Commit | Line | Data |
---|---|---|
10e26bc7 BL |
1 | /* |
2 | * Atrac 3 compatible decoder | |
d311f8f3 BL |
3 | * Copyright (c) 2006-2008 Maxim Poliakovski |
4 | * Copyright (c) 2006-2008 Benjamin Larsson | |
10e26bc7 BL |
5 | * |
6 | * This file is part of FFmpeg. | |
7 | * | |
8 | * FFmpeg is free software; you can redistribute it and/or | |
9 | * modify it under the terms of the GNU Lesser General Public | |
10 | * License as published by the Free Software Foundation; either | |
11 | * version 2.1 of the License, or (at your option) any later version. | |
12 | * | |
13 | * FFmpeg is distributed in the hope that it will be useful, | |
14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
16 | * Lesser General Public License for more details. | |
17 | * | |
18 | * You should have received a copy of the GNU Lesser General Public | |
19 | * License along with FFmpeg; if not, write to the Free Software | |
20 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
21 | */ | |
22 | ||
23 | /** | |
bad5537e | 24 | * @file libavcodec/atrac3.c |
10e26bc7 | 25 | * Atrac 3 compatible decoder. |
d311f8f3 BL |
26 | * This decoder handles Sony's ATRAC3 data. |
27 | * | |
28 | * Container formats used to store atrac 3 data: | |
29 | * RealMedia (.rm), RIFF WAV (.wav, .at3), Sony OpenMG (.oma, .aa3). | |
10e26bc7 BL |
30 | * |
31 | * To use this decoder, a calling application must supply the extradata | |
d311f8f3 | 32 | * bytes provided in the containers above. |
10e26bc7 BL |
33 | */ |
34 | ||
35 | #include <math.h> | |
36 | #include <stddef.h> | |
37 | #include <stdio.h> | |
38 | ||
39 | #include "avcodec.h" | |
40 | #include "bitstream.h" | |
41 | #include "dsputil.h" | |
42 | #include "bytestream.h" | |
43 | ||
44 | #include "atrac3data.h" | |
45 | ||
46 | #define JOINT_STEREO 0x12 | |
47 | #define STEREO 0x2 | |
48 | ||
49 | ||
50 | /* These structures are needed to store the parsed gain control data. */ | |
51 | typedef struct { | |
52 | int num_gain_data; | |
53 | int levcode[8]; | |
54 | int loccode[8]; | |
55 | } gain_info; | |
56 | ||
57 | typedef struct { | |
58 | gain_info gBlock[4]; | |
59 | } gain_block; | |
60 | ||
61 | typedef struct { | |
62 | int pos; | |
63 | int numCoefs; | |
64 | float coef[8]; | |
65 | } tonal_component; | |
66 | ||
67 | typedef struct { | |
68 | int bandsCoded; | |
69 | int numComponents; | |
70 | tonal_component components[64]; | |
71 | float prevFrame[1024]; | |
72 | int gcBlkSwitch; | |
73 | gain_block gainBlock[2]; | |
74 | ||
75 | DECLARE_ALIGNED_16(float, spectrum[1024]); | |
76 | DECLARE_ALIGNED_16(float, IMDCT_buf[1024]); | |
77 | ||
78 | float delayBuf1[46]; ///<qmf delay buffers | |
79 | float delayBuf2[46]; | |
80 | float delayBuf3[46]; | |
81 | } channel_unit; | |
82 | ||
83 | typedef struct { | |
84 | GetBitContext gb; | |
85 | //@{ | |
86 | /** stream data */ | |
87 | int channels; | |
88 | int codingMode; | |
89 | int bit_rate; | |
90 | int sample_rate; | |
91 | int samples_per_channel; | |
92 | int samples_per_frame; | |
93 | ||
94 | int bits_per_frame; | |
95 | int bytes_per_frame; | |
96 | int pBs; | |
97 | channel_unit* pUnits; | |
98 | //@} | |
99 | //@{ | |
100 | /** joint-stereo related variables */ | |
101 | int matrix_coeff_index_prev[4]; | |
102 | int matrix_coeff_index_now[4]; | |
103 | int matrix_coeff_index_next[4]; | |
104 | int weighting_delay[6]; | |
105 | //@} | |
106 | //@{ | |
107 | /** data buffers */ | |
108 | float outSamples[2048]; | |
109 | uint8_t* decoded_bytes_buffer; | |
110 | float tempBuf[1070]; | |
10e26bc7 BL |
111 | //@} |
112 | //@{ | |
113 | /** extradata */ | |
114 | int atrac3version; | |
115 | int delay; | |
116 | int scrambled_stream; | |
117 | int frame_factor; | |
118 | //@} | |
119 | } ATRAC3Context; | |
120 | ||
121 | static DECLARE_ALIGNED_16(float,mdct_window[512]); | |
122 | static float qmf_window[48]; | |
123 | static VLC spectral_coeff_tab[7]; | |
124 | static float SFTable[64]; | |
125 | static float gain_tab1[16]; | |
126 | static float gain_tab2[31]; | |
127 | static MDCTContext mdct_ctx; | |
128 | static DSPContext dsp; | |
129 | ||
130 | ||
131 | /* quadrature mirror synthesis filter */ | |
132 | ||
133 | /** | |
134 | * Quadrature mirror synthesis filter. | |
135 | * | |
136 | * @param inlo lower part of spectrum | |
137 | * @param inhi higher part of spectrum | |
138 | * @param nIn size of spectrum buffer | |
139 | * @param pOut out buffer | |
140 | * @param delayBuf delayBuf buffer | |
141 | * @param temp temp buffer | |
142 | */ | |
143 | ||
144 | ||
145 | static void iqmf (float *inlo, float *inhi, unsigned int nIn, float *pOut, float *delayBuf, float *temp) | |
146 | { | |
147 | int i, j; | |
148 | float *p1, *p3; | |
149 | ||
150 | memcpy(temp, delayBuf, 46*sizeof(float)); | |
151 | ||
152 | p3 = temp + 46; | |
153 | ||
