Grammar fixes
[libav.git] / libavcodec / alsdec.c
CommitLineData
99971952
TB
1/*
2 * MPEG-4 ALS decoder
3 * Copyright (c) 2009 Thilo Borgmann <thilo.borgmann _at_ googlemail.com>
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22/**
ba87f080 23 * @file
99971952
TB
24 * MPEG-4 ALS decoder
25 * @author Thilo Borgmann <thilo.borgmann _at_ googlemail.com>
26 */
27
28
29//#define DEBUG
30
31
32#include "avcodec.h"
33#include "get_bits.h"
34#include "unary.h"
35#include "mpeg4audio.h"
36#include "bytestream.h"
25608328 37#include "bgmc.h"
cbb39648
TB
38#include "dsputil.h"
39#include "libavutil/crc.h"
99971952 40
25c4fdda
TB
41#include <stdint.h>
42
43/** Rice parameters and corresponding index offsets for decoding the
44 * indices of scaled PARCOR values. The table choosen is set globally
45 * by the encoder and stored in ALSSpecificConfig.
46 */
47static const int8_t parcor_rice_table[3][20][2] = {
48 { {-52, 4}, {-29, 5}, {-31, 4}, { 19, 4}, {-16, 4},
49 { 12, 3}, { -7, 3}, { 9, 3}, { -5, 3}, { 6, 3},
50 { -4, 3}, { 3, 3}, { -3, 2}, { 3, 2}, { -2, 2},
51 { 3, 2}, { -1, 2}, { 2, 2}, { -1, 2}, { 2, 2} },
52 { {-58, 3}, {-42, 4}, {-46, 4}, { 37, 5}, {-36, 4},
53 { 29, 4}, {-29, 4}, { 25, 4}, {-23, 4}, { 20, 4},
54 {-17, 4}, { 16, 4}, {-12, 4}, { 12, 3}, {-10, 4},
55 { 7, 3}, { -4, 4}, { 3, 3}, { -1, 3}, { 1, 3} },
56 { {-59, 3}, {-45, 5}, {-50, 4}, { 38, 4}, {-39, 4},
57 { 32, 4}, {-30, 4}, { 25, 3}, {-23, 3}, { 20, 3},
58 {-20, 3}, { 16, 3}, {-13, 3}, { 10, 3}, { -7, 3},
59 { 3, 3}, { 0, 3}, { -1, 3}, { 2, 3}, { -1, 2} }
60};
61
62
63/** Scaled PARCOR values used for the first two PARCOR coefficients.
64 * To be indexed by the Rice coded indices.
65 * Generated by: parcor_scaled_values[i] = 32 + ((i * (i+1)) << 7) - (1 << 20)
66 * Actual values are divided by 32 in order to be stored in 16 bits.
67 */
68static const int16_t parcor_scaled_values[] = {
69 -1048544 / 32, -1048288 / 32, -1047776 / 32, -1047008 / 32,
70 -1045984 / 32, -1044704 / 32, -1043168 / 32, -1041376 / 32,
71 -1039328 / 32, -1037024 / 32, -1034464 / 32, -1031648 / 32,
72 -1028576 / 32, -1025248 / 32, -1021664 / 32, -1017824 / 32,
73 -1013728 / 32, -1009376 / 32, -1004768 / 32, -999904 / 32,
74 -994784 / 32, -989408 / 32, -983776 / 32, -977888 / 32,
75 -971744 / 32, -965344 / 32, -958688 / 32, -951776 / 32,
76 -944608 / 32, -937184 / 32, -929504 / 32, -921568 / 32,
77 -913376 / 32, -904928 / 32, -896224 / 32, -887264 / 32,
78 -878048 / 32, -868576 / 32, -858848 / 32, -848864 / 32,
79 -838624 / 32, -828128 / 32, -817376 / 32, -806368 / 32,
80 -795104 / 32, -783584 / 32, -771808 / 32, -759776 / 32,
81 -747488 / 32, -734944 / 32, -722144 / 32, -709088 / 32,
82 -695776 / 32, -682208 / 32, -668384 / 32, -654304 / 32,
83 -639968 / 32, -625376 / 32, -610528 / 32, -595424 / 32,
84 -580064 / 32, -564448 / 32, -548576 / 32, -532448 / 32,
85 -516064 / 32, -499424 / 32, -482528 / 32, -465376 / 32,
86 -447968 / 32, -430304 / 32, -412384 / 32, -394208 / 32,
87 -375776 / 32, -357088 / 32, -338144 / 32, -318944 / 32,
88 -299488 / 32, -279776 / 32, -259808 / 32, -239584 / 32,
89 -219104 / 32, -198368 / 32, -177376 / 32, -156128 / 32,
90 -134624 / 32, -112864 / 32, -90848 / 32, -68576 / 32,
91 -46048 / 32, -23264 / 32, -224 / 32, 23072 / 32,
92 46624 / 32, 70432 / 32, 94496 / 32, 118816 / 32,
93 143392 / 32, 168224 / 32, 193312 / 32, 218656 / 32,
94 244256 / 32, 270112 / 32, 296224 / 32, 322592 / 32,
95 349216 / 32, 376096 / 32, 403232 / 32, 430624 / 32,
96 458272 / 32, 486176 / 32, 514336 / 32, 542752 / 32,
97 571424 / 32, 600352 / 32, 629536 / 32, 658976 / 32,
98 688672 / 32, 718624 / 32, 748832 / 32, 779296 / 32,
99 810016 / 32, 840992 / 32, 872224 / 32, 903712 / 32,
100 935456 / 32, 967456 / 32, 999712 / 32, 1032224 / 32
101};
102
103
104/** Gain values of p(0) for long-term prediction.
105 * To be indexed by the Rice coded indices.
106 */
107static const uint8_t ltp_gain_values [4][4] = {
108 { 0, 8, 16, 24},
109 {32, 40, 48, 56},
110 {64, 70, 76, 82},
111 {88, 92, 96, 100}
112};
113
99971952 114
e38215f2
TB
115/** Inter-channel weighting factors for multi-channel correlation.
116 * To be indexed by the Rice coded indices.
117 */
118static const int16_t mcc_weightings[] = {
119 204, 192, 179, 166, 153, 140, 128, 115,
120 102, 89, 76, 64, 51, 38, 25, 12,
121 0, -12, -25, -38, -51, -64, -76, -89,
122 -102, -115, -128, -140, -153, -166, -179, -192
123};
124
125
25608328
TB
126/** Tail codes used in arithmetic coding using block Gilbert-Moore codes.
127 */
128static const uint8_t tail_code[16][6] = {
129 { 74, 44, 25, 13, 7, 3},
130 { 68, 42, 24, 13, 7, 3},
131 { 58, 39, 23, 13, 7, 3},
132 {126, 70, 37, 19, 10, 5},
133 {132, 70, 37, 20, 10, 5},
134 {124, 70, 38, 20, 10, 5},
135 {120, 69, 37, 20, 11, 5},
136 {116, 67, 37, 20, 11, 5},
137 {108, 66, 36, 20, 10, 5},
138 {102, 62, 36, 20, 10, 5},
139 { 88, 58, 34, 19, 10, 5},
140 {162, 89, 49, 25, 13, 7},
141 {156, 87, 49, 26, 14, 7},
142 {150, 86, 47, 26, 14, 7},
143 {142, 84, 47, 26, 14, 7},
144 {131, 79, 46, 26, 14, 7}
145};
146
147
99971952
TB
148enum RA_Flag {
149 RA_FLAG_NONE,
150 RA_FLAG_FRAMES,
151 RA_FLAG_HEADER
152};
153
154
155typedef struct {
156 uint32_t samples; ///< number of samples, 0xFFFFFFFF if unknown
157 int resolution; ///< 000 = 8-bit; 001 = 16-bit; 010 = 24-bit; 011 = 32-bit
158 int floating; ///< 1 = IEEE 32-bit floating-point, 0 = integer
cbb39648 159 int msb_first; ///< 1 = original CRC calculated on big-endian system, 0 = little-endian
99971952
TB
160 int frame_length; ///< frame length for each frame (last frame may differ)
161 int ra_distance; ///< distance between RA frames (in frames, 0...255)
162 enum RA_Flag ra_flag; ///< indicates where the size of ra units is stored
163 int adapt_order; ///< adaptive order: 1 = on, 0 = off
164 int coef_table; ///< table index of Rice code parameters
165 int long_term_prediction; ///< long term prediction (LTP): 1 = on, 0 = off
166 int max_order; ///< maximum prediction order (0..1023)
167 int block_switching; ///< number of block switching levels
168 int bgmc; ///< "Block Gilbert-Moore Code": 1 = on, 0 = off (Rice coding only)
169 int sb_part; ///< sub-block partition
170 int joint_stereo; ///< joint stereo: 1 = on, 0 = off
171 int mc_coding; ///< extended inter-channel coding (multi channel coding): 1 = on, 0 = off
172 int chan_config; ///< indicates that a chan_config_info field is present
173 int chan_sort; ///< channel rearrangement: 1 = on, 0 = off
174 int rlslms; ///< use "Recursive Least Square-Least Mean Square" predictor: 1 = on, 0 = off
175 int chan_config_info; ///< mapping of channels to loudspeaker locations. Unused until setting channel configuration is implemented.
