[1]; | |
1073 | ||
1074 | num_sbr_bits++; | |
1075 | if (get_bits1(gb)) // bs_header_flag | |
1076 | num_sbr_bits += read_sbr_header(sbr, gb); | |
1077 | ||
1078 | if (sbr->reset) | |
1079 | sbr_reset(ac, sbr); | |
1080 | ||
1081 | if (sbr->start) | |
1082 | num_sbr_bits += read_sbr_data(ac, sbr, gb, id_aac); | |
1083 | ||
1084 | num_align_bits = ((cnt << 3) - 4 - num_sbr_bits) & 7; | |
1085 | bytes_read = ((num_sbr_bits + num_align_bits + 4) >> 3); | |
1086 | ||
1087 | if (bytes_read > cnt) { | |
1088 | av_log(ac->avccontext, AV_LOG_ERROR, | |
1089 | "Expected to read %d SBR bytes actually read %d.\n", cnt, bytes_read); | |
1090 | } | |
1091 | return cnt; | |
1092 | } | |
1093 | ||
ed492b61 AC |
1094 | /// Dequantization and stereo decoding (14496-3 sp04 p203) |
1095 | static void sbr_dequant(SpectralBandReplication *sbr, int id_aac) | |
1096 | { | |
1097 | int k, e; | |
1098 | int ch; | |
1099 | ||
1100 | if (id_aac == TYPE_CPE && sbr->bs_coupling) { | |
1101 | float alpha = sbr->data[0].bs_amp_res ? 1.0f : 0.5f; | |
1102 | float pan_offset = sbr->data[0].bs_amp_res ? 12.0f : 24.0f; | |
ecc1f8c3 | 1103 | for (e = 1; e <= sbr->data[0].bs_num_env; e++) { |
ed492b61 AC |
1104 | for (k = 0; k < sbr->n[sbr->data[0].bs_freq_res[e]]; k++) { |
1105 | float temp1 = exp2f(sbr->data[0].env_facs[e][k] * alpha + 7.0f); | |
1106 | float temp2 = exp2f((pan_offset - sbr->data[1].env_facs[e][k]) * alpha); | |
1107 | float fac = temp1 / (1.0f + temp2); | |
1108 | sbr->data[0].env_facs[e][k] = fac; | |
1109 | sbr->data[1].env_facs[e][k] = fac * temp2; | |
1110 | } | |
1111 | } | |
1112 | for (e = 1; e <= sbr->data[0].bs_num_noise; e++) { | |
1113 | for (k = 0; k < sbr->n_q; k++) { | |
1114 | float temp1 = exp2f(NOISE_FLOOR_OFFSET - sbr->data[0].noise_facs[e][k] + 1); | |
1115 | float temp2 = exp2f(12 - sbr->data[1].noise_facs[e][k]); | |
1116 | float fac = temp1 / (1.0f + temp2); | |
1117 | sbr->data[0].noise_facs[e][k] = fac; | |
1118 | sbr->data[1].noise_facs[e][k] = fac * temp2; | |
1119 | } | |
1120 | } | |
1121 | } else { // SCE or one non-coupled CPE | |
1122 | for (ch = 0; ch < (id_aac == TYPE_CPE) + 1; ch++) { | |
1123 | float alpha = sbr->data[ch].bs_amp_res ? 1.0f : 0.5f; | |
ecc1f8c3 | 1124 | for (e = 1; e <= sbr->data[ch].bs_num_env; e++) |
ed492b61 AC |
1125 | for (k = 0; k < sbr->n[sbr->data[ch].bs_freq_res[e]]; k++) |
1126 | sbr->data[ch].env_facs[e][k] = | |
1127 | exp2f(alpha * sbr->data[ch].env_facs[e][k] + 6.0f); | |
1128 | for (e = 1; e <= sbr->data[ch].bs_num_noise; e++) | |
1129 | for (k = 0; k < sbr->n_q; k++) | |
1130 | sbr->data[ch].noise_facs[e][k] = | |
1131 | exp2f(NOISE_FLOOR_OFFSET - sbr->data[ch].noise_facs[e][k]); | |
1132 | } | |
1133 | } | |
1134 | } | |
1135 | ||
1136 | /** | |
1137 | * Analysis QMF Bank (14496-3 sp04 p206) | |
1138 | * | |
1139 | * @param x pointer to the beginning of the first sample window | |
1140 | * @param W array of complex-valued samples split into subbands | |
1141 | */ | |
1142 | static void sbr_qmf_analysis(DSPContext *dsp, RDFTContext *rdft, const float *in, float *x, | |
1143 | float z[320], float W[2][32][32][2], | |
f8a93a20 | 1144 | float scale) |
ed492b61 AC |
1145 | { |
1146 | int i, k; | |
1147 | memcpy(W[0], W[1], sizeof(W[0])); | |
1148 | memcpy(x , x+1024, (320-32)*sizeof(x[0])); | |
f8a93a20 | 1149 | if (scale != 1.0f) |
b3e5931d | 1150 | dsp->vector_fmul_scalar(x+288, in, scale, 1024); |
ed492b61 AC |
1151 | else |
1152 | memcpy(x+288, in, 1024*sizeof(*x)); | |
1153 | for (i = 0; i < 32; i++) { // numTimeSlots*RATE = 16*2 as 960 sample frames | |
1154 | // are not supported | |
1155 | float re, im; | |
1156 | dsp->vector_fmul_reverse(z, sbr_qmf_window_ds, x, 320); | |
