aacsbr: Initialize e_a[1] to -1.
[libav.git] / libavcodec / aacsbr.c
CommitLineData
ed492b61
AC
1/*
2 * AAC Spectral Band Replication decoding functions
3 * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
4 * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
5 *
6 * This file is part of FFmpeg.
7 *
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23/**
24 * @file libavcodec/aacsbr.c
25 * AAC Spectral Band Replication decoding functions
26 * @author Robert Swain ( rob opendot cl )
27 */
28
29#include "aac.h"
30#include "sbr.h"
31#include "aacsbr.h"
32#include "aacsbrdata.h"
e0be7630 33#include "fft.h"
ed492b61
AC
34
35#include <stdint.h>
36#include <float.h>
37
38#define ENVELOPE_ADJUSTMENT_OFFSET 2
39#define NOISE_FLOOR_OFFSET 6.0f
40
41/**
42 * SBR VLC tables
43 */
44enum {
45 T_HUFFMAN_ENV_1_5DB,
46 F_HUFFMAN_ENV_1_5DB,
47 T_HUFFMAN_ENV_BAL_1_5DB,
48 F_HUFFMAN_ENV_BAL_1_5DB,
49 T_HUFFMAN_ENV_3_0DB,
50 F_HUFFMAN_ENV_3_0DB,
51 T_HUFFMAN_ENV_BAL_3_0DB,
52 F_HUFFMAN_ENV_BAL_3_0DB,
53 T_HUFFMAN_NOISE_3_0DB,
54 T_HUFFMAN_NOISE_BAL_3_0DB,
55};
56
57/**
58 * bs_frame_class - frame class of current SBR frame (14496-3 sp04 p98)
59 */
60enum {
61 FIXFIX,
62 FIXVAR,
63 VARFIX,
64 VARVAR,
65};
66
67enum {
68 EXTENSION_ID_PS = 2,
69};
70
71static VLC vlc_sbr[10];
72static const int8_t vlc_sbr_lav[10] =
73 { 60, 60, 24, 24, 31, 31, 12, 12, 31, 12 };
74static DECLARE_ALIGNED(16, float, analysis_cos_pre)[64];
75static DECLARE_ALIGNED(16, float, analysis_sin_pre)[64];
76static DECLARE_ALIGNED(16, float, analysis_cossin_post)[32][2];
77static const DECLARE_ALIGNED(16, float, zero64)[64];
78
79#define SBR_INIT_VLC_STATIC(num, size) \
80 INIT_VLC_STATIC(&vlc_sbr[num], 9, sbr_tmp[num].table_size / sbr_tmp[num].elem_size, \
81 sbr_tmp[num].sbr_bits , 1, 1, \
82 sbr_tmp[num].sbr_codes, sbr_tmp[num].elem_size, sbr_tmp[num].elem_size, \
83 size)
84
85#define SBR_VLC_ROW(name) \
86 { name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) }
87
88av_cold void ff_aac_sbr_init(void)
89{
90 int n, k;
91 static const struct {
92 const void *sbr_codes, *sbr_bits;
93 const unsigned int table_size, elem_size;
94 } sbr_tmp[] = {
95 SBR_VLC_ROW(t_huffman_env_1_5dB),
96 SBR_VLC_ROW(f_huffman_env_1_5dB),
97 SBR_VLC_ROW(t_huffman_env_bal_1_5dB),
98 SBR_VLC_ROW(f_huffman_env_bal_1_5dB),
99 SBR_VLC_ROW(t_huffman_env_3_0dB),
100 SBR_VLC_ROW(f_huffman_env_3_0dB),
101 SBR_VLC_ROW(t_huffman_env_bal_3_0dB),
102 SBR_VLC_ROW(f_huffman_env_bal_3_0dB),
103 SBR_VLC_ROW(t_huffman_noise_3_0dB),
104 SBR_VLC_ROW(t_huffman_noise_bal_3_0dB),
105 };
106
107 // SBR VLC table initialization
108 SBR_INIT_VLC_STATIC(0, 1098);
109 SBR_INIT_VLC_STATIC(1, 1092);
110 SBR_INIT_VLC_STATIC(2, 768);
111 SBR_INIT_VLC_STATIC(3, 1026);
112 SBR_INIT_VLC_STATIC(4, 1058);
113 SBR_INIT_VLC_STATIC(5, 1052);
114 SBR_INIT_VLC_STATIC(6, 544);
115 SBR_INIT_VLC_STATIC(7, 544);
116 SBR_INIT_VLC_STATIC(8, 592);
117 SBR_INIT_VLC_STATIC(9, 512);
118
119 for (n = 0; n < 64; n++) {
120 float pre = M_PI * n / 64;
121 analysis_cos_pre[n] = cosf(pre);
122 analysis_sin_pre[n] = sinf(pre);
123 }
124 for (k = 0; k < 32; k++) {
125 float post = M_PI * (k + 0.5) / 128;
126 analysis_cossin_post[k][0] = 4.0 * cosf(post);
127 analysis_cossin_post[k][1] = -4.0 * sinf(post);
128 }
129 for (n = 1; n < 320; n++)
130 sbr_qmf_window_us[320 + n] = sbr_qmf_window_us[320 - n];
131 sbr_qmf_window_us[384] = -sbr_qmf_window_us[384];
132 sbr_qmf_window_us[512] = -sbr_qmf_window_us[512];
133
134 for (n = 0; n < 320; n++)
135 sbr_qmf_window_ds[n] = sbr_qmf_window_us[2*n];
136}
137
138av_cold void ff_aac_sbr_ctx_init(SpectralBandReplication *sbr)
139{
140 sbr->kx[0] = sbr->kx[1] = 32; //Typo in spec, kx' inits to 32
46751a65 141 sbr->data[0].e_a[1] = sbr->data[1].e_a[1] = -1;
ed492b61
AC
142 sbr->data[0].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
143 sbr->data[1].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
144 ff_mdct_init(&sbr->mdct, 7, 1, 1.0/64);
145 ff_rdft_init(&sbr->rdft, 6, IDFT_R2C);
146}
147
148av_cold void ff_aac_sbr_ctx_close(SpectralBandReplication *sbr)
149{
150 ff_mdct_end(&sbr->mdct);
151 ff_rdft_end(&sbr->rdft);
152}
153
154static int qsort_comparison_function_int16(const void *a, const void *b)
155{
156 return *(const int16_t *)a - *(const int16_t *)b;
157}
158
159static inline int in_table_int16(const int16_t *table, int last_el, int16_t needle)
160{
161 int i;
162 for (i = 0; i <= last_el; i++)
163 if (table[i] == needle)
164 return 1;
165 return 0;
166}
167
168/// Limiter Frequency Band Table (14496-3 sp04 p198)
169static void sbr_make_f_tablelim(SpectralBandReplication *sbr)
170{
171 int k;
172 if (sbr->bs_limiter_bands > 0) {
173 static const float bands_warped[3] = { 1.32715174233856803909f, //2^(0.49/1.2)
174 1.18509277094158210129f, //2^(0.49/2)
175 1.11987160404675912501f }; //2^(0.49/3)
176 const float lim_bands_per_octave_warped = bands_warped[sbr->bs_limiter_bands - 1];
177 int16_t patch_borders[5];
178 uint16_t *in = sbr->f_tablelim + 1, *out = sbr->f_tablelim;
179
180 patch_borders[0] = sbr->kx[1];
181 for (k = 1; k <= sbr->num_patches; k++)
182 patch_borders[k] = patch_borders[k-1] + sbr->patch_num_subbands[k-1];
183
184 memcpy(sbr->f_tablelim, sbr->f_tablelow,
185 (sbr->n[0] + 1) * sizeof(sbr->f_tablelow[0]));
186 if (sbr->num_patches > 1)
187 memcpy(sbr->f_tablelim + sbr->n[0] + 1, patch_borders + 1,
188 (sbr->num_patches - 1) * sizeof(patch_borders[0]));
189
190 qsort(sbr->f_tablelim, sbr->num_patches + sbr->n[0],
191 sizeof(sbr->f_tablelim[0]),
192 qsort_comparison_function_int16);
193
194 sbr->n_lim = sbr->n[0] + sbr->num_patches - 1;
195 while (out < sbr->f_tablelim + sbr->n_lim) {
196 if (*in >= *out * lim_bands_per_octave_warped) {
197 *++out = *in++;
198 } else if (*in == *out ||
199 !in_table_int16(patch_borders, sbr->num_patches, *in)) {
200 in++;
201 sbr->n_lim--;
202 } else if (!in_table_int16(patch_borders, sbr->num_patches, *out)) {
203 *out = *in++;
204 sbr->n_lim--;
205 } else {
206 *++out = *in++;
207 }
208 }
209 } else {
210 sbr->f_tablelim[0] = sbr->f_tablelow[0];
211 sbr->f_tablelim[1] = sbr->f_tablelow[sbr->n[0]];
212 sbr->n_lim = 1;
213 }
214}
215
216static unsigned int read_sbr_header(SpectralBandReplication *sbr, GetBitContext *gb)
217{
218 unsigned int cnt = get_bits_count(gb);
219 uint8_t bs_header_extra_1;
220 uint8_t bs_header_extra_2;
221 int old_bs_limiter_bands = sbr->bs_limiter_bands;
222 SpectrumParameters old_spectrum_params;
223
224 sbr->start = 1;
225
226 // Save last spectrum parameters variables to compare to new ones
227 memcpy(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters));
228
229 sbr->bs_amp_res_header = get_bits1(gb);
230 sbr->spectrum_params.bs_start_freq = get_bits(gb, 4);
231 sbr->spectrum_params.bs_stop_freq = get_bits(gb, 4);
232 sbr->spectrum_params.bs_xover_band = get_bits(gb, 3);
233 skip_bits(gb, 2); // bs_reserved
234
235 bs_header_extra_1 = get_bits1(gb);
236 bs_header_extra_2 = get_bits1(gb);
237
238 if (bs_header_extra_1) {
239 sbr->spectrum_params.bs_freq_scale = get_bits(gb, 2);
240 sbr->spectrum_params.bs_alter_scale = get_bits1(gb);
241 sbr->spectrum_params.bs_noise_bands = get_bits(gb, 2);
242 } else {
243 sbr->spectrum_params.bs_freq_scale = 2;
244 sbr->spectrum_params.bs_alter_scale = 1;
245 sbr->spectrum_params.bs_noise_bands = 2;
246 }
247
248 // Check if spectrum parameters changed
249 if (memcmp(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters)))
250 sbr->reset = 1;
251
252 if (bs_header_extra_2) {
253 sbr->bs_limiter_bands = get_bits(gb, 2);