176 int *chan_pos; ///< original channel positions
cbb39648 177 int crc_enabled; ///< enable Cyclic Redundancy Checksum
99971952
TB
178} ALSSpecificConfig;
179
180
181typedef struct {
e38215f2
TB
182 int stop_flag;
183 int master_channel;
184 int time_diff_flag;
185 int time_diff_sign;
186 int time_diff_index;
187 int weighting[6];
188} ALSChannelData;
189
190
191typedef struct {
99971952
TB
192 AVCodecContext *avctx;
193 ALSSpecificConfig sconf;
194 GetBitContext gb;
cbb39648
TB
195 DSPContext dsp;
196 const AVCRC *crc_table;
197 uint32_t crc_org; ///< CRC value of the original input data
198 uint32_t crc; ///< CRC value calculated from decoded data
99971952
TB
199 unsigned int cur_frame_length; ///< length of the current frame to decode
200 unsigned int frame_id; ///< the frame ID / number of the current frame
201 unsigned int js_switch; ///< if true, joint-stereo decoding is enforced
202 unsigned int num_blocks; ///< number of blocks used in the current frame
11431599 203 unsigned int s_max; ///< maximum Rice parameter allowed in entropy coding
25608328
TB
204 uint8_t *bgmc_lut; ///< pointer at lookup tables used for BGMC
205 unsigned int *bgmc_lut_status; ///< pointer at lookup table status flags used for BGMC
93d38cf6 206 int ltp_lag_length; ///< number of bits used for ltp lag value
1261b07f
TB
207 int *use_ltp; ///< contains use_ltp flags for all channels
208 int *ltp_lag; ///< contains ltp lag values for all channels
209 int **ltp_gain; ///< gain values for ltp 5-tap filter for a channel
210 int *ltp_gain_buffer; ///< contains all gain values for ltp 5-tap filter
e38215f2
TB
211 int32_t **quant_cof; ///< quantized parcor coefficients for a channel
212 int32_t *quant_cof_buffer; ///< contains all quantized parcor coefficients
213 int32_t **lpc_cof; ///< coefficients of the direct form prediction filter for a channel
214 int32_t *lpc_cof_buffer; ///< contains all coefficients of the direct form prediction filter
ff9ea0b7 215 int32_t *lpc_cof_reversed_buffer; ///< temporary buffer to set up a reversed versio of lpc_cof_buffer
e38215f2
TB
216 ALSChannelData **chan_data; ///< channel data for multi-channel correlation
217 ALSChannelData *chan_data_buffer; ///< contains channel data for all channels
218 int *reverted_channels; ///< stores a flag for each reverted channel
99971952
TB
219 int32_t *prev_raw_samples; ///< contains unshifted raw samples from the previous block
220 int32_t **raw_samples; ///< decoded raw samples for each channel
221 int32_t *raw_buffer; ///< contains all decoded raw samples including carryover samples
cbb39648 222 uint8_t *crc_buffer; ///< buffer of byte order corrected samples used for CRC check
99971952
TB
223} ALSDecContext;
224
225
1261b07f
TB
226typedef struct {
227 unsigned int block_length; ///< number of samples within the block
228 unsigned int ra_block; ///< if true, this is a random access block
229 int const_block; ///< if true, this is a constant value block
230 int32_t const_val; ///< the sample value of a constant block
231 int js_blocks; ///< true if this block contains a difference signal
232 unsigned int shift_lsbs; ///< shift of values for this block
233 unsigned int opt_order; ///< prediction order of this block
234 int store_prev_samples;///< if true, carryover samples have to be stored
235 int *use_ltp; ///< if true, long-term prediction is used
236 int *ltp_lag; ///< lag value for long-term prediction
237 int *ltp_gain; ///< gain values for ltp 5-tap filter
238 int32_t *quant_cof; ///< quantized parcor coefficients
239 int32_t *lpc_cof; ///< coefficients of the direct form prediction
240 int32_t *raw_samples; ///< decoded raw samples / residuals for this block
241 int32_t *prev_raw_samples; ///< contains unshifted raw samples from the previous block
242 int32_t *raw_other; ///< decoded raw samples of the other channel of a channel pair
243} ALSBlockData;
244
245
99971952
TB
246static av_cold void dprint_specific_config(ALSDecContext *ctx)
247{
248#ifdef DEBUG
249 AVCodecContext *avctx = ctx->avctx;
250 ALSSpecificConfig *sconf = &ctx->sconf;
251
252 dprintf(avctx, "resolution = %i\n", sconf->resolution);
253 dprintf(avctx, "floating = %i\n", sconf->floating);
254 dprintf(avctx, "frame_length = %i\n", sconf->frame_length);
255 dprintf(avctx, "ra_distance = %i\n", sconf->ra_distance);
256 dprintf(avctx, "ra_flag = %i\n", sconf->ra_flag);
257 dprintf(avctx, "adapt_order = %i\n", sconf->adapt_order);
258 dprintf(avctx, "coef_table = %i\n", sconf->coef_table);
259 dprintf(avctx, "long_term_prediction = %i\n", sconf->long_term_prediction);
260 dprintf(avctx, "max_order = %i\n", sconf->max_order);
261 dprintf(avctx, "block_switching = %i\n", sconf->block_switching);
262 dprintf(avctx, "bgmc = %i\n", sconf->bgmc);
263 dprintf(avctx, "sb_part = %i\n", sconf->sb_part);
264 dprintf(avctx, "joint_stereo = %i\n", sconf->joint_stereo);
265 dprintf(avctx, "mc_coding = %i\n", sconf->mc_coding);
266 dprintf(avctx, "chan_config = %i\n", sconf->chan_config);
267 dprintf(avctx, "chan_sort = %i\n", sconf->chan_sort);
268 dprintf(avctx, "RLSLMS = %i\n", sconf->rlslms);
269 dprintf(avctx, "chan_config_info = %i\n", sconf->chan_config_info);
99971952
TB
270#endif
271}
272
273
49bd8e4b 274/** Read an ALSSpecificConfig from a buffer into the output struct.
99971952
TB
275 */
276static av_cold int read_specific_config(ALSDecContext *ctx)
277{
278 GetBitContext gb;
279 uint64_t ht_size;
cbb39648 280 int i, config_offset;
99971952
TB
281 MPEG4AudioConfig m4ac;
282 ALSSpecificConfig *sconf = &ctx->sconf;
283 AVCodecContext *avctx = ctx->avctx;
8e14fbe8 284 uint32_t als_id, header_size, trailer_size;
99971952
TB
285
286 init_get_bits(&gb, avctx->extradata, avctx->extradata_size * 8);
287
288 config_offset = ff_mpeg4audio_get_config(&m4ac, avctx->extradata,
289 avctx->extradata_size);
290
291 if (config_offset < 0)
292 return -1;
293
294 skip_bits_long(&gb, config_offset);
295
296 if (get_bits_left(&gb) < (30 << 3))
297 return -1;
298
299 // read the fixed items
300 als_id = get_bits_long(&gb, 32);
301 avctx->sample_rate = m4ac.sample_rate;
302 skip_bits_long(&gb, 32); // sample rate already known
303 sconf->samples = get_bits_long(&gb, 32);
304 avctx->channels = m4ac.channels;
305 skip_bits(&gb, 16); // number of channels already knwon
306 skip_bits(&gb, 3); // skip file_type
307 sconf->resolution = get_bits(&gb, 3);
308 sconf->floating = get_bits1(&gb);
cbb39648 309 sconf->msb_first = get_bits1(&gb);
99971952
TB
310 sconf->frame_length = get_bits(&gb, 16) + 1;
311 sconf->ra_distance = get_bits(&gb, 8);
312 sconf->ra_flag = get_bits(&gb, 2);
313 sconf->adapt_order = get_bits1(&gb);
314 sconf->coef_table = get_bits(&gb, 2);
315 sconf->long_term_prediction = get_bits1(&gb);
316 sconf->max_order = get_bits(&gb, 10);
317 sconf->block_switching = get_bits(&gb, 2);
318 sconf->bgmc = get_bits1(&gb);
319 sconf->sb_part = get_bits1(&gb);
320 sconf->joint_stereo = get_bits1(&gb);
321 sconf->mc_coding = get_bits1(&gb);
322 sconf->chan_config = get_bits1(&gb);
323 sconf->chan_sort = get_bits1(&gb);
cbb39648 324 sconf->crc_enabled = get_bits1(&gb);
99971952
TB
325 sconf->rlslms = get_bits1(&gb);
326 skip_bits(&gb, 5); // skip 5 reserved bits
327 skip_bits1(&gb); // skip aux_data_enabled
328
329
330 // check for ALSSpecificConfig struct
331 if (als_id != MKBETAG('A','L','S','\0'))
332 return -1;
333
334 ctx->cur_frame_length = sconf->frame_length;
335
99971952
TB
336 // read channel config
337 if (sconf->chan_config)
338 sconf->chan_config_info = get_bits(&gb, 16);
339 // TODO: use this to set avctx->channel_layout
340
341
342 // read channel sorting
343 if (sconf->chan_sort && avctx->channels > 1) {
344 int chan_pos_bits = av_ceil_log2(avctx->channels);
345 int bits_needed = avctx->channels * chan_pos_bits + 7;
346 if (get_bits_left(&gb) < bits_needed)
347 return -1;
348
349 if (!(sconf->chan_pos = av_malloc(avctx->channels * sizeof(*sconf->chan_pos))))
350 return AVERROR(ENOMEM);
351
352 for (i = 0; i < avctx->channels; i++)
353 sconf->chan_pos[i] = get_bits(&gb, chan_pos_bits);
354
355 align_get_bits(&gb);
356 // TODO: use this to actually do channel sorting
357 } else {
358 sconf->chan_sort = 0;
359 }
360
361
362 // read fixed header and trailer sizes,
363 // if size = 0xFFFFFFFF then there is no data field!