1157 | for (k = 0; k < 64; k++) { | |
1158 | float f = z[k] + z[k + 64] + z[k + 128] + z[k + 192] + z[k + 256]; | |
1159 | z[k] = f * analysis_cos_pre[k]; | |
1160 | z[k+64] = f; | |
1161 | } | |
1162 | ff_rdft_calc(rdft, z); | |
1163 | re = z[0] * 0.5f; | |
1164 | im = 0.5f * dsp->scalarproduct_float(z+64, analysis_sin_pre, 64); | |
1165 | W[1][i][0][0] = re * analysis_cossin_post[0][0] - im * analysis_cossin_post[0][1]; | |
1166 | W[1][i][0][1] = re * analysis_cossin_post[0][1] + im * analysis_cossin_post[0][0]; | |
1167 | for (k = 1; k < 32; k++) { | |
1168 | re = z[2*k ] - re; | |
1169 | im = z[2*k+1] - im; | |
1170 | W[1][i][k][0] = re * analysis_cossin_post[k][0] - im * analysis_cossin_post[k][1]; | |
1171 | W[1][i][k][1] = re * analysis_cossin_post[k][1] + im * analysis_cossin_post[k][0]; | |
1172 | } | |
1173 | x += 32; | |
1174 | } | |
1175 | } | |
1176 | ||
1177 | /** | |
1178 | * Synthesis QMF Bank (14496-3 sp04 p206) and Downsampled Synthesis QMF Bank | |
1179 | * (14496-3 sp04 p206) | |
1180 | */ | |
1181 | static void sbr_qmf_synthesis(DSPContext *dsp, FFTContext *mdct, | |
1182 | float *out, float X[2][32][64], | |
1183 | float mdct_buf[2][64], | |
1184 | float *v0, int *v_off, const unsigned int div, | |
1185 | float bias, float scale) | |
1186 | { | |
1187 | int i, n; | |
1188 | const float *sbr_qmf_window = div ? sbr_qmf_window_ds : sbr_qmf_window_us; | |
1189 | int scale_and_bias = scale != 1.0f || bias != 0.0f; | |
1190 | float *v; | |
1191 | for (i = 0; i < 32; i++) { | |
1192 | if (*v_off == 0) { | |
1193 | int saved_samples = (1280 - 128) >> div; | |
1194 | memcpy(&v0[SBR_SYNTHESIS_BUF_SIZE - saved_samples], v0, saved_samples * sizeof(float)); | |
1195 | *v_off = SBR_SYNTHESIS_BUF_SIZE - saved_samples - (128 >> div); | |
1196 | } else { | |
1197 | *v_off -= 128 >> div; | |
1198 | } | |
1199 | v = v0 + *v_off; | |
1200 | for (n = 1; n < 64 >> div; n+=2) { | |
1201 | X[1][i][n] = -X[1][i][n]; | |
1202 | } | |
1203 | if (div) { | |
1204 | memset(X[0][i]+32, 0, 32*sizeof(float)); | |
1205 | memset(X[1][i]+32, 0, 32*sizeof(float)); | |
1206 | } | |
1207 | ff_imdct_half(mdct, mdct_buf[0], X[0][i]); | |
1208 | ff_imdct_half(mdct, mdct_buf[1], X[1][i]); | |
1209 | if (div) { | |
1210 | for (n = 0; n < 32; n++) { | |
1211 | v[ n] = -mdct_buf[0][63 - 2*n] + mdct_buf[1][2*n ]; | |
1212 | v[ 63 - n] = mdct_buf[0][62 - 2*n] + mdct_buf[1][2*n + 1]; | |
1213 | } | |
1214 | } else { | |
1215 | for (n = 0; n < 64; n++) { | |
1216 | v[ n] = -mdct_buf[0][63 - n] + mdct_buf[1][ n ]; | |
1217 | v[127 - n] = mdct_buf[0][63 - n] + mdct_buf[1][ n ]; | |
1218 | } | |
1219 | } | |
1220 | dsp->vector_fmul_add(out, v , sbr_qmf_window , zero64, 64 >> div); | |
1221 | dsp->vector_fmul_add(out, v + ( 192 >> div), sbr_qmf_window + ( 64 >> div), out , 64 >> div); | |
1222 | dsp->vector_fmul_add(out, v + ( 256 >> div), sbr_qmf_window + (128 >> div), out , 64 >> div); | |
1223 | dsp->vector_fmul_add(out, v + ( 448 >> div), sbr_qmf_window + (192 >> div), out , 64 >> div); | |
1224 | dsp->vector_fmul_add(out, v + ( 512 >> div), sbr_qmf_window + (256 >> div), out , 64 >> div); | |
1225 | dsp->vector_fmul_add(out, v + ( 704 >> div), sbr_qmf_window + (320 >> div), out , 64 >> div); | |
1226 | dsp->vector_fmul_add(out, v + ( 768 >> div), sbr_qmf_window + (384 >> div), out , 64 >> div); | |
1227 | dsp->vector_fmul_add(out, v + ( 960 >> div), sbr_qmf_window + (448 >> div), out , 64 >> div); | |
1228 | dsp->vector_fmul_add(out, v + (1024 >> div), sbr_qmf_window + (512 >> div), out , 64 >> div); | |
1229 | dsp->vector_fmul_add(out, v + (1216 >> div), sbr_qmf_window + (576 >> div), out , 64 >> div); | |
1230 | if (scale_and_bias) | |