254 sbr->bs_limiter_gains = get_bits(gb, 2);
255 sbr->bs_interpol_freq = get_bits1(gb);
256 sbr->bs_smoothing_mode = get_bits1(gb);
257 } else {
258 sbr->bs_limiter_bands = 2;
259 sbr->bs_limiter_gains = 2;
260 sbr->bs_interpol_freq = 1;
261 sbr->bs_smoothing_mode = 1;
262 }
263
264 if (sbr->bs_limiter_bands != old_bs_limiter_bands && !sbr->reset)
265 sbr_make_f_tablelim(sbr);
266
267 return get_bits_count(gb) - cnt;
268}
269
270static int array_min_int16(const int16_t *array, int nel)
271{
272 int i, min = array[0];
273 for (i = 1; i < nel; i++)
274 min = FFMIN(array[i], min);
275 return min;
276}
277
278static void make_bands(int16_t* bands, int start, int stop, int num_bands)
279{
280 int k, previous, present;
281 float base, prod;
282
283 base = powf((float)stop / start, 1.0f / num_bands);
284 prod = start;
285 previous = start;
286
287 for (k = 0; k < num_bands-1; k++) {
288 prod *= base;
289 present = lrintf(prod);
290 bands[k] = present - previous;
291 previous = present;
292 }
293 bands[num_bands-1] = stop - previous;
294}
295
296static int check_n_master(AVCodecContext *avccontext, int n_master, int bs_xover_band)
297{
298 // Requirements (14496-3 sp04 p205)
299 if (n_master <= 0) {
300 av_log(avccontext, AV_LOG_ERROR, "Invalid n_master: %d\n", n_master);
301 return -1;
302 }
303 if (bs_xover_band >= n_master) {
304 av_log(avccontext, AV_LOG_ERROR,
305 "Invalid bitstream, crossover band index beyond array bounds: %d\n",
306 bs_xover_band);
307 return -1;
308 }
309 return 0;
310}
311
312/// Master Frequency Band Table (14496-3 sp04 p194)
313static int sbr_make_f_master(AACContext *ac, SpectralBandReplication *sbr,
314 SpectrumParameters *spectrum)
315{
316 unsigned int temp, max_qmf_subbands;
317 unsigned int start_min, stop_min;
318 int k;
319 const int8_t *sbr_offset_ptr;
320 int16_t stop_dk[13];
321
322 if (sbr->sample_rate < 32000) {
323 temp = 3000;
324 } else if (sbr->sample_rate < 64000) {
325 temp = 4000;
326 } else
327 temp = 5000;
328
329 start_min = ((temp << 7) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
330 stop_min = ((temp << 8) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
331
332 switch (sbr->sample_rate) {
333 case 16000:
334 sbr_offset_ptr = sbr_offset[0];
335 break;
336 case 22050:
337 sbr_offset_ptr = sbr_offset[1];
338 break;
339 case 24000:
340 sbr_offset_ptr = sbr_offset[2];
341 break;
342 case 32000:
343 sbr_offset_ptr = sbr_offset[3];
344 break;
345 case 44100: case 48000: case 64000:
346 sbr_offset_ptr = sbr_offset[4];
347 break;
348 case 88200: case 96000: case 128000: case 176400: case 192000:
349 sbr_offset_ptr = sbr_offset[5];
350 break;
351 default:
352 av_log(ac->avccontext, AV_LOG_ERROR,
353 "Unsupported sample rate for SBR: %d\n", sbr->sample_rate);
354 return -1;
355 }
356
357 sbr->k[0] = start_min + sbr_offset_ptr[spectrum->bs_start_freq];
358
359 if (spectrum->bs_stop_freq < 14) {
360 sbr->k[2] = stop_min;
361 make_bands(stop_dk, stop_min, 64, 13);
362 qsort(stop_dk, 13, sizeof(stop_dk[0]), qsort_comparison_function_int16);
363 for (k = 0; k < spectrum->bs_stop_freq; k++)
364 sbr->k[2] += stop_dk[k];
365 } else if (spectrum->bs_stop_freq == 14) {
366 sbr->k[2] = 2*sbr->k[0];
367 } else if (spectrum->bs_stop_freq == 15) {
368 sbr->k[2] = 3*sbr->k[0];
369 } else {
370 av_log(ac->avccontext, AV_LOG_ERROR,
371 "Invalid bs_stop_freq: %d\n", spectrum->bs_stop_freq);
372 return -1;
373 }
374 sbr->k[2] = FFMIN(64, sbr->k[2]);
375
376 // Requirements (14496-3 sp04 p205)
377 if (sbr->sample_rate <= 32000) {
378 max_qmf_subbands = 48;
379 } else if (sbr->sample_rate == 44100) {
380 max_qmf_subbands = 35;
381 } else if (sbr->sample_rate >= 48000)
382 max_qmf_subbands = 32;
383
384 if (sbr->k[2] - sbr->k[0] > max_qmf_subbands) {
385 av_log(ac->avccontext, AV_LOG_ERROR,
386 "Invalid bitstream, too many QMF subbands: %d\n", sbr->k[2] - sbr->k[0]);
387 return -1;
388 }
389
390 if (!spectrum->bs_freq_scale) {
391 unsigned int dk;
392 int k2diff;
393
394 dk = spectrum->bs_alter_scale + 1;
395 sbr->n_master = ((sbr->k[2] - sbr->k[0] + (dk&2)) >> dk) << 1;
396 if (check_n_master(ac->avccontext, sbr->n_master, sbr->spectrum_params.bs_xover_band))
397 return -1;
398
399 for (k = 1; k <= sbr->n_master; k++)
400 sbr->f_master[k] = dk;
401
402 k2diff = sbr->k[2] - sbr->k[0] - sbr->n_master * dk;
403 if (k2diff < 0) {
404 sbr->f_master[1]--;
405 sbr->f_master[2]-= (k2diff < 1);
406 } else if (k2diff) {
407 sbr->f_master[sbr->n_master]++;
408 }
409
410 sbr->f_master[0] = sbr->k[0];
411 for (k = 1; k <= sbr->n_master; k++)
412 sbr->f_master[k] += sbr->f_master[k - 1];
413
414 } else {
415 int half_bands = 7 - spectrum->bs_freq_scale; // bs_freq_scale = {1,2,3}
416 int two_regions, num_bands_0;
417 int vdk0_max, vdk1_min;
418 int16_t vk0[49];
419
420 if (49 * sbr->k[2] > 110 * sbr->k[0]) {
421 two_regions = 1;
422 sbr->k[1] = 2 * sbr->k[0];
423 } else {
424 two_regions = 0;
425 sbr->k[1] = sbr->k[2];
426 }
427
428 num_bands_0 = lrintf(half_bands * log2f(sbr->k[1] / (float)sbr->k[0])) * 2;
429
430 if (num_bands_0 <= 0) { // Requirements (14496-3 sp04 p205)
431 av_log(ac->avccontext, AV_LOG_ERROR, "Invalid num_bands_0: %d\n", num_bands_0);
432 return -1;
433 }
434
435 vk0[0] = 0;
436
437 make_bands(vk0+1, sbr->k[0], sbr->k[1], num_bands_0);
438
439 qsort(vk0 + 1, num_bands_0, sizeof(vk0[1]), qsort_comparison_function_int16);
440 vdk0_max = vk0[num_bands_0];
441
442 vk0[0] = sbr->k[0];
443 for (k = 1; k <= num_bands_0; k++) {
444 if (vk0[k] <= 0) { // Requirements (14496-3 sp04 p205)
445 av_log(ac->avccontext, AV_LOG_ERROR, "Invalid vDk0[%d]: %d\n", k, vk0[k]);
446 return -1;
447 }
448 vk0[k] += vk0[k-1];
449 }
450
451 if (two_regions) {
452 int16_t vk1[49];
453 float invwarp = spectrum->bs_alter_scale ? 0.76923076923076923077f
454 : 1.0f; // bs_alter_scale = {0,1}
455 int num_bands_1 = lrintf(half_bands * invwarp *
456 log2f(sbr->k[2] / (float)sbr->k[1])) * 2;
457
458 make_bands(vk1+1, sbr->k[1], sbr->k[2], num_bands_1);
459
460 vdk1_min = array_min_int16(vk1 + 1, num_bands_1);
461
462 if (vdk1_min < vdk0_max) {
463 int change;
464 qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
465 change = FFMIN(vdk0_max - vk1[1], (vk1[num_bands_1] - vk1[1]) >> 1);
466 vk1[1] += change;
467 vk1[num_bands_1] -= change;
468 }
469
470 qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
471
472 vk1[0] = sbr->k[1];
473 for (k = 1; k <= num_bands_1; k++) {
474 if (vk1[k] <= 0) { // Requirements (14496-3 sp04 p205)
475 av_log(ac->avccontext, AV_LOG_ERROR, "Invalid vDk1[%d]: %d\n", k, vk1[k]);
476 return -1;
477 }
478 vk1[k] += vk1[k-1];
479 }
480
481 sbr->n_master = num_bands_0 + num_bands_1;
482 if (check_n_master(ac->avccontext, sbr->n_master, sbr->spectrum_params.bs_xover_band))
483 return -1;
484 memcpy(&sbr->f_master[0], vk0,
485 (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
486 memcpy(&sbr->f_master[num_bands_0 + 1], vk1 + 1,
487 num_bands_1 * sizeof(sbr->f_master[0]));
488
489 } else {
490 sbr->n_master = num_bands_0;
491 if (check_n_master(ac->avccontext, sbr->n_master, sbr->spectrum_params.bs_xover_band))
492 return -1;
493 memcpy(sbr->f_master, vk0, (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
494 }
495 }
496
497 return 0;
498}
499
500/// High Frequency Generation - Patch Construction (14496-3 sp04 p216 fig. 4.46)
501static int sbr_hf_calc_npatches(AACContext *ac, SpectralBandReplication *sbr)
502{
503 int i, k, sb = 0;
504 int msb = sbr->k[0];
505 int usb = sbr->kx[1];
506 int goal_sb = ((1000 << 11) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
507
508 sbr->num_patches = 0;