364 if (get_bits_left(&gb) < 64)
365 return -1;
366
8e14fbe8
TB
367 header_size = get_bits_long(&gb, 32);
368 trailer_size = get_bits_long(&gb, 32);
369 if (header_size == 0xFFFFFFFF)
370 header_size = 0;
371 if (trailer_size == 0xFFFFFFFF)
372 trailer_size = 0;
99971952 373
8e14fbe8 374 ht_size = ((int64_t)(header_size) + (int64_t)(trailer_size)) << 3;
99971952
TB
375
376
377 // skip the header and trailer data
378 if (get_bits_left(&gb) < ht_size)
379 return -1;
380
381 if (ht_size > INT32_MAX)
382 return -1;
383
384 skip_bits_long(&gb, ht_size);
385
386
cbb39648
TB
387 // initialize CRC calculation
388 if (sconf->crc_enabled) {
99971952
TB
389 if (get_bits_left(&gb) < 32)
390 return -1;
391
cbb39648
TB
392 if (avctx->error_recognition >= FF_ER_CAREFUL) {
393 ctx->crc_table = av_crc_get_table(AV_CRC_32_IEEE_LE);
394 ctx->crc = 0xFFFFFFFF;
395 ctx->crc_org = ~get_bits_long(&gb, 32);
396 } else
397 skip_bits_long(&gb, 32);
99971952
TB
398 }
399
400
401 // no need to read the rest of ALSSpecificConfig (ra_unit_size & aux data)
402
403 dprint_specific_config(ctx);
404
405 return 0;
406}
407
408
49bd8e4b 409/** Check the ALSSpecificConfig for unsupported features.
99971952
TB
410 */
411static int check_specific_config(ALSDecContext *ctx)
412{
413 ALSSpecificConfig *sconf = &ctx->sconf;
414 int error = 0;
415
416 // report unsupported feature and set error value
417 #define MISSING_ERR(cond, str, errval) \
418 { \
419 if (cond) { \
420 av_log_missing_feature(ctx->avctx, str, 0); \
421 error = errval; \
422 } \
423 }
424
425 MISSING_ERR(sconf->floating, "Floating point decoding", -1);
99971952
TB
426 MISSING_ERR(sconf->rlslms, "Adaptive RLS-LMS prediction", -1);
427 MISSING_ERR(sconf->chan_sort, "Channel sorting", 0);
428
429 return error;
430}
431
432
49bd8e4b 433/** Parse the bs_info field to extract the block partitioning used in
99971952
TB
434 * block switching mode, refer to ISO/IEC 14496-3, section 11.6.2.
435 */
436static void parse_bs_info(const uint32_t bs_info, unsigned int n,
437 unsigned int div, unsigned int **div_blocks,
438 unsigned int *num_blocks)
439{
440 if (n < 31 && ((bs_info << n) & 0x40000000)) {
441 // if the level is valid and the investigated bit n is set
442 // then recursively check both children at bits (2n+1) and (2n+2)
443 n *= 2;
444 div += 1;
445 parse_bs_info(bs_info, n + 1, div, div_blocks, num_blocks);
446 parse_bs_info(bs_info, n + 2, div, div_blocks, num_blocks);
447 } else {
448 // else the bit is not set or the last level has been reached
449 // (bit implicitly not set)
450 **div_blocks = div;
451 (*div_blocks)++;
452 (*num_blocks)++;
453 }
454}
455
456
48966b02 457/** Read and decode a Rice codeword.
99971952
TB
458 */
459static int32_t decode_rice(GetBitContext *gb, unsigned int k)
460{
6e44ba15 461 int max = get_bits_left(gb) - k;
99971952
TB
462 int q = get_unary(gb, 0, max);
463 int r = k ? get_bits1(gb) : !(q & 1);
464
465 if (k > 1) {
466 q <<= (k - 1);
467 q += get_bits_long(gb, k - 1);
468 } else if (!k) {
469 q >>= 1;
470 }
471 return r ? q : ~q;
472}
473
474
49bd8e4b 475/** Convert PARCOR coefficient k to direct filter coefficient.
99971952
TB
476 */
477static void parcor_to_lpc(unsigned int k, const int32_t *par, int32_t *cof)
478{
479 int i, j;
480
481 for (i = 0, j = k - 1; i < j; i++, j--) {
482 int tmp1 = ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
483 cof[j] += ((MUL64(par[k], cof[i]) + (1 << 19)) >> 20);
484 cof[i] += tmp1;
485 }
486 if (i == j)
487 cof[i] += ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
488
489 cof[k] = par[k];
490}
491
492
48966b02
MR
493/** Read block switching field if necessary and set actual block sizes.
494 * Also assure that the block sizes of the last frame correspond to the
99971952
TB
495 * actual number of samples.
496 */
497static void get_block_sizes(ALSDecContext *ctx, unsigned int *div_blocks,
498 uint32_t *bs_info)
499{
500 ALSSpecificConfig *sconf = &ctx->sconf;
501 GetBitContext *gb = &ctx->gb;
502 unsigned int *ptr_div_blocks = div_blocks;
503 unsigned int b;
504
505 if (sconf->block_switching) {
506 unsigned int bs_info_len = 1 << (sconf->block_switching + 2);
507 *bs_info = get_bits_long(gb, bs_info_len);
508 *bs_info <<= (32 - bs_info_len);
509 }
510
511 ctx->num_blocks = 0;
512 parse_bs_info(*bs_info, 0, 0, &ptr_div_blocks, &ctx->num_blocks);
513
514 // The last frame may have an overdetermined block structure given in
515 // the bitstream. In that case the defined block structure would need
516 // more samples than available to be consistent.
517 // The block structure is actually used but the block sizes are adapted
518 // to fit the actual number of available samples.
519 // Example: 5 samples, 2nd level block sizes: 2 2 2 2.
520 // This results in the actual block sizes: 2 2 1 0.
521 // This is not specified in 14496-3 but actually done by the reference
522 // codec RM22 revision 2.
523 // This appears to happen in case of an odd number of samples in the last
524 // frame which is actually not allowed by the block length switching part
525 // of 14496-3.
526 // The ALS conformance files feature an odd number of samples in the last
527 // frame.
528
529 for (b = 0; b < ctx->num_blocks; b++)
530 div_blocks[b] = ctx->sconf.frame_length >> div_blocks[b];
531
532 if (ctx->cur_frame_length != ctx->sconf.frame_length) {
533 unsigned int remaining = ctx->cur_frame_length;
534
535 for (b = 0; b < ctx->num_blocks; b++) {
bbe8fa1f 536 if (remaining <= div_blocks[b]) {
99971952
TB
537 div_blocks[b] = remaining;
538 ctx->num_blocks = b + 1;
539 break;
540 }
541
542 remaining -= div_blocks[b];
543 }
544 }
545}
546
547
49bd8e4b 548/** Read the block data for a constant block
99971952 549 */
1261b07f 550static void read_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
99971952
TB
551{
552 ALSSpecificConfig *sconf = &ctx->sconf;
553 AVCodecContext *avctx = ctx->avctx;
554 GetBitContext *gb = &ctx->gb;
99971952 555
1261b07f
TB
556 bd->const_val = 0;
557 bd->const_block = get_bits1(gb); // 1 = constant value, 0 = zero block (silence)
558 bd->js_blocks = get_bits1(gb);
99971952
TB
559
560 // skip 5 reserved bits
561 skip_bits(gb, 5);
562
1261b07f 563 if (bd->const_block) {
99971952 564 unsigned int const_val_bits = sconf->floating ? 24 : avctx->bits_per_raw_sample;
1261b07f 565 bd->const_val = get_sbits_long(gb, const_val_bits);
99971952
TB
566 }
567
1261b07f
TB
568 // ensure constant block decoding by reusing this field
569 bd->const_block = 1;
570}
571
572
49bd8e4b 573/** Decode the block data for a constant block
1261b07f
TB
574 */
575static void decode_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
576{
577 int smp = bd->block_length;
578 int32_t val = bd->const_val;
579 int32_t *dst = bd->raw_samples;
580
99971952 581 // write raw samples into buffer
1261b07f
TB
582 for (; smp; smp--)
583 *dst++ = val;
99971952
TB
584}
585
