Commit | Line | Data |
---|---|---|
0147f198 FR |
1 | /* |
2 | * ADPCM codecs | |
9937e686 | 3 | * Copyright (c) 2001-2003 The ffmpeg Project |
0147f198 | 4 | * |
b78e7197 DB |
5 | * This file is part of FFmpeg. |
6 | * | |
7 | * FFmpeg is free software; you can redistribute it and/or | |
0147f198 FR |
8 | * modify it under the terms of the GNU Lesser General Public |
9 | * License as published by the Free Software Foundation; either | |
b78e7197 | 10 | * version 2.1 of the License, or (at your option) any later version. |
0147f198 | 11 | * |
b78e7197 | 12 | * FFmpeg is distributed in the hope that it will be useful, |
0147f198 FR |
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
15 | * Lesser General Public License for more details. | |
16 | * | |
17 | * You should have received a copy of the GNU Lesser General Public | |
b78e7197 | 18 | * License along with FFmpeg; if not, write to the Free Software |
5509bffa | 19 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
0147f198 FR |
20 | */ |
21 | #include "avcodec.h" | |
659c3692 | 22 | #include "bitstream.h" |
0147f198 | 23 | |
983e3246 MN |
24 | /** |
25 | * @file adpcm.c | |
26 | * ADPCM codecs. | |
fc384777 | 27 | * First version by Francois Revol (revol@free.fr) |
2fdf638b | 28 | * Fringe ADPCM codecs (e.g., DK3, DK4, Westwood) |
9937e686 | 29 | * by Mike Melanson (melanson@pcisys.net) |
fc384777 | 30 | * CD-ROM XA ADPCM codec by BERO |
7d8379f2 | 31 | * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com) |
0147f198 FR |
32 | * |
33 | * Features and limitations: | |
34 | * | |
35 | * Reference documents: | |
9937e686 | 36 | * http://www.pcisys.net/~melanson/codecs/simpleaudio.html |
0147f198 FR |
37 | * http://www.geocities.com/SiliconValley/8682/aud3.txt |
38 | * http://openquicktime.sourceforge.net/plugins.htm | |
39 | * XAnim sources (xa_codec.c) http://www.rasnaimaging.com/people/lapus/download.html | |
889c5224 FR |
40 | * http://www.cs.ucla.edu/~leec/mediabench/applications.html |
41 | * SoX source code http://home.sprynet.com/~cbagwell/sox.html | |
fc384777 MM |
42 | * |
43 | * CD-ROM XA: | |
44 | * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html | |
45 | * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html | |
46 | * readstr http://www.geocities.co.jp/Playtown/2004/ | |
0147f198 FR |
47 | */ |
48 | ||
49 | #define BLKSIZE 1024 | |
50 | ||
51 | #define CLAMP_TO_SHORT(value) \ | |
52 | if (value > 32767) \ | |
53 | value = 32767; \ | |
54 | else if (value < -32768) \ | |
55 | value = -32768; \ | |
56 | ||
57 | /* step_table[] and index_table[] are from the ADPCM reference source */ | |
58 | /* This is the index table: */ | |
135ee03a | 59 | static const int index_table[16] = { |
0147f198 FR |
60 | -1, -1, -1, -1, 2, 4, 6, 8, |
61 | -1, -1, -1, -1, 2, 4, 6, 8, | |
62 | }; | |
63 | ||
115329f1 | 64 | /** |
983e3246 | 65 | * This is the step table. Note that many programs use slight deviations from |
0147f198 FR |
66 | * this table, but such deviations are negligible: |
67 | */ | |
135ee03a | 68 | static const int step_table[89] = { |
0147f198 FR |
69 | 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, |
70 | 19, 21, 23, 25, 28, 31, 34, 37, 41, 45, | |
71 | 50, 55, 60, 66, 73, 80, 88, 97, 107, 118, | |
72 | 130, 143, 157, 173, 190, 209, 230, 253, 279, 307, | |
73 | 337, 371, 408, 449, 494, 544, 598, 658, 724, 796, | |
74 | 876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066, | |
75 | 2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358, | |
76 | 5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899, | |
77 | 15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767 | |
78 | }; | |
79 | ||
fc384777 | 80 | /* These are for MS-ADPCM */ |
0147f198 | 81 | /* AdaptationTable[], AdaptCoeff1[], and AdaptCoeff2[] are from libsndfile */ |
135ee03a | 82 | static const int AdaptationTable[] = { |
0147f198 FR |
83 | 230, 230, 230, 230, 307, 409, 512, 614, |
84 | 768, 614, 512, 409, 307, 230, 230, 230 | |
85 | }; | |
86 | ||
135ee03a | 87 | static const int AdaptCoeff1[] = { |
0147f198 FR |
88 | 256, 512, 0, 192, 240, 460, 392 |
89 | }; | |
90 | ||
135ee03a | 91 | static const int AdaptCoeff2[] = { |
0147f198 FR |
92 | 0, -256, 0, 64, 0, -208, -232 |
93 | }; | |
94 | ||
fc384777 | 95 | /* These are for CD-ROM XA ADPCM */ |
1ffb0091 | 96 | static const int xa_adpcm_table[5][2] = { |
fc384777 MM |
97 | { 0, 0 }, |
98 | { 60, 0 }, | |
99 | { 115, -52 }, | |
100 | { 98, -55 }, | |
101 | { 122, -60 } | |
102 | }; | |
103 | ||
c26ae41d | 104 | static const int ea_adpcm_table[] = { |
7d8379f2 MM |
105 | 0, 240, 460, 392, 0, 0, -208, -220, 0, 1, |
106 | 3, 4, 7, 8, 10, 11, 0, -1, -3, -4 | |
107 | }; | |
108 | ||
c26ae41d | 109 | static const int ct_adpcm_table[8] = { |
b3bfb299 MM |
110 | 0x00E6, 0x00E6, 0x00E6, 0x00E6, |
111 | 0x0133, 0x0199, 0x0200, 0x0266 | |
112 | }; | |
113 | ||
659c3692 | 114 | // padded to zero where table size is less then 16 |
c26ae41d | 115 | static const int swf_index_tables[4][16] = { |
659c3692 AB |
116 | /*2*/ { -1, 2 }, |
117 | /*3*/ { -1, -1, 2, 4 }, | |
118 | /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 }, | |
119 | /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 } | |
120 | }; | |
121 | ||
2ff4524e VM |
122 | static const int yamaha_indexscale[] = { |
123 | 230, 230, 230, 230, 307, 409, 512, 614, | |
124 | 230, 230, 230, 230, 307, 409, 512, 614 | |
125 | }; | |
126 | ||
127 | static const int yamaha_difflookup[] = { | |
128 | 1, 3, 5, 7, 9, 11, 13, 15, | |
129 | -1, -3, -5, -7, -9, -11, -13, -15 | |
130 | }; | |
131 | ||
0147f198 FR |
132 | /* end of tables */ |
133 | ||
134 | typedef struct ADPCMChannelStatus { | |
135 | int predictor; | |
136 | short int step_index; | |
137 | int step; | |
889c5224 FR |
138 | /* for encoding */ |
139 | int prev_sample; | |
0147f198 FR |
140 | |
141 | /* MS version */ | |
142 | short sample1; | |
143 | short sample2; | |
144 | int coeff1; | |
145 | int coeff2; | |
146 | int idelta; | |
147 | } ADPCMChannelStatus; | |
148 | ||
149 | typedef struct ADPCMContext { | |
150 | int channel; /* for stereo MOVs, decode left, then decode right, then tell it's decoded */ | |
151 | ADPCMChannelStatus status[2]; | |
152 | short sample_buffer[32]; /* hold left samples while waiting for right samples */ | |
659c3692 AB |
153 | |
154 | /* SWF only */ | |
155 | int nb_bits; | |
156 | int nb_samples; | |
0147f198 FR |
157 | } ADPCMContext; |
158 | ||
159 | /* XXX: implement encoding */ | |
160 | ||
764ef400 | 161 | #ifdef CONFIG_ENCODERS |
0147f198 FR |
162 | static int adpcm_encode_init(AVCodecContext *avctx) |
163 | { | |
889c5224 FR |
164 | if (avctx->channels > 2) |
165 | return -1; /* only stereo or mono =) */ | |
0147f198 FR |
166 | switch(avctx->codec->id) { |