509
510 if (goal_sb < sbr->kx[1] + sbr->m[1]) {
511 for (k = 0; sbr->f_master[k] < goal_sb; k++) ;
512 } else
513 k = sbr->n_master;
514
515 do {
516 int odd = 0;
517 for (i = k; i == k || sb > (sbr->k[0] - 1 + msb - odd); i--) {
518 sb = sbr->f_master[i];
519 odd = (sb + sbr->k[0]) & 1;
520 }
521
522 sbr->patch_num_subbands[sbr->num_patches] = FFMAX(sb - usb, 0);
523 sbr->patch_start_subband[sbr->num_patches] = sbr->k[0] - odd - sbr->patch_num_subbands[sbr->num_patches];
524
525 if (sbr->patch_num_subbands[sbr->num_patches] > 0) {
526 usb = sb;
527 msb = sb;
528 sbr->num_patches++;
529 } else
530 msb = sbr->kx[1];
531
532 if (sbr->f_master[k] - sb < 3)
533 k = sbr->n_master;
534 } while (sb != sbr->kx[1] + sbr->m[1]);
535
536 if (sbr->patch_num_subbands[sbr->num_patches-1] < 3 && sbr->num_patches > 1)
537 sbr->num_patches--;
538
539 // Requirements (14496-3 sp04 p205) sets the maximum number of patches to 5
540 // However the Coding Technologies decoder check uses 6 patches
541 if (sbr->num_patches > 6) {
542 av_log(ac->avccontext, AV_LOG_ERROR, "Too many patches: %d\n", sbr->num_patches);
543 return -1;
544 }
545
546 return 0;
547}
548
549/// Derived Frequency Band Tables (14496-3 sp04 p197)
550static int sbr_make_f_derived(AACContext *ac, SpectralBandReplication *sbr)
551{
552 int k, temp;
553
554 sbr->n[1] = sbr->n_master - sbr->spectrum_params.bs_xover_band;
555 sbr->n[0] = (sbr->n[1] + 1) >> 1;
556
557 memcpy(sbr->f_tablehigh, &sbr->f_master[sbr->spectrum_params.bs_xover_band],
558 (sbr->n[1] + 1) * sizeof(sbr->f_master[0]));
559 sbr->m[1] = sbr->f_tablehigh[sbr->n[1]] - sbr->f_tablehigh[0];
560 sbr->kx[1] = sbr->f_tablehigh[0];
561
562 // Requirements (14496-3 sp04 p205)
563 if (sbr->kx[1] + sbr->m[1] > 64) {
564 av_log(ac->avccontext, AV_LOG_ERROR,
565 "Stop frequency border too high: %d\n", sbr->kx[1] + sbr->m[1]);
566 return -1;
567 }
568 if (sbr->kx[1] > 32) {
569 av_log(ac->avccontext, AV_LOG_ERROR, "Start frequency border too high: %d\n", sbr->kx[1]);
570 return -1;
571 }
572
573 sbr->f_tablelow[0] = sbr->f_tablehigh[0];
574 temp = sbr->n[1] & 1;
575 for (k = 1; k <= sbr->n[0]; k++)
576 sbr->f_tablelow[k] = sbr->f_tablehigh[2 * k - temp];
577
578 sbr->n_q = FFMAX(1, lrintf(sbr->spectrum_params.bs_noise_bands *
579 log2f(sbr->k[2] / (float)sbr->kx[1]))); // 0 <= bs_noise_bands <= 3
580 if (sbr->n_q > 5) {
581 av_log(ac->avccontext, AV_LOG_ERROR, "Too many noise floor scale factors: %d\n", sbr->n_q);
582 return -1;
583 }
584
585 sbr->f_tablenoise[0] = sbr->f_tablelow[0];
586 temp = 0;
587 for (k = 1; k <= sbr->n_q; k++) {
588 temp += (sbr->n[0] - temp) / (sbr->n_q + 1 - k);
589 sbr->f_tablenoise[k] = sbr->f_tablelow[temp];
590 }
591
592 if (sbr_hf_calc_npatches(ac, sbr) < 0)
593 return -1;
594
595 sbr_make_f_tablelim(sbr);
596
597 sbr->data[0].f_indexnoise = 0;
598 sbr->data[1].f_indexnoise = 0;
599
600 return 0;
601}
602
603static av_always_inline void get_bits1_vector(GetBitContext *gb, uint8_t *vec,
604 int elements)
605{
606 int i;
607 for (i = 0; i < elements; i++) {
608 vec[i] = get_bits1(gb);
609 }
610}
611
612/** ceil(log2(index+1)) */
613static const int8_t ceil_log2[] = {
614 0, 1, 2, 2, 3, 3,
615};
616
617static int read_sbr_grid(AACContext *ac, SpectralBandReplication *sbr,
618 GetBitContext *gb, SBRData *ch_data)
619{
620 int i;
79350786
AC
621 unsigned bs_pointer;
622 int abs_bord_lead = 0;
623 // frameLengthFlag ? 15 : 16; 960 sample length frames unsupported; this value is numTimeSlots
624 int abs_bord_trail = 16;
625 int num_rel_lead, num_rel_trail;
626 uint8_t bs_rel_bord[2][3];
ed492b61
AC
627
628 ch_data->bs_freq_res[0] = ch_data->bs_freq_res[ch_data->bs_num_env[1]];
629 ch_data->bs_num_env[0] = ch_data->bs_num_env[1];
630 ch_data->bs_amp_res = sbr->bs_amp_res_header;
631
632 switch (ch_data->bs_frame_class = get_bits(gb, 2)) {
633 case FIXFIX:
634 ch_data->bs_num_env[1] = 1 << get_bits(gb, 2);
79350786 635 num_rel_lead = ch_data->bs_num_env[1] - 1;
ed492b61
AC
636 if (ch_data->bs_num_env[1] == 1)
637 ch_data->bs_amp_res = 0;
638
ed1d1129
AC
639 if (ch_data->bs_num_env[1] > 4) {
640 av_log(ac->avccontext, AV_LOG_ERROR,
641 "Invalid bitstream, too many SBR envelopes in FIXFIX type SBR frame: %d\n",
642 ch_data->bs_num_env[1]);
643 return -1;
644 }
645
79350786 646 bs_pointer = 0;
8a9ee4b1 647
ed492b61
AC
648 ch_data->bs_freq_res[1] = get_bits1(gb);
649 for (i = 1; i < ch_data->bs_num_env[1]; i++)
650 ch_data->bs_freq_res[i + 1] = ch_data->bs_freq_res[1];
651 break;
652 case FIXVAR:
79350786
AC
653 abs_bord_trail += get_bits(gb, 2);
654 num_rel_trail = get_bits(gb, 2);
655 num_rel_lead = 0;
656 ch_data->bs_num_env[1] = num_rel_trail + 1;
ed492b61 657
79350786
AC
658 for (i = 0; i < num_rel_trail; i++)
659 bs_rel_bord[1][i] = 2 * get_bits(gb, 2) + 2;
ed492b61 660
79350786 661 bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env[1]]);
ed492b61
AC
662
663 for (i = 0; i < ch_data->bs_num_env[1]; i++)
664 ch_data->bs_freq_res[ch_data->bs_num_env[1] - i] = get_bits1(gb);
665 break;
666 case VARFIX:
79350786
AC
667 abs_bord_lead = get_bits(gb, 2);
668 num_rel_lead = get_bits(gb, 2);
669 ch_data->bs_num_env[1] = num_rel_lead + 1;
ed492b61 670
79350786
AC
671 for (i = 0; i < num_rel_lead; i++)
672 bs_rel_bord[0][i] = 2 * get_bits(gb, 2) + 2;
ed492b61 673
79350786 674 bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env[1]]);
ed492b61
AC
675
676 get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env[1]);
677 break;
678 case VARVAR:
79350786
AC
679 abs_bord_lead = get_bits(gb, 2);
680 abs_bord_trail += get_bits(gb, 2);
681 num_rel_lead = get_bits(gb, 2);
682 num_rel_trail = get_bits(gb, 2);
683 ch_data->bs_num_env[1] = num_rel_lead + num_rel_trail + 1;
ed492b61 684
ed1d1129
AC
685 if (ch_data->bs_num_env[1] > 5) {
686 av_log(ac->avccontext, AV_LOG_ERROR,
687 "Invalid bitstream, too many SBR envelopes in VARVAR type SBR frame: %d\n",
688 ch_data->bs_num_env[1]);
689 return -1;
690 }
691
79350786
AC
692 for (i = 0; i < num_rel_lead; i++)
693 bs_rel_bord[0][i] = 2 * get_bits(gb, 2) + 2;
694 for (i = 0; i < num_rel_trail; i++)
695 bs_rel_bord[1][i] = 2 * get_bits(gb, 2) + 2;
ed492b61 696
79350786 697 bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env[1]]);
ed492b61
AC
698
699 get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env[1]);
700 break;
701 }
702
79350786 703 if (bs_pointer > ch_data->bs_num_env[1] + 1) {
8a9ee4b1
AC
704 av_log(ac->avccontext, AV_LOG_ERROR,
705 "Invalid bitstream, bs_pointer points to a middle noise border outside the time borders table: %d\n",
79350786 706 bs_pointer);
b9c3e3b6
AC
707 return -1;
708 }
709
710 ch_data->t_env_num_env_old = ch_data->t_env[ch_data->bs_num_env[0]];
711 ch_data->t_env[0] = abs_bord_lead;
712 ch_data->t_env[ch_data->bs_num_env[1]] = abs_bord_trail;
713
714 if (ch_data->bs_frame_class == FIXFIX) {
715 int temp = (abs_bord_trail + (ch_data->bs_num_env[1] >> 1)) /
716 ch_data->bs_num_env[1];
79350786 717 for (i = 0; i < num_rel_lead; i++)
b9c3e3b6
AC
718 ch_data->t_env[i + 1] = ch_data->t_env[i] + temp;
719 } else if (ch_data->bs_frame_class > 1) { // VARFIX or VARVAR
79350786
AC
720 for (i = 0; i < num_rel_lead; i++)
721 ch_data->t_env[i + 1] = ch_data->t_env[i] + bs_rel_bord[0][i];
b9c3e3b6
AC
722 }
723
724 if (ch_data->bs_frame_class & 1) { // FIXVAR or VARVAR
79350786 725 for (i = ch_data->bs_num_env[1] - 1; i > num_rel_lead; i--)
b9c3e3b6 726 ch_data->t_env[i] = ch_data->t_env[i + 1] -
79350786 727 bs_rel_bord[1][ch_data->bs_num_env[1] - 1 - i];
b9c3e3b6
AC
728 }
729
ed492b61
AC