1231 | for (n = 0; n < 64 >> div; n++) | |
1232 | out[n] = out[n] * scale + bias; | |
1233 | out += 64 >> div; | |
1234 | } | |
1235 | } | |
1236 | ||
1237 | static void autocorrelate(const float x[40][2], float phi[3][2][2], int lag) | |
1238 | { | |
1239 | int i; | |
1240 | float real_sum = 0.0f; | |
1241 | float imag_sum = 0.0f; | |
1242 | if (lag) { | |
1243 | for (i = 1; i < 38; i++) { | |
1244 | real_sum += x[i][0] * x[i+lag][0] + x[i][1] * x[i+lag][1]; | |
1245 | imag_sum += x[i][0] * x[i+lag][1] - x[i][1] * x[i+lag][0]; | |
1246 | } | |
1247 | phi[2-lag][1][0] = real_sum + x[ 0][0] * x[lag][0] + x[ 0][1] * x[lag][1]; | |
1248 | phi[2-lag][1][1] = imag_sum + x[ 0][0] * x[lag][1] - x[ 0][1] * x[lag][0]; | |
1249 | if (lag == 1) { | |
1250 | phi[0][0][0] = real_sum + x[38][0] * x[39][0] + x[38][1] * x[39][1]; | |
1251 | phi[0][0][1] = imag_sum + x[38][0] * x[39][1] - x[38][1] * x[39][0]; | |
1252 | } | |
1253 | } else { | |
1254 | for (i = 1; i < 38; i++) { | |
1255 | real_sum += x[i][0] * x[i][0] + x[i][1] * x[i][1]; | |
1256 | } | |
1257 | phi[2][1][0] = real_sum + x[ 0][0] * x[ 0][0] + x[ 0][1] * x[ 0][1]; | |
1258 | phi[1][0][0] = real_sum + x[38][0] * x[38][0] + x[38][1] * x[38][1]; | |
1259 | } | |
1260 | } | |
1261 | ||
1262 | /** High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering | |
1263 | * (14496-3 sp04 p214) | |
1264 | * Warning: This routine does not seem numerically stable. | |
1265 | */ | |
1266 | static void sbr_hf_inverse_filter(float (*alpha0)[2], float (*alpha1)[2], | |
1267 | const float X_low[32][40][2], int k0) | |
1268 | { | |
1269 | int k; | |
1270 | for (k = 0; k < k0; k++) { | |
1271 | float phi[3][2][2], dk; | |
1272 | ||
1273 | autocorrelate(X_low[k], phi, 0); | |
1274 | autocorrelate(X_low[k], phi, 1); | |
1275 | autocorrelate(X_low[k], phi, 2); | |
1276 | ||
1277 | dk = phi[2][1][0] * phi[1][0][0] - | |
1278 | (phi[1][1][0] * phi[1][1][0] + phi[1][1][1] * phi[1][1][1]) / 1.000001f; | |
1279 | ||
1280 | if (!dk) { | |
1281 | alpha1[k][0] = 0; | |
1282 | alpha1[k][1] = 0; | |
1283 | } else { | |
1284 | float temp_real, temp_im; | |
1285 | temp_real = phi[0][0][0] * phi[1][1][0] - | |
1286 | phi[0][0][1] * phi[1][1][1] - | |
1287 | phi[0][1][0] * phi[1][0][0]; | |
1288 | temp_im = phi[0][0][0] * phi[1][1][1] + | |
1289 | phi[0][0][1] * phi[1][1][0] - | |
1290 | phi[0][1][1] * phi[1][0][0]; | |
1291 | ||
1292 | alpha1[k][0] = temp_real / dk; | |
1293 | alpha1[k][1] = temp_im / dk; | |
1294 | } | |
1295 | ||
1296 | if (!phi[1][0][0]) { | |
1297 | alpha0[k][0] = 0; | |
1298 | alpha0[k][1] = 0; | |
1299 | } else { | |
1300 | float temp_real, temp_im; | |
1301 | temp_real = phi[0][0][0] + alpha1[k][0] * phi[1][1][0] + | |
1302 | alpha1[k][1] * phi[1][1][1]; | |
1303 | temp_im = phi[0][0][1] + alpha1[k][1] * phi[1][1][0] - | |
1304 | alpha1[k][0] * phi[1][1][1]; | |
1305 | ||
1306 | alpha0[k][0] = -temp_real / phi[1][0][0]; | |
1307 | alpha0[k][1] = -temp_im / phi[1][0][0]; | |
1308 | } | |
1309 | ||
1310 | if (alpha1[k][0] * alpha1[k][0] + alpha1[k][1] * alpha1[k][1] >= 16.0f || | |
1311 | alpha0[k][0] * alpha0[k][0] + alpha0[k][1] * alpha0[k][1] >= 16.0f) { | |
1312 | alpha1[k][0] = 0; | |
1313 | alpha1[k][1] = 0; | |
1314 | alpha0[k][0] = 0; | |
1315 | alpha0[k][1] = 0; | |
1316 | } | |
1317 | } | |
1318 | } | |
1319 | ||
1320 | /// Chirp Factors (14496-3 sp04 p214) | |
1321 | static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data) | |
1322 | { | |
1323 | int i; | |
1324 | float new_bw; | |
1325 | static const float bw_tab[] = { 0.0f, 0.75f, 0.9f, 0.98f }; | |
1326 | ||
1327 | for (i = 0; i < sbr->n_q; i++) { | |
1328 | if (ch_data->bs_invf_mode[0][i] + ch_data->bs_invf_mode[1][i] == 1) { | |