167 | case CODEC_ID_ADPCM_IMA_QT: | |
8dbcc9f2 | 168 | av_log(avctx, AV_LOG_ERROR, "ADPCM: codec adpcm_ima_qt unsupported for encoding !\n"); |
889c5224 FR |
169 | avctx->frame_size = 64; /* XXX: can multiple of avctx->channels * 64 (left and right blocks are interleaved) */ |
170 | return -1; | |
0147f198 FR |
171 | break; |
172 | case CODEC_ID_ADPCM_IMA_WAV: | |
889c5224 FR |
173 | avctx->frame_size = (BLKSIZE - 4 * avctx->channels) * 8 / (4 * avctx->channels) + 1; /* each 16 bits sample gives one nibble */ |
174 | /* and we have 4 bytes per channel overhead */ | |
175 | avctx->block_align = BLKSIZE; | |
176 | /* seems frame_size isn't taken into account... have to buffer the samples :-( */ | |
177 | break; | |
178 | case CODEC_ID_ADPCM_MS: | |
6cf9d5eb MN |
179 | avctx->frame_size = (BLKSIZE - 7 * avctx->channels) * 2 / avctx->channels + 2; /* each 16 bits sample gives one nibble */ |
180 | /* and we have 7 bytes per channel overhead */ | |
181 | avctx->block_align = BLKSIZE; | |
0147f198 | 182 | break; |
2ff4524e VM |
183 | case CODEC_ID_ADPCM_YAMAHA: |
184 | avctx->frame_size = BLKSIZE * avctx->channels; | |
185 | avctx->block_align = BLKSIZE; | |
186 | break; | |
0147f198 | 187 | default: |
889c5224 | 188 | return -1; |
0147f198 FR |
189 | break; |
190 | } | |
492cd3a9 MN |
191 | |
192 | avctx->coded_frame= avcodec_alloc_frame(); | |
193 | avctx->coded_frame->key_frame= 1; | |
194 | ||
0147f198 FR |
195 | return 0; |
196 | } | |
197 | ||
198 | static int adpcm_encode_close(AVCodecContext *avctx) | |
199 | { | |
492cd3a9 MN |
200 | av_freep(&avctx->coded_frame); |
201 | ||
0147f198 FR |
202 | return 0; |
203 | } | |
204 | ||
889c5224 FR |
205 | |
206 | static inline unsigned char adpcm_ima_compress_sample(ADPCMChannelStatus *c, short sample) | |
207 | { | |
7e537051 LM |
208 | int delta = sample - c->prev_sample; |
209 | int nibble = FFMIN(7, abs(delta)*4/step_table[c->step_index]) + (delta<0)*8; | |
210 | c->prev_sample = c->prev_sample + ((step_table[c->step_index] * yamaha_difflookup[nibble]) / 8); | |
889c5224 | 211 | CLAMP_TO_SHORT(c->prev_sample); |
7e537051 | 212 | c->step_index = clip(c->step_index + index_table[nibble], 0, 88); |
889c5224 FR |
213 | return nibble; |
214 | } | |
215 | ||
6cf9d5eb MN |
216 | static inline unsigned char adpcm_ms_compress_sample(ADPCMChannelStatus *c, short sample) |
217 | { | |
218 | int predictor, nibble, bias; | |
219 | ||
220 | predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 256; | |
115329f1 | 221 | |
6cf9d5eb MN |
222 | nibble= sample - predictor; |
223 | if(nibble>=0) bias= c->idelta/2; | |
224 | else bias=-c->idelta/2; | |
115329f1 | 225 | |
6cf9d5eb MN |
226 | nibble= (nibble + bias) / c->idelta; |
227 | nibble= clip(nibble, -8, 7)&0x0F; | |
115329f1 | 228 | |
6cf9d5eb MN |
229 | predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta; |
230 | CLAMP_TO_SHORT(predictor); | |
231 | ||
232 | c->sample2 = c->sample1; | |
233 | c->sample1 = predictor; | |
234 | ||
235 | c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8; | |
236 | if (c->idelta < 16) c->idelta = 16; | |
237 | ||
238 | return nibble; | |
239 | } | |
240 | ||
2ff4524e VM |
241 | static inline unsigned char adpcm_yamaha_compress_sample(ADPCMChannelStatus *c, short sample) |
242 | { | |
7e537051 | 243 | int nibble, delta; |
2ff4524e VM |
244 | |
245 | if(!c->step) { | |
246 | c->predictor = 0; | |
247 | c->step = 127; | |
248 | } | |
2ff4524e | 249 | |
7e537051 | 250 | delta = sample - c->predictor; |
2ff4524e | 251 | |
7e537051 LM |
252 | nibble = FFMIN(7, abs(delta)*4/c->step) + (delta<0)*8; |
253 | ||
254 | c->predictor = c->predictor + ((c->step * yamaha_difflookup[nibble]) / 8); | |
2ff4524e | 255 | CLAMP_TO_SHORT(c->predictor); |
7e537051 | 256 | c->step = (c->step * yamaha_indexscale[nibble]) >> 8; |
2ff4524e VM |
257 | c->step = clip(c->step, 127, 24567); |
258 | ||
7e537051 | 259 | return nibble; |
2ff4524e VM |
260 | } |
261 | ||
696d6889 LM |
262 | typedef struct TrellisPath { |
263 | int nibble; | |
264 | int prev; | |
265 | } TrellisPath; | |
266 | ||
267 | typedef struct TrellisNode { | |
268 | uint32_t ssd; | |
269 | int path; | |
270 | int sample1; | |
271 | int sample2; | |
272 | int step; | |
273 | } TrellisNode; | |
274 | ||
275 | static void adpcm_compress_trellis(AVCodecContext *avctx, const short *samples, | |
276 | uint8_t *dst, ADPCMChannelStatus *c, int n) | |
277 | { | |
278 | #define FREEZE_INTERVAL 128 | |
279 | //FIXME 6% faster if frontier is a compile-time constant | |
280 | const int frontier = 1 << avctx->trellis; | |
281 | const int stride = avctx->channels; | |
282 | const int version = avctx->codec->id; | |
283 | const int max_paths = frontier*FREEZE_INTERVAL; | |
284 | TrellisPath paths[max_paths], *p; | |
285 | TrellisNode node_buf[2][frontier]; | |
286 | TrellisNode *nodep_buf[2][frontier]; | |
287 | TrellisNode **nodes = nodep_buf[0]; // nodes[] is always sorted by .ssd | |
288 | TrellisNode **nodes_next = nodep_buf[1]; | |
289 | int pathn = 0, froze = -1, i, j, k; | |
290 | ||
291 | assert(!(max_paths&(max_paths-1))); | |
292 | ||
293 | memset(nodep_buf, 0, sizeof(nodep_buf)); | |
294 | nodes[0] = &node_buf[1][0]; | |
295 | nodes[0]->ssd = 0; | |
296 | nodes[0]->path = 0; | |
297 | nodes[0]->step = c->step_index; | |
298 | nodes[0]->sample1 = c->sample1; | |
299 | nodes[0]->sample2 = c->sample2; | |
300 | if(version == CODEC_ID_ADPCM_IMA_WAV) | |
301 | nodes[0]->sample1 = c->prev_sample; | |
302 | if(version == CODEC_ID_ADPCM_MS) | |
303 | nodes[0]->step = c->idelta; | |
304 | if(version == CODEC_ID_ADPCM_YAMAHA) { | |
305 | if(c->step == 0) { | |
306 | nodes[0]->step = 127; | |
307 | nodes[0]->sample1 = 0; | |
308 | } else { | |
309 | nodes[0]->step = c->step; | |
310 | nodes[0]->sample1 = c->predictor; | |
311 | } | |
312 | } | |
313 | ||
314 | for(i=0; i<n; i++) { | |
315 | TrellisNode *t = node_buf[i&1]; | |
316 | TrellisNode **u; | |
317 | int sample = samples[i*stride]; | |
318 | memset(nodes_next, 0, frontier*sizeof(TrellisNode*)); | |
319 | for(j=0; j<frontier && nodes[j]; j++) { | |
320 | // higher j have higher ssd already, so they're unlikely to use a suboptimal next sample too | |
321 | const int range = (j < frontier/2) ? 1 : 0; | |
322 | const int step = nodes[j]->step; | |
323 | int nidx; | |
324 | if(version == CODEC_ID_ADPCM_MS) { | |
325 | const int predictor = ((nodes[j]->sample1 * c->coeff1) + (nodes[j]->sample2 * c->coeff2)) / 256; | |
326 | const int div = (sample - predictor) / step; | |
327 | const int nmin = clip(div-range, -8, 6); | |
328 | const int nmax = clip(div+range, -7, 7); | |
329 | for(nidx=nmin; nidx<=nmax; nidx++) { | |
330 | const int nibble = nidx & 0xf; | |
331 | int dec_sample = predictor + nidx * step; | |