730 ch_data->bs_num_noise = (ch_data->bs_num_env[1] > 1) + 1;
731
b9c3e3b6 732 ch_data->t_q[0] = ch_data->t_env[0];
afd96c34 733 if (ch_data->bs_num_noise > 1) {
b9c3e3b6
AC
734 unsigned int idx;
735 if (ch_data->bs_frame_class == FIXFIX) {
736 idx = ch_data->bs_num_env[1] >> 1;
737 } else if (ch_data->bs_frame_class & 1) { // FIXVAR or VARVAR
79350786 738 idx = ch_data->bs_num_env[1] - FFMAX(bs_pointer - 1, 1);
b9c3e3b6 739 } else { // VARFIX
79350786 740 if (!bs_pointer)
b9c3e3b6 741 idx = 1;
79350786 742 else if (bs_pointer == 1)
b9c3e3b6
AC
743 idx = ch_data->bs_num_env[1] - 1;
744 else // bs_pointer > 1
79350786 745 idx = bs_pointer - 1;
b9c3e3b6
AC
746 }
747 ch_data->t_q[1] = ch_data->t_env[idx];
748 ch_data->t_q[2] = ch_data->t_env[ch_data->bs_num_env[1]];
749 } else
750 ch_data->t_q[1] = ch_data->t_env[ch_data->bs_num_env[1]];
751
7333f849
AC
752 ch_data->e_a[0] = -(ch_data->e_a[1] != ch_data->bs_num_env[0]); // l_APrev
753 ch_data->e_a[1] = -1;
79350786
AC
754 if ((ch_data->bs_frame_class & 1) && bs_pointer) { // FIXVAR or VARVAR and bs_pointer != 0
755 ch_data->e_a[1] = ch_data->bs_num_env[1] + 1 - bs_pointer;
756 } else if ((ch_data->bs_frame_class == 2) && (bs_pointer > 1)) // VARFIX and bs_pointer > 1
757 ch_data->e_a[1] = bs_pointer - 1;
7333f849 758
ed492b61
AC
759 return 0;
760}
761
762static void copy_sbr_grid(SBRData *dst, const SBRData *src) {
763 //These variables are saved from the previous frame rather than copied
764 dst->bs_freq_res[0] = dst->bs_freq_res[dst->bs_num_env[1]];
765 dst->bs_num_env[0] = dst->bs_num_env[1];
b9c3e3b6 766 dst->t_env_num_env_old = dst->t_env[dst->bs_num_env[0]];
7333f849 767 dst->e_a[0] = -(dst->e_a[1] != dst->bs_num_env[0]);
ed492b61
AC
768
769 //These variables are read from the bitstream and therefore copied
770 memcpy(dst->bs_freq_res+1, src->bs_freq_res+1, sizeof(dst->bs_freq_res)-sizeof(*dst->bs_freq_res));
771 memcpy(dst->bs_num_env+1, src->bs_num_env+1, sizeof(dst->bs_num_env)- sizeof(*dst->bs_num_env));
b9c3e3b6
AC
772 memcpy(dst->t_env, src->t_env, sizeof(dst->t_env));
773 memcpy(dst->t_q, src->t_q, sizeof(dst->t_q));
ed492b61
AC
774 dst->bs_amp_res = src->bs_amp_res;
775 dst->bs_num_noise = src->bs_num_noise;
ed492b61 776 dst->bs_frame_class = src->bs_frame_class;
7333f849 777 dst->e_a[1] = src->e_a[1];
ed492b61
AC
778}
779
780/// Read how the envelope and noise floor data is delta coded
781static void read_sbr_dtdf(SpectralBandReplication *sbr, GetBitContext *gb,
782 SBRData *ch_data)
783{
784 get_bits1_vector(gb, ch_data->bs_df_env, ch_data->bs_num_env[1]);
785 get_bits1_vector(gb, ch_data->bs_df_noise, ch_data->bs_num_noise);
786}
787
788/// Read inverse filtering data
789static void read_sbr_invf(SpectralBandReplication *sbr, GetBitContext *gb,
790 SBRData *ch_data)
791{
792 int i;
793
794 memcpy(ch_data->bs_invf_mode[1], ch_data->bs_invf_mode[0], 5 * sizeof(uint8_t));
795 for (i = 0; i < sbr->n_q; i++)
796 ch_data->bs_invf_mode[0][i] = get_bits(gb, 2);
797}
798
799static void read_sbr_envelope(SpectralBandReplication *sbr, GetBitContext *gb,
800 SBRData *ch_data, int ch)
801{
802 int bits;
803 int i, j, k;
804 VLC_TYPE (*t_huff)[2], (*f_huff)[2];
805 int t_lav, f_lav;
806 const int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
807 const int odd = sbr->n[1] & 1;
808
809 if (sbr->bs_coupling && ch) {
810 if (ch_data->bs_amp_res) {
811 bits = 5;
812 t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_3_0DB].table;
813 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_3_0DB];
814 f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
815 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
816 } else {
817 bits = 6;
818 t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_1_5DB].table;
819 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_1_5DB];
820 f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_1_5DB].table;
821 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_1_5DB];
822 }
823 } else {
824 if (ch_data->bs_amp_res) {
825 bits = 6;
826 t_huff = vlc_sbr[T_HUFFMAN_ENV_3_0DB].table;
827 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_3_0DB];
828 f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
829 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
830 } else {
831 bits = 7;
832 t_huff = vlc_sbr[T_HUFFMAN_ENV_1_5DB].table;
833 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_1_5DB];
834 f_huff = vlc_sbr[F_HUFFMAN_ENV_1_5DB].table;
835 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_1_5DB];
836 }
837 }
838
839 for (i = 0; i < ch_data->bs_num_env[1]; i++) {
840 if (ch_data->bs_df_env[i]) {
841 // bs_freq_res[0] == bs_freq_res[bs_num_env[1]] from prev frame
842 if (ch_data->bs_freq_res[i + 1] == ch_data->bs_freq_res[i]) {
843 for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
844 ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
845 } else if (ch_data->bs_freq_res[i + 1]) {
846 for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
847 k = (j + odd) >> 1; // find k such that f_tablelow[k] <= f_tablehigh[j] < f_tablelow[k + 1]
848 ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
849 }
850 } else {
851 for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
852 k = j ? 2*j - odd : 0; // find k such that f_tablehigh[k] == f_tablelow[j]
853 ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
854 }
855 }
856 } else {
857 ch_data->env_facs[i + 1][0] = delta * get_bits(gb, bits); // bs_env_start_value_balance
858 for (j = 1; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
859 ch_data->env_facs[i + 1][j] = ch_data->env_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
860 }
861 }
862
863 //assign 0th elements of env_facs from last elements
864 memcpy(ch_data->env_facs[0], ch_data->env_facs[ch_data->bs_num_env[1]],
865 sizeof(ch_data->env_facs[0]));
866}
867
868static void read_sbr_noise(SpectralBandReplication *sbr, GetBitContext *gb,
869 SBRData *ch_data, int ch)
870{
871 int i, j;
872 VLC_TYPE (*t_huff)[2], (*f_huff)[2];
873 int t_lav, f_lav;
874 int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
875
876 if (sbr->bs_coupling && ch) {
877 t_huff = vlc_sbr[T_HUFFMAN_NOISE_BAL_3_0DB].table;
878 t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_BAL_3_0DB];
879 f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
880 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
881 } else {
882 t_huff = vlc_sbr[T_HUFFMAN_NOISE_3_0DB].table;
883 t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_3_0DB];
884 f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
885 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
886 }
887
888 for (i = 0; i < ch_data->bs_num_noise; i++) {
889 if (ch_data->bs_df_noise[i]) {
890 for (j = 0; j < sbr->n_q; j++)
891 ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 2) - t_lav);
892 } else {
893 ch_data->noise_facs[i + 1][0] = delta * get_bits(gb, 5); // bs_noise_start_value_balance or bs_noise_start_value_level
894 for (j = 1; j < sbr->n_q; j++)
895 ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
896 }
897 }
898
899 //assign 0th elements of noise_facs from last elements
900 memcpy(ch_data->noise_facs[0], ch_data->noise_facs[ch_data->bs_num_noise],
901 sizeof(ch_data->noise_facs[0]));
902}
903
904static void read_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
905 GetBitContext *gb,
906 int bs_extension_id, int *num_bits_left)
907{
908//TODO - implement ps_data for parametric stereo parsing
909 switch (bs_extension_id) {
910 case EXTENSION_ID_PS:
911#if 0
912 *num_bits_left -= ff_ps_data(gb, ps);
913#else
914 av_log_missing_feature(ac->avccontext, "Parametric Stereo is", 0);