586
49bd8e4b 587/** Read the block data for a non-constant block
99971952 588 */
1261b07f 589static int read_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
99971952
TB
590{
591 ALSSpecificConfig *sconf = &ctx->sconf;
592 AVCodecContext *avctx = ctx->avctx;
593 GetBitContext *gb = &ctx->gb;
594 unsigned int k;
595 unsigned int s[8];
25608328 596 unsigned int sx[8];
99971952 597 unsigned int sub_blocks, log2_sub_blocks, sb_length;
99971952 598 unsigned int start = 0;
1261b07f
TB
599 unsigned int opt_order;
600 int sb;
601 int32_t *quant_cof = bd->quant_cof;
25608328 602 int32_t *current_res;
99971952 603
1261b07f
TB
604
605 // ensure variable block decoding by reusing this field
606 bd->const_block = 0;
607
608 bd->opt_order = 1;
609 bd->js_blocks = get_bits1(gb);
610
611 opt_order = bd->opt_order;
99971952
TB
612
613 // determine the number of subblocks for entropy decoding
614 if (!sconf->bgmc && !sconf->sb_part) {
615 log2_sub_blocks = 0;
616 } else {
617 if (sconf->bgmc && sconf->sb_part)
618 log2_sub_blocks = get_bits(gb, 2);
619 else
620 log2_sub_blocks = 2 * get_bits1(gb);
621 }
622
623 sub_blocks = 1 << log2_sub_blocks;
624
625 // do not continue in case of a damaged stream since
626 // block_length must be evenly divisible by sub_blocks
1261b07f 627 if (bd->block_length & (sub_blocks - 1)) {
99971952
TB
628 av_log(avctx, AV_LOG_WARNING,
629 "Block length is not evenly divisible by the number of subblocks.\n");
630 return -1;
631 }
632
1261b07f 633 sb_length = bd->block_length >> log2_sub_blocks;
99971952 634
99971952 635 if (sconf->bgmc) {
25608328
TB
636 s[0] = get_bits(gb, 8 + (sconf->resolution > 1));
637 for (k = 1; k < sub_blocks; k++)
638 s[k] = s[k - 1] + decode_rice(gb, 2);
639
640 for (k = 0; k < sub_blocks; k++) {
641 sx[k] = s[k] & 0x0F;
642 s [k] >>= 4;
643 }
99971952
TB
644 } else {
645 s[0] = get_bits(gb, 4 + (sconf->resolution > 1));
646 for (k = 1; k < sub_blocks; k++)
647 s[k] = s[k - 1] + decode_rice(gb, 0);
648 }
649
650 if (get_bits1(gb))
1261b07f 651 bd->shift_lsbs = get_bits(gb, 4) + 1;
99971952 652
1261b07f 653 bd->store_prev_samples = (bd->js_blocks && bd->raw_other) || bd->shift_lsbs;
99971952
TB
654
655
656 if (!sconf->rlslms) {
657 if (sconf->adapt_order) {
1261b07f 658 int opt_order_length = av_ceil_log2(av_clip((bd->block_length >> 3) - 1,
99971952 659 2, sconf->max_order + 1));
1261b07f 660 bd->opt_order = get_bits(gb, opt_order_length);
99971952 661 } else {
1261b07f 662 bd->opt_order = sconf->max_order;
99971952
TB
663 }
664
1261b07f
TB
665 opt_order = bd->opt_order;
666
99971952
TB
667 if (opt_order) {
668 int add_base;
669
670 if (sconf->coef_table == 3) {
671 add_base = 0x7F;
672
673 // read coefficient 0
674 quant_cof[0] = 32 * parcor_scaled_values[get_bits(gb, 7)];
675
676 // read coefficient 1
677 if (opt_order > 1)
678 quant_cof[1] = -32 * parcor_scaled_values[get_bits(gb, 7)];
679
680 // read coefficients 2 to opt_order
681 for (k = 2; k < opt_order; k++)
682 quant_cof[k] = get_bits(gb, 7);
683 } else {
684 int k_max;
685 add_base = 1;
686
687 // read coefficient 0 to 19
688 k_max = FFMIN(opt_order, 20);
689 for (k = 0; k < k_max; k++) {
690 int rice_param = parcor_rice_table[sconf->coef_table][k][1];
691 int offset = parcor_rice_table[sconf->coef_table][k][0];
692 quant_cof[k] = decode_rice(gb, rice_param) + offset;
693 }
694
695 // read coefficients 20 to 126
696 k_max = FFMIN(opt_order, 127);
697 for (; k < k_max; k++)
698 quant_cof[k] = decode_rice(gb, 2) + (k & 1);
699
700 // read coefficients 127 to opt_order
701 for (; k < opt_order; k++)
702 quant_cof[k] = decode_rice(gb, 1);
703
704 quant_cof[0] = 32 * parcor_scaled_values[quant_cof[0] + 64];
705
706 if (opt_order > 1)
707 quant_cof[1] = -32 * parcor_scaled_values[quant_cof[1] + 64];
708 }
709
710 for (k = 2; k < opt_order; k++)
711 quant_cof[k] = (quant_cof[k] << 14) + (add_base << 13);
712 }
713 }
714
93d38cf6
TB
715 // read LTP gain and lag values
716 if (sconf->long_term_prediction) {
1261b07f 717 *bd->use_ltp = get_bits1(gb);
93d38cf6 718
1261b07f 719 if (*bd->use_ltp) {
a8c09ff2
TB
720 int r, c;
721
1261b07f
TB
722 bd->ltp_gain[0] = decode_rice(gb, 1) << 3;
723 bd->ltp_gain[1] = decode_rice(gb, 2) << 3;
93d38cf6 724
a8c09ff2
TB
725 r = get_unary(gb, 0, 4);
726 c = get_bits(gb, 2);
727 bd->ltp_gain[2] = ltp_gain_values[r][c];
93d38cf6 728
1261b07f
TB
729 bd->ltp_gain[3] = decode_rice(gb, 2) << 3;
730 bd->ltp_gain[4] = decode_rice(gb, 1) << 3;
93d38cf6 731
1261b07f
TB
732 *bd->ltp_lag = get_bits(gb, ctx->ltp_lag_length);
733 *bd->ltp_lag += FFMAX(4, opt_order + 1);
93d38cf6
TB
734 }
735 }
99971952
TB
736
737 // read first value and residuals in case of a random access block
1261b07f 738 if (bd->ra_block) {
99971952 739 if (opt_order)
1261b07f 740 bd->raw_samples[0] = decode_rice(gb, avctx->bits_per_raw_sample - 4);
99971952 741 if (opt_order > 1)
11431599 742 bd->raw_samples[1] = decode_rice(gb, FFMIN(s[0] + 3, ctx->s_max));
99971952 743 if (opt_order > 2)
11431599 744 bd->raw_samples[2] = decode_rice(gb, FFMIN(s[0] + 1, ctx->s_max));
99971952
TB
745
746 start = FFMIN(opt_order, 3);
747 }
748
749 // read all residuals
750 if (sconf->bgmc) {
17253f59
MR
751 unsigned int delta[8];
752 unsigned int k [8];
25608328
TB
753 unsigned int b = av_clip((av_ceil_log2(bd->block_length) - 3) >> 1, 0, 5);
754 unsigned int i = start;
755
756 // read most significant bits
757 unsigned int high;
758 unsigned int low;
759 unsigned int value;
760
761 ff_bgmc_decode_init(gb, &high, &low, &value);
762
763 current_res = bd->raw_samples + start;
764
765 for (sb = 0; sb < sub_blocks; sb++, i = 0) {
766 k [sb] = s[sb] > b ? s[sb] - b : 0;
767 delta[sb] = 5 - s[sb] + k[sb];
768
769 ff_bgmc_decode(gb, sb_length, current_res,
770 delta[sb], sx[sb], &high, &low, &value, ctx->bgmc_lut, ctx->bgmc_lut_status);
771
772 current_res += sb_length;
773 }
774
775 ff_bgmc_decode_end(gb);
776
777
778 // read least significant bits and tails
779 i = start;
780 current_res = bd->raw_samples + start;
781
782 for (sb = 0; sb < sub_blocks; sb++, i = 0) {
783 unsigned int cur_tail_code = tail_code[sx[sb]][delta[sb]];
784 unsigned int cur_k = k[sb];
785 unsigned int cur_s = s[sb];
786
787 for (; i < sb_length; i++) {
788 int32_t res = *current_res;
789
790 if (res == cur_tail_code) {
791 unsigned int max_msb = (2 + (sx[sb] > 2) + (sx[sb] > 10))
792 << (5 - delta[sb]);
793
794 res = decode_rice(gb, cur_s);
795
796 if (res >= 0) {
797 res += (max_msb ) << cur_k;
798 } else {
799 res -= (max_msb - 1) << cur_k;
800 }
801 } else {
802 if (res > cur_tail_code)
803 res--;
804
805 if (res & 1)
806 res = -res;
807
808 res >>= 1;
809
810 if (cur_k) {
811 res <<= cur_k;
812 res |= get_bits_long(gb, cur_k);
813 }
814 }
815
65760304 816 *current_res++ = res;
25608328
TB
817 }
818 }
99971952 819 } else {
25608328 820 current_res = bd->raw_samples + start;
99971952
TB
821