154 | /* loop1 */ | |
155 | for(i=0; i<nIn; i+=2){ | |
156 | p3[2*i+0] = inlo[i ] + inhi[i ]; | |
157 | p3[2*i+1] = inlo[i ] - inhi[i ]; | |
158 | p3[2*i+2] = inlo[i+1] + inhi[i+1]; | |
159 | p3[2*i+3] = inlo[i+1] - inhi[i+1]; | |
160 | } | |
161 | ||
162 | /* loop2 */ | |
163 | p1 = temp; | |
164 | for (j = nIn; j != 0; j--) { | |
165 | float s1 = 0.0; | |
166 | float s2 = 0.0; | |
167 | ||
168 | for (i = 0; i < 48; i += 2) { | |
169 | s1 += p1[i] * qmf_window[i]; | |
170 | s2 += p1[i+1] * qmf_window[i+1]; | |
171 | } | |
172 | ||
173 | pOut[0] = s2; | |
174 | pOut[1] = s1; | |
175 | ||
176 | p1 += 2; | |
177 | pOut += 2; | |
178 | } | |
179 | ||
180 | /* Update the delay buffer. */ | |
181 | memcpy(delayBuf, temp + nIn*2, 46*sizeof(float)); | |
182 | } | |
183 | ||
184 | /** | |
185 | * Regular 512 points IMDCT without overlapping, with the exception of the swapping of odd bands | |
186 | * caused by the reverse spectra of the QMF. | |
187 | * | |
188 | * @param pInput float input | |
189 | * @param pOutput float output | |
190 | * @param odd_band 1 if the band is an odd band | |
10e26bc7 BL |
191 | */ |
192 | ||
0a570e82 | 193 | static void IMLT(float *pInput, float *pOutput, int odd_band) |
10e26bc7 BL |
194 | { |
195 | int i; | |
196 | ||
197 | if (odd_band) { | |
198 | /** | |
199 | * Reverse the odd bands before IMDCT, this is an effect of the QMF transform | |
200 | * or it gives better compression to do it this way. | |
201 | * FIXME: It should be possible to handle this in ff_imdct_calc | |
202 | * for that to happen a modification of the prerotation step of | |
203 | * all SIMD code and C code is needed. | |
204 | * Or fix the functions before so they generate a pre reversed spectrum. | |
205 | */ | |
206 | ||
207 | for (i=0; i<128; i++) | |
208 | FFSWAP(float, pInput[i], pInput[255-i]); | |
209 | } | |
210 | ||
d46ac5bf | 211 | ff_imdct_calc(&mdct_ctx,pOutput,pInput); |
10e26bc7 BL |
212 | |
213 | /* Perform windowing on the output. */ | |
214 | dsp.vector_fmul(pOutput,mdct_window,512); | |
215 | ||
216 | } | |
217 | ||
218 | ||
219 | /** | |
220 | * Atrac 3 indata descrambling, only used for data coming from the rm container | |
221 | * | |
222 | * @param in pointer to 8 bit array of indata | |
223 | * @param bits amount of bits | |
224 | * @param out pointer to 8 bit array of outdata | |
225 | */ | |
226 | ||
8687f767 | 227 | static int decode_bytes(const uint8_t* inbuffer, uint8_t* out, int bytes){ |
10e26bc7 BL |
228 | int i, off; |
229 | uint32_t c; | |
8687f767 | 230 | const uint32_t* buf; |
10e26bc7 BL |
231 | uint32_t* obuf = (uint32_t*) out; |
232 | ||
e05c8d06 | 233 | off = (intptr_t)inbuffer & 3; |
8687f767 | 234 | buf = (const uint32_t*) (inbuffer - off); |
10e26bc7 BL |
235 | c = be2me_32((0x537F6103 >> (off*8)) | (0x537F6103 << (32-(off*8)))); |
236 | bytes += 3 + off; | |
237 | for (i = 0; i < bytes/4; i++) | |
238 | obuf[i] = c ^ buf[i]; | |
239 | ||
240 | if (off) | |
241 | av_log(NULL,AV_LOG_DEBUG,"Offset of %d not handled, post sample on ffmpeg-dev.\n",off); | |
242 | ||
243 | return off; | |
244 | } | |
245 | ||
246 | ||
5ef251e5 | 247 | static av_cold void init_atrac3_transforms(ATRAC3Context *q) { |
10e26bc7 BL |
248 | float enc_window[256]; |
249 | float s; | |
250 | int i; | |
251 | ||
252 | /* Generate the mdct window, for details see | |
253 | * http://wiki.multimedia.cx/index.php?title=RealAudio_atrc#Windows */ | |
254 | for (i=0 ; i<256; i++) | |
255 | enc_window[i] = (sin(((i + 0.5) / 256.0 - 0.5) * M_PI) + 1.0) * 0.5; | |
256 | ||
257 | if (!mdct_window[0]) | |
258 | for (i=0 ; i<256; i++) { | |
259 | mdct_window[i] = enc_window[i]/(enc_window[i]*enc_window[i] + enc_window[255-i]*enc_window[255-i]); | |
260 | mdct_window[511-i] = mdct_window[i]; | |
261 | } | |
262 | ||
263 | /* Generate the QMF window. */ | |
264 | for (i=0 ; i<24; i++) { | |
265 | s = qmf_48tap_half[i] * 2.0; | |
266 | qmf_window[i] = s; | |
267 | qmf_window[47 - i] = s; | |
268 | } | |
269 | ||
270 | /* Initialize the MDCT transform. */ | |
271 | ff_mdct_init(&mdct_ctx, 9, 1); | |
272 | } | |
273 | ||
274 | /** | |
275 | * Atrac3 uninit, free all allocated memory | |
276 | */ | |
277 | ||
5ef251e5 | 278 | static av_cold int atrac3_decode_close(AVCodecContext *avctx) |
10e26bc7 BL |
279 | { |
280 | ATRAC3Context *q = avctx->priv_data; | |
281 | ||
282 | av_free(q->pUnits); | |
283 | av_free(q->decoded_bytes_buffer); | |
284 | ||
285 | return 0; | |
286 | } | |
287 | ||
288 | /** | |
289 | / * Mantissa decoding | |
290 | * | |
291 | * @param gb the GetBit context | |
292 | * @param selector what table is the output values coded with | |
293 | * @param codingFlag constant length coding or variable length coding | |
294 | * @param mantissas mantissa output table | |
295 | * @param numCodes amount of values to get | |