915 skip_bits_long(gb, *num_bits_left); // bs_fill_bits
916 *num_bits_left = 0;
917#endif
918 break;
919 default:
920 av_log_missing_feature(ac->avccontext, "Reserved SBR extensions are", 1);
921 skip_bits_long(gb, *num_bits_left); // bs_fill_bits
922 *num_bits_left = 0;
923 break;
924 }
925}
926
58b1cba0 927static int read_sbr_single_channel_element(AACContext *ac,
ed492b61
AC
928 SpectralBandReplication *sbr,
929 GetBitContext *gb)
930{
931 if (get_bits1(gb)) // bs_data_extra
932 skip_bits(gb, 4); // bs_reserved
933
58b1cba0
AC
934 if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
935 return -1;
ed492b61
AC
936 read_sbr_dtdf(sbr, gb, &sbr->data[0]);
937 read_sbr_invf(sbr, gb, &sbr->data[0]);
938 read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
939 read_sbr_noise(sbr, gb, &sbr->data[0], 0);
940
941 if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
942 get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
bf3d904c
AC
943
944 return 0;
ed492b61
AC
945}
946
58b1cba0 947static int read_sbr_channel_pair_element(AACContext *ac,
ed492b61
AC
948 SpectralBandReplication *sbr,
949 GetBitContext *gb)
950{
951 if (get_bits1(gb)) // bs_data_extra
952 skip_bits(gb, 8); // bs_reserved
953
954 if ((sbr->bs_coupling = get_bits1(gb))) {
58b1cba0
AC
955 if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
956 return -1;
ed492b61
AC
957 copy_sbr_grid(&sbr->data[1], &sbr->data[0]);
958 read_sbr_dtdf(sbr, gb, &sbr->data[0]);
959 read_sbr_dtdf(sbr, gb, &sbr->data[1]);
960 read_sbr_invf(sbr, gb, &sbr->data[0]);
961 memcpy(sbr->data[1].bs_invf_mode[1], sbr->data[1].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
962 memcpy(sbr->data[1].bs_invf_mode[0], sbr->data[0].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
963 read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
964 read_sbr_noise(sbr, gb, &sbr->data[0], 0);
965 read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
966 read_sbr_noise(sbr, gb, &sbr->data[1], 1);
967 } else {
58b1cba0
AC
968 if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]) ||
969 read_sbr_grid(ac, sbr, gb, &sbr->data[1]))
970 return -1;
ed492b61
AC
971 read_sbr_dtdf(sbr, gb, &sbr->data[0]);
972 read_sbr_dtdf(sbr, gb, &sbr->data[1]);
973 read_sbr_invf(sbr, gb, &sbr->data[0]);
974 read_sbr_invf(sbr, gb, &sbr->data[1]);
975 read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
976 read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
977 read_sbr_noise(sbr, gb, &sbr->data[0], 0);
978 read_sbr_noise(sbr, gb, &sbr->data[1], 1);
979 }
980
981 if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
982 get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
983 if ((sbr->data[1].bs_add_harmonic_flag = get_bits1(gb)))
984 get_bits1_vector(gb, sbr->data[1].bs_add_harmonic, sbr->n[1]);
bf3d904c
AC
985
986 return 0;
ed492b61
AC
987}
988
989static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr,
990 GetBitContext *gb, int id_aac)
991{
992 unsigned int cnt = get_bits_count(gb);
993
994 if (id_aac == TYPE_SCE || id_aac == TYPE_CCE) {
58b1cba0
AC
995 if (read_sbr_single_channel_element(ac, sbr, gb)) {
996 sbr->start = 0;
997 return get_bits_count(gb) - cnt;
998 }
ed492b61 999 } else if (id_aac == TYPE_CPE) {
58b1cba0
AC
1000 if (read_sbr_channel_pair_element(ac, sbr, gb)) {
1001 sbr->start = 0;
1002 return get_bits_count(gb) - cnt;
1003 }
ed492b61
AC
1004 } else {
1005 av_log(ac->avccontext, AV_LOG_ERROR,
1006 "Invalid bitstream - cannot apply SBR to element type %d\n", id_aac);
1007 sbr->start = 0;
1008 return get_bits_count(gb) - cnt;
1009 }
1010 if (get_bits1(gb)) { // bs_extended_data
1011 int num_bits_left = get_bits(gb, 4); // bs_extension_size
1012 if (num_bits_left == 15)
1013 num_bits_left += get_bits(gb, 8); // bs_esc_count
1014
1015 num_bits_left <<= 3;
1016 while (num_bits_left > 7) {
1017 num_bits_left -= 2;
1018 read_sbr_extension(ac, sbr, gb, get_bits(gb, 2), &num_bits_left); // bs_extension_id
1019 }
1020 }
1021
1022 return get_bits_count(gb) - cnt;
1023}
1024
1025static void sbr_reset(AACContext *ac, SpectralBandReplication *sbr)
1026{
1027 int err;
1028 err = sbr_make_f_master(ac, sbr, &sbr->spectrum_params);
1029 if (err >= 0)
1030 err = sbr_make_f_derived(ac, sbr);
1031 if (err < 0) {
1032 av_log(ac->avccontext, AV_LOG_ERROR,
1033 "SBR reset failed. Switching SBR to pure upsampling mode.\n");
1034 sbr->start = 0;
1035 }
1036}
1037
1038/**
1039 * Decode Spectral Band Replication extension data; reference: table 4.55.
1040 *
1041 * @param crc flag indicating the presence of CRC checksum
1042 * @param cnt length of TYPE_FIL syntactic element in bytes
1043 *
1044 * @return Returns number of bytes consumed from the TYPE_FIL element.
1045 */
1046int ff_decode_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
1047 GetBitContext *gb_host, int crc, int cnt, int id_aac)
1048{
1049 unsigned int num_sbr_bits = 0, num_align_bits;
1050 unsigned bytes_read;
1051 GetBitContext gbc = *gb_host, *gb = &gbc;
1052 skip_bits_long(gb_host, cnt*8 - 4);
1053
1054 sbr->reset = 0;
1055
1056 if (!sbr->sample_rate)
1057 sbr->sample_rate = 2 * ac->m4ac.sample_rate; //TODO use the nominal sample rate for arbitrary sample rate support
1058 if (!ac->m4ac.ext_sample_rate)
1059 ac->m4ac.ext_sample_rate = 2 * ac->m4ac.sample_rate;
1060
1061 if (crc) {
1062 skip_bits(gb, 10); // bs_sbr_crc_bits; TODO - implement CRC check
1063 num_sbr_bits += 10;
1064 }
1065
1066 //Save some state from the previous frame.
1067 sbr->kx[0] = sbr->kx[1];
1068 sbr->m[0] = sbr->m[1];
1069
1070 num_sbr_bits++;
1071 if (get_bits1(gb)) // bs_header_flag
1072 num_sbr_bits += read_sbr_header(sbr, gb);
1073
1074 if (sbr->reset)
1075 sbr_reset(ac, sbr);
1076
1077 if (sbr->start)
1078 num_sbr_bits += read_sbr_data(ac, sbr, gb, id_aac);
1079
1080 num_align_bits = ((cnt << 3) - 4 - num_sbr_bits) & 7;
1081 bytes_read = ((num_sbr_bits + num_align_bits + 4) >> 3);
1082
1083 if (bytes_read > cnt) {
1084 av_log(ac->avccontext, AV_LOG_ERROR,
1085 "Expected to read %d SBR bytes actually read %d.\n", cnt, bytes_read);
1086 }
1087 return cnt;
1088}
1089
ed492b61
AC
1090/// Dequantization and stereo decoding (14496-3 sp04 p203)
1091static void sbr_dequant(SpectralBandReplication *sbr, int id_aac)
1092{
1093 int k, e;
1094 int ch;
1095
1096 if (id_aac == TYPE_CPE && sbr->bs_coupling) {
1097 float alpha = sbr->data[0].bs_amp_res ? 1.0f : 0.5f;
1098 float pan_offset = sbr->data[0].bs_amp_res ? 12.0f : 24.0f;
1099 for (e = 1; e <= sbr->data[0].bs_num_env[1]; e++) {
1100 for (k = 0; k < sbr->n[sbr->data[0].bs_freq_res[e]]; k++) {
1101 float temp1 = exp2f(sbr->data[0].env_facs[e][k] * alpha + 7.0f);
1102 float temp2 = exp2f((pan_offset - sbr->data[1].env_facs[e][k]) * alpha);
1103 float fac = temp1 / (1.0f + temp2);
1104 sbr->data[0].env_facs[e][k] = fac;
1105 sbr->data[1].env_facs[e][k] = fac * temp2;
1106 }
1107 }
1108 for (e = 1; e <= sbr->data[0].bs_num_noise; e++) {
1109 for (k = 0; k < sbr->n_q; k++) {
1110 float temp1 = exp2f(NOISE_FLOOR_OFFSET - sbr->data[0].noise_facs[e][k] + 1);
1111 float temp2 = exp2f(12 - sbr->data[1].noise_facs[e][k]);
1112 float fac = temp1 / (1.0f + temp2);
1113 sbr->data[0].noise_facs[e][k] = fac;
1114 sbr->data[1].noise_facs[e][k] = fac * temp2;
1115 }
1116 }
1117 } else { // SCE or one non-coupled CPE
1118 for (ch = 0; ch < (id_aac == TYPE_CPE) + 1; ch++) {
1119 float alpha = sbr->data[ch].bs_amp_res ? 1.0f : 0.5f;
1120 for (e = 1; e <= sbr->data[ch].bs_num_env[1]; e++)
1121 for (k = 0; k < sbr->n[sbr->data[ch].bs_freq_res[e]]; k++)