822 for (sb = 0; sb < sub_blocks; sb++, start = 0)
823 for (; start < sb_length; start++)
824 *current_res++ = decode_rice(gb, s[sb]);
825 }
826
1261b07f
TB
827 if (!sconf->mc_coding || ctx->js_switch)
828 align_get_bits(gb);
829
830 return 0;
831}
832
833
49bd8e4b 834/** Decode the block data for a non-constant block
1261b07f
TB
835 */
836static int decode_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
837{
838 ALSSpecificConfig *sconf = &ctx->sconf;
839 unsigned int block_length = bd->block_length;
840 unsigned int smp = 0;
841 unsigned int k;
b2f4b043 842 int opt_order = bd->opt_order;
1261b07f
TB
843 int sb;
844 int64_t y;
845 int32_t *quant_cof = bd->quant_cof;
846 int32_t *lpc_cof = bd->lpc_cof;
847 int32_t *raw_samples = bd->raw_samples;
99c5f5cc 848 int32_t *raw_samples_end = bd->raw_samples + bd->block_length;
ff9ea0b7 849 int32_t *lpc_cof_reversed = ctx->lpc_cof_reversed_buffer;
1261b07f 850
93d38cf6 851 // reverse long-term prediction
1261b07f 852 if (*bd->use_ltp) {
93d38cf6
TB
853 int ltp_smp;
854
1261b07f
TB
855 for (ltp_smp = FFMAX(*bd->ltp_lag - 2, 0); ltp_smp < block_length; ltp_smp++) {
856 int center = ltp_smp - *bd->ltp_lag;
93d38cf6
TB
857 int begin = FFMAX(0, center - 2);
858 int end = center + 3;
859 int tab = 5 - (end - begin);
860 int base;
861
862 y = 1 << 6;
863
864 for (base = begin; base < end; base++, tab++)
1261b07f 865 y += MUL64(bd->ltp_gain[tab], raw_samples[base]);
93d38cf6
TB
866
867 raw_samples[ltp_smp] += y >> 7;
868 }
869 }
870
99971952 871 // reconstruct all samples from residuals
1261b07f 872 if (bd->ra_block) {
99971952
TB
873 for (smp = 0; smp < opt_order; smp++) {
874 y = 1 << 19;
875
876 for (sb = 0; sb < smp; sb++)
99c5f5cc 877 y += MUL64(lpc_cof[sb], raw_samples[-(sb + 1)]);
99971952 878
99c5f5cc 879 *raw_samples++ -= y >> 20;
99971952
TB
880 parcor_to_lpc(smp, quant_cof, lpc_cof);
881 }
882 } else {
883 for (k = 0; k < opt_order; k++)
884 parcor_to_lpc(k, quant_cof, lpc_cof);
885
886 // store previous samples in case that they have to be altered
1261b07f
TB
887 if (bd->store_prev_samples)
888 memcpy(bd->prev_raw_samples, raw_samples - sconf->max_order,
889 sizeof(*bd->prev_raw_samples) * sconf->max_order);
99971952
TB
890
891 // reconstruct difference signal for prediction (joint-stereo)
1261b07f 892 if (bd->js_blocks && bd->raw_other) {
99971952
TB
893 int32_t *left, *right;
894
1261b07f 895 if (bd->raw_other > raw_samples) { // D = R - L
99971952 896 left = raw_samples;
1261b07f 897 right = bd->raw_other;
99971952 898 } else { // D = R - L
1261b07f 899 left = bd->raw_other;
99971952
TB
900 right = raw_samples;
901 }
902
903 for (sb = -1; sb >= -sconf->max_order; sb--)
904 raw_samples[sb] = right[sb] - left[sb];
905 }
906
907 // reconstruct shifted signal
1261b07f 908 if (bd->shift_lsbs)
99971952 909 for (sb = -1; sb >= -sconf->max_order; sb--)
1261b07f 910 raw_samples[sb] >>= bd->shift_lsbs;
99971952
TB
911 }
912
99c5f5cc
TB
913 // reverse linear prediction coefficients for efficiency
914 lpc_cof = lpc_cof + opt_order;
915
916 for (sb = 0; sb < opt_order; sb++)
917 lpc_cof_reversed[sb] = lpc_cof[-(sb + 1)];
918
99971952 919 // reconstruct raw samples
99c5f5cc
TB
920 raw_samples = bd->raw_samples + smp;
921 lpc_cof = lpc_cof_reversed + opt_order;
922
923 for (; raw_samples < raw_samples_end; raw_samples++) {
99971952
TB
924 y = 1 << 19;
925
99c5f5cc
TB
926 for (sb = -opt_order; sb < 0; sb++)
927 y += MUL64(lpc_cof[sb], raw_samples[sb]);
99971952 928
99c5f5cc 929 *raw_samples -= y >> 20;
99971952
TB
930 }
931
99c5f5cc
TB
932 raw_samples = bd->raw_samples;
933
99971952 934 // restore previous samples in case that they have been altered
1261b07f
TB
935 if (bd->store_prev_samples)
936 memcpy(raw_samples - sconf->max_order, bd->prev_raw_samples,
99971952
TB
937 sizeof(*raw_samples) * sconf->max_order);
938
939 return 0;
940}
941
942
49bd8e4b 943/** Read the block data.
99971952 944 */
1261b07f 945static int read_block(ALSDecContext *ctx, ALSBlockData *bd)
99971952 946{
99971952 947 GetBitContext *gb = &ctx->gb;
99971952
TB
948
949 // read block type flag and read the samples accordingly
950 if (get_bits1(gb)) {
1261b07f 951 if (read_var_block_data(ctx, bd))
99971952
TB
952 return -1;
953 } else {
1261b07f 954 read_const_block_data(ctx, bd);
99971952
TB
955 }
956
1261b07f
TB
957 return 0;
958}
99971952 959
99971952 960
49bd8e4b 961/** Decode the block data.
1261b07f
TB
962 */
963static int decode_block(ALSDecContext *ctx, ALSBlockData *bd)
964{
965 unsigned int smp;
966
967 // read block type flag and read the samples accordingly
968 if (bd->const_block)
969 decode_const_block_data(ctx, bd);
970 else if (decode_var_block_data(ctx, bd))
971 return -1;
972
973 // TODO: read RLSLMS extension data
974
975 if (bd->shift_lsbs)
976 for (smp = 0; smp < bd->block_length; smp++)
977 bd->raw_samples[smp] <<= bd->shift_lsbs;
99971952
TB
978
979 return 0;
980}
981
982
48966b02 983/** Read and decode block data successively.
1261b07f
TB
984 */
985static int read_decode_block(ALSDecContext *ctx, ALSBlockData *bd)
986{
987 int ret;
988
989 ret = read_block(ctx, bd);
990
991 if (ret)
992 return ret;
993
994 ret = decode_block(ctx, bd);
995
996 return ret;
997}
998
999
49bd8e4b 1000/** Compute the number of samples left to decode for the current frame and
99971952
TB
1001 * sets these samples to zero.
1002 */
1003static void zero_remaining(unsigned int b, unsigned int b_max,
1004 const unsigned int *div_blocks, int32_t *buf)
1005{
1006 unsigned int count = 0;
1007
1008 while (b < b_max)
1009 count += div_blocks[b];
1010
0bb622ba 1011 if (count)
9349e558 1012 memset(buf, 0, sizeof(*buf) * count);
99971952
TB
1013}
1014
1015
49bd8e4b 1016/** Decode blocks independently.
99971952
TB
1017 */
1018static int decode_blocks_ind(ALSDecContext *ctx, unsigned int ra_frame,
1019 unsigned int c, const unsigned int *div_blocks,
1020 unsigned int *js_blocks)
1021{
99971952 1022 unsigned int b;
1261b07f
TB
1023 ALSBlockData bd;
1024
1025 memset(&bd, 0, sizeof(ALSBlockData));
1026
1027 bd.ra_block = ra_frame;
1028 bd.use_ltp = ctx->use_ltp;
1029 bd.ltp_lag = ctx->ltp_lag;
1030 bd.ltp_gain = ctx->ltp_gain[0];
e38215f2
TB
1031 bd.quant_cof = ctx->quant_cof[0];
1032 bd.lpc_cof = ctx->lpc_cof[0];
1261b07f
TB
1033 bd.prev_raw_samples = ctx->prev_raw_samples;
1034 bd.raw_samples = ctx->raw_samples[c];
1035
99971952
TB
1036
1037 for (b = 0; b < ctx->num_blocks; b++) {
1261b07f
TB
1038 bd.shift_lsbs = 0;
1039 bd.block_length = div_blocks[b];
1040
1041 if (read_decode_block(ctx, &bd)) {
99971952 1042 // damaged block, write zero for the rest of the frame
1261b07f 1043 zero_remaining(b, ctx->num_blocks, div_blocks, bd.raw_samples);
99971952
TB
1044 return -1;
1045 }
1261b07f
TB
1046 bd.raw_samples += div_blocks[b];
1047 bd.ra_block = 0;
99971952
TB
1048 }
1049
1050 return 0;
1051}
1052
1053
49bd8e4b 1054/** Decode blocks dependently.