1329 | new_bw = 0.6f; | |
1330 | } else | |
1331 | new_bw = bw_tab[ch_data->bs_invf_mode[0][i]]; | |
1332 | ||
1333 | if (new_bw < ch_data->bw_array[i]) { | |
1334 | new_bw = 0.75f * new_bw + 0.25f * ch_data->bw_array[i]; | |
1335 | } else | |
1336 | new_bw = 0.90625f * new_bw + 0.09375f * ch_data->bw_array[i]; | |
1337 | ch_data->bw_array[i] = new_bw < 0.015625f ? 0.0f : new_bw; | |
1338 | } | |
1339 | } | |
1340 | ||
1341 | /// Generate the subband filtered lowband | |
1342 | static int sbr_lf_gen(AACContext *ac, SpectralBandReplication *sbr, | |
1343 | float X_low[32][40][2], const float W[2][32][32][2]) | |
1344 | { | |
1345 | int i, k; | |
1346 | const int t_HFGen = 8; | |
1347 | const int i_f = 32; | |
1348 | memset(X_low, 0, 32*sizeof(*X_low)); | |
1349 | for (k = 0; k < sbr->kx[1]; k++) { | |
1350 | for (i = t_HFGen; i < i_f + t_HFGen; i++) { | |
1351 | X_low[k][i][0] = W[1][i - t_HFGen][k][0]; | |
1352 | X_low[k][i][1] = W[1][i - t_HFGen][k][1]; | |
1353 | } | |
1354 | } | |
1355 | for (k = 0; k < sbr->kx[0]; k++) { | |
1356 | for (i = 0; i < t_HFGen; i++) { | |
1357 | X_low[k][i][0] = W[0][i + i_f - t_HFGen][k][0]; | |
1358 | X_low[k][i][1] = W[0][i + i_f - t_HFGen][k][1]; | |
1359 | } | |
1360 | } | |
1361 | return 0; | |
1362 | } | |
1363 | ||
1364 | /// High Frequency Generator (14496-3 sp04 p215) | |
1365 | static int sbr_hf_gen(AACContext *ac, SpectralBandReplication *sbr, | |
1366 | float X_high[64][40][2], const float X_low[32][40][2], | |
1367 | const float (*alpha0)[2], const float (*alpha1)[2], | |
1368 | const float bw_array[5], const uint8_t *t_env, | |
1369 | int bs_num_env) | |
1370 | { | |
1371 | int i, j, x; | |
1372 | int g = 0; | |
1373 | int k = sbr->kx[1]; | |
1374 | for (j = 0; j < sbr->num_patches; j++) { | |
1375 | for (x = 0; x < sbr->patch_num_subbands[j]; x++, k++) { | |
1376 | float alpha[4]; | |
1377 | const int p = sbr->patch_start_subband[j] + x; | |
1378 | while (g <= sbr->n_q && k >= sbr->f_tablenoise[g]) | |
1379 | g++; | |
1380 | g--; | |
1381 | ||
1382 | if (g < 0) { | |
1383 | av_log(ac->avccontext, AV_LOG_ERROR, | |
1384 | "ERROR : no subband found for frequency %d\n", k); | |
1385 | return -1; | |
1386 | } | |
1387 | ||
1388 | alpha[0] = alpha1[p][0] * bw_array[g] * bw_array[g]; | |
1389 | alpha[1] = alpha1[p][1] * bw_array[g] * bw_array[g]; | |
1390 | alpha[2] = alpha0[p][0] * bw_array[g]; | |
1391 | alpha[3] = alpha0[p][1] * bw_array[g]; | |
1392 | ||
1393 | for (i = 2 * t_env[0]; i < 2 * t_env[bs_num_env]; i++) { | |
1394 | const int idx = i + ENVELOPE_ADJUSTMENT_OFFSET; | |
1395 | X_high[k][idx][0] = | |
1396 | X_low[p][idx - 2][0] * alpha[0] - | |
1397 | X_low[p][idx - 2][1] * alpha[1] + | |
1398 | X_low[p][idx - 1][0] * alpha[2] - | |
1399 | X_low[p][idx - 1][1] * alpha[3] + | |
1400 | X_low[p][idx][0]; | |
1401 | X_high[k][idx][1] = | |
1402 | X_low[p][idx - 2][1] * alpha[0] + | |
1403 | X_low[p][idx - 2][0] * alpha[1] + | |
1404 | X_low[p][idx - 1][1] * alpha[2] + | |
1405 | X_low[p][idx - 1][0] * alpha[3] + | |
1406 | X_low[p][idx][1]; | |
1407 | } | |
1408 | } | |
1409 | } | |
1410 | if (k < sbr->m[1] + sbr->kx[1]) | |
1411 | memset(X_high + k, 0, (sbr->m[1] + sbr->kx[1] - k) * sizeof(*X_high)); | |
1412 | ||
1413 | return 0; | |
1414 | } | |
1415 | ||
1416 | /// Generate the subband filtered lowband | |
1417 | static int sbr_x_gen(SpectralBandReplication *sbr, float X[2][32][64], | |
1418 | const float X_low[32][40][2], const float Y[2][38][64][2], | |
1419 | int ch) | |
1420 | { | |
1421 | int k, i; | |
1422 | const int i_f = 32; | |
1423 | const int i_Temp = FFMAX(2*sbr->data[ch].t_env_num_env_old - i_f, 0); | |
1424 | memset(X, 0, 2*sizeof(*X)); | |