1122 sbr->data[ch].env_facs[e][k] =
1123 exp2f(alpha * sbr->data[ch].env_facs[e][k] + 6.0f);
1124 for (e = 1; e <= sbr->data[ch].bs_num_noise; e++)
1125 for (k = 0; k < sbr->n_q; k++)
1126 sbr->data[ch].noise_facs[e][k] =
1127 exp2f(NOISE_FLOOR_OFFSET - sbr->data[ch].noise_facs[e][k]);
1128 }
1129 }
1130}
1131
1132/**
1133 * Analysis QMF Bank (14496-3 sp04 p206)
1134 *
1135 * @param x pointer to the beginning of the first sample window
1136 * @param W array of complex-valued samples split into subbands
1137 */
1138static void sbr_qmf_analysis(DSPContext *dsp, RDFTContext *rdft, const float *in, float *x,
1139 float z[320], float W[2][32][32][2],
1140 float bias, float scale)
1141{
1142 int i, k;
1143 memcpy(W[0], W[1], sizeof(W[0]));
1144 memcpy(x , x+1024, (320-32)*sizeof(x[0]));
1145 if (scale != 1.0f || bias != 0.0f)
1146 for (i = 0; i < 1024; i++)
1147 x[288 + i] = (in[i] - bias) * scale;
1148 else
1149 memcpy(x+288, in, 1024*sizeof(*x));
1150 for (i = 0; i < 32; i++) { // numTimeSlots*RATE = 16*2 as 960 sample frames
1151 // are not supported
1152 float re, im;
1153 dsp->vector_fmul_reverse(z, sbr_qmf_window_ds, x, 320);
1154 for (k = 0; k < 64; k++) {
1155 float f = z[k] + z[k + 64] + z[k + 128] + z[k + 192] + z[k + 256];
1156 z[k] = f * analysis_cos_pre[k];
1157 z[k+64] = f;
1158 }
1159 ff_rdft_calc(rdft, z);
1160 re = z[0] * 0.5f;
1161 im = 0.5f * dsp->scalarproduct_float(z+64, analysis_sin_pre, 64);
1162 W[1][i][0][0] = re * analysis_cossin_post[0][0] - im * analysis_cossin_post[0][1];
1163 W[1][i][0][1] = re * analysis_cossin_post[0][1] + im * analysis_cossin_post[0][0];
1164 for (k = 1; k < 32; k++) {
1165 re = z[2*k ] - re;
1166 im = z[2*k+1] - im;
1167 W[1][i][k][0] = re * analysis_cossin_post[k][0] - im * analysis_cossin_post[k][1];
1168 W[1][i][k][1] = re * analysis_cossin_post[k][1] + im * analysis_cossin_post[k][0];
1169 }
1170 x += 32;
1171 }
1172}
1173
1174/**
1175 * Synthesis QMF Bank (14496-3 sp04 p206) and Downsampled Synthesis QMF Bank
1176 * (14496-3 sp04 p206)
1177 */
1178static void sbr_qmf_synthesis(DSPContext *dsp, FFTContext *mdct,
1179 float *out, float X[2][32][64],
1180 float mdct_buf[2][64],
1181 float *v0, int *v_off, const unsigned int div,
1182 float bias, float scale)
1183{
1184 int i, n;
1185 const float *sbr_qmf_window = div ? sbr_qmf_window_ds : sbr_qmf_window_us;
1186 int scale_and_bias = scale != 1.0f || bias != 0.0f;
1187 float *v;
1188 for (i = 0; i < 32; i++) {
1189 if (*v_off == 0) {
1190 int saved_samples = (1280 - 128) >> div;
1191 memcpy(&v0[SBR_SYNTHESIS_BUF_SIZE - saved_samples], v0, saved_samples * sizeof(float));
1192 *v_off = SBR_SYNTHESIS_BUF_SIZE - saved_samples - (128 >> div);
1193 } else {
1194 *v_off -= 128 >> div;
1195 }
1196 v = v0 + *v_off;
1197 for (n = 1; n < 64 >> div; n+=2) {
1198 X[1][i][n] = -X[1][i][n];
1199 }
1200 if (div) {
1201 memset(X[0][i]+32, 0, 32*sizeof(float));
1202 memset(X[1][i]+32, 0, 32*sizeof(float));
1203 }
1204 ff_imdct_half(mdct, mdct_buf[0], X[0][i]);
1205 ff_imdct_half(mdct, mdct_buf[1], X[1][i]);
1206 if (div) {
1207 for (n = 0; n < 32; n++) {
1208 v[ n] = -mdct_buf[0][63 - 2*n] + mdct_buf[1][2*n ];
1209 v[ 63 - n] = mdct_buf[0][62 - 2*n] + mdct_buf[1][2*n + 1];
1210 }
1211 } else {
1212 for (n = 0; n < 64; n++) {
1213 v[ n] = -mdct_buf[0][63 - n] + mdct_buf[1][ n ];
1214 v[127 - n] = mdct_buf[0][63 - n] + mdct_buf[1][ n ];
1215 }
1216 }
1217 dsp->vector_fmul_add(out, v , sbr_qmf_window , zero64, 64 >> div);
1218 dsp->vector_fmul_add(out, v + ( 192 >> div), sbr_qmf_window + ( 64 >> div), out , 64 >> div);
1219 dsp->vector_fmul_add(out, v + ( 256 >> div), sbr_qmf_window + (128 >> div), out , 64 >> div);
1220 dsp->vector_fmul_add(out, v + ( 448 >> div), sbr_qmf_window + (192 >> div), out , 64 >> div);
1221 dsp->vector_fmul_add(out, v + ( 512 >> div), sbr_qmf_window + (256 >> div), out , 64 >> div);
1222 dsp->vector_fmul_add(out, v + ( 704 >> div), sbr_qmf_window + (320 >> div), out , 64 >> div);
1223 dsp->vector_fmul_add(out, v + ( 768 >> div), sbr_qmf_window + (384 >> div), out , 64 >> div);
1224 dsp->vector_fmul_add(out, v + ( 960 >> div), sbr_qmf_window + (448 >> div), out , 64 >> div);
1225 dsp->vector_fmul_add(out, v + (1024 >> div), sbr_qmf_window + (512 >> div), out , 64 >> div);
1226 dsp->vector_fmul_add(out, v + (1216 >> div), sbr_qmf_window + (576 >> div), out , 64 >> div);
1227 if (scale_and_bias)
1228 for (n = 0; n < 64 >> div; n++)
1229 out[n] = out[n] * scale + bias;
1230 out += 64 >> div;
1231 }
1232}
1233
1234static void autocorrelate(const float x[40][2], float phi[3][2][2], int lag)
1235{
1236 int i;
1237 float real_sum = 0.0f;
1238 float imag_sum = 0.0f;
1239 if (lag) {
1240 for (i = 1; i < 38; i++) {
1241 real_sum += x[i][0] * x[i+lag][0] + x[i][1] * x[i+lag][1];
1242 imag_sum += x[i][0] * x[i+lag][1] - x[i][1] * x[i+lag][0];
1243 }
1244 phi[2-lag][1][0] = real_sum + x[ 0][0] * x[lag][0] + x[ 0][1] * x[lag][1];
1245 phi[2-lag][1][1] = imag_sum + x[ 0][0] * x[lag][1] - x[ 0][1] * x[lag][0];
1246 if (lag == 1) {
1247 phi[0][0][0] = real_sum + x[38][0] * x[39][0] + x[38][1] * x[39][1];
1248 phi[0][0][1] = imag_sum + x[38][0] * x[39][1] - x[38][1] * x[39][0];
1249 }
1250 } else {
1251 for (i = 1; i < 38; i++) {
1252 real_sum += x[i][0] * x[i][0] + x[i][1] * x[i][1];
1253 }
1254 phi[2][1][0] = real_sum + x[ 0][0] * x[ 0][0] + x[ 0][1] * x[ 0][1];
1255 phi[1][0][0] = real_sum + x[38][0] * x[38][0] + x[38][1] * x[38][1];
1256 }
1257}
1258
1259/** High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering
1260 * (14496-3 sp04 p214)
1261 * Warning: This routine does not seem numerically stable.
1262 */
1263static void sbr_hf_inverse_filter(float (*alpha0)[2], float (*alpha1)[2],
1264 const float X_low[32][40][2], int k0)
1265{
1266 int k;
1267 for (k = 0; k < k0; k++) {
1268 float phi[3][2][2], dk;
1269
1270 autocorrelate(X_low[k], phi, 0);
1271 autocorrelate(X_low[k], phi, 1);
1272 autocorrelate(X_low[k], phi, 2);
1273
1274 dk = phi[2][1][0] * phi[1][0][0] -
1275 (phi[1][1][0] * phi[1][1][0] + phi[1][1][1] * phi[1][1][1]) / 1.000001f;
1276
1277 if (!dk) {
1278 alpha1[k][0] = 0;
1279 alpha1[k][1] = 0;
1280 } else {
1281 float temp_real, temp_im;
1282 temp_real = phi[0][0][0] * phi[1][1][0] -
1283 phi[0][0][1] * phi[1][1][1] -
1284 phi[0][1][0] * phi[1][0][0];
1285 temp_im = phi[0][0][0] * phi[1][1][1] +
1286 phi[0][0][1] * phi[1][1][0] -
1287 phi[0][1][1] * phi[1][0][0];
1288
1289 alpha1[k][0] = temp_real / dk;
1290 alpha1[k][1] = temp_im / dk;
1291 }
1292
1293 if (!phi[1][0][0]) {
1294 alpha0[k][0] = 0;
1295 alpha0[k][1] = 0;
1296 } else {
1297 float temp_real, temp_im;
1298 temp_real = phi[0][0][0] + alpha1[k][0] * phi[1][1][0] +
1299 alpha1[k][1] * phi[1][1][1];
1300 temp_im = phi[0][0][1] + alpha1[k][1] * phi[1][1][0] -
1301 alpha1[k][0] * phi[1][1][1];
1302
1303 alpha0[k][0] = -temp_real / phi[1][0][0];
1304 alpha0[k][1] = -temp_im / phi[1][0][0];
1305 }
1306
1307 if (alpha1[k][0] * alpha1[k][0] + alpha1[k][1] * alpha1[k][1] >= 16.0f ||
1308 alpha0[k][0] * alpha0[k][0] + alpha0[k][1] * alpha0[k][1] >= 16.0f) {
1309 alpha1[k][0] = 0;
1310 alpha1[k][1] = 0;
1311 alpha0[k][0] = 0;
1312 alpha0[k][1] = 0;
1313 }
1314 }
1315}
1316
1317/// Chirp Factors (14496-3 sp04 p214)
1318static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data)
1319{
1320 int i;
1321 float new_bw;
1322 static const float bw_tab[] = { 0.0f, 0.75f, 0.9f, 0.98f };
1323
1324 for (i = 0; i < sbr->n_q; i++) {
1325 if (ch_data->bs_invf_mode[0][i] + ch_data->bs_invf_mode[1][i] == 1) {
1326 new_bw = 0.6f;
1327 } else
1328 new_bw = bw_tab[ch_data->bs_invf_mode[0][i]];