296 | */ | |
297 | ||
298 | static void readQuantSpectralCoeffs (GetBitContext *gb, int selector, int codingFlag, int* mantissas, int numCodes) | |
299 | { | |
300 | int numBits, cnt, code, huffSymb; | |
301 | ||
302 | if (selector == 1) | |
303 | numCodes /= 2; | |
304 | ||
305 | if (codingFlag != 0) { | |
306 | /* constant length coding (CLC) */ | |
10e26bc7 BL |
307 | numBits = CLCLengthTab[selector]; |
308 | ||
309 | if (selector > 1) { | |
310 | for (cnt = 0; cnt < numCodes; cnt++) { | |
311 | if (numBits) | |
312 | code = get_sbits(gb, numBits); | |
313 | else | |
314 | code = 0; | |
315 | mantissas[cnt] = code; | |
316 | } | |
317 | } else { | |
318 | for (cnt = 0; cnt < numCodes; cnt++) { | |
319 | if (numBits) | |
320 | code = get_bits(gb, numBits); //numBits is always 4 in this case | |
321 | else | |
322 | code = 0; | |
323 | mantissas[cnt*2] = seTab_0[code >> 2]; | |
324 | mantissas[cnt*2+1] = seTab_0[code & 3]; | |
325 | } | |
326 | } | |
327 | } else { | |
328 | /* variable length coding (VLC) */ | |
329 | if (selector != 1) { | |
330 | for (cnt = 0; cnt < numCodes; cnt++) { | |
331 | huffSymb = get_vlc2(gb, spectral_coeff_tab[selector-1].table, spectral_coeff_tab[selector-1].bits, 3); | |
332 | huffSymb += 1; | |
333 | code = huffSymb >> 1; | |
334 | if (huffSymb & 1) | |
335 | code = -code; | |
336 | mantissas[cnt] = code; | |
337 | } | |
338 | } else { | |
339 | for (cnt = 0; cnt < numCodes; cnt++) { | |
340 | huffSymb = get_vlc2(gb, spectral_coeff_tab[selector-1].table, spectral_coeff_tab[selector-1].bits, 3); | |
341 | mantissas[cnt*2] = decTable1[huffSymb*2]; | |
342 | mantissas[cnt*2+1] = decTable1[huffSymb*2+1]; | |
343 | } | |
344 | } | |
345 | } | |
346 | } | |
347 | ||
348 | /** | |
349 | * Restore the quantized band spectrum coefficients | |
350 | * | |
351 | * @param gb the GetBit context | |
352 | * @param pOut decoded band spectrum | |
353 | * @return outSubbands subband counter, fix for broken specification/files | |
354 | */ | |
355 | ||
356 | static int decodeSpectrum (GetBitContext *gb, float *pOut) | |
357 | { | |
358 | int numSubbands, codingMode, cnt, first, last, subbWidth, *pIn; | |
359 | int subband_vlc_index[32], SF_idxs[32]; | |
360 | int mantissas[128]; | |
361 | float SF; | |
362 | ||
363 | numSubbands = get_bits(gb, 5); // number of coded subbands | |
5fc32c27 | 364 | codingMode = get_bits1(gb); // coding Mode: 0 - VLC/ 1-CLC |
10e26bc7 BL |
365 | |
366 | /* Get the VLC selector table for the subbands, 0 means not coded. */ | |
367 | for (cnt = 0; cnt <= numSubbands; cnt++) | |
368 | subband_vlc_index[cnt] = get_bits(gb, 3); | |
369 | ||
370 | /* Read the scale factor indexes from the stream. */ | |
371 | for (cnt = 0; cnt <= numSubbands; cnt++) { | |
372 | if (subband_vlc_index[cnt] != 0) | |
373 | SF_idxs[cnt] = get_bits(gb, 6); | |
374 | } | |
375 | ||
376 | for (cnt = 0; cnt <= numSubbands; cnt++) { | |
377 | first = subbandTab[cnt]; | |
378 | last = subbandTab[cnt+1]; | |
379 | ||
380 | subbWidth = last - first; | |
381 | ||
382 | if (subband_vlc_index[cnt] != 0) { | |
383 | /* Decode spectral coefficients for this subband. */ | |
384 | /* TODO: This can be done faster is several blocks share the | |
385 | * same VLC selector (subband_vlc_index) */ | |
386 | readQuantSpectralCoeffs (gb, subband_vlc_index[cnt], codingMode, mantissas, subbWidth); | |
387 | ||
388 | /* Decode the scale factor for this subband. */ | |
389 | SF = SFTable[SF_idxs[cnt]] * iMaxQuant[subband_vlc_index[cnt]]; | |
390 | ||
391 | /* Inverse quantize the coefficients. */ | |
392 | for (pIn=mantissas ; first<last; first++, pIn++) | |
393 | pOut[first] = *pIn * SF; | |
394 | } else { | |
395 | /* This subband was not coded, so zero the entire subband. */ | |
396 | memset(pOut+first, 0, subbWidth*sizeof(float)); | |
397 | } | |
398 | } | |
399 | ||
400 | /* Clear the subbands that were not coded. */ | |
401 | first = subbandTab[cnt]; | |
402 | memset(pOut+first, 0, (1024 - first) * sizeof(float)); | |
403 | return numSubbands; | |
404 | } | |
405 | ||
406 | /** | |
407 | * Restore the quantized tonal components | |
408 | * | |
409 | * @param gb the GetBit context | |
10e26bc7 BL |
410 | * @param pComponent tone component |
411 | * @param numBands amount of coded bands | |
412 | */ | |
413 | ||
b8c4a515 | 414 | static int decodeTonalComponents (GetBitContext *gb, tonal_component *pComponent, int numBands) |
10e26bc7 BL |
415 | { |
416 | int i,j,k,cnt; | |
b8c4a515 | 417 | int components, coding_mode_selector, coding_mode, coded_values_per_component; |
10e26bc7 BL |
418 | int sfIndx, coded_values, max_coded_values, quant_step_index, coded_components; |
419 | int band_flags[4], mantissa[8]; | |
420 | float *pCoef; | |
421 | float scalefactor; | |
b8c4a515 | 422 | int component_count = 0; |
10e26bc7 BL |