332 | #define STORE_NODE(NAME, STEP_INDEX)\ | |
333 | int d;\ | |
334 | uint32_t ssd;\ | |
335 | CLAMP_TO_SHORT(dec_sample);\ | |
336 | d = sample - dec_sample;\ | |
337 | ssd = nodes[j]->ssd + d*d;\ | |
338 | if(nodes_next[frontier-1] && ssd >= nodes_next[frontier-1]->ssd)\ | |
339 | continue;\ | |
340 | /* Collapse any two states with the same previous sample value. \ | |
341 | * One could also distinguish states by step and by 2nd to last | |
342 | * sample, but the effects of that are negligible. */\ | |
343 | for(k=0; k<frontier && nodes_next[k]; k++) {\ | |
344 | if(dec_sample == nodes_next[k]->sample1) {\ | |
345 | assert(ssd >= nodes_next[k]->ssd);\ | |
346 | goto next_##NAME;\ | |
347 | }\ | |
348 | }\ | |
349 | for(k=0; k<frontier; k++) {\ | |
350 | if(!nodes_next[k] || ssd < nodes_next[k]->ssd) {\ | |
351 | TrellisNode *u = nodes_next[frontier-1];\ | |
352 | if(!u) {\ | |
353 | assert(pathn < max_paths);\ | |
354 | u = t++;\ | |
355 | u->path = pathn++;\ | |
356 | }\ | |
357 | u->ssd = ssd;\ | |
358 | u->step = STEP_INDEX;\ | |
359 | u->sample2 = nodes[j]->sample1;\ | |
360 | u->sample1 = dec_sample;\ | |
361 | paths[u->path].nibble = nibble;\ | |
362 | paths[u->path].prev = nodes[j]->path;\ | |
363 | memmove(&nodes_next[k+1], &nodes_next[k], (frontier-k-1)*sizeof(TrellisNode*));\ | |
364 | nodes_next[k] = u;\ | |
365 | break;\ | |
366 | }\ | |
367 | }\ | |
368 | next_##NAME:; | |
369 | STORE_NODE(ms, FFMAX(16, (AdaptationTable[nibble] * step) >> 8)); | |
370 | } | |
371 | } else if(version == CODEC_ID_ADPCM_IMA_WAV) { | |
372 | #define LOOP_NODES(NAME, STEP_TABLE, STEP_INDEX)\ | |
373 | const int predictor = nodes[j]->sample1;\ | |
374 | const int div = (sample - predictor) * 4 / STEP_TABLE;\ | |
375 | int nmin = clip(div-range, -7, 6);\ | |
376 | int nmax = clip(div+range, -6, 7);\ | |
377 | if(nmin<=0) nmin--; /* distinguish -0 from +0 */\ | |
378 | if(nmax<0) nmax--;\ | |
379 | for(nidx=nmin; nidx<=nmax; nidx++) {\ | |
380 | const int nibble = nidx<0 ? 7-nidx : nidx;\ | |
381 | int dec_sample = predictor + (STEP_TABLE * yamaha_difflookup[nibble]) / 8;\ | |
382 | STORE_NODE(NAME, STEP_INDEX);\ | |
383 | } | |
384 | LOOP_NODES(ima, step_table[step], clip(step + index_table[nibble], 0, 88)); | |
385 | } else { //CODEC_ID_ADPCM_YAMAHA | |
386 | LOOP_NODES(yamaha, step, clip((step * yamaha_indexscale[nibble]) >> 8, 127, 24567)); | |
387 | #undef LOOP_NODES | |
388 | #undef STORE_NODE | |
389 | } | |
390 | } | |
391 | ||
392 | u = nodes; | |
393 | nodes = nodes_next; | |
394 | nodes_next = u; | |
395 | ||
396 | // prevent overflow | |
397 | if(nodes[0]->ssd > (1<<28)) { | |
398 | for(j=1; j<frontier && nodes[j]; j++) | |
399 | nodes[j]->ssd -= nodes[0]->ssd; | |
400 | nodes[0]->ssd = 0; | |
401 | } | |
402 | ||
403 | // merge old paths to save memory | |
404 | if(i == froze + FREEZE_INTERVAL) { | |
405 | p = &paths[nodes[0]->path]; | |
406 | for(k=i; k>froze; k--) { | |
407 | dst[k] = p->nibble; | |
408 | p = &paths[p->prev]; | |
409 | } | |
410 | froze = i; | |
411 | pathn = 0; | |
412 | // other nodes might use paths that don't coincide with the frozen one. | |
413 | // checking which nodes do so is too slow, so just kill them all. | |
414 | // this also slightly improves quality, but I don't know why. | |
415 | memset(nodes+1, 0, (frontier-1)*sizeof(TrellisNode*)); | |
416 | } | |
417 | } | |
418 | ||
419 | p = &paths[nodes[0]->path]; | |
420 | for(i=n-1; i>froze; i--) { | |
421 | dst[i] = p->nibble; | |
422 | p = &paths[p->prev]; | |
423 | } | |
424 | ||
425 | c->predictor = nodes[0]->sample1; | |
426 | c->sample1 = nodes[0]->sample1; | |
427 | c->sample2 = nodes[0]->sample2; | |
428 | c->step_index = nodes[0]->step; | |
429 | c->step = nodes[0]->step; | |
430 | c->idelta = nodes[0]->step; | |
431 | } | |
432 | ||
0147f198 | 433 | static int adpcm_encode_frame(AVCodecContext *avctx, |
bb270c08 | 434 | unsigned char *frame, int buf_size, void *data) |
0147f198 | 435 | { |
6cf9d5eb | 436 | int n, i, st; |
0147f198 FR |
437 | short *samples; |
438 | unsigned char *dst; | |
889c5224 FR |
439 | ADPCMContext *c = avctx->priv_data; |
440 | ||
441 | dst = frame; | |
442 | samples = (short *)data; | |
6cf9d5eb | 443 | st= avctx->channels == 2; |
889c5224 | 444 | /* n = (BLKSIZE - 4 * avctx->channels) / (2 * 8 * avctx->channels); */ |
0147f198 FR |
445 | |
446 | switch(avctx->codec->id) { | |
889c5224 FR |
447 | case CODEC_ID_ADPCM_IMA_QT: /* XXX: can't test until we get .mov writer */ |
448 | break; | |
449 | case CODEC_ID_ADPCM_IMA_WAV: | |
450 | n = avctx->frame_size / 8; | |
451 | c->status[0].prev_sample = (signed short)samples[0]; /* XXX */ | |
452 | /* c->status[0].step_index = 0; *//* XXX: not sure how to init the state machine */ | |
453 | *dst++ = (c->status[0].prev_sample) & 0xFF; /* little endian */ | |
454 | *dst++ = (c->status[0].prev_sample >> 8) & 0xFF; | |
455 | *dst++ = (unsigned char)c->status[0].step_index; | |
456 | *dst++ = 0; /* unknown */ | |
457 | samples++; | |
458 | if (avctx->channels == 2) { | |
1ffb0091 | 459 | c->status[1].prev_sample = (signed short)samples[1]; |
889c5224 FR |
460 | /* c->status[1].step_index = 0; */ |
461 | *dst++ = (c->status[1].prev_sample) & 0xFF; | |
462 | *dst++ = (c->status[1].prev_sample >> 8) & 0xFF; | |
463 | *dst++ = (unsigned char)c->status[1].step_index; | |
464 | *dst++ = 0; | |
465 | samples++; | |
466 | } | |
115329f1 | 467 | |
889c5224 | 468 | /* stereo: 4 bytes (8 samples) for left, 4 bytes for right, 4 bytes left, ... */ |
696d6889 LM |
469 | if(avctx->trellis > 0) { |
470 | uint8_t buf[2][n*8]; | |
471 | adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n*8); | |
472 | if(avctx->channels == 2) | |
473 | adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n*8); | |
474 | for(i=0; i<n; i++) { | |
475 | *dst++ = buf[0][8*i+0] | (buf[0][8*i+1] << 4); | |
476 | *dst++ = buf[0][8*i+2] | (buf[0][8*i+3] << 4); | |
477 | *dst++ = buf[0][8*i+4] | (buf[0][8*i+5] << 4); | |
478 | *dst++ = buf[0][8*i+6] | (buf[0][8*i+7] << 4); | |
479 | if (avctx->channels == 2) { | |
480 | *dst++ = buf[1][8*i+0] | (buf[1][8*i+1] << 4); | |
481 | *dst++ = buf[1][8*i+2] | (buf[1][8*i+3] << 4); | |
482 | *dst++ = buf[1][8*i+4] | (buf[1][8*i+5] << 4); | |
483 | *dst++ = buf[1][8*i+6] | (buf[1][8*i+7] << 4); | |
484 | } | |
485 | } | |
486 | } else | |
889c5224 FR |
487 | for (; n>0; n--) { |
488 | *dst = adpcm_ima_compress_sample(&c->status[0], samples[0]) & 0x0F; | |
489 | *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels]) << 4) & 0xF0; | |
490 | dst++; | |
491 | *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 2]) & 0x0F; | |
492 | *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 3]) << 4) & 0xF0; | |
493 | dst++; | |