1329
1330 if (new_bw < ch_data->bw_array[i]) {
1331 new_bw = 0.75f * new_bw + 0.25f * ch_data->bw_array[i];
1332 } else
1333 new_bw = 0.90625f * new_bw + 0.09375f * ch_data->bw_array[i];
1334 ch_data->bw_array[i] = new_bw < 0.015625f ? 0.0f : new_bw;
1335 }
1336}
1337
1338/// Generate the subband filtered lowband
1339static int sbr_lf_gen(AACContext *ac, SpectralBandReplication *sbr,
1340 float X_low[32][40][2], const float W[2][32][32][2])
1341{
1342 int i, k;
1343 const int t_HFGen = 8;
1344 const int i_f = 32;
1345 memset(X_low, 0, 32*sizeof(*X_low));
1346 for (k = 0; k < sbr->kx[1]; k++) {
1347 for (i = t_HFGen; i < i_f + t_HFGen; i++) {
1348 X_low[k][i][0] = W[1][i - t_HFGen][k][0];
1349 X_low[k][i][1] = W[1][i - t_HFGen][k][1];
1350 }
1351 }
1352 for (k = 0; k < sbr->kx[0]; k++) {
1353 for (i = 0; i < t_HFGen; i++) {
1354 X_low[k][i][0] = W[0][i + i_f - t_HFGen][k][0];
1355 X_low[k][i][1] = W[0][i + i_f - t_HFGen][k][1];
1356 }
1357 }
1358 return 0;
1359}
1360
1361/// High Frequency Generator (14496-3 sp04 p215)
1362static int sbr_hf_gen(AACContext *ac, SpectralBandReplication *sbr,
1363 float X_high[64][40][2], const float X_low[32][40][2],
1364 const float (*alpha0)[2], const float (*alpha1)[2],
1365 const float bw_array[5], const uint8_t *t_env,
1366 int bs_num_env)
1367{
1368 int i, j, x;
1369 int g = 0;
1370 int k = sbr->kx[1];
1371 for (j = 0; j < sbr->num_patches; j++) {
1372 for (x = 0; x < sbr->patch_num_subbands[j]; x++, k++) {
1373 float alpha[4];
1374 const int p = sbr->patch_start_subband[j] + x;
1375 while (g <= sbr->n_q && k >= sbr->f_tablenoise[g])
1376 g++;
1377 g--;
1378
1379 if (g < 0) {
1380 av_log(ac->avccontext, AV_LOG_ERROR,
1381 "ERROR : no subband found for frequency %d\n", k);
1382 return -1;
1383 }
1384
1385 alpha[0] = alpha1[p][0] * bw_array[g] * bw_array[g];
1386 alpha[1] = alpha1[p][1] * bw_array[g] * bw_array[g];
1387 alpha[2] = alpha0[p][0] * bw_array[g];
1388 alpha[3] = alpha0[p][1] * bw_array[g];
1389
1390 for (i = 2 * t_env[0]; i < 2 * t_env[bs_num_env]; i++) {
1391 const int idx = i + ENVELOPE_ADJUSTMENT_OFFSET;
1392 X_high[k][idx][0] =
1393 X_low[p][idx - 2][0] * alpha[0] -
1394 X_low[p][idx - 2][1] * alpha[1] +
1395 X_low[p][idx - 1][0] * alpha[2] -
1396 X_low[p][idx - 1][1] * alpha[3] +
1397 X_low[p][idx][0];
1398 X_high[k][idx][1] =
1399 X_low[p][idx - 2][1] * alpha[0] +
1400 X_low[p][idx - 2][0] * alpha[1] +
1401 X_low[p][idx - 1][1] * alpha[2] +
1402 X_low[p][idx - 1][0] * alpha[3] +
1403 X_low[p][idx][1];
1404 }
1405 }
1406 }
1407 if (k < sbr->m[1] + sbr->kx[1])
1408 memset(X_high + k, 0, (sbr->m[1] + sbr->kx[1] - k) * sizeof(*X_high));
1409
1410 return 0;
1411}
1412
1413/// Generate the subband filtered lowband
1414static int sbr_x_gen(SpectralBandReplication *sbr, float X[2][32][64],
1415 const float X_low[32][40][2], const float Y[2][38][64][2],
1416 int ch)
1417{
1418 int k, i;
1419 const int i_f = 32;
1420 const int i_Temp = FFMAX(2*sbr->data[ch].t_env_num_env_old - i_f, 0);
1421 memset(X, 0, 2*sizeof(*X));
1422 for (k = 0; k < sbr->kx[0]; k++) {
1423 for (i = 0; i < i_Temp; i++) {
1424 X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
1425 X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
1426 }
1427 }
1428 for (; k < sbr->kx[0] + sbr->m[0]; k++) {
1429 for (i = 0; i < i_Temp; i++) {
1430 X[0][i][k] = Y[0][i + i_f][k][0];
1431 X[1][i][k] = Y[0][i + i_f][k][1];
1432 }
1433 }
1434
1435 for (k = 0; k < sbr->kx[1]; k++) {
1436 for (i = i_Temp; i < i_f; i++) {
1437 X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
1438 X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
1439 }
1440 }
1441 for (; k < sbr->kx[1] + sbr->m[1]; k++) {
1442 for (i = i_Temp; i < i_f; i++) {
1443 X[0][i][k] = Y[1][i][k][0];
1444 X[1][i][k] = Y[1][i][k][1];
1445 }
1446 }
1447 return 0;
1448}
1449
1450/** High Frequency Adjustment (14496-3 sp04 p217) and Mapping
1451 * (14496-3 sp04 p217)
1452 */
1453static void sbr_mapping(AACContext *ac, SpectralBandReplication *sbr,
1454 SBRData *ch_data, int e_a[2])
1455{
1456 int e, i, m;
1457
ed492b61
AC
1458 memset(ch_data->s_indexmapped[1], 0, 7*sizeof(ch_data->s_indexmapped[1]));
1459 for (e = 0; e < ch_data->bs_num_env[1]; e++) {
1460 const unsigned int ilim = sbr->n[ch_data->bs_freq_res[e + 1]];
1461 uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
1462 int k;
1463
1464 for (i = 0; i < ilim; i++)
1465 for (m = table[i]; m < table[i + 1]; m++)
1466 sbr->e_origmapped[e][m - sbr->kx[1]] = ch_data->env_facs[e+1][i];
1467
1468 // ch_data->bs_num_noise > 1 => 2 noise floors
1469 k = (ch_data->bs_num_noise > 1) && (ch_data->t_env[e] >= ch_data->t_q[1]);
1470 for (i = 0; i < sbr->n_q; i++)
1471 for (m = sbr->f_tablenoise[i]; m < sbr->f_tablenoise[i + 1]; m++)
1472 sbr->q_mapped[e][m - sbr->kx[1]] = ch_data->noise_facs[k+1][i];
1473
1474 for (i = 0; i < sbr->n[1]; i++) {
1475 if (ch_data->bs_add_harmonic_flag) {
1476 const unsigned int m_midpoint =
1477 (sbr->f_tablehigh[i] + sbr->f_tablehigh[i + 1]) >> 1;
1478
1479 ch_data->s_indexmapped[e + 1][m_midpoint - sbr->kx[1]] = ch_data->bs_add_harmonic[i] *
1480 (e >= e_a[1] || (ch_data->s_indexmapped[0][m_midpoint - sbr->kx[1]] == 1));
1481 }
1482 }
1483
1484 for (i = 0; i < ilim; i++) {
1485 int additional_sinusoid_present = 0;
1486 for (m = table[i]; m < table[i + 1]; m++) {
1487 if (ch_data->s_indexmapped[e + 1][m - sbr->kx[1]]) {
1488 additional_sinusoid_present = 1;
1489 break;
1490 }
1491 }
1492 memset(&sbr->s_mapped[e][table[i] - sbr->kx[1]], additional_sinusoid_present,
1493 (table[i + 1] - table[i]) * sizeof(sbr->s_mapped[e][0]));
1494 }
1495 }
1496
1497 memcpy(ch_data->s_indexmapped[0], ch_data->s_indexmapped[ch_data->bs_num_env[1]], sizeof(ch_data->s_indexmapped[0]));
1498}
1499
1500/// Estimation of current envelope (14496-3 sp04 p218)
1501static void sbr_env_estimate(float (*e_curr)[48], float X_high[64][40][2],
1502 SpectralBandReplication *sbr, SBRData *ch_data)
1503{
1504 int e, i, m;
1505
1506 if (sbr->bs_interpol_freq) {
1507 for (e = 0; e < ch_data->bs_num_env[1]; e++) {
1508 const float recip_env_size = 0.5f / (ch_data->t_env[e + 1] - ch_data->t_env[e]);
1509 int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1510 int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1511
1512 for (m = 0; m < sbr->m[1]; m++) {
1513 float sum = 0.0f;
1514
1515 for (i = ilb; i < iub; i++) {
1516 sum += X_high[m + sbr->kx[1]][i][0] * X_high[m + sbr->kx[1]][i][0] +
1517 X_high[m + sbr->kx[1]][i][1] * X_high[m + sbr->kx[1]][i][1];
1518 }
1519 e_curr[e][m] = sum * recip_env_size;
1520 }
1521 }
1522 } else {
1523 int k, p;
1524
1525 for (e = 0; e < ch_data->bs_num_env[1]; e++) {
1526 const int env_size = 2 * (ch_data->t_env[e + 1] - ch_data->t_env[e]);
1527 int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1528 int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1529 const uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
1530
1531 for (p = 0; p < sbr->n[ch_data->bs_freq_res[e + 1]]; p++) {
1532 float sum = 0.0f;
1533 const int den = env_size * (table[p + 1] - table[p]);
1534
1535 for (k = table[p]; k < table[p + 1]; k++) {
1536 for (i = ilb; i < iub; i++) {
1537 sum += X_high[k][i][0] * X_high[k][i][0] +
1538 X_high[k][i][1] * X_high[k][i][1];
1539 }
1540 }
1541 sum /= den;
1542 for (k = table[p]; k < table[p + 1]; k++) {
1543 e_curr[e][k - sbr->kx[1]] = sum;
1544 }
1545 }
1546 }
1547 }
1548}
1549
1550/**
1551 * Calculation of levels of additional HF signal components (14496-3 sp04 p219)
1552 * and Calculation of gain (14496-3 sp04 p219)
1553 */