423 | |
424 | components = get_bits(gb,5); | |
425 | ||
426 | /* no tonal components */ | |
427 | if (components == 0) | |
428 | return 0; | |
429 | ||
430 | coding_mode_selector = get_bits(gb,2); | |
431 | if (coding_mode_selector == 2) | |
432 | return -1; | |
433 | ||
434 | coding_mode = coding_mode_selector & 1; | |
435 | ||
436 | for (i = 0; i < components; i++) { | |
437 | for (cnt = 0; cnt <= numBands; cnt++) | |
438 | band_flags[cnt] = get_bits1(gb); | |
439 | ||
440 | coded_values_per_component = get_bits(gb,3); | |
441 | ||
442 | quant_step_index = get_bits(gb,3); | |
443 | if (quant_step_index <= 1) | |
444 | return -1; | |
445 | ||
446 | if (coding_mode_selector == 3) | |
447 | coding_mode = get_bits1(gb); | |
448 | ||
449 | for (j = 0; j < (numBands + 1) * 4; j++) { | |
450 | if (band_flags[j >> 2] == 0) | |
451 | continue; | |
452 | ||
453 | coded_components = get_bits(gb,3); | |
454 | ||
455 | for (k=0; k<coded_components; k++) { | |
456 | sfIndx = get_bits(gb,6); | |
457 | pComponent[component_count].pos = j * 64 + (get_bits(gb,6)); | |
458 | max_coded_values = 1024 - pComponent[component_count].pos; | |
459 | coded_values = coded_values_per_component + 1; | |
460 | coded_values = FFMIN(max_coded_values,coded_values); | |
461 | ||
462 | scalefactor = SFTable[sfIndx] * iMaxQuant[quant_step_index]; | |
463 | ||
464 | readQuantSpectralCoeffs(gb, quant_step_index, coding_mode, mantissa, coded_values); | |
465 | ||
466 | pComponent[component_count].numCoefs = coded_values; | |
467 | ||
468 | /* inverse quant */ | |
9d278d88 | 469 | pCoef = pComponent[component_count].coef; |
10e26bc7 BL |
470 | for (cnt = 0; cnt < coded_values; cnt++) |
471 | pCoef[cnt] = mantissa[cnt] * scalefactor; | |
472 | ||
473 | component_count++; | |
474 | } | |
475 | } | |
476 | } | |
477 | ||
b8c4a515 | 478 | return component_count; |
10e26bc7 BL |
479 | } |
480 | ||
481 | /** | |
482 | * Decode gain parameters for the coded bands | |
483 | * | |
484 | * @param gb the GetBit context | |
485 | * @param pGb the gainblock for the current band | |
486 | * @param numBands amount of coded bands | |
487 | */ | |
488 | ||
489 | static int decodeGainControl (GetBitContext *gb, gain_block *pGb, int numBands) | |
490 | { | |
491 | int i, cf, numData; | |
492 | int *pLevel, *pLoc; | |
493 | ||
494 | gain_info *pGain = pGb->gBlock; | |
495 | ||
496 | for (i=0 ; i<=numBands; i++) | |
497 | { | |
498 | numData = get_bits(gb,3); | |
499 | pGain[i].num_gain_data = numData; | |
500 | pLevel = pGain[i].levcode; | |
501 | pLoc = pGain[i].loccode; | |
502 | ||
503 | for (cf = 0; cf < numData; cf++){ | |
504 | pLevel[cf]= get_bits(gb,4); | |
505 | pLoc [cf]= get_bits(gb,5); | |
506 | if(cf && pLoc[cf] <= pLoc[cf-1]) | |
507 | return -1; | |
508 | } | |
509 | } | |
510 | ||
511 | /* Clear the unused blocks. */ | |
512 | for (; i<4 ; i++) | |
513 | pGain[i].num_gain_data = 0; | |
514 | ||
515 | return 0; | |
516 | } | |
517 | ||
518 | /** | |
519 | * Apply gain parameters and perform the MDCT overlapping part | |
520 | * | |
521 | * @param pIn input float buffer | |
522 | * @param pPrev previous float buffer to perform overlap against | |
523 | * @param pOut output float buffer | |
524 | * @param pGain1 current band gain info | |
525 | * @param pGain2 next band gain info | |
526 | */ | |
527 | ||
528 | static void gainCompensateAndOverlap (float *pIn, float *pPrev, float *pOut, gain_info *pGain1, gain_info *pGain2) | |
529 | { | |
530 | /* gain compensation function */ | |
531 | float gain1, gain2, gain_inc; | |
532 | int cnt, numdata, nsample, startLoc, endLoc; | |
533 | ||
534 | ||
535 | if (pGain2->num_gain_data == 0) | |
536 | gain1 = 1.0; | |
537 | else | |
538 | gain1 = gain_tab1[pGain2->levcode[0]]; | |
539 | ||
540 | if (pGain1->num_gain_data == 0) { | |
541 | for (cnt = 0; cnt < 256; cnt++) | |
542 | pOut[cnt] = pIn[cnt] * gain1 + pPrev[cnt]; | |
543 | } else { | |
544 | numdata = pGain1->num_gain_data; | |
545 | pGain1->loccode[numdata] = 32; | |
546 | pGain1->levcode[numdata] = 4; | |
547 | ||
548 | nsample = 0; // current sample = 0 | |
549 | ||
550 | for (cnt = 0; cnt < numdata; cnt++) { | |
551 | startLoc = pGain1->loccode[cnt] * 8; | |
552 | endLoc = startLoc + 8; | |
553 | ||
554 | gain2 = gain_tab1[pGain1->levcode[cnt]]; | |
555 | gain_inc = gain_tab2[(pGain1->levcode[cnt+1] - pGain1->levcode[cnt])+15]; | |
556 | ||
557 | /* interpolate */ | |
558 | for (; nsample < startLoc; nsample++) | |
559 | pOut[nsample] = (pIn[nsample] * gain1 + pPrev[nsample]) * gain2; | |
560 | ||
561 | /* interpolation is done over eight samples */ | |
562 | for (; nsample < endLoc; nsample++) { | |
563 | pOut[nsample] = (pIn[nsample] * gain1 + pPrev[nsample]) * gain2; | |
564 | gain2 *= gain_inc; | |
565 | } | |
566 | } | |
567 | ||
568 | for (; nsample < 256; nsample++) | |