494 | *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 4]) & 0x0F; | |
495 | *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 5]) << 4) & 0xF0; | |
496 | dst++; | |
497 | *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 6]) & 0x0F; | |
498 | *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 7]) << 4) & 0xF0; | |
499 | dst++; | |
500 | /* right channel */ | |
501 | if (avctx->channels == 2) { | |
502 | *dst = adpcm_ima_compress_sample(&c->status[1], samples[1]); | |
503 | *dst |= adpcm_ima_compress_sample(&c->status[1], samples[3]) << 4; | |
504 | dst++; | |
505 | *dst = adpcm_ima_compress_sample(&c->status[1], samples[5]); | |
506 | *dst |= adpcm_ima_compress_sample(&c->status[1], samples[7]) << 4; | |
507 | dst++; | |
508 | *dst = adpcm_ima_compress_sample(&c->status[1], samples[9]); | |
509 | *dst |= adpcm_ima_compress_sample(&c->status[1], samples[11]) << 4; | |
510 | dst++; | |
511 | *dst = adpcm_ima_compress_sample(&c->status[1], samples[13]); | |
512 | *dst |= adpcm_ima_compress_sample(&c->status[1], samples[15]) << 4; | |
513 | dst++; | |
514 | } | |
515 | samples += 8 * avctx->channels; | |
516 | } | |
517 | break; | |
6cf9d5eb MN |
518 | case CODEC_ID_ADPCM_MS: |
519 | for(i=0; i<avctx->channels; i++){ | |
520 | int predictor=0; | |
521 | ||
522 | *dst++ = predictor; | |
523 | c->status[i].coeff1 = AdaptCoeff1[predictor]; | |
524 | c->status[i].coeff2 = AdaptCoeff2[predictor]; | |
525 | } | |
526 | for(i=0; i<avctx->channels; i++){ | |
115329f1 | 527 | if (c->status[i].idelta < 16) |
6cf9d5eb | 528 | c->status[i].idelta = 16; |
115329f1 | 529 | |
6cf9d5eb MN |
530 | *dst++ = c->status[i].idelta & 0xFF; |
531 | *dst++ = c->status[i].idelta >> 8; | |
532 | } | |
533 | for(i=0; i<avctx->channels; i++){ | |
534 | c->status[i].sample1= *samples++; | |
535 | ||
536 | *dst++ = c->status[i].sample1 & 0xFF; | |
537 | *dst++ = c->status[i].sample1 >> 8; | |
538 | } | |
539 | for(i=0; i<avctx->channels; i++){ | |
540 | c->status[i].sample2= *samples++; | |
541 | ||
542 | *dst++ = c->status[i].sample2 & 0xFF; | |
543 | *dst++ = c->status[i].sample2 >> 8; | |
544 | } | |
545 | ||
696d6889 LM |
546 | if(avctx->trellis > 0) { |
547 | int n = avctx->block_align - 7*avctx->channels; | |
548 | uint8_t buf[2][n]; | |
549 | if(avctx->channels == 1) { | |
550 | n *= 2; | |
551 | adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n); | |
552 | for(i=0; i<n; i+=2) | |
553 | *dst++ = (buf[0][i] << 4) | buf[0][i+1]; | |
554 | } else { | |
555 | adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n); | |
556 | adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n); | |
557 | for(i=0; i<n; i++) | |
558 | *dst++ = (buf[0][i] << 4) | buf[1][i]; | |
559 | } | |
560 | } else | |
6cf9d5eb MN |
561 | for(i=7*avctx->channels; i<avctx->block_align; i++) { |
562 | int nibble; | |
563 | nibble = adpcm_ms_compress_sample(&c->status[ 0], *samples++)<<4; | |
564 | nibble|= adpcm_ms_compress_sample(&c->status[st], *samples++); | |
565 | *dst++ = nibble; | |
566 | } | |
567 | break; | |
2ff4524e VM |
568 | case CODEC_ID_ADPCM_YAMAHA: |
569 | n = avctx->frame_size / 2; | |
696d6889 LM |
570 | if(avctx->trellis > 0) { |
571 | uint8_t buf[2][n*2]; | |
572 | n *= 2; | |
573 | if(avctx->channels == 1) { | |
574 | adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n); | |
575 | for(i=0; i<n; i+=2) | |
576 | *dst++ = buf[0][i] | (buf[0][i+1] << 4); | |
577 | } else { | |
578 | adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n); | |
579 | adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n); | |
580 | for(i=0; i<n; i++) | |
581 | *dst++ = buf[0][i] | (buf[1][i] << 4); | |
582 | } | |
583 | } else | |
2ff4524e VM |
584 | for (; n>0; n--) { |
585 | for(i = 0; i < avctx->channels; i++) { | |
586 | int nibble; | |
b194c327 MN |
587 | nibble = adpcm_yamaha_compress_sample(&c->status[i], samples[i]); |
588 | nibble |= adpcm_yamaha_compress_sample(&c->status[i], samples[i+avctx->channels]) << 4; | |
2ff4524e VM |
589 | *dst++ = nibble; |
590 | } | |
591 | samples += 2 * avctx->channels; | |
592 | } | |
593 | break; | |
0147f198 FR |
594 | default: |
595 | return -1; | |
596 | } | |
0147f198 FR |
597 | return dst - frame; |
598 | } | |
764ef400 | 599 | #endif //CONFIG_ENCODERS |
0147f198 FR |
600 | |
601 | static int adpcm_decode_init(AVCodecContext * avctx) | |
602 | { | |
603 | ADPCMContext *c = avctx->priv_data; | |
604 | ||
605 | c->channel = 0; | |
606 | c->status[0].predictor = c->status[1].predictor = 0; | |
607 | c->status[0].step_index = c->status[1].step_index = 0; | |
608 | c->status[0].step = c->status[1].step = 0; | |
609 | ||
610 | switch(avctx->codec->id) { | |
b3bfb299 | 611 | case CODEC_ID_ADPCM_CT: |
bb270c08 DB |
612 | c->status[0].step = c->status[1].step = 511; |
613 | break; | |
0147f198 FR |
614 | default: |
615 | break; | |
616 | } | |
617 | return 0; | |
618 | } | |
619 | ||
d94728c3 | 620 | static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift) |
0147f198 FR |
621 | { |
622 | int step_index; | |
623 | int predictor; | |
624 | int sign, delta, diff, step; | |
625 | ||
135ee03a | 626 | step = step_table[c->step_index]; |
0147f198 FR |
627 | step_index = c->step_index + index_table[(unsigned)nibble]; |
628 | if (step_index < 0) step_index = 0; | |
135ee03a | 629 | else if (step_index > 88) step_index = 88; |
0147f198 | 630 | |
0147f198 FR |
631 | sign = nibble & 8; |
632 | delta = nibble & 7; | |
9937e686 MM |
633 | /* perform direct multiplication instead of series of jumps proposed by |
634 | * the reference ADPCM implementation since modern CPUs can do the mults | |
635 | * quickly enough */ | |
d94728c3 | 636 | diff = ((2 * delta + 1) * step) >> shift; |
4b465299 MN |
637 | predictor = c->predictor; |
638 | if (sign) predictor -= diff; | |
639 | else predictor += diff; | |
640 | ||
641 | CLAMP_TO_SHORT(predictor); | |
642 | c->predictor = predictor; | |
643 | c->step_index = step_index; | |
644 | ||
645 | return (short)predictor; | |
646 | } | |
647 | ||
0147f198 FR |
648 | static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, char nibble) |
649 | { | |
650 | int predictor; | |
651 | ||
652 | predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 256; | |
653 | predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta; | |
654 | CLAMP_TO_SHORT(predictor); | |
655 | ||
656 | c->sample2 = c->sample1; | |
657 | c->sample1 = predictor; | |
6cf9d5eb | 658 | c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8; |
0147f198 FR |
659 | if (c->idelta < 16) c->idelta = 16; |
660 | ||
661 | return (short)predictor; | |
662 | } | |
663 | ||
b3bfb299 MM |
664 | static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble) |
665 | { | |
666 | int predictor; | |
667 | int sign, delta, diff; | |
668 | int new_step; | |