1425 | for (k = 0; k < sbr->kx[0]; k++) { | |
1426 | for (i = 0; i < i_Temp; i++) { | |
1427 | X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0]; | |
1428 | X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1]; | |
1429 | } | |
1430 | } | |
1431 | for (; k < sbr->kx[0] + sbr->m[0]; k++) { | |
1432 | for (i = 0; i < i_Temp; i++) { | |
1433 | X[0][i][k] = Y[0][i + i_f][k][0]; | |
1434 | X[1][i][k] = Y[0][i + i_f][k][1]; | |
1435 | } | |
1436 | } | |
1437 | ||
1438 | for (k = 0; k < sbr->kx[1]; k++) { | |
1439 | for (i = i_Temp; i < i_f; i++) { | |
1440 | X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0]; | |
1441 | X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1]; | |
1442 | } | |
1443 | } | |
1444 | for (; k < sbr->kx[1] + sbr->m[1]; k++) { | |
1445 | for (i = i_Temp; i < i_f; i++) { | |
1446 | X[0][i][k] = Y[1][i][k][0]; | |
1447 | X[1][i][k] = Y[1][i][k][1]; | |
1448 | } | |
1449 | } | |
1450 | return 0; | |
1451 | } | |
1452 | ||
1453 | /** High Frequency Adjustment (14496-3 sp04 p217) and Mapping | |
1454 | * (14496-3 sp04 p217) | |
1455 | */ | |
1456 | static void sbr_mapping(AACContext *ac, SpectralBandReplication *sbr, | |
1457 | SBRData *ch_data, int e_a[2]) | |
1458 | { | |
1459 | int e, i, m; | |
1460 | ||
ed492b61 | 1461 | memset(ch_data->s_indexmapped[1], 0, 7*sizeof(ch_data->s_indexmapped[1])); |
ecc1f8c3 | 1462 | for (e = 0; e < ch_data->bs_num_env; e++) { |
ed492b61 AC |
1463 | const unsigned int ilim = sbr->n[ch_data->bs_freq_res[e + 1]]; |
1464 | uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow; | |
1465 | int k; | |
1466 | ||
1467 | for (i = 0; i < ilim; i++) | |
1468 | for (m = table[i]; m < table[i + 1]; m++) | |
1469 | sbr->e_origmapped[e][m - sbr->kx[1]] = ch_data->env_facs[e+1][i]; | |
1470 | ||
1471 | // ch_data->bs_num_noise > 1 => 2 noise floors | |
1472 | k = (ch_data->bs_num_noise > 1) && (ch_data->t_env[e] >= ch_data->t_q[1]); | |
1473 | for (i = 0; i < sbr->n_q; i++) | |
1474 | for (m = sbr->f_tablenoise[i]; m < sbr->f_tablenoise[i + 1]; m++) | |
1475 | sbr->q_mapped[e][m - sbr->kx[1]] = ch_data->noise_facs[k+1][i]; | |
1476 | ||
1477 | for (i = 0; i < sbr->n[1]; i++) { | |
1478 | if (ch_data->bs_add_harmonic_flag) { | |
1479 | const unsigned int m_midpoint = | |
1480 | (sbr->f_tablehigh[i] + sbr->f_tablehigh[i + 1]) >> 1; | |
1481 | ||
1482 | ch_data->s_indexmapped[e + 1][m_midpoint - sbr->kx[1]] = ch_data->bs_add_harmonic[i] * | |
1483 | (e >= e_a[1] || (ch_data->s_indexmapped[0][m_midpoint - sbr->kx[1]] == 1)); | |
1484 | } | |
1485 | } | |
1486 | ||
1487 | for (i = 0; i < ilim; i++) { | |
1488 | int additional_sinusoid_present = 0; | |
1489 | for (m = table[i]; m < table[i + 1]; m++) { | |
1490 | if (ch_data->s_indexmapped[e + 1][m - sbr->kx[1]]) { | |
1491 | additional_sinusoid_present = 1; | |
1492 | break; | |
1493 | } | |
1494 | } | |
1495 | memset(&sbr->s_mapped[e][table[i] - sbr->kx[1]], additional_sinusoid_present, | |
1496 | (table[i + 1] - table[i]) * sizeof(sbr->s_mapped[e][0])); | |
1497 | } | |
1498 | } | |
1499 | ||
ecc1f8c3 | 1500 | memcpy(ch_data->s_indexmapped[0], ch_data->s_indexmapped[ch_data->bs_num_env], sizeof(ch_data->s_indexmapped[0])); |
ed492b61 AC |
1501 | } |
1502 | ||
1503 | /// Estimation of current envelope (14496-3 sp04 p218) | |
1504 | static void sbr_env_estimate(float (*e_curr)[48], float X_high[64][40][2], | |
1505 | SpectralBandReplication *sbr, SBRData *ch_data) | |
1506 | { | |
1507 | int e, i, m; | |
1508 | ||
1509 | if (sbr->bs_interpol_freq) { | |
ecc1f8c3 | 1510 | for (e = 0; e < ch_data->bs_num_env; e++) { |
ed492b61 AC |
1511 | const float recip_env_size = 0.5f / (ch_data->t_env[e + 1] - ch_data->t_env[e]); |