99971952
TB
1055 */
1056static int decode_blocks(ALSDecContext *ctx, unsigned int ra_frame,
1057 unsigned int c, const unsigned int *div_blocks,
1058 unsigned int *js_blocks)
1059{
1060 ALSSpecificConfig *sconf = &ctx->sconf;
1061 unsigned int offset = 0;
99971952 1062 unsigned int b;
1261b07f
TB
1063 ALSBlockData bd[2];
1064
1065 memset(bd, 0, 2 * sizeof(ALSBlockData));
1066
1067 bd[0].ra_block = ra_frame;
1068 bd[0].use_ltp = ctx->use_ltp;
1069 bd[0].ltp_lag = ctx->ltp_lag;
1070 bd[0].ltp_gain = ctx->ltp_gain[0];
e38215f2
TB
1071 bd[0].quant_cof = ctx->quant_cof[0];
1072 bd[0].lpc_cof = ctx->lpc_cof[0];
1261b07f
TB
1073 bd[0].prev_raw_samples = ctx->prev_raw_samples;
1074 bd[0].js_blocks = *js_blocks;
1075
1076 bd[1].ra_block = ra_frame;
1077 bd[1].use_ltp = ctx->use_ltp;
1078 bd[1].ltp_lag = ctx->ltp_lag;
1079 bd[1].ltp_gain = ctx->ltp_gain[0];
e38215f2
TB
1080 bd[1].quant_cof = ctx->quant_cof[0];
1081 bd[1].lpc_cof = ctx->lpc_cof[0];
1261b07f
TB
1082 bd[1].prev_raw_samples = ctx->prev_raw_samples;
1083 bd[1].js_blocks = *(js_blocks + 1);
99971952
TB
1084
1085 // decode all blocks
1086 for (b = 0; b < ctx->num_blocks; b++) {
1087 unsigned int s;
1261b07f
TB
1088
1089 bd[0].shift_lsbs = 0;
1090 bd[1].shift_lsbs = 0;
1091
1092 bd[0].block_length = div_blocks[b];
1093 bd[1].block_length = div_blocks[b];
1094
1095 bd[0].raw_samples = ctx->raw_samples[c ] + offset;
1096 bd[1].raw_samples = ctx->raw_samples[c + 1] + offset;
1097
1098 bd[0].raw_other = bd[1].raw_samples;
1099 bd[1].raw_other = bd[0].raw_samples;
1100
1101 if(read_decode_block(ctx, &bd[0]) || read_decode_block(ctx, &bd[1])) {
99971952 1102 // damaged block, write zero for the rest of the frame
1261b07f
TB
1103 zero_remaining(b, ctx->num_blocks, div_blocks, bd[0].raw_samples);
1104 zero_remaining(b, ctx->num_blocks, div_blocks, bd[1].raw_samples);
99971952
TB
1105 return -1;
1106 }
1107
1108 // reconstruct joint-stereo blocks
1261b07f
TB
1109 if (bd[0].js_blocks) {
1110 if (bd[1].js_blocks)
99971952
TB
1111 av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel pair!\n");
1112
1113 for (s = 0; s < div_blocks[b]; s++)
1261b07f
TB
1114 bd[0].raw_samples[s] = bd[1].raw_samples[s] - bd[0].raw_samples[s];
1115 } else if (bd[1].js_blocks) {
99971952 1116 for (s = 0; s < div_blocks[b]; s++)
1261b07f 1117 bd[1].raw_samples[s] = bd[1].raw_samples[s] + bd[0].raw_samples[s];
99971952
TB
1118 }
1119
1120 offset += div_blocks[b];
1261b07f
TB
1121 bd[0].ra_block = 0;
1122 bd[1].ra_block = 0;
99971952
TB
1123 }
1124
1125 // store carryover raw samples,
1126 // the others channel raw samples are stored by the calling function.
1127 memmove(ctx->raw_samples[c] - sconf->max_order,
1128 ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
1129 sizeof(*ctx->raw_samples[c]) * sconf->max_order);
1130
1131 return 0;
1132}
1133
1134
49bd8e4b 1135/** Read the channel data.
e38215f2
TB
1136 */
1137static int read_channel_data(ALSDecContext *ctx, ALSChannelData *cd, int c)
1138{
1139 GetBitContext *gb = &ctx->gb;
1140 ALSChannelData *current = cd;
1141 unsigned int channels = ctx->avctx->channels;
1142 int entries = 0;
1143
1144 while (entries < channels && !(current->stop_flag = get_bits1(gb))) {
1145 current->master_channel = get_bits_long(gb, av_ceil_log2(channels));
1146
1147 if (current->master_channel >= channels) {
1148 av_log(ctx->avctx, AV_LOG_ERROR, "Invalid master channel!\n");
1149 return -1;
1150 }
1151
1152 if (current->master_channel != c) {
1153 current->time_diff_flag = get_bits1(gb);
1154 current->weighting[0] = mcc_weightings[av_clip(decode_rice(gb, 1) + 16, 0, 32)];
1155 current->weighting[1] = mcc_weightings[av_clip(decode_rice(gb, 2) + 14, 0, 32)];
1156 current->weighting[2] = mcc_weightings[av_clip(decode_rice(gb, 1) + 16, 0, 32)];
1157
1158 if (current->time_diff_flag) {
1159 current->weighting[3] = mcc_weightings[av_clip(decode_rice(gb, 1) + 16, 0, 32)];
1160 current->weighting[4] = mcc_weightings[av_clip(decode_rice(gb, 1) + 16, 0, 32)];
1161 current->weighting[5] = mcc_weightings[av_clip(decode_rice(gb, 1) + 16, 0, 32)];
1162
1163 current->time_diff_sign = get_bits1(gb);
1164 current->time_diff_index = get_bits(gb, ctx->ltp_lag_length - 3) + 3;
1165 }
1166 }
1167
1168 current++;
1169 entries++;
1170 }
1171
1172 if (entries == channels) {
1173 av_log(ctx->avctx, AV_LOG_ERROR, "Damaged channel data!\n");
1174 return -1;
1175 }
1176
1177 align_get_bits(gb);
1178 return 0;
1179}
1180
1181
1182/** Recursively reverts the inter-channel correlation for a block.
1183 */
1184static int revert_channel_correlation(ALSDecContext *ctx, ALSBlockData *bd,
1185 ALSChannelData **cd, int *reverted,
1186 unsigned int offset, int c)
1187{
1188 ALSChannelData *ch = cd[c];
1189 unsigned int dep = 0;
1190 unsigned int channels = ctx->avctx->channels;
1191
1192 if (reverted[c])
1193 return 0;
1194
1195 reverted[c] = 1;
1196
1197 while (dep < channels && !ch[dep].stop_flag) {
1198 revert_channel_correlation(ctx, bd, cd, reverted, offset,
1199 ch[dep].master_channel);
1200
1201 dep++;
1202 }
1203
1204 if (dep == channels) {
1205 av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel correlation!\n");
1206 return -1;
1207 }
1208
1209 bd->use_ltp = ctx->use_ltp + c;
1210 bd->ltp_lag = ctx->ltp_lag + c;
1211 bd->ltp_gain = ctx->ltp_gain[c];
1212 bd->lpc_cof = ctx->lpc_cof[c];
1213 bd->quant_cof = ctx->quant_cof[c];
1214 bd->raw_samples = ctx->raw_samples[c] + offset;
1215
1216 dep = 0;
1217 while (!ch[dep].stop_flag) {
1218 unsigned int smp;
1219 unsigned int begin = 1;
1220 unsigned int end = bd->block_length - 1;
1221 int64_t y;
1222 int32_t *master = ctx->raw_samples[ch[dep].master_channel] + offset;
1223
1224 if (ch[dep].time_diff_flag) {
1225 int t = ch[dep].time_diff_index;
1226
1227 if (ch[dep].time_diff_sign) {
1228 t = -t;
1229 begin -= t;
1230 } else {
1231 end -= t;
1232 }
1233
1234 for (smp = begin; smp < end; smp++) {
1235 y = (1 << 6) +
1236 MUL64(ch[dep].weighting[0], master[smp - 1 ]) +
1237 MUL64(ch[dep].weighting[1], master[smp ]) +
1238 MUL64(ch[dep].weighting[2], master[smp + 1 ]) +
1239 MUL64(ch[dep].weighting[3], master[smp - 1 + t]) +
1240 MUL64(ch[dep].weighting[4], master[smp + t]) +
1241 MUL64(ch[dep].weighting[5], master[smp + 1 + t]);
1242
1243 bd->raw_samples[smp] += y >> 7;
1244 }
1245 } else {
1246 for (smp = begin; smp < end; smp++) {
1247 y = (1 << 6) +
1248 MUL64(ch[dep].weighting[0], master[smp - 1]) +
1249 MUL64(ch[dep].weighting[1], master[smp ]) +
1250 MUL64(ch[dep].weighting[2], master[smp + 1]);
1251
1252 bd->raw_samples[smp] += y >> 7;
1253 }
1254 }
1255
1256 dep++;
1257 }
1258
1259 return 0;
1260}
1261
1262
49bd8e4b 1263/** Read the frame data.
99971952
TB
1264 */
1265static int read_frame_data(ALSDecContext *ctx, unsigned int ra_frame)
1266{
1267 ALSSpecificConfig *sconf = &ctx->sconf;
1268 AVCodecContext *avctx = ctx->avctx;
1269 GetBitContext *gb = &ctx->gb;
1270 unsigned int div_blocks[32]; ///< block sizes.