669 | ||
670 | sign = nibble & 8; | |
671 | delta = nibble & 7; | |
672 | /* perform direct multiplication instead of series of jumps proposed by | |
673 | * the reference ADPCM implementation since modern CPUs can do the mults | |
674 | * quickly enough */ | |
675 | diff = ((2 * delta + 1) * c->step) >> 3; | |
676 | predictor = c->predictor; | |
677 | /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */ | |
678 | if(sign) | |
bb270c08 | 679 | predictor = ((predictor * 254) >> 8) - diff; |
b3bfb299 | 680 | else |
bb270c08 | 681 | predictor = ((predictor * 254) >> 8) + diff; |
b3bfb299 MM |
682 | /* calculate new step and clamp it to range 511..32767 */ |
683 | new_step = (ct_adpcm_table[nibble & 7] * c->step) >> 8; | |
684 | c->step = new_step; | |
685 | if(c->step < 511) | |
bb270c08 | 686 | c->step = 511; |
b3bfb299 | 687 | if(c->step > 32767) |
bb270c08 | 688 | c->step = 32767; |
b3bfb299 MM |
689 | |
690 | CLAMP_TO_SHORT(predictor); | |
691 | c->predictor = predictor; | |
692 | return (short)predictor; | |
693 | } | |
694 | ||
2433f24f AJ |
695 | static inline short adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, char nibble, int size, int shift) |
696 | { | |
697 | int sign, delta, diff; | |
698 | ||
699 | sign = nibble & (1<<(size-1)); | |
700 | delta = nibble & ((1<<(size-1))-1); | |
701 | diff = delta << (7 + c->step + shift); | |
702 | ||
703 | if (sign) | |
704 | c->predictor -= diff; | |
705 | else | |
706 | c->predictor += diff; | |
707 | ||
708 | /* clamp result */ | |
709 | if (c->predictor > 16256) | |
710 | c->predictor = 16256; | |
711 | else if (c->predictor < -16384) | |
712 | c->predictor = -16384; | |
713 | ||
714 | /* calculate new step */ | |
715 | if (delta >= (2*size - 3) && c->step < 3) | |
716 | c->step++; | |
717 | else if (delta == 0 && c->step > 0) | |
718 | c->step--; | |
719 | ||
720 | return (short) c->predictor; | |
721 | } | |
722 | ||
2ff4524e VM |
723 | static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned char nibble) |
724 | { | |
725 | if(!c->step) { | |
726 | c->predictor = 0; | |
727 | c->step = 127; | |
728 | } | |
729 | ||
730 | c->predictor += (c->step * yamaha_difflookup[nibble]) / 8; | |
731 | CLAMP_TO_SHORT(c->predictor); | |
732 | c->step = (c->step * yamaha_indexscale[nibble]) >> 8; | |
733 | c->step = clip(c->step, 127, 24567); | |
734 | return c->predictor; | |
735 | } | |
736 | ||
115329f1 | 737 | static void xa_decode(short *out, const unsigned char *in, |
fc384777 MM |
738 | ADPCMChannelStatus *left, ADPCMChannelStatus *right, int inc) |
739 | { | |
740 | int i, j; | |
741 | int shift,filter,f0,f1; | |
742 | int s_1,s_2; | |
743 | int d,s,t; | |
744 | ||
745 | for(i=0;i<4;i++) { | |
746 | ||
747 | shift = 12 - (in[4+i*2] & 15); | |
748 | filter = in[4+i*2] >> 4; | |
749 | f0 = xa_adpcm_table[filter][0]; | |
750 | f1 = xa_adpcm_table[filter][1]; | |
751 | ||
752 | s_1 = left->sample1; | |
753 | s_2 = left->sample2; | |
754 | ||
755 | for(j=0;j<28;j++) { | |
756 | d = in[16+i+j*4]; | |
757 | ||
758 | t = (signed char)(d<<4)>>4; | |
759 | s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6); | |
760 | CLAMP_TO_SHORT(s); | |
761 | *out = s; | |
762 | out += inc; | |
763 | s_2 = s_1; | |
764 | s_1 = s; | |
765 | } | |
766 | ||
767 | if (inc==2) { /* stereo */ | |
768 | left->sample1 = s_1; | |
769 | left->sample2 = s_2; | |
770 | s_1 = right->sample1; | |
771 | s_2 = right->sample2; | |
772 | out = out + 1 - 28*2; | |
773 | } | |
774 | ||
775 | shift = 12 - (in[5+i*2] & 15); | |
776 | filter = in[5+i*2] >> 4; | |
777 | ||
778 | f0 = xa_adpcm_table[filter][0]; | |
779 | f1 = xa_adpcm_table[filter][1]; | |
780 | ||
781 | for(j=0;j<28;j++) { | |
782 | d = in[16+i+j*4]; | |
783 | ||
784 | t = (signed char)d >> 4; | |
785 | s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6); | |
786 | CLAMP_TO_SHORT(s); | |
787 | *out = s; | |
788 | out += inc; | |
789 | s_2 = s_1; | |
790 | s_1 = s; | |
791 | } | |
792 | ||
793 | if (inc==2) { /* stereo */ | |
794 | right->sample1 = s_1; | |
795 | right->sample2 = s_2; | |
796 | out -= 1; | |
797 | } else { | |
798 | left->sample1 = s_1; | |
799 | left->sample2 = s_2; | |
800 | } | |
801 | } | |
802 | } | |
803 | ||
804 | ||
9937e686 MM |
805 | /* DK3 ADPCM support macro */ |
806 | #define DK3_GET_NEXT_NIBBLE() \ | |
807 | if (decode_top_nibble_next) \ | |
808 | { \ | |
809 | nibble = (last_byte >> 4) & 0x0F; \ | |
810 | decode_top_nibble_next = 0; \ | |
811 | } \ | |
812 | else \ | |
813 | { \ | |
814 | last_byte = *src++; \ | |
815 | if (src >= buf + buf_size) break; \ | |
816 | nibble = last_byte & 0x0F; \ | |
817 | decode_top_nibble_next = 1; \ | |
818 | } | |
819 | ||
0147f198 | 820 | static int adpcm_decode_frame(AVCodecContext *avctx, |
bb270c08 DB |
821 | void *data, int *data_size, |
822 | uint8_t *buf, int buf_size) | |
0147f198 FR |
823 | { |
824 | ADPCMContext *c = avctx->priv_data; | |
825 | ADPCMChannelStatus *cs; | |
4b465299 | 826 | int n, m, channel, i; |
0147f198 FR |
827 | int block_predictor[2]; |
828 | short *samples; | |
0c1a9eda | 829 | uint8_t *src; |
0147f198 FR |
830 | int st; /* stereo */ |
831 | ||
9937e686 MM |
832 | /* DK3 ADPCM accounting variables */ |
833 | unsigned char last_byte = 0; | |
834 | unsigned char nibble; | |
835 | int decode_top_nibble_next = 0; | |
836 | int diff_channel; | |
837 | ||
7d8379f2 MM |
838 | /* EA ADPCM state variables */ |
839 | uint32_t samples_in_chunk; | |
840 | int32_t previous_left_sample, previous_right_sample; | |
841 | int32_t current_left_sample, current_right_sample; | |
842 | int32_t next_left_sample, next_right_sample; | |
843 | int32_t coeff1l, coeff2l, coeff1r, coeff2r; | |
844 | uint8_t shift_left, shift_right; | |
845 | int count1, count2; | |
846 | ||
df72754d MM |
847 | if (!buf_size) |
848 | return 0; | |
849 | ||
0147f198 FR |
850 | samples = data; |
851 | src = buf; | |
852 | ||
2433f24f | 853 | st = avctx->channels == 2 ? 1 : 0; |
0147f198 FR |
854 | |
855 | switch(avctx->codec->id) { | |
856 | case CODEC_ID_ADPCM_IMA_QT: | |
857 | n = (buf_size - 2);/* >> 2*avctx->channels;*/ | |
858 | channel = c->channel; | |
859 | cs = &(c->status[channel]); | |
860 | /* (pppppp) (piiiiiii) */ | |
861 | ||
862 | /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */ | |
863 | cs->predictor = (*src++) << 8; | |
864 | cs->predictor |= (*src & 0x80); | |
865 | cs->predictor &= 0xFF80; | |
866 | ||
867 | /* sign extension */ | |
868 | if(cs->predictor & 0x8000) | |
869 | cs->predictor -= 0x10000; | |
870 | ||
871 | CLAMP_TO_SHORT(cs->predictor); | |
872 | ||
873 | cs->step_index = (*src++) & 0x7F; | |
874 | ||
8d359bba MN |
875 | if (cs->step_index > 88){ |
876 | av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index); | |