1554static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr,
1555 SBRData *ch_data, const int e_a[2])
1556{
1557 int e, k, m;
1558 // max gain limits : -3dB, 0dB, 3dB, inf dB (limiter off)
1559 static const float limgain[4] = { 0.70795, 1.0, 1.41254, 10000000000 };
1560
1561 for (e = 0; e < ch_data->bs_num_env[1]; e++) {
1562 int delta = !((e == e_a[1]) || (e == e_a[0]));
1563 for (k = 0; k < sbr->n_lim; k++) {
1564 float gain_boost, gain_max;
1565 float sum[2] = { 0.0f, 0.0f };
1566 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1567 const float temp = sbr->e_origmapped[e][m] / (1.0f + sbr->q_mapped[e][m]);
1568 sbr->q_m[e][m] = sqrtf(temp * sbr->q_mapped[e][m]);
1569 sbr->s_m[e][m] = sqrtf(temp * ch_data->s_indexmapped[e + 1][m]);
1570 if (!sbr->s_mapped[e][m]) {
1571 sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] /
1572 ((1.0f + sbr->e_curr[e][m]) *
1573 (1.0f + sbr->q_mapped[e][m] * delta)));
1574 } else {
1575 sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] * sbr->q_mapped[e][m] /
1576 ((1.0f + sbr->e_curr[e][m]) *
1577 (1.0f + sbr->q_mapped[e][m])));
1578 }
1579 }
1580 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1581 sum[0] += sbr->e_origmapped[e][m];
1582 sum[1] += sbr->e_curr[e][m];
1583 }
1584 gain_max = limgain[sbr->bs_limiter_gains] * sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
1585 gain_max = FFMIN(100000, gain_max);
1586 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1587 float q_m_max = sbr->q_m[e][m] * gain_max / sbr->gain[e][m];
1588 sbr->q_m[e][m] = FFMIN(sbr->q_m[e][m], q_m_max);
1589 sbr->gain[e][m] = FFMIN(sbr->gain[e][m], gain_max);
1590 }
1591 sum[0] = sum[1] = 0.0f;
1592 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1593 sum[0] += sbr->e_origmapped[e][m];
1594 sum[1] += sbr->e_curr[e][m] * sbr->gain[e][m] * sbr->gain[e][m]
1595 + sbr->s_m[e][m] * sbr->s_m[e][m]
1596 + (delta && !sbr->s_m[e][m]) * sbr->q_m[e][m] * sbr->q_m[e][m];
1597 }
1598 gain_boost = sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
1599 gain_boost = FFMIN(1.584893192, gain_boost);
1600 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1601 sbr->gain[e][m] *= gain_boost;
1602 sbr->q_m[e][m] *= gain_boost;
1603 sbr->s_m[e][m] *= gain_boost;
1604 }
1605 }
1606 }
1607}
1608
1609/// Assembling HF Signals (14496-3 sp04 p220)
1610static void sbr_hf_assemble(float Y[2][38][64][2], const float X_high[64][40][2],
1611 SpectralBandReplication *sbr, SBRData *ch_data,
1612 const int e_a[2])
1613{
1614 int e, i, j, m;
1615 const int h_SL = 4 * !sbr->bs_smoothing_mode;
1616 const int kx = sbr->kx[1];
1617 const int m_max = sbr->m[1];
1618 static const float h_smooth[5] = {
1619 0.33333333333333,
1620 0.30150283239582,
1621 0.21816949906249,
1622 0.11516383427084,
1623 0.03183050093751,
1624 };
1625 static const int8_t phi[2][4] = {
1626 { 1, 0, -1, 0}, // real
1627 { 0, 1, 0, -1}, // imaginary
1628 };
1629 float (*g_temp)[48] = ch_data->g_temp, (*q_temp)[48] = ch_data->q_temp;
1630 int indexnoise = ch_data->f_indexnoise;
1631 int indexsine = ch_data->f_indexsine;
1632 memcpy(Y[0], Y[1], sizeof(Y[0]));
1633
1634 if (sbr->reset) {
1635 for (i = 0; i < h_SL; i++) {
1636 memcpy(g_temp[i + 2*ch_data->t_env[0]], sbr->gain[0], m_max * sizeof(sbr->gain[0][0]));
1637 memcpy(q_temp[i + 2*ch_data->t_env[0]], sbr->q_m[0], m_max * sizeof(sbr->q_m[0][0]));
1638 }
1639 } else if (h_SL) {
1640 memcpy(g_temp[2*ch_data->t_env[0]], g_temp[2*ch_data->t_env_num_env_old], 4*sizeof(g_temp[0]));
1641 memcpy(q_temp[2*ch_data->t_env[0]], q_temp[2*ch_data->t_env_num_env_old], 4*sizeof(q_temp[0]));
1642 }
1643
1644 for (e = 0; e < ch_data->bs_num_env[1]; e++) {
1645 for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
1646 memcpy(g_temp[h_SL + i], sbr->gain[e], m_max * sizeof(sbr->gain[0][0]));
1647 memcpy(q_temp[h_SL + i], sbr->q_m[e], m_max * sizeof(sbr->q_m[0][0]));
1648 }
1649 }
1650
1651 for (e = 0; e < ch_data->bs_num_env[1]; e++) {
1652 for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
1653 int phi_sign = (1 - 2*(kx & 1));
1654
1655 if (h_SL && e != e_a[0] && e != e_a[1]) {
1656 for (m = 0; m < m_max; m++) {
1657 const int idx1 = i + h_SL;
1658 float g_filt = 0.0f;
1659 for (j = 0; j <= h_SL; j++)
1660 g_filt += g_temp[idx1 - j][m] * h_smooth[j];
1661 Y[1][i][m + kx][0] =
1662 X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][0] * g_filt;
1663 Y[1][i][m + kx][1] =
1664 X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][1] * g_filt;
1665 }
1666 } else {
1667 for (m = 0; m < m_max; m++) {
1668 const float g_filt = g_temp[i + h_SL][m];
1669 Y[1][i][m + kx][0] =
1670 X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][0] * g_filt;
1671 Y[1][i][m + kx][1] =
1672 X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][1] * g_filt;
1673 }
1674 }
1675
1676 if (e != e_a[0] && e != e_a[1]) {
1677 for (m = 0; m < m_max; m++) {
1678 indexnoise = (indexnoise + 1) & 0x1ff;
1679 if (sbr->s_m[e][m]) {
1680 Y[1][i][m + kx][0] +=
1681 sbr->s_m[e][m] * phi[0][indexsine];
1682 Y[1][i][m + kx][1] +=
1683 sbr->s_m[e][m] * (phi[1][indexsine] * phi_sign);
1684 } else {
1685 float q_filt;
1686 if (h_SL) {
1687 const int idx1 = i + h_SL;
1688 q_filt = 0.0f;
1689 for (j = 0; j <= h_SL; j++)
1690 q_filt += q_temp[idx1 - j][m] * h_smooth[j];
1691 } else {
1692 q_filt = q_temp[i][m];
1693 }
1694 Y[1][i][m + kx][0] +=
1695 q_filt * sbr_noise_table[indexnoise][0];
1696 Y[1][i][m + kx][1] +=
1697 q_filt * sbr_noise_table[indexnoise][1];
1698 }
1699 phi_sign = -phi_sign;
1700 }
1701 } else {
1702 indexnoise = (indexnoise + m_max) & 0x1ff;
1703 for (m = 0; m < m_max; m++) {
1704 Y[1][i][m + kx][0] +=
1705 sbr->s_m[e][m] * phi[0][indexsine];
1706 Y[1][i][m + kx][1] +=
1707 sbr->s_m[e][m] * (phi[1][indexsine] * phi_sign);
1708 phi_sign = -phi_sign;
1709 }
1710 }
1711 indexsine = (indexsine + 1) & 3;
1712 }
1713 }
1714 ch_data->f_indexnoise = indexnoise;
1715 ch_data->f_indexsine = indexsine;
1716}
1717
1718void ff_sbr_dequant(AACContext *ac, SpectralBandReplication *sbr, int id_aac)
1719{
ed492b61 1720 if (sbr->start) {
ed492b61
AC
1721 sbr_dequant(sbr, id_aac);
1722 }
1723}
1724
1725void ff_sbr_apply(AACContext *ac, SpectralBandReplication *sbr, int ch,
1726 const float* in, float* out)
1727{
1728 int downsampled = ac->m4ac.ext_sample_rate < sbr->sample_rate;
1729
1730 /* decode channel */
1731 sbr_qmf_analysis(&ac->dsp, &sbr->rdft, in, sbr->data[ch].analysis_filterbank_samples,
1732 (float*)sbr->qmf_filter_scratch,
1733 sbr->data[ch].W, ac->add_bias, 1/(-1024 * ac->sf_scale));
1734 sbr_lf_gen(ac, sbr, sbr->X_low, sbr->data[ch].W);
1735 if (sbr->start) {
1736 sbr_hf_inverse_filter(sbr->alpha0, sbr->alpha1, sbr->X_low, sbr->k[0]);
1737 sbr_chirp(sbr, &sbr->data[ch]);
1738 sbr_hf_gen(ac, sbr, sbr->X_high, sbr->X_low, sbr->alpha0, sbr->alpha1,
1739 sbr->data[ch].bw_array, sbr->data[ch].t_env,
1740 sbr->data[ch].bs_num_env[1]);
1741
1742 // hf_adj
1743 sbr_mapping(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
1744 sbr_env_estimate(sbr->e_curr, sbr->X_high, sbr, &sbr->data[ch]);
1745 sbr_gain_calc(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
1746 sbr_hf_assemble(sbr->data[ch].Y, sbr->X_high, sbr, &sbr->data[ch],
1747 sbr->data[ch].e_a);
1748 }
1749
1750 /* synthesis */
1751 sbr_x_gen(sbr, sbr->X, sbr->X_low, sbr->data[ch].Y, ch);
1752 sbr_qmf_synthesis(&ac->dsp, &sbr->mdct, out, sbr->X, sbr->qmf_filter_scratch,
1753 sbr->data[ch].synthesis_filterbank_samples,
1754 &sbr->data[ch].synthesis_filterbank_samples_offset,
1755 downsampled,
1756 ac->add_bias, -1024 * ac->sf_scale);
1757}