1512 | int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET; | |
1513 | int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET; | |
1514 | ||
1515 | for (m = 0; m < sbr->m[1]; m++) { | |
1516 | float sum = 0.0f; | |
1517 | ||
1518 | for (i = ilb; i < iub; i++) { | |
1519 | sum += X_high[m + sbr->kx[1]][i][0] * X_high[m + sbr->kx[1]][i][0] + | |
1520 | X_high[m + sbr->kx[1]][i][1] * X_high[m + sbr->kx[1]][i][1]; | |
1521 | } | |
1522 | e_curr[e][m] = sum * recip_env_size; | |
1523 | } | |
1524 | } | |
1525 | } else { | |
1526 | int k, p; | |
1527 | ||
ecc1f8c3 | 1528 | for (e = 0; e < ch_data->bs_num_env; e++) { |
ed492b61 AC |
1529 | const int env_size = 2 * (ch_data->t_env[e + 1] - ch_data->t_env[e]); |
1530 | int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET; | |
1531 | int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET; | |
1532 | const uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow; | |
1533 | ||
1534 | for (p = 0; p < sbr->n[ch_data->bs_freq_res[e + 1]]; p++) { | |
1535 | float sum = 0.0f; | |
1536 | const int den = env_size * (table[p + 1] - table[p]); | |
1537 | ||
1538 | for (k = table[p]; k < table[p + 1]; k++) { | |
1539 | for (i = ilb; i < iub; i++) { | |
1540 | sum += X_high[k][i][0] * X_high[k][i][0] + | |
1541 | X_high[k][i][1] * X_high[k][i][1]; | |
1542 | } | |
1543 | } | |
1544 | sum /= den; | |
1545 | for (k = table[p]; k < table[p + 1]; k++) { | |
1546 | e_curr[e][k - sbr->kx[1]] = sum; | |
1547 | } | |
1548 | } | |
1549 | } | |
1550 | } | |
1551 | } | |
1552 | ||
1553 | /** | |
1554 | * Calculation of levels of additional HF signal components (14496-3 sp04 p219) | |
1555 | * and Calculation of gain (14496-3 sp04 p219) | |
1556 | */ | |
1557 | static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr, | |
1558 | SBRData *ch_data, const int e_a[2]) | |
1559 | { | |
1560 | int e, k, m; | |
1561 | // max gain limits : -3dB, 0dB, 3dB, inf dB (limiter off) | |
1562 | static const float limgain[4] = { 0.70795, 1.0, 1.41254, 10000000000 }; | |
1563 | ||
ecc1f8c3 | 1564 | for (e = 0; e < ch_data->bs_num_env; e++) { |
ed492b61 AC |
1565 | int delta = !((e == e_a[1]) || (e == e_a[0])); |
1566 | for (k = 0; k < sbr->n_lim; k++) { | |
1567 | float gain_boost, gain_max; | |
1568 | float sum[2] = { 0.0f, 0.0f }; | |
1569 | for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) { | |
1570 | const float temp = sbr->e_origmapped[e][m] / (1.0f + sbr->q_mapped[e][m]); | |
1571 | sbr->q_m[e][m] = sqrtf(temp * sbr->q_mapped[e][m]); | |
1572 | sbr->s_m[e][m] = sqrtf(temp * ch_data->s_indexmapped[e + 1][m]); | |
1573 | if (!sbr->s_mapped[e][m]) { | |
1574 | sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] / | |
1575 | ((1.0f + sbr->e_curr[e][m]) * | |
1576 | (1.0f + sbr->q_mapped[e][m] * delta))); | |
1577 | } else { | |
1578 | sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] * sbr->q_mapped[e][m] / | |
1579 | ((1.0f + sbr->e_curr[e][m]) * | |
1580 | (1.0f + sbr->q_mapped[e][m]))); | |
1581 | } | |
1582 | } | |
1583 | for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) { | |
1584 | sum[0] += sbr->e_origmapped[e][m]; | |
1585 | sum[1] += sbr->e_curr[e][m]; | |
1586 | } | |
1587 | gain_max = limgain[sbr->bs_limiter_gains] * sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1])); | |
1588 | gain_max = FFMIN(100000, gain_max); | |
1589 | for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) { | |
1590 | float q_m_max = sbr->q_m[e][m] * gain_max / sbr->gain[e][m]; | |
1591 | sbr->q_m[e][m] = FFMIN(sbr->q_m[e][m], q_m_max); | |
1592 | sbr->gain[e][m] = FFMIN(sbr->gain[e][m], gain_max); | |
1593 | } | |
1594 | sum[0] = sum[1] = 0.0f; | |