877 | cs->step_index = 88; | |
878 | } | |
0147f198 FR |
879 | |
880 | cs->step = step_table[cs->step_index]; | |
881 | ||
882 | if (st && channel) | |
883 | samples++; | |
884 | ||
885 | for(m=32; n>0 && m>0; n--, m--) { /* in QuickTime, IMA is encoded by chuncks of 34 bytes (=64 samples) */ | |
d94728c3 | 886 | *samples = adpcm_ima_expand_nibble(cs, src[0] & 0x0F, 3); |
0147f198 | 887 | samples += avctx->channels; |
d94728c3 | 888 | *samples = adpcm_ima_expand_nibble(cs, (src[0] >> 4) & 0x0F, 3); |
0147f198 FR |
889 | samples += avctx->channels; |
890 | src ++; | |
891 | } | |
892 | ||
893 | if(st) { /* handle stereo interlacing */ | |
894 | c->channel = (channel + 1) % 2; /* we get one packet for left, then one for right data */ | |
ac3d5cac | 895 | if(channel == 1) { /* wait for the other packet before outputing anything */ |
0147f198 FR |
896 | return src - buf; |
897 | } | |
898 | } | |
899 | break; | |
900 | case CODEC_ID_ADPCM_IMA_WAV: | |
ca1d62f4 AY |
901 | if (avctx->block_align != 0 && buf_size > avctx->block_align) |
902 | buf_size = avctx->block_align; | |
903 | ||
8d359bba MN |
904 | // samples_per_block= (block_align-4*chanels)*8 / (bits_per_sample * chanels) + 1; |
905 | ||
d94728c3 MN |
906 | for(i=0; i<avctx->channels; i++){ |
907 | cs = &(c->status[i]); | |
8d359bba MN |
908 | cs->predictor = (int16_t)(src[0] + (src[1]<<8)); |
909 | src+=2; | |
0147f198 | 910 | |
bb270c08 | 911 | // XXX: is this correct ??: *samples++ = cs->predictor; |
889c5224 | 912 | |
d94728c3 | 913 | cs->step_index = *src++; |
8d359bba MN |
914 | if (cs->step_index > 88){ |
915 | av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index); | |
916 | cs->step_index = 88; | |
917 | } | |
918 | if (*src++) av_log(avctx, AV_LOG_ERROR, "unused byte should be null but is %d!!\n", src[-1]); /* unused */ | |
0147f198 | 919 | } |
0147f198 | 920 | |
8d359bba MN |
921 | while(src < buf + buf_size){ |
922 | for(m=0; m<4; m++){ | |
923 | for(i=0; i<=st; i++) | |
924 | *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] & 0x0F, 3); | |
925 | for(i=0; i<=st; i++) | |
926 | *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] >> 4 , 3); | |
927 | src++; | |
bb270c08 | 928 | } |
8d359bba | 929 | src += 4*st; |
bb270c08 | 930 | } |
0147f198 | 931 | break; |
4b465299 MN |
932 | case CODEC_ID_ADPCM_4XM: |
933 | cs = &(c->status[0]); | |
934 | c->status[0].predictor= (int16_t)(src[0] + (src[1]<<8)); src+=2; | |
935 | if(st){ | |
936 | c->status[1].predictor= (int16_t)(src[0] + (src[1]<<8)); src+=2; | |
937 | } | |
938 | c->status[0].step_index= (int16_t)(src[0] + (src[1]<<8)); src+=2; | |
939 | if(st){ | |
940 | c->status[1].step_index= (int16_t)(src[0] + (src[1]<<8)); src+=2; | |
941 | } | |
ac3d5cac MM |
942 | if (cs->step_index < 0) cs->step_index = 0; |
943 | if (cs->step_index > 88) cs->step_index = 88; | |
4b465299 MN |
944 | |
945 | m= (buf_size - (src - buf))>>st; | |
4b465299 | 946 | for(i=0; i<m; i++) { |
bb270c08 | 947 | *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] & 0x0F, 4); |
4b465299 | 948 | if (st) |
d94728c3 MN |
949 | *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] & 0x0F, 4); |
950 | *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] >> 4, 4); | |
bb270c08 | 951 | if (st) |
d94728c3 | 952 | *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] >> 4, 4); |
bb270c08 | 953 | } |
4b465299 MN |
954 | |
955 | src += m<<st; | |
956 | ||
957 | break; | |
0147f198 | 958 | case CODEC_ID_ADPCM_MS: |
ca1d62f4 AY |
959 | if (avctx->block_align != 0 && buf_size > avctx->block_align) |
960 | buf_size = avctx->block_align; | |
0147f198 FR |
961 | n = buf_size - 7 * avctx->channels; |
962 | if (n < 0) | |
963 | return -1; | |
6cf9d5eb | 964 | block_predictor[0] = clip(*src++, 0, 7); |
0147f198 FR |
965 | block_predictor[1] = 0; |
966 | if (st) | |
6cf9d5eb MN |
967 | block_predictor[1] = clip(*src++, 0, 7); |
968 | c->status[0].idelta = (int16_t)((*src & 0xFF) | ((src[1] << 8) & 0xFF00)); | |
0147f198 | 969 | src+=2; |
6cf9d5eb MN |
970 | if (st){ |
971 | c->status[1].idelta = (int16_t)((*src & 0xFF) | ((src[1] << 8) & 0xFF00)); | |
0147f198 | 972 | src+=2; |
6cf9d5eb | 973 | } |
0147f198 FR |
974 | c->status[0].coeff1 = AdaptCoeff1[block_predictor[0]]; |
975 | c->status[0].coeff2 = AdaptCoeff2[block_predictor[0]]; | |
976 | c->status[1].coeff1 = AdaptCoeff1[block_predictor[1]]; | |
977 | c->status[1].coeff2 = AdaptCoeff2[block_predictor[1]]; | |
115329f1 | 978 | |
0147f198 FR |
979 | c->status[0].sample1 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00)); |
980 | src+=2; | |
981 | if (st) c->status[1].sample1 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00)); | |
982 | if (st) src+=2; | |
983 | c->status[0].sample2 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00)); | |
984 | src+=2; | |
985 | if (st) c->status[1].sample2 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00)); | |
986 | if (st) src+=2; | |
987 | ||
988 | *samples++ = c->status[0].sample1; | |
989 | if (st) *samples++ = c->status[1].sample1; | |
990 | *samples++ = c->status[0].sample2; | |
991 | if (st) *samples++ = c->status[1].sample2; | |
992 | for(;n>0;n--) { | |
993 | *samples++ = adpcm_ms_expand_nibble(&c->status[0], (src[0] >> 4) & 0x0F); | |
994 | *samples++ = adpcm_ms_expand_nibble(&c->status[st], src[0] & 0x0F); | |
995 | src ++; | |
996 | } | |
997 | break; | |
9937e686 | 998 | case CODEC_ID_ADPCM_IMA_DK4: |
5c69a4fd MN |
999 | if (avctx->block_align != 0 && buf_size > avctx->block_align) |
1000 | buf_size = avctx->block_align; | |
1001 | ||
6cf9d5eb | 1002 | c->status[0].predictor = (int16_t)(src[0] | (src[1] << 8)); |
9937e686 MM |
1003 | c->status[0].step_index = src[2]; |
1004 | src += 4; | |
9937e686 MM |
1005 | *samples++ = c->status[0].predictor; |
1006 | if (st) { | |
6cf9d5eb | 1007 | c->status[1].predictor = (int16_t)(src[0] | (src[1] << 8)); |
9937e686 MM |
1008 | c->status[1].step_index = src[2]; |
1009 | src += 4; | |
9937e686 MM |
1010 | *samples++ = c->status[1].predictor; |
1011 | } | |
1012 | while (src < buf + buf_size) { | |
1013 | ||
1014 | /* take care of the top nibble (always left or mono channel) */ | |
115329f1 | 1015 | *samples++ = adpcm_ima_expand_nibble(&c->status[0], |
d94728c3 | 1016 | (src[0] >> 4) & 0x0F, 3); |
9937e686 MM |
1017 | |
1018 | /* take care of the bottom nibble, which is right sample for | |
1019 | * stereo, or another mono sample */ | |
1020 | if (st) | |
115329f1 | 1021 | *samples++ = adpcm_ima_expand_nibble(&c->status[1], |
d94728c3 | 1022 | src[0] & 0x0F, 3); |
9937e686 | 1023 | else |
115329f1 | 1024 | *samples++ = adpcm_ima_expand_nibble(&c->status[0], |
d94728c3 | 1025 | src[0] & 0x0F, 3); |
9937e686 MM |
1026 | |
1027 | src++; | |
1028 | } | |
1029 | break; | |