569 | pOut[nsample] = (pIn[nsample] * gain1) + pPrev[nsample]; | |
570 | } | |
571 | ||
572 | /* Delay for the overlapping part. */ | |
573 | memcpy(pPrev, &pIn[256], 256*sizeof(float)); | |
574 | } | |
575 | ||
576 | /** | |
577 | * Combine the tonal band spectrum and regular band spectrum | |
9d278d88 | 578 | * Return position of the last tonal coefficient |
10e26bc7 BL |
579 | * |
580 | * @param pSpectrum output spectrum buffer | |
581 | * @param numComponents amount of tonal components | |
582 | * @param pComponent tonal components for this band | |
583 | */ | |
584 | ||
9d278d88 | 585 | static int addTonalComponents (float *pSpectrum, int numComponents, tonal_component *pComponent) |
10e26bc7 | 586 | { |
9d278d88 | 587 | int cnt, i, lastPos = -1; |
10e26bc7 BL |
588 | float *pIn, *pOut; |
589 | ||
590 | for (cnt = 0; cnt < numComponents; cnt++){ | |
9d278d88 | 591 | lastPos = FFMAX(pComponent[cnt].pos + pComponent[cnt].numCoefs, lastPos); |
10e26bc7 BL |
592 | pIn = pComponent[cnt].coef; |
593 | pOut = &(pSpectrum[pComponent[cnt].pos]); | |
594 | ||
595 | for (i=0 ; i<pComponent[cnt].numCoefs ; i++) | |
596 | pOut[i] += pIn[i]; | |
597 | } | |
9d278d88 MP |
598 | |
599 | return lastPos; | |
10e26bc7 BL |
600 | } |
601 | ||
602 | ||
603 | #define INTERPOLATE(old,new,nsample) ((old) + (nsample)*0.125*((new)-(old))) | |
604 | ||
605 | static void reverseMatrixing(float *su1, float *su2, int *pPrevCode, int *pCurrCode) | |
606 | { | |
607 | int i, band, nsample, s1, s2; | |
608 | float c1, c2; | |
609 | float mc1_l, mc1_r, mc2_l, mc2_r; | |
610 | ||
611 | for (i=0,band = 0; band < 4*256; band+=256,i++) { | |
612 | s1 = pPrevCode[i]; | |
613 | s2 = pCurrCode[i]; | |
614 | nsample = 0; | |
615 | ||
616 | if (s1 != s2) { | |
617 | /* Selector value changed, interpolation needed. */ | |
618 | mc1_l = matrixCoeffs[s1*2]; | |
619 | mc1_r = matrixCoeffs[s1*2+1]; | |
620 | mc2_l = matrixCoeffs[s2*2]; | |
621 | mc2_r = matrixCoeffs[s2*2+1]; | |
622 | ||
623 | /* Interpolation is done over the first eight samples. */ | |
624 | for(; nsample < 8; nsample++) { | |
625 | c1 = su1[band+nsample]; | |
626 | c2 = su2[band+nsample]; | |
627 | c2 = c1 * INTERPOLATE(mc1_l,mc2_l,nsample) + c2 * INTERPOLATE(mc1_r,mc2_r,nsample); | |
628 | su1[band+nsample] = c2; | |
629 | su2[band+nsample] = c1 * 2.0 - c2; | |
630 | } | |
631 | } | |
632 | ||
633 | /* Apply the matrix without interpolation. */ | |
634 | switch (s2) { | |
635 | case 0: /* M/S decoding */ | |
636 | for (; nsample < 256; nsample++) { | |
637 | c1 = su1[band+nsample]; | |
638 | c2 = su2[band+nsample]; | |
639 | su1[band+nsample] = c2 * 2.0; | |
640 | su2[band+nsample] = (c1 - c2) * 2.0; | |
641 | } | |
642 | break; | |
643 | ||
644 | case 1: | |
645 | for (; nsample < 256; nsample++) { | |
646 | c1 = su1[band+nsample]; | |
647 | c2 = su2[band+nsample]; | |
648 | su1[band+nsample] = (c1 + c2) * 2.0; | |
649 | su2[band+nsample] = c2 * -2.0; | |
650 | } | |
651 | break; | |
652 | case 2: | |
653 | case 3: | |
654 | for (; nsample < 256; nsample++) { | |
655 | c1 = su1[band+nsample]; | |
656 | c2 = su2[band+nsample]; | |
657 | su1[band+nsample] = c1 + c2; | |
658 | su2[band+nsample] = c1 - c2; | |
659 | } | |
660 | break; | |
661 | default: | |
662 | assert(0); | |
663 | } | |
664 | } | |
665 | } | |
666 | ||
667 | static void getChannelWeights (int indx, int flag, float ch[2]){ | |
668 | ||
669 | if (indx == 7) { | |
670 | ch[0] = 1.0; | |
671 | ch[1] = 1.0; | |
672 | } else { | |
673 | ch[0] = (float)(indx & 7) / 7.0; | |
674 | ch[1] = sqrt(2 - ch[0]*ch[0]); | |
675 | if(flag) | |
676 | FFSWAP(float, ch[0], ch[1]); | |
677 | } | |
678 | } | |
679 | ||
680 | static void channelWeighting (float *su1, float *su2, int *p3) | |
681 | { | |
682 | int band, nsample; | |
683 | /* w[x][y] y=0 is left y=1 is right */ | |
684 | float w[2][2]; | |
685 | ||
686 | if (p3[1] != 7 || p3[3] != 7){ | |
687 | getChannelWeights(p3[1], p3[0], w[0]); | |
688 | getChannelWeights(p3[3], p3[2], w[1]); | |
689 | ||
690 | for(band = 1; band < 4; band++) { | |
691 | /* scale the channels by the weights */ | |
692 | for(nsample = 0; nsample < 8; nsample++) { | |
693 | su1[band*256+nsample] *= INTERPOLATE(w[0][0], w[0][1], nsample); | |
694 | su2[band*256+nsample] *= INTERPOLATE(w[1][0], w[1][1], nsample); | |
695 | } | |
696 | ||
697 | for(; nsample < 256; nsample++) { | |
698 | su1[band*256+nsample] *= w[1][0]; | |
699 | su2[band*256+nsample] *= w[1][1]; | |
700 | } | |
701 | } | |
702 | } | |
703 | } | |
704 | ||
705 | ||
706 | /** | |
707 | * Decode a Sound Unit | |
708 | * | |
709 | * @param gb the GetBit context | |
710 | * @param pSnd the channel unit to be used | |
711 | * @param pOut the decoded samples before IQMF in float representation | |
712 | * @param channelNum channel number | |