1271 unsigned int c;
1272 unsigned int js_blocks[2];
1273
1274 uint32_t bs_info = 0;
1275
1276 // skip the size of the ra unit if present in the frame
1277 if (sconf->ra_flag == RA_FLAG_FRAMES && ra_frame)
1278 skip_bits_long(gb, 32);
1279
1280 if (sconf->mc_coding && sconf->joint_stereo) {
1281 ctx->js_switch = get_bits1(gb);
1282 align_get_bits(gb);
1283 }
1284
1285 if (!sconf->mc_coding || ctx->js_switch) {
1286 int independent_bs = !sconf->joint_stereo;
1287
1288 for (c = 0; c < avctx->channels; c++) {
1289 js_blocks[0] = 0;
1290 js_blocks[1] = 0;
1291
1292 get_block_sizes(ctx, div_blocks, &bs_info);
1293
1294 // if joint_stereo and block_switching is set, independent decoding
1295 // is signaled via the first bit of bs_info
1296 if (sconf->joint_stereo && sconf->block_switching)
1297 if (bs_info >> 31)
1298 independent_bs = 2;
1299
1300 // if this is the last channel, it has to be decoded independently
1301 if (c == avctx->channels - 1)
1302 independent_bs = 1;
1303
1304 if (independent_bs) {
1305 if (decode_blocks_ind(ctx, ra_frame, c, div_blocks, js_blocks))
1306 return -1;
1307
1308 independent_bs--;
1309 } else {
1310 if (decode_blocks(ctx, ra_frame, c, div_blocks, js_blocks))
1311 return -1;
1312
1313 c++;
1314 }
1315
1316 // store carryover raw samples
1317 memmove(ctx->raw_samples[c] - sconf->max_order,
1318 ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
1319 sizeof(*ctx->raw_samples[c]) * sconf->max_order);
1320 }
1321 } else { // multi-channel coding
e38215f2
TB
1322 ALSBlockData bd;
1323 int b;
1324 int *reverted_channels = ctx->reverted_channels;
1325 unsigned int offset = 0;
1326
1327 for (c = 0; c < avctx->channels; c++)
1328 if (ctx->chan_data[c] < ctx->chan_data_buffer) {
1329 av_log(ctx->avctx, AV_LOG_ERROR, "Invalid channel data!\n");
1330 return -1;
1331 }
1332
1333 memset(&bd, 0, sizeof(ALSBlockData));
1334 memset(reverted_channels, 0, sizeof(*reverted_channels) * avctx->channels);
1335
1336 bd.ra_block = ra_frame;
1337 bd.prev_raw_samples = ctx->prev_raw_samples;
1338
99971952
TB
1339 get_block_sizes(ctx, div_blocks, &bs_info);
1340
e38215f2
TB
1341 for (b = 0; b < ctx->num_blocks; b++) {
1342 bd.shift_lsbs = 0;
1343 bd.block_length = div_blocks[b];
1344
1345 for (c = 0; c < avctx->channels; c++) {
1346 bd.use_ltp = ctx->use_ltp + c;
1347 bd.ltp_lag = ctx->ltp_lag + c;
1348 bd.ltp_gain = ctx->ltp_gain[c];
1349 bd.lpc_cof = ctx->lpc_cof[c];
1350 bd.quant_cof = ctx->quant_cof[c];
1351 bd.raw_samples = ctx->raw_samples[c] + offset;
1352 bd.raw_other = NULL;
1353
1354 read_block(ctx, &bd);
1355 if (read_channel_data(ctx, ctx->chan_data[c], c))
1356 return -1;
1357 }
1358
1359 for (c = 0; c < avctx->channels; c++)
1360 if (revert_channel_correlation(ctx, &bd, ctx->chan_data,
1361 reverted_channels, offset, c))
1362 return -1;
1363
1364 for (c = 0; c < avctx->channels; c++) {
1365 bd.use_ltp = ctx->use_ltp + c;
1366 bd.ltp_lag = ctx->ltp_lag + c;
1367 bd.ltp_gain = ctx->ltp_gain[c];
1368 bd.lpc_cof = ctx->lpc_cof[c];
1369 bd.quant_cof = ctx->quant_cof[c];
1370 bd.raw_samples = ctx->raw_samples[c] + offset;
1371 decode_block(ctx, &bd);
1372 }
1373
1374 memset(reverted_channels, 0, avctx->channels * sizeof(*reverted_channels));
1375 offset += div_blocks[b];
1376 bd.ra_block = 0;
1377 }
1378
1379 // store carryover raw samples
1380 for (c = 0; c < avctx->channels; c++)
1381 memmove(ctx->raw_samples[c] - sconf->max_order,
1382 ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
1383 sizeof(*ctx->raw_samples[c]) * sconf->max_order);
99971952
TB
1384 }
1385
1386 // TODO: read_diff_float_data
1387
1388 return 0;
1389}
1390
1391
49bd8e4b 1392/** Decode an ALS frame.
99971952
TB
1393 */
1394static int decode_frame(AVCodecContext *avctx,
1395 void *data, int *data_size,
1396 AVPacket *avpkt)
1397{
1398 ALSDecContext *ctx = avctx->priv_data;
1399 ALSSpecificConfig *sconf = &ctx->sconf;
1400 const uint8_t *buffer = avpkt->data;
1401 int buffer_size = avpkt->size;
1402 int invalid_frame, size;
1403 unsigned int c, sample, ra_frame, bytes_read, shift;
1404
1405 init_get_bits(&ctx->gb, buffer, buffer_size * 8);
1406
1407 // In the case that the distance between random access frames is set to zero
1408 // (sconf->ra_distance == 0) no frame is treated as a random access frame.
1409 // For the first frame, if prediction is used, all samples used from the
1410 // previous frame are assumed to be zero.
1411 ra_frame = sconf->ra_distance && !(ctx->frame_id % sconf->ra_distance);
1412
1413 // the last frame to decode might have a different length
1414 if (sconf->samples != 0xFFFFFFFF)
1415 ctx->cur_frame_length = FFMIN(sconf->samples - ctx->frame_id * (uint64_t) sconf->frame_length,
1416 sconf->frame_length);
1417 else
1418 ctx->cur_frame_length = sconf->frame_length;
1419
1420 // decode the frame data
1421 if ((invalid_frame = read_frame_data(ctx, ra_frame) < 0))
1422 av_log(ctx->avctx, AV_LOG_WARNING,
1423 "Reading frame data failed. Skipping RA unit.\n");
1424
1425 ctx->frame_id++;
1426
1427 // check for size of decoded data
1428 size = ctx->cur_frame_length * avctx->channels *
1429 (av_get_bits_per_sample_format(avctx->sample_fmt) >> 3);
1430
1431 if (size > *data_size) {
1432 av_log(avctx, AV_LOG_ERROR, "Decoded data exceeds buffer size.\n");
1433 return -1;
1434 }
1435
1436 *data_size = size;
1437
1438 // transform decoded frame into output format
1439 #define INTERLEAVE_OUTPUT(bps) \
1440 { \
1441 int##bps##_t *dest = (int##bps##_t*) data; \
1442 shift = bps - ctx->avctx->bits_per_raw_sample; \
1443 for (sample = 0; sample < ctx->cur_frame_length; sample++) \
1444 for (c = 0; c < avctx->channels; c++) \
1445 *dest++ = ctx->raw_samples[c][sample] << shift; \
1446 }
1447
1448 if (ctx->avctx->bits_per_raw_sample <= 16) {
1449 INTERLEAVE_OUTPUT(16)
1450 } else {
1451 INTERLEAVE_OUTPUT(32)
1452 }
1453
cbb39648
TB
1454 // update CRC
1455 if (sconf->crc_enabled && avctx->error_recognition >= FF_ER_CAREFUL) {
1456 int swap = HAVE_BIGENDIAN != sconf->msb_first;
1457
1458 if (ctx->avctx->bits_per_raw_sample == 24) {
1459 int32_t *src = data;
1460
1461 for (sample = 0;
1462 sample < ctx->cur_frame_length * avctx->channels;
1463 sample++) {
1464 int32_t v;
1465
1466 if (swap)
1467 v = bswap_32(src[sample]);
1468 else
1469 v = src[sample];
1470 if (!HAVE_BIGENDIAN)
1471 v >>= 8;
1472
1473 ctx->crc = av_crc(ctx->crc_table, ctx->crc, (uint8_t*)(&v), 3);
1474 }
1475 } else {
1476 uint8_t *crc_source;
1477
1478 if (swap) {
1479 if (ctx->avctx->bits_per_raw_sample <= 16) {
1480 int16_t *src = (int16_t*) data;
1481 int16_t *dest = (int16_t*) ctx->crc_buffer;
1482 for (sample = 0;
1483 sample < ctx->cur_frame_length * avctx->channels;
1484 sample++)
1485 *dest++ = bswap_16(src[sample]);
1486 } else {
1487 ctx->dsp.bswap_buf((uint32_t*)ctx->crc_buffer, data,
1488 ctx->cur_frame_length * avctx->channels);
1489 }
1490 crc_source = ctx->crc_buffer;
1491 } else {
1492 crc_source = data;
1493 }
1494
1495 ctx->crc = av_crc(ctx->crc_table, ctx->crc, crc_source, size);
1496 }
1497
1498
1499 // check CRC sums if this is the last frame
1500 if (ctx->cur_frame_length != sconf->frame_length &&
1501 ctx->crc_org != ctx->crc) {
1502 av_log(avctx, AV_LOG_ERROR, "CRC error.\n");
1503 }
1504 }
1505
1506
99971952
TB
1507 bytes_read = invalid_frame ? buffer_size :
1508 (get_bits_count(&ctx->gb) + 7) >> 3;
1509
1510 return bytes_read;
1511}
1512
1513
49bd8e4b 1514/** Uninitialize the ALS decoder.