1595 | for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) { | |
1596 | sum[0] += sbr->e_origmapped[e][m]; | |
1597 | sum[1] += sbr->e_curr[e][m] * sbr->gain[e][m] * sbr->gain[e][m] | |
1598 | + sbr->s_m[e][m] * sbr->s_m[e][m] | |
1599 | + (delta && !sbr->s_m[e][m]) * sbr->q_m[e][m] * sbr->q_m[e][m]; | |
1600 | } | |
1601 | gain_boost = sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1])); | |
1602 | gain_boost = FFMIN(1.584893192, gain_boost); | |
1603 | for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) { | |
1604 | sbr->gain[e][m] *= gain_boost; | |
1605 | sbr->q_m[e][m] *= gain_boost; | |
1606 | sbr->s_m[e][m] *= gain_boost; | |
1607 | } | |
1608 | } | |
1609 | } | |
1610 | } | |
1611 | ||
1612 | /// Assembling HF Signals (14496-3 sp04 p220) | |
1613 | static void sbr_hf_assemble(float Y[2][38][64][2], const float X_high[64][40][2], | |
1614 | SpectralBandReplication *sbr, SBRData *ch_data, | |
1615 | const int e_a[2]) | |
1616 | { | |
1617 | int e, i, j, m; | |
1618 | const int h_SL = 4 * !sbr->bs_smoothing_mode; | |
1619 | const int kx = sbr->kx[1]; | |
1620 | const int m_max = sbr->m[1]; | |
1621 | static const float h_smooth[5] = { | |
1622 | 0.33333333333333, | |
1623 | 0.30150283239582, | |
1624 | 0.21816949906249, | |
1625 | 0.11516383427084, | |
1626 | 0.03183050093751, | |
1627 | }; | |
1628 | static const int8_t phi[2][4] = { | |
1629 | { 1, 0, -1, 0}, // real | |
1630 | { 0, 1, 0, -1}, // imaginary | |
1631 | }; | |
1632 | float (*g_temp)[48] = ch_data->g_temp, (*q_temp)[48] = ch_data->q_temp; | |
1633 | int indexnoise = ch_data->f_indexnoise; | |
1634 | int indexsine = ch_data->f_indexsine; | |
1635 | memcpy(Y[0], Y[1], sizeof(Y[0])); | |
1636 | ||
1637 | if (sbr->reset) { | |
1638 | for (i = 0; i < h_SL; i++) { | |
1639 | memcpy(g_temp[i + 2*ch_data->t_env[0]], sbr->gain[0], m_max * sizeof(sbr->gain[0][0])); | |
1640 | memcpy(q_temp[i + 2*ch_data->t_env[0]], sbr->q_m[0], m_max * sizeof(sbr->q_m[0][0])); | |
1641 | } | |
1642 | } else if (h_SL) { | |
1643 | memcpy(g_temp[2*ch_data->t_env[0]], g_temp[2*ch_data->t_env_num_env_old], 4*sizeof(g_temp[0])); | |
1644 | memcpy(q_temp[2*ch_data->t_env[0]], q_temp[2*ch_data->t_env_num_env_old], 4*sizeof(q_temp[0])); | |
1645 | } | |
1646 | ||
ecc1f8c3 | 1647 | for (e = 0; e < ch_data->bs_num_env; e++) { |
ed492b61 AC |
1648 | for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) { |
1649 | memcpy(g_temp[h_SL + i], sbr->gain[e], m_max * sizeof(sbr->gain[0][0])); | |
1650 | memcpy(q_temp[h_SL + i], sbr->q_m[e], m_max * sizeof(sbr->q_m[0][0])); | |
1651 | } | |
1652 | } | |
1653 | ||
ecc1f8c3 | 1654 | for (e = 0; e < ch_data->bs_num_env; e++) { |
ed492b61 AC |
1655 | for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) { |
1656 | int phi_sign = (1 - 2*(kx & 1)); | |
1657 | ||
1658 | if (h_SL && e != e_a[0] && e != e_a[1]) { | |
1659 | for (m = 0; m < m_max; m++) { | |
1660 | const int idx1 = i + h_SL; | |
1661 | float g_filt = 0.0f; | |
1662 | for (j = 0; j <= h_SL; j++) | |
1663 | g_filt += g_temp[idx1 - j][m] * h_smooth[j]; | |
1664 | Y[1][i][m + kx][0] = | |
1665 | X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][0] * g_filt; | |
1666 | Y[1][i][m + kx][1] = | |
1667 | X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][1] * g_filt; | |
1668 | } | |
1669 | } else { | |
1670 | for (m = 0; m < m_max; m++) { | |
1671 | const float g_filt = g_temp[i + h_SL][m]; | |
1672 | Y[1][i][m + kx][0] = | |
1673 | X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][0] * g_filt; | |
1674 | Y[1][i][m + kx][1] = | |
1675 | X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][1] * g_filt; | |
1676 | } | |
1677 | } | |
1678 | ||
1679 | if (e != e_a[0] && e != e_a[1]) { | |