713 | * @param codingMode the coding mode (JOINT_STEREO or regular stereo/mono) | |
714 | */ | |
715 | ||
716 | ||
717 | static int decodeChannelSoundUnit (ATRAC3Context *q, GetBitContext *gb, channel_unit *pSnd, float *pOut, int channelNum, int codingMode) | |
718 | { | |
9d278d88 | 719 | int band, result=0, numSubbands, lastTonal, numBands; |
10e26bc7 BL |
720 | |
721 | if (codingMode == JOINT_STEREO && channelNum == 1) { | |
722 | if (get_bits(gb,2) != 3) { | |
723 | av_log(NULL,AV_LOG_ERROR,"JS mono Sound Unit id != 3.\n"); | |
724 | return -1; | |
725 | } | |
726 | } else { | |
727 | if (get_bits(gb,6) != 0x28) { | |
728 | av_log(NULL,AV_LOG_ERROR,"Sound Unit id != 0x28.\n"); | |
729 | return -1; | |
730 | } | |
731 | } | |
732 | ||
733 | /* number of coded QMF bands */ | |
734 | pSnd->bandsCoded = get_bits(gb,2); | |
735 | ||
736 | result = decodeGainControl (gb, &(pSnd->gainBlock[pSnd->gcBlkSwitch]), pSnd->bandsCoded); | |
737 | if (result) return result; | |
738 | ||
b8c4a515 BL |
739 | pSnd->numComponents = decodeTonalComponents (gb, pSnd->components, pSnd->bandsCoded); |
740 | if (pSnd->numComponents == -1) return -1; | |
10e26bc7 BL |
741 | |
742 | numSubbands = decodeSpectrum (gb, pSnd->spectrum); | |
743 | ||
744 | /* Merge the decoded spectrum and tonal components. */ | |
9d278d88 | 745 | lastTonal = addTonalComponents (pSnd->spectrum, pSnd->numComponents, pSnd->components); |
10e26bc7 BL |
746 | |
747 | ||
9d278d88 | 748 | /* calculate number of used MLT/QMF bands according to the amount of coded spectral lines */ |
10e26bc7 | 749 | numBands = (subbandTab[numSubbands] - 1) >> 8; |
9d278d88 MP |
750 | if (lastTonal >= 0) |
751 | numBands = FFMAX((lastTonal + 256) >> 8, numBands); | |
10e26bc7 BL |
752 | |
753 | ||
754 | /* Reconstruct time domain samples. */ | |
755 | for (band=0; band<4; band++) { | |
756 | /* Perform the IMDCT step without overlapping. */ | |
757 | if (band <= numBands) { | |
0a570e82 | 758 | IMLT(&(pSnd->spectrum[band*256]), pSnd->IMDCT_buf, band&1); |
10e26bc7 BL |
759 | } else |
760 | memset(pSnd->IMDCT_buf, 0, 512 * sizeof(float)); | |
761 | ||
762 | /* gain compensation and overlapping */ | |
763 | gainCompensateAndOverlap (pSnd->IMDCT_buf, &(pSnd->prevFrame[band*256]), &(pOut[band*256]), | |
764 | &((pSnd->gainBlock[1 - (pSnd->gcBlkSwitch)]).gBlock[band]), | |
765 | &((pSnd->gainBlock[pSnd->gcBlkSwitch]).gBlock[band])); | |
766 | } | |
767 | ||
768 | /* Swap the gain control buffers for the next frame. */ | |
769 | pSnd->gcBlkSwitch ^= 1; | |
770 | ||
771 | return 0; | |
772 | } | |
773 | ||
774 | /** | |
775 | * Frame handling | |
776 | * | |
777 | * @param q Atrac3 private context | |
778 | * @param databuf the input data | |
779 | */ | |
780 | ||
15ae1959 | 781 | static int decodeFrame(ATRAC3Context *q, const uint8_t* databuf) |
10e26bc7 BL |
782 | { |
783 | int result, i; | |
784 | float *p1, *p2, *p3, *p4; | |
15ae1959 | 785 | uint8_t *ptr1; |
10e26bc7 BL |
786 | |
787 | if (q->codingMode == JOINT_STEREO) { | |
788 | ||
789 | /* channel coupling mode */ | |
790 | /* decode Sound Unit 1 */ | |
791 | init_get_bits(&q->gb,databuf,q->bits_per_frame); | |
792 | ||
793 | result = decodeChannelSoundUnit(q,&q->gb, q->pUnits, q->outSamples, 0, JOINT_STEREO); | |
794 | if (result != 0) | |
795 | return (result); | |
796 | ||
797 | /* Framedata of the su2 in the joint-stereo mode is encoded in | |
798 | * reverse byte order so we need to swap it first. */ | |
15ae1959 AJ |
799 | if (databuf == q->decoded_bytes_buffer) { |
800 | uint8_t *ptr2 = q->decoded_bytes_buffer+q->bytes_per_frame-1; | |
801 | ptr1 = q->decoded_bytes_buffer; | |
b37b1306 AJ |
802 | for (i = 0; i < (q->bytes_per_frame/2); i++, ptr1++, ptr2--) { |
803 | FFSWAP(uint8_t,*ptr1,*ptr2); | |
804 | } | |
15ae1959 AJ |
805 | } else { |
806 | const uint8_t *ptr2 = databuf+q->bytes_per_frame-1; | |
807 | for (i = 0; i < q->bytes_per_frame; i++) | |
808 | q->decoded_bytes_buffer[i] = *ptr2--; | |
809 | } | |
10e26bc7 BL |
810 | |
811 | /* Skip the sync codes (0xF8). */ | |
15ae1959 | 812 | ptr1 = q->decoded_bytes_buffer; |
10e26bc7 BL |
813 | for (i = 4; *ptr1 == 0xF8; i++, ptr1++) { |
814 | if (i >= q->bytes_per_frame) | |
815 | return -1; | |
816 | } | |
817 | ||
818 | ||
819 | /* set the bitstream reader at the start of the second Sound Unit*/ | |
820 | init_get_bits(&q->gb,ptr1,q->bits_per_frame); | |
821 | ||
822 | /* Fill the Weighting coeffs delay buffer */ | |
823 | memmove(q->weighting_delay,&(q->weighting_delay[2]),4*sizeof(int)); | |
5fc32c27 | 824 | q->weighting_delay[4] = get_bits1(&q->gb); |
10e26bc7 BL |
825 | q->weighting_delay[5] = get_bits(&q->gb,3); |
826 | ||
827 | for (i = 0; i < 4; i++) { | |
828 | q->matrix_coeff_index_prev[i] = q->matrix_coeff_index_now[i]; | |
829 | q->matrix_coeff_index_now[i] = q->matrix_coeff_index_next[i]; | |