99971952
TB
1515 */
1516static av_cold int decode_end(AVCodecContext *avctx)
1517{
1518 ALSDecContext *ctx = avctx->priv_data;
1519
1520 av_freep(&ctx->sconf.chan_pos);
1521
25608328
TB
1522 ff_bgmc_end(&ctx->bgmc_lut, &ctx->bgmc_lut_status);
1523
1261b07f
TB
1524 av_freep(&ctx->use_ltp);
1525 av_freep(&ctx->ltp_lag);
1526 av_freep(&ctx->ltp_gain);
1527 av_freep(&ctx->ltp_gain_buffer);
99971952
TB
1528 av_freep(&ctx->quant_cof);
1529 av_freep(&ctx->lpc_cof);
e38215f2
TB
1530 av_freep(&ctx->quant_cof_buffer);
1531 av_freep(&ctx->lpc_cof_buffer);
ff9ea0b7 1532 av_freep(&ctx->lpc_cof_reversed_buffer);
99971952
TB
1533 av_freep(&ctx->prev_raw_samples);
1534 av_freep(&ctx->raw_samples);
1535 av_freep(&ctx->raw_buffer);
e38215f2
TB
1536 av_freep(&ctx->chan_data);
1537 av_freep(&ctx->chan_data_buffer);
1538 av_freep(&ctx->reverted_channels);
99971952
TB
1539
1540 return 0;
1541}
1542
1543
49bd8e4b 1544/** Initialize the ALS decoder.
99971952
TB
1545 */
1546static av_cold int decode_init(AVCodecContext *avctx)
1547{
1548 unsigned int c;
1549 unsigned int channel_size;
1261b07f 1550 int num_buffers;
99971952
TB
1551 ALSDecContext *ctx = avctx->priv_data;
1552 ALSSpecificConfig *sconf = &ctx->sconf;
1553 ctx->avctx = avctx;
1554
1555 if (!avctx->extradata) {
1556 av_log(avctx, AV_LOG_ERROR, "Missing required ALS extradata.\n");
1557 return -1;
1558 }
1559
1560 if (read_specific_config(ctx)) {
1561 av_log(avctx, AV_LOG_ERROR, "Reading ALSSpecificConfig failed.\n");
1562 decode_end(avctx);
1563 return -1;
1564 }
1565
1566 if (check_specific_config(ctx)) {
1567 decode_end(avctx);
1568 return -1;
1569 }
1570
25608328
TB
1571 if (sconf->bgmc)
1572 ff_bgmc_init(avctx, &ctx->bgmc_lut, &ctx->bgmc_lut_status);
1573
99971952
TB
1574 if (sconf->floating) {
1575 avctx->sample_fmt = SAMPLE_FMT_FLT;
1576 avctx->bits_per_raw_sample = 32;
1577 } else {
1578 avctx->sample_fmt = sconf->resolution > 1
1579 ? SAMPLE_FMT_S32 : SAMPLE_FMT_S16;
1580 avctx->bits_per_raw_sample = (sconf->resolution + 1) * 8;
1581 }
1582
11431599
TB
1583 // set maximum Rice parameter for progressive decoding based on resolution
1584 // This is not specified in 14496-3 but actually done by the reference
1585 // codec RM22 revision 2.
1586 ctx->s_max = sconf->resolution > 1 ? 31 : 15;
1587
93d38cf6
TB
1588 // set lag value for long-term prediction
1589 ctx->ltp_lag_length = 8 + (avctx->sample_rate >= 96000) +
1590 (avctx->sample_rate >= 192000);
1591
1261b07f
TB
1592 // allocate quantized parcor coefficient buffer
1593 num_buffers = sconf->mc_coding ? avctx->channels : 1;
1594
e38215f2
TB
1595 ctx->quant_cof = av_malloc(sizeof(*ctx->quant_cof) * num_buffers);
1596 ctx->lpc_cof = av_malloc(sizeof(*ctx->lpc_cof) * num_buffers);
1597 ctx->quant_cof_buffer = av_malloc(sizeof(*ctx->quant_cof_buffer) *
1598 num_buffers * sconf->max_order);
1599 ctx->lpc_cof_buffer = av_malloc(sizeof(*ctx->lpc_cof_buffer) *
1600 num_buffers * sconf->max_order);
ff9ea0b7
TB
1601 ctx->lpc_cof_reversed_buffer = av_malloc(sizeof(*ctx->lpc_cof_buffer) *
1602 sconf->max_order);
e38215f2 1603
099809d1
TB
1604 if (!ctx->quant_cof || !ctx->lpc_cof ||
1605 !ctx->quant_cof_buffer || !ctx->lpc_cof_buffer ||
ff9ea0b7 1606 !ctx->lpc_cof_reversed_buffer) {
e38215f2
TB
1607 av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
1608 return AVERROR(ENOMEM);
1609 }
1610
1611 // assign quantized parcor coefficient buffers
1612 for (c = 0; c < num_buffers; c++) {
1613 ctx->quant_cof[c] = ctx->quant_cof_buffer + c * sconf->max_order;
1614 ctx->lpc_cof[c] = ctx->lpc_cof_buffer + c * sconf->max_order;
1615 }
1616
1261b07f
TB
1617 // allocate and assign lag and gain data buffer for ltp mode
1618 ctx->use_ltp = av_mallocz(sizeof(*ctx->use_ltp) * num_buffers);
1619 ctx->ltp_lag = av_malloc (sizeof(*ctx->ltp_lag) * num_buffers);
1620 ctx->ltp_gain = av_malloc (sizeof(*ctx->ltp_gain) * num_buffers);
1621 ctx->ltp_gain_buffer = av_malloc (sizeof(*ctx->ltp_gain_buffer) *
1622 num_buffers * 5);
1623
1624 if (!ctx->use_ltp || !ctx->ltp_lag ||
1625 !ctx->ltp_gain || !ctx->ltp_gain_buffer) {
1626 av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
1627 decode_end(avctx);
1628 return AVERROR(ENOMEM);
1629 }
1630
1631 for (c = 0; c < num_buffers; c++)
1632 ctx->ltp_gain[c] = ctx->ltp_gain_buffer + c * 5;
1633
e38215f2
TB
1634 // allocate and assign channel data buffer for mcc mode
1635 if (sconf->mc_coding) {
1636 ctx->chan_data_buffer = av_malloc(sizeof(*ctx->chan_data_buffer) *
cd092849 1637 num_buffers * num_buffers);
dc9e57a8 1638 ctx->chan_data = av_malloc(sizeof(*ctx->chan_data) *
e38215f2
TB
1639 num_buffers);
1640 ctx->reverted_channels = av_malloc(sizeof(*ctx->reverted_channels) *
1641 num_buffers);
1642
1643 if (!ctx->chan_data_buffer || !ctx->chan_data || !ctx->reverted_channels) {
1644 av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
1645 decode_end(avctx);
1646 return AVERROR(ENOMEM);
1647 }
1648
1649 for (c = 0; c < num_buffers; c++)
cd092849 1650 ctx->chan_data[c] = ctx->chan_data_buffer + c * num_buffers;
e38215f2
TB
1651 } else {
1652 ctx->chan_data = NULL;
1653 ctx->chan_data_buffer = NULL;
1654 ctx->reverted_channels = NULL;
1655 }
1656
99971952
TB
1657 avctx->frame_size = sconf->frame_length;
1658 channel_size = sconf->frame_length + sconf->max_order;
1659
1660 ctx->prev_raw_samples = av_malloc (sizeof(*ctx->prev_raw_samples) * sconf->max_order);
1661 ctx->raw_buffer = av_mallocz(sizeof(*ctx-> raw_buffer) * avctx->channels * channel_size);
1662 ctx->raw_samples = av_malloc (sizeof(*ctx-> raw_samples) * avctx->channels);
1663
1664 // allocate previous raw sample buffer
1665 if (!ctx->prev_raw_samples || !ctx->raw_buffer|| !ctx->raw_samples) {
1666 av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
1667 decode_end(avctx);
1668 return AVERROR(ENOMEM);
1669 }
1670
1671 // assign raw samples buffers
1672 ctx->raw_samples[0] = ctx->raw_buffer + sconf->max_order;
1673 for (c = 1; c < avctx->channels; c++)
1674 ctx->raw_samples[c] = ctx->raw_samples[c - 1] + channel_size;
1675
cbb39648
TB
1676 // allocate crc buffer
1677 if (HAVE_BIGENDIAN != sconf->msb_first && sconf->crc_enabled &&
1678 avctx->error_recognition >= FF_ER_CAREFUL) {
1679 ctx->crc_buffer = av_malloc(sizeof(*ctx->crc_buffer) *
1680 ctx->cur_frame_length *
1681 avctx->channels *
1682 (av_get_bits_per_sample_format(avctx->sample_fmt) >> 3));
1683 if (!ctx->crc_buffer) {
1684 av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
1685 decode_end(avctx);
1686 return AVERROR(ENOMEM);
1687 }
1688 }
1689
1690 dsputil_init(&ctx->dsp, avctx);
1691
99971952
TB
1692 return 0;
1693}
1694
1695
49bd8e4b 1696/** Flush (reset) the frame ID after seeking.
99971952
TB
1697 */
1698static av_cold void flush(AVCodecContext *avctx)
1699{
1700 ALSDecContext *ctx = avctx->priv_data;
1701
1702 ctx->frame_id = 0;
1703}
1704
1705
1706AVCodec als_decoder = {
1707 "als",
72415b2a 1708 AVMEDIA_TYPE_AUDIO,
99971952
TB
1709 CODEC_ID_MP4ALS,
1710 sizeof(ALSDecContext),
1711 decode_init,
1712 NULL,
1713 decode_end,
1714 decode_frame,
1715 .flush = flush,
1716 .capabilities = CODEC_CAP_SUBFRAMES,
1717 .long_name = NULL_IF_CONFIG_SMALL("MPEG-4 Audio Lossless Coding (ALS)"),
1718};
1719