1030 | case CODEC_ID_ADPCM_IMA_DK3: | |
5c69a4fd MN |
1031 | if (avctx->block_align != 0 && buf_size > avctx->block_align) |
1032 | buf_size = avctx->block_align; | |
1033 | ||
6cf9d5eb MN |
1034 | c->status[0].predictor = (int16_t)(src[10] | (src[11] << 8)); |
1035 | c->status[1].predictor = (int16_t)(src[12] | (src[13] << 8)); | |
9937e686 MM |
1036 | c->status[0].step_index = src[14]; |
1037 | c->status[1].step_index = src[15]; | |
1038 | /* sign extend the predictors */ | |
9937e686 MM |
1039 | src += 16; |
1040 | diff_channel = c->status[1].predictor; | |
1041 | ||
1042 | /* the DK3_GET_NEXT_NIBBLE macro issues the break statement when | |
1043 | * the buffer is consumed */ | |
1044 | while (1) { | |
1045 | ||
1046 | /* for this algorithm, c->status[0] is the sum channel and | |
1047 | * c->status[1] is the diff channel */ | |
1048 | ||
1049 | /* process the first predictor of the sum channel */ | |
1050 | DK3_GET_NEXT_NIBBLE(); | |
d94728c3 | 1051 | adpcm_ima_expand_nibble(&c->status[0], nibble, 3); |
9937e686 MM |
1052 | |
1053 | /* process the diff channel predictor */ | |
1054 | DK3_GET_NEXT_NIBBLE(); | |
d94728c3 | 1055 | adpcm_ima_expand_nibble(&c->status[1], nibble, 3); |
9937e686 MM |
1056 | |
1057 | /* process the first pair of stereo PCM samples */ | |
1058 | diff_channel = (diff_channel + c->status[1].predictor) / 2; | |
1059 | *samples++ = c->status[0].predictor + c->status[1].predictor; | |
1060 | *samples++ = c->status[0].predictor - c->status[1].predictor; | |
1061 | ||
1062 | /* process the second predictor of the sum channel */ | |
1063 | DK3_GET_NEXT_NIBBLE(); | |
d94728c3 | 1064 | adpcm_ima_expand_nibble(&c->status[0], nibble, 3); |
9937e686 MM |
1065 | |
1066 | /* process the second pair of stereo PCM samples */ | |
1067 | diff_channel = (diff_channel + c->status[1].predictor) / 2; | |
1068 | *samples++ = c->status[0].predictor + c->status[1].predictor; | |
1069 | *samples++ = c->status[0].predictor - c->status[1].predictor; | |
1070 | } | |
1071 | break; | |
2fdf638b MM |
1072 | case CODEC_ID_ADPCM_IMA_WS: |
1073 | /* no per-block initialization; just start decoding the data */ | |
1074 | while (src < buf + buf_size) { | |
1075 | ||
1076 | if (st) { | |
115329f1 | 1077 | *samples++ = adpcm_ima_expand_nibble(&c->status[0], |
d94728c3 | 1078 | (src[0] >> 4) & 0x0F, 3); |
115329f1 | 1079 | *samples++ = adpcm_ima_expand_nibble(&c->status[1], |
d94728c3 | 1080 | src[0] & 0x0F, 3); |
2fdf638b | 1081 | } else { |
115329f1 | 1082 | *samples++ = adpcm_ima_expand_nibble(&c->status[0], |
d94728c3 | 1083 | (src[0] >> 4) & 0x0F, 3); |
115329f1 | 1084 | *samples++ = adpcm_ima_expand_nibble(&c->status[0], |
d94728c3 | 1085 | src[0] & 0x0F, 3); |
2fdf638b MM |
1086 | } |
1087 | ||
1088 | src++; | |
1089 | } | |
1090 | break; | |
fc384777 | 1091 | case CODEC_ID_ADPCM_XA: |
115329f1 | 1092 | c->status[0].sample1 = c->status[0].sample2 = |
fc384777 MM |
1093 | c->status[1].sample1 = c->status[1].sample2 = 0; |
1094 | while (buf_size >= 128) { | |
115329f1 | 1095 | xa_decode(samples, src, &c->status[0], &c->status[1], |
fc384777 MM |
1096 | avctx->channels); |
1097 | src += 128; | |
1098 | samples += 28 * 8; | |
1099 | buf_size -= 128; | |
1100 | } | |
1101 | break; | |
7d8379f2 | 1102 | case CODEC_ID_ADPCM_EA: |
fead30d4 | 1103 | samples_in_chunk = AV_RL32(src); |
7d8379f2 MM |
1104 | if (samples_in_chunk >= ((buf_size - 12) * 2)) { |
1105 | src += buf_size; | |
1106 | break; | |
1107 | } | |
1108 | src += 4; | |
fead30d4 | 1109 | current_left_sample = (int16_t)AV_RL16(src); |
7d8379f2 | 1110 | src += 2; |
fead30d4 | 1111 | previous_left_sample = (int16_t)AV_RL16(src); |
7d8379f2 | 1112 | src += 2; |
fead30d4 | 1113 | current_right_sample = (int16_t)AV_RL16(src); |
7d8379f2 | 1114 | src += 2; |
fead30d4 | 1115 | previous_right_sample = (int16_t)AV_RL16(src); |
7d8379f2 MM |
1116 | src += 2; |
1117 | ||
1118 | for (count1 = 0; count1 < samples_in_chunk/28;count1++) { | |
1119 | coeff1l = ea_adpcm_table[(*src >> 4) & 0x0F]; | |
1120 | coeff2l = ea_adpcm_table[((*src >> 4) & 0x0F) + 4]; | |
1121 | coeff1r = ea_adpcm_table[*src & 0x0F]; | |
1122 | coeff2r = ea_adpcm_table[(*src & 0x0F) + 4]; | |
1123 | src++; | |
1124 | ||
1125 | shift_left = ((*src >> 4) & 0x0F) + 8; | |
1126 | shift_right = (*src & 0x0F) + 8; | |
1127 | src++; | |
1128 | ||
1129 | for (count2 = 0; count2 < 28; count2++) { | |
1130 | next_left_sample = (((*src & 0xF0) << 24) >> shift_left); | |
1131 | next_right_sample = (((*src & 0x0F) << 28) >> shift_right); | |
1132 | src++; | |
1133 | ||
115329f1 DB |
1134 | next_left_sample = (next_left_sample + |
1135 | (current_left_sample * coeff1l) + | |
7d8379f2 | 1136 | (previous_left_sample * coeff2l) + 0x80) >> 8; |
115329f1 DB |
1137 | next_right_sample = (next_right_sample + |
1138 | (current_right_sample * coeff1r) + | |
7d8379f2 MM |
1139 | (previous_right_sample * coeff2r) + 0x80) >> 8; |
1140 | CLAMP_TO_SHORT(next_left_sample); | |
1141 | CLAMP_TO_SHORT(next_right_sample); | |
1142 | ||
1143 | previous_left_sample = current_left_sample; | |
1144 | current_left_sample = next_left_sample; | |
1145 | previous_right_sample = current_right_sample; | |
1146 | current_right_sample = next_right_sample; | |
1147 | *samples++ = (unsigned short)current_left_sample; | |
1148 | *samples++ = (unsigned short)current_right_sample; | |
1149 | } | |
1150 | } | |
1151 | break; | |
1152 | case CODEC_ID_ADPCM_IMA_SMJPEG: | |
1153 | c->status[0].predictor = *src; | |
1154 | src += 2; | |
1155 | c->status[0].step_index = *src++; | |
1156 | src++; /* skip another byte before getting to the meat */ | |
1157 | while (src < buf + buf_size) { | |
1158 | *samples++ = adpcm_ima_expand_nibble(&c->status[0], | |
1159 | *src & 0x0F, 3); | |
1160 | *samples++ = adpcm_ima_expand_nibble(&c->status[0], | |
1161 | (*src >> 4) & 0x0F, 3); | |
1162 | src++; | |
1163 | } | |
1164 | break; | |
b3bfb299 | 1165 | case CODEC_ID_ADPCM_CT: |
bb270c08 | 1166 | while (src < buf + buf_size) { |
b3bfb299 | 1167 | if (st) { |
115329f1 | 1168 | *samples++ = adpcm_ct_expand_nibble(&c->status[0], |
b3bfb299 | 1169 | (src[0] >> 4) & 0x0F); |
115329f1 | 1170 | *samples++ = adpcm_ct_expand_nibble(&c->status[1], |
b3bfb299 MM |
1171 | src[0] & 0x0F); |
1172 | } else { | |
115329f1 | 1173 | *samples++ = adpcm_ct_expand_nibble(&c->status[0], |
b3bfb299 | 1174 | (src[0] >> 4) & 0x0F); |
115329f1 | 1175 | *samples++ = adpcm_ct_expand_nibble(&c->status[0], |
b3bfb299 MM |
1176 | src[0] & 0x0F); |
1177 | } | |
bb270c08 | 1178 | src++; |
b3bfb299 MM |
1179 | } |
1180 | break; | |
2433f24f AJ |
1181 | case CODEC_ID_ADPCM_SBPRO_4: |
1182 | case CODEC_ID_ADPCM_SBPRO_3: | |
1183 | case CODEC_ID_ADPCM_SBPRO_2: | |
1184 | if (!c->status[0].step_index) { | |