830 | q->matrix_coeff_index_next[i] = get_bits(&q->gb,2); | |
831 | } | |
832 | ||
833 | /* Decode Sound Unit 2. */ | |
834 | result = decodeChannelSoundUnit(q,&q->gb, &q->pUnits[1], &q->outSamples[1024], 1, JOINT_STEREO); | |
835 | if (result != 0) | |
836 | return (result); | |
837 | ||
838 | /* Reconstruct the channel coefficients. */ | |
839 | reverseMatrixing(q->outSamples, &q->outSamples[1024], q->matrix_coeff_index_prev, q->matrix_coeff_index_now); | |
840 | ||
841 | channelWeighting(q->outSamples, &q->outSamples[1024], q->weighting_delay); | |
842 | ||
843 | } else { | |
844 | /* normal stereo mode or mono */ | |
845 | /* Decode the channel sound units. */ | |
846 | for (i=0 ; i<q->channels ; i++) { | |
847 | ||
848 | /* Set the bitstream reader at the start of a channel sound unit. */ | |
849 | init_get_bits(&q->gb, databuf+((i*q->bytes_per_frame)/q->channels), (q->bits_per_frame)/q->channels); | |
850 | ||
851 | result = decodeChannelSoundUnit(q,&q->gb, &q->pUnits[i], &q->outSamples[i*1024], i, q->codingMode); | |
852 | if (result != 0) | |
853 | return (result); | |
854 | } | |
855 | } | |
856 | ||
857 | /* Apply the iQMF synthesis filter. */ | |
858 | p1= q->outSamples; | |
859 | for (i=0 ; i<q->channels ; i++) { | |
860 | p2= p1+256; | |
861 | p3= p2+256; | |
862 | p4= p3+256; | |
863 | iqmf (p1, p2, 256, p1, q->pUnits[i].delayBuf1, q->tempBuf); | |
864 | iqmf (p4, p3, 256, p3, q->pUnits[i].delayBuf2, q->tempBuf); | |
865 | iqmf (p1, p3, 512, p1, q->pUnits[i].delayBuf3, q->tempBuf); | |
866 | p1 +=1024; | |
867 | } | |
868 | ||
869 | return 0; | |
870 | } | |
871 | ||
872 | ||
873 | /** | |
874 | * Atrac frame decoding | |
875 | * | |
876 | * @param avctx pointer to the AVCodecContext | |
877 | */ | |
878 | ||
879 | static int atrac3_decode_frame(AVCodecContext *avctx, | |
880 | void *data, int *data_size, | |
8687f767 | 881 | const uint8_t *buf, int buf_size) { |
10e26bc7 BL |
882 | ATRAC3Context *q = avctx->priv_data; |
883 | int result = 0, i; | |
15ae1959 | 884 | const uint8_t* databuf; |
10e26bc7 BL |
885 | int16_t* samples = data; |
886 | ||
887 | if (buf_size < avctx->block_align) | |
888 | return buf_size; | |
889 | ||
890 | /* Check if we need to descramble and what buffer to pass on. */ | |
891 | if (q->scrambled_stream) { | |
892 | decode_bytes(buf, q->decoded_bytes_buffer, avctx->block_align); | |
893 | databuf = q->decoded_bytes_buffer; | |
894 | } else { | |
895 | databuf = buf; | |
896 | } | |
897 | ||
898 | result = decodeFrame(q, databuf); | |
899 | ||
900 | if (result != 0) { | |
901 | av_log(NULL,AV_LOG_ERROR,"Frame decoding error!\n"); | |
902 | return -1; | |
903 | } | |
904 | ||
905 | if (q->channels == 1) { | |
906 | /* mono */ | |
907 | for (i = 0; i<1024; i++) | |
aee481ce | 908 | samples[i] = av_clip_int16(round(q->outSamples[i])); |
10e26bc7 BL |
909 | *data_size = 1024 * sizeof(int16_t); |
910 | } else { | |
911 | /* stereo */ | |
912 | for (i = 0; i < 1024; i++) { | |
aee481ce AJ |
913 | samples[i*2] = av_clip_int16(round(q->outSamples[i])); |
914 | samples[i*2+1] = av_clip_int16(round(q->outSamples[1024+i])); | |
10e26bc7 BL |
915 | } |
916 | *data_size = 2048 * sizeof(int16_t); | |
917 | } | |
918 | ||
919 | return avctx->block_align; | |
920 | } | |
921 | ||
922 | ||
923 | /** | |
924 | * Atrac3 initialization | |
925 | * | |
926 | * @param avctx pointer to the AVCodecContext | |
927 | */ | |
928 | ||
5ef251e5 | 929 | static av_cold int atrac3_decode_init(AVCodecContext *avctx) |
10e26bc7 BL |
930 | { |
931 | int i; | |
8687f767 | 932 | const uint8_t *edata_ptr = avctx->extradata; |
10e26bc7 BL |
933 | ATRAC3Context *q = avctx->priv_data; |
934 | ||
935 | /* Take data from the AVCodecContext (RM container). */ | |
936 | q->sample_rate = avctx->sample_rate; | |
937 | q->channels = avctx->channels; | |
938 | q->bit_rate = avctx->bit_rate; | |
939 | q->bits_per_frame = avctx->block_align * 8; | |
940 | q->bytes_per_frame = avctx->block_align; | |
941 | ||
942 | /* Take care of the codec-specific extradata. */ | |
943 | if (avctx->extradata_size == 14) { | |
944 | /* Parse the extradata, WAV format */ | |
945 | av_log(avctx,AV_LOG_DEBUG,"[0-1] %d\n",bytestream_get_le16(&edata_ptr)); //Unknown value always 1 | |
946 | q->samples_per_channel = bytestream_get_le32(&edata_ptr); | |
947 | q->codingMode = bytestream_get_le16(&edata_ptr); | |
948 | av_log(avctx,AV_LOG_DEBUG,"[8-9] %d\n",bytestream_get_le16(&edata_ptr)); //Dupe of coding mode | |
949 | q->frame_factor = bytestream_get_le16(&edata_ptr); //Unknown always 1 | |
950 | av_log(avctx,AV_LOG_DEBUG,"[12-13] %d\n",bytestream_get_le16(&edata_ptr)); //Unknown always 0 | |
951 | ||
952 | /* setup */ | |
953 | q->samples_per_frame = 1024 * q->channels; | |
954 | q->atrac3version = 4; | |
955 | q->delay = 0x88E; | |