1680 | for (m = 0; m < m_max; m++) { | |
1681 | indexnoise = (indexnoise + 1) & 0x1ff; | |
1682 | if (sbr->s_m[e][m]) { | |
1683 | Y[1][i][m + kx][0] += | |
1684 | sbr->s_m[e][m] * phi[0][indexsine]; | |
1685 | Y[1][i][m + kx][1] += | |
1686 | sbr->s_m[e][m] * (phi[1][indexsine] * phi_sign); | |
1687 | } else { | |
1688 | float q_filt; | |
1689 | if (h_SL) { | |
1690 | const int idx1 = i + h_SL; | |
1691 | q_filt = 0.0f; | |
1692 | for (j = 0; j <= h_SL; j++) | |
1693 | q_filt += q_temp[idx1 - j][m] * h_smooth[j]; | |
1694 | } else { | |
1695 | q_filt = q_temp[i][m]; | |
1696 | } | |
1697 | Y[1][i][m + kx][0] += | |
1698 | q_filt * sbr_noise_table[indexnoise][0]; | |
1699 | Y[1][i][m + kx][1] += | |
1700 | q_filt * sbr_noise_table[indexnoise][1]; | |
1701 | } | |
1702 | phi_sign = -phi_sign; | |
1703 | } | |
1704 | } else { | |
1705 | indexnoise = (indexnoise + m_max) & 0x1ff; | |
1706 | for (m = 0; m < m_max; m++) { | |
1707 | Y[1][i][m + kx][0] += | |
1708 | sbr->s_m[e][m] * phi[0][indexsine]; | |
1709 | Y[1][i][m + kx][1] += | |
1710 | sbr->s_m[e][m] * (phi[1][indexsine] * phi_sign); | |
1711 | phi_sign = -phi_sign; | |
1712 | } | |
1713 | } | |
1714 | indexsine = (indexsine + 1) & 3; | |
1715 | } | |
1716 | } | |
1717 | ch_data->f_indexnoise = indexnoise; | |
1718 | ch_data->f_indexsine = indexsine; | |
1719 | } | |
1720 | ||
ca6d3f23 AC |
1721 | void ff_sbr_apply(AACContext *ac, SpectralBandReplication *sbr, int id_aac, |
1722 | float* L, float* R) | |
ed492b61 | 1723 | { |
ca6d3f23 AC |
1724 | int downsampled = ac->m4ac.ext_sample_rate < sbr->sample_rate; |
1725 | int ch; | |
1726 | int nch = (id_aac == TYPE_CPE) ? 2 : 1; | |
1727 | ||
ed492b61 | 1728 | if (sbr->start) { |
ed492b61 AC |
1729 | sbr_dequant(sbr, id_aac); |
1730 | } | |
ca6d3f23 | 1731 | for (ch = 0; ch < nch; ch++) { |
d0dedce7 AC |
1732 | /* decode channel */ |
1733 | sbr_qmf_analysis(&ac->dsp, &sbr->rdft, ch ? R : L, sbr->data[ch].analysis_filterbank_samples, | |
1734 | (float*)sbr->qmf_filter_scratch, | |
1735 | sbr->data[ch].W, 1/(-1024 * ac->sf_scale)); | |
1736 | sbr_lf_gen(ac, sbr, sbr->X_low, sbr->data[ch].W); | |
1737 | if (sbr->start) { | |
1738 | sbr_hf_inverse_filter(sbr->alpha0, sbr->alpha1, sbr->X_low, sbr->k[0]); | |
1739 | sbr_chirp(sbr, &sbr->data[ch]); | |
1740 | sbr_hf_gen(ac, sbr, sbr->X_high, sbr->X_low, sbr->alpha0, sbr->alpha1, | |
1741 | sbr->data[ch].bw_array, sbr->data[ch].t_env, | |
1742 | sbr->data[ch].bs_num_env); | |
1743 | ||
1744 | // hf_adj | |
1745 | sbr_mapping(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a); | |
1746 | sbr_env_estimate(sbr->e_curr, sbr->X_high, sbr, &sbr->data[ch]); | |
1747 | sbr_gain_calc(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a); | |
1748 | sbr_hf_assemble(sbr->data[ch].Y, sbr->X_high, sbr, &sbr->data[ch], | |
1749 | sbr->data[ch].e_a); | |
1750 | } | |
ed492b61 | 1751 | |
d0dedce7 | 1752 | /* synthesis */ |
17d59599 | 1753 | sbr_x_gen(sbr, sbr->X[ch], sbr->X_low, sbr->data[ch].Y, ch); |
ca6d3f23 | 1754 | } |
17d59599 | 1755 | sbr_qmf_synthesis(&ac->dsp, &sbr->mdct, L, sbr->X[0], sbr->qmf_filter_scratch, |
ca6d3f23 AC |
1756 | sbr->data[0].synthesis_filterbank_samples, |
1757 | &sbr->data[0].synthesis_filterbank_samples_offset, | |
ed492b61 AC |
1758 | downsampled, |
1759 | ac->add_bias, -1024 * ac->sf_scale); | |
ca6d3f23 | 1760 | if (nch == 2) |
17d59599 | 1761 | sbr_qmf_synthesis(&ac->dsp, &sbr->mdct, R, sbr->X[1], sbr->qmf_filter_scratch, |
ca6d3f23 AC |
1762 | sbr->data[1].synthesis_filterbank_samples, |
1763 | &sbr->data[1].synthesis_filterbank_samples_offset, | |
1764 | downsampled, | |
1765 | ac->add_bias, -1024 * ac->sf_scale); | |
ed492b61 | 1766 | } |