1185 | /* the first byte is a raw sample */ | |
1186 | *samples++ = 128 * (*src++ - 0x80); | |
1187 | if (st) | |
1188 | *samples++ = 128 * (*src++ - 0x80); | |
1189 | c->status[0].step_index = 1; | |
1190 | } | |
1191 | if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_4) { | |
1192 | while (src < buf + buf_size) { | |
1193 | *samples++ = adpcm_sbpro_expand_nibble(&c->status[0], | |
1194 | (src[0] >> 4) & 0x0F, 4, 0); | |
1195 | *samples++ = adpcm_sbpro_expand_nibble(&c->status[st], | |
1196 | src[0] & 0x0F, 4, 0); | |
1197 | src++; | |
1198 | } | |
1199 | } else if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_3) { | |
1200 | while (src < buf + buf_size) { | |
1201 | *samples++ = adpcm_sbpro_expand_nibble(&c->status[0], | |
1202 | (src[0] >> 5) & 0x07, 3, 0); | |
1203 | *samples++ = adpcm_sbpro_expand_nibble(&c->status[0], | |
1204 | (src[0] >> 2) & 0x07, 3, 0); | |
1205 | *samples++ = adpcm_sbpro_expand_nibble(&c->status[0], | |
1206 | src[0] & 0x03, 2, 0); | |
1207 | src++; | |
1208 | } | |
1209 | } else { | |
1210 | while (src < buf + buf_size) { | |
1211 | *samples++ = adpcm_sbpro_expand_nibble(&c->status[0], | |
1212 | (src[0] >> 6) & 0x03, 2, 2); | |
1213 | *samples++ = adpcm_sbpro_expand_nibble(&c->status[st], | |
1214 | (src[0] >> 4) & 0x03, 2, 2); | |
1215 | *samples++ = adpcm_sbpro_expand_nibble(&c->status[0], | |
1216 | (src[0] >> 2) & 0x03, 2, 2); | |
1217 | *samples++ = adpcm_sbpro_expand_nibble(&c->status[st], | |
1218 | src[0] & 0x03, 2, 2); | |
1219 | src++; | |
1220 | } | |
1221 | } | |
1222 | break; | |
659c3692 AB |
1223 | case CODEC_ID_ADPCM_SWF: |
1224 | { | |
bb270c08 DB |
1225 | GetBitContext gb; |
1226 | const int *table; | |
1227 | int k0, signmask; | |
1228 | int size = buf_size*8; | |
1229 | ||
1230 | init_get_bits(&gb, buf, size); | |
1231 | ||
1232 | // first frame, read bits & inital values | |
1233 | if (!c->nb_bits) | |
1234 | { | |
1235 | c->nb_bits = get_bits(&gb, 2)+2; | |
1236 | // av_log(NULL,AV_LOG_INFO,"nb_bits: %d\n", c->nb_bits); | |
1237 | } | |
1238 | ||
1239 | table = swf_index_tables[c->nb_bits-2]; | |
1240 | k0 = 1 << (c->nb_bits-2); | |
1241 | signmask = 1 << (c->nb_bits-1); | |
1242 | ||
1243 | while (get_bits_count(&gb) <= size) | |
1244 | { | |
1245 | int i; | |
1246 | ||
1247 | c->nb_samples++; | |
1248 | // wrap around at every 4096 samples... | |
1249 | if ((c->nb_samples & 0xfff) == 1) | |
1250 | { | |
1251 | for (i = 0; i <= st; i++) | |
1252 | { | |
1253 | *samples++ = c->status[i].predictor = get_sbits(&gb, 16); | |
1254 | c->status[i].step_index = get_bits(&gb, 6); | |
1255 | } | |
1256 | } | |
1257 | ||
1258 | // similar to IMA adpcm | |
1259 | for (i = 0; i <= st; i++) | |
1260 | { | |
1261 | int delta = get_bits(&gb, c->nb_bits); | |
1262 | int step = step_table[c->status[i].step_index]; | |
1263 | long vpdiff = 0; // vpdiff = (delta+0.5)*step/4 | |
1264 | int k = k0; | |
1265 | ||
1266 | do { | |
1267 | if (delta & k) | |
1268 | vpdiff += step; | |
1269 | step >>= 1; | |
1270 | k >>= 1; | |
1271 | } while(k); | |
1272 | vpdiff += step; | |
1273 | ||
1274 | if (delta & signmask) | |
1275 | c->status[i].predictor -= vpdiff; | |
1276 | else | |
1277 | c->status[i].predictor += vpdiff; | |
1278 | ||
1279 | c->status[i].step_index += table[delta & (~signmask)]; | |
1280 | ||
1281 | c->status[i].step_index = clip(c->status[i].step_index, 0, 88); | |
1282 | c->status[i].predictor = clip(c->status[i].predictor, -32768, 32767); | |
1283 | ||
1284 | *samples++ = c->status[i].predictor; | |
1285 | } | |
1286 | } | |
1287 | ||
1288 | // src += get_bits_count(&gb)*8; | |
1289 | src += size; | |
1290 | ||
1291 | break; | |
659c3692 | 1292 | } |
2ff4524e VM |
1293 | case CODEC_ID_ADPCM_YAMAHA: |
1294 | while (src < buf + buf_size) { | |
1295 | if (st) { | |
1296 | *samples++ = adpcm_yamaha_expand_nibble(&c->status[0], | |
2ff4524e | 1297 | src[0] & 0x0F); |
b194c327 | 1298 | *samples++ = adpcm_yamaha_expand_nibble(&c->status[1], |
2ff4524e | 1299 | (src[0] >> 4) & 0x0F); |
b194c327 | 1300 | } else { |
2ff4524e VM |
1301 | *samples++ = adpcm_yamaha_expand_nibble(&c->status[0], |
1302 | src[0] & 0x0F); | |
b194c327 MN |
1303 | *samples++ = adpcm_yamaha_expand_nibble(&c->status[0], |
1304 | (src[0] >> 4) & 0x0F); | |
2ff4524e VM |
1305 | } |
1306 | src++; | |
1307 | } | |
1308 | break; | |
0147f198 | 1309 | default: |
0147f198 FR |
1310 | return -1; |
1311 | } | |
0c1a9eda | 1312 | *data_size = (uint8_t *)samples - (uint8_t *)data; |
0147f198 FR |
1313 | return src - buf; |
1314 | } | |
1315 | ||
764ef400 MM |
1316 | |
1317 | ||
1318 | #ifdef CONFIG_ENCODERS | |
1319 | #define ADPCM_ENCODER(id,name) \ | |
0147f198 FR |
1320 | AVCodec name ## _encoder = { \ |
1321 | #name, \ | |
1322 | CODEC_TYPE_AUDIO, \ | |
1323 | id, \ | |
1324 | sizeof(ADPCMContext), \ | |
1325 | adpcm_encode_init, \ | |
1326 | adpcm_encode_frame, \ | |
1327 | adpcm_encode_close, \ | |
1328 | NULL, \ | |
764ef400 MM |
1329 | }; |
1330 | #else | |
1331 | #define ADPCM_ENCODER(id,name) | |
1332 | #endif | |
1333 | ||
1334 | #ifdef CONFIG_DECODERS | |
1335 | #define ADPCM_DECODER(id,name) \ | |
0147f198 FR |
1336 | AVCodec name ## _decoder = { \ |
1337 | #name, \ | |
1338 | CODEC_TYPE_AUDIO, \ | |
1339 | id, \ | |
1340 | sizeof(ADPCMContext), \ | |
1341 | adpcm_decode_init, \ | |
1342 | NULL, \ | |
1343 | NULL, \ | |
1344 | adpcm_decode_frame, \ | |
1345 | }; | |
764ef400 MM |
1346 | #else |
1347 | #define ADPCM_DECODER(id,name) | |
1348 | #endif | |
1349 | ||
1350 | #define ADPCM_CODEC(id, name) \ | |
1351 | ADPCM_ENCODER(id,name) ADPCM_DECODER(id,name) | |
0147f198 FR |
1352 | |
1353 | ADPCM_CODEC(CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt); | |
1354 | ADPCM_CODEC(CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav); | |
9937e686 MM |
1355 | ADPCM_CODEC(CODEC_ID_ADPCM_IMA_DK3, adpcm_ima_dk3); |
1356 | ADPCM_CODEC(CODEC_ID_ADPCM_IMA_DK4, adpcm_ima_dk4); | |
2fdf638b | 1357 | ADPCM_CODEC(CODEC_ID_ADPCM_IMA_WS, adpcm_ima_ws); |
7d8379f2 | 1358 | ADPCM_CODEC(CODEC_ID_ADPCM_IMA_SMJPEG, adpcm_ima_smjpeg); |
0147f198 | 1359 | ADPCM_CODEC(CODEC_ID_ADPCM_MS, adpcm_ms); |
4b465299 | 1360 | ADPCM_CODEC(CODEC_ID_ADPCM_4XM, adpcm_4xm); |
fc384777 | 1361 | ADPCM_CODEC(CODEC_ID_ADPCM_XA, adpcm_xa); |
7d8379f2 | 1362 | ADPCM_CODEC(CODEC_ID_ADPCM_EA, adpcm_ea); |
b3bfb299 | 1363 | ADPCM_CODEC(CODEC_ID_ADPCM_CT, adpcm_ct); |
659c3692 | 1364 | ADPCM_CODEC(CODEC_ID_ADPCM_SWF, adpcm_swf); |
2ff4524e | 1365 | ADPCM_CODEC(CODEC_ID_ADPCM_YAMAHA, adpcm_yamaha); |
2433f24f AJ |
1366 | ADPCM_CODEC(CODEC_ID_ADPCM_SBPRO_4, adpcm_sbpro_4); |
1367 | ADPCM_CODEC(CODEC_ID_ADPCM_SBPRO_3, adpcm_sbpro_3); | |
1368 | ADPCM_CODEC(CODEC_ID_ADPCM_SBPRO_2, adpcm_sbpro_2); | |
0147f198 FR |
1369 | |
1370 | #undef ADPCM_CODEC |