956 | if (q->codingMode) | |
957 | q->codingMode = JOINT_STEREO; | |
958 | else | |
959 | q->codingMode = STEREO; | |
960 | ||
961 | q->scrambled_stream = 0; | |
962 | ||
963 | if ((q->bytes_per_frame == 96*q->channels*q->frame_factor) || (q->bytes_per_frame == 152*q->channels*q->frame_factor) || (q->bytes_per_frame == 192*q->channels*q->frame_factor)) { | |
964 | } else { | |
965 | av_log(avctx,AV_LOG_ERROR,"Unknown frame/channel/frame_factor configuration %d/%d/%d\n", q->bytes_per_frame, q->channels, q->frame_factor); | |
966 | return -1; | |
967 | } | |
968 | ||
969 | } else if (avctx->extradata_size == 10) { | |
970 | /* Parse the extradata, RM format. */ | |
971 | q->atrac3version = bytestream_get_be32(&edata_ptr); | |
972 | q->samples_per_frame = bytestream_get_be16(&edata_ptr); | |
973 | q->delay = bytestream_get_be16(&edata_ptr); | |
974 | q->codingMode = bytestream_get_be16(&edata_ptr); | |
975 | ||
976 | q->samples_per_channel = q->samples_per_frame / q->channels; | |
977 | q->scrambled_stream = 1; | |
978 | ||
979 | } else { | |
980 | av_log(NULL,AV_LOG_ERROR,"Unknown extradata size %d.\n",avctx->extradata_size); | |
981 | } | |
982 | /* Check the extradata. */ | |
983 | ||
984 | if (q->atrac3version != 4) { | |
985 | av_log(avctx,AV_LOG_ERROR,"Version %d != 4.\n",q->atrac3version); | |
986 | return -1; | |
987 | } | |
988 | ||
989 | if (q->samples_per_frame != 1024 && q->samples_per_frame != 2048) { | |
990 | av_log(avctx,AV_LOG_ERROR,"Unknown amount of samples per frame %d.\n",q->samples_per_frame); | |
991 | return -1; | |
992 | } | |
993 | ||
994 | if (q->delay != 0x88E) { | |
995 | av_log(avctx,AV_LOG_ERROR,"Unknown amount of delay %x != 0x88E.\n",q->delay); | |
996 | return -1; | |
997 | } | |
998 | ||
999 | if (q->codingMode == STEREO) { | |
1000 | av_log(avctx,AV_LOG_DEBUG,"Normal stereo detected.\n"); | |
1001 | } else if (q->codingMode == JOINT_STEREO) { | |
1002 | av_log(avctx,AV_LOG_DEBUG,"Joint stereo detected.\n"); | |
1003 | } else { | |
1004 | av_log(avctx,AV_LOG_ERROR,"Unknown channel coding mode %x!\n",q->codingMode); | |
1005 | return -1; | |
1006 | } | |
1007 | ||
1008 | if (avctx->channels <= 0 || avctx->channels > 2 /*|| ((avctx->channels * 1024) != q->samples_per_frame)*/) { | |
1009 | av_log(avctx,AV_LOG_ERROR,"Channel configuration error!\n"); | |
1010 | return -1; | |
1011 | } | |
1012 | ||
1013 | ||
1014 | if(avctx->block_align >= UINT_MAX/2) | |
1015 | return -1; | |
1016 | ||
1017 | /* Pad the data buffer with FF_INPUT_BUFFER_PADDING_SIZE, | |
1018 | * this is for the bitstream reader. */ | |
1019 | if ((q->decoded_bytes_buffer = av_mallocz((avctx->block_align+(4-avctx->block_align%4) + FF_INPUT_BUFFER_PADDING_SIZE))) == NULL) | |
6611c0b4 | 1020 | return AVERROR(ENOMEM); |
10e26bc7 BL |
1021 | |
1022 | ||
1023 | /* Initialize the VLC tables. */ | |
1024 | for (i=0 ; i<7 ; i++) { | |
1025 | init_vlc (&spectral_coeff_tab[i], 9, huff_tab_sizes[i], | |
1026 | huff_bits[i], 1, 1, | |
1027 | huff_codes[i], 1, 1, INIT_VLC_USE_STATIC); | |
1028 | } | |
1029 | ||
1030 | init_atrac3_transforms(q); | |
1031 | ||
1032 | /* Generate the scale factors. */ | |
1033 | for (i=0 ; i<64 ; i++) | |
1034 | SFTable[i] = pow(2.0, (i - 15) / 3.0); | |
1035 | ||
1036 | /* Generate gain tables. */ | |
1037 | for (i=0 ; i<16 ; i++) | |
1038 | gain_tab1[i] = powf (2.0, (4 - i)); | |
1039 | ||
1040 | for (i=-15 ; i<16 ; i++) | |
1041 | gain_tab2[i+15] = powf (2.0, i * -0.125); | |
1042 | ||
1043 | /* init the joint-stereo decoding data */ | |
1044 | q->weighting_delay[0] = 0; | |
1045 | q->weighting_delay[1] = 7; | |
1046 | q->weighting_delay[2] = 0; | |
1047 | q->weighting_delay[3] = 7; | |
1048 | q->weighting_delay[4] = 0; | |
1049 | q->weighting_delay[5] = 7; | |
1050 | ||
1051 | for (i=0; i<4; i++) { | |
1052 | q->matrix_coeff_index_prev[i] = 3; | |
1053 | q->matrix_coeff_index_now[i] = 3; | |
1054 | q->matrix_coeff_index_next[i] = 3; | |
1055 | } | |
1056 | ||
1057 | dsputil_init(&dsp, avctx); | |
1058 | ||
1059 | q->pUnits = av_mallocz(sizeof(channel_unit)*q->channels); | |
6654296c PI |
1060 | if (!q->pUnits) { |
1061 | av_free(q->decoded_bytes_buffer); | |
1062 | return AVERROR(ENOMEM); | |
1063 | } | |
10e26bc7 | 1064 | |
fd76c37f | 1065 | avctx->sample_fmt = SAMPLE_FMT_S16; |
10e26bc7 BL |
1066 | return 0; |
1067 | } | |
1068 | ||
1069 | ||
1070 | AVCodec atrac3_decoder = | |
1071 | { | |
9d82d6cb | 1072 | .name = "atrac3", |
10e26bc7 BL |
1073 | .type = CODEC_TYPE_AUDIO, |
1074 | .id = CODEC_ID_ATRAC3, | |
1075 | .priv_data_size = sizeof(ATRAC3Context), | |
1076 | .init = atrac3_decode_init, | |
1077 | .close = atrac3_decode_close, | |
1078 | .decode = atrac3_decode_frame, | |
fe4bf374 | 1079 | .long_name = NULL_IF_CONFIG_SMALL("Atrac 3 (Adaptive TRansform Acoustic Coding 3)"), |
10e26bc7 | 1080 | }; |