an alloc func failing should give ENOMEM anyway.
[libav.git] / libavcodec / cook.c
CommitLineData
e0f7e329
BL
1/*
2 * COOK compatible decoder
3 * Copyright (c) 2003 Sascha Sommer
4 * Copyright (c) 2005 Benjamin Larsson
5 *
b78e7197
DB
6 * This file is part of FFmpeg.
7 *
8 * FFmpeg is free software; you can redistribute it and/or
e0f7e329
BL
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
b78e7197 11 * version 2.1 of the License, or (at your option) any later version.
e0f7e329 12 *
b78e7197 13 * FFmpeg is distributed in the hope that it will be useful,
e0f7e329
BL
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
b78e7197 19 * License along with FFmpeg; if not, write to the Free Software
5509bffa 20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
e0f7e329
BL
21 *
22 */
23
24/**
25 * @file cook.c
26 * Cook compatible decoder.
27 * This decoder handles RealNetworks, RealAudio G2 data.
28 * Cook is identified by the codec name cook in RM files.
29 *
30 * To use this decoder, a calling application must supply the extradata
31 * bytes provided from the RM container; 8+ bytes for mono streams and
32 * 16+ for stereo streams (maybe more).
33 *
34 * Codec technicalities (all this assume a buffer length of 1024):
35 * Cook works with several different techniques to achieve its compression.
36 * In the timedomain the buffer is divided into 8 pieces and quantized. If
37 * two neighboring pieces have different quantization index a smooth
38 * quantization curve is used to get a smooth overlap between the different
39 * pieces.
40 * To get to the transformdomain Cook uses a modulated lapped transform.
41 * The transform domain has 50 subbands with 20 elements each. This
42 * means only a maximum of 50*20=1000 coefficients are used out of the 1024
43 * available.
44 */
45
46#include <math.h>
47#include <stddef.h>
48#include <stdio.h>
49
e0f7e329
BL
50#include "avcodec.h"
51#include "bitstream.h"
52#include "dsputil.h"
53
54#include "cookdata.h"
55
56/* the different Cook versions */
57#define MONO_COOK1 0x1000001
58#define MONO_COOK2 0x1000002
59#define JOINT_STEREO 0x1000003
60#define MC_COOK 0x2000000 //multichannel Cook, not supported
61
62#define SUBBAND_SIZE 20
63//#define COOKDEBUG
64
65typedef struct {
66 int size;
67 int qidx_table1[8];
68 int qidx_table2[8];
69} COOKgain;
70
71typedef struct __attribute__((__packed__)){
72 /* codec data start */
73 uint32_t cookversion; //in network order, bigendian
74 uint16_t samples_per_frame; //amount of samples per frame per channel, bigendian
75 uint16_t subbands; //amount of bands used in the frequency domain, bigendian
76 /* Mono extradata ends here. */
77 uint32_t unused;
78 uint16_t js_subband_start; //bigendian
79 uint16_t js_vlc_bits; //bigendian
80 /* Stereo extradata ends here. */
81} COOKextradata;
82
83
84typedef struct {
85 GetBitContext gb;
86 /* stream data */
87 int nb_channels;
88 int joint_stereo;
89 int bit_rate;
90 int sample_rate;
91 int samples_per_channel;
92 int samples_per_frame;
93 int subbands;
7f129a33
BL
94 int log2_numvector_size;
95 int numvector_size; //1 << log2_numvector_size;
e0f7e329
BL
96 int js_subband_start;
97 int total_subbands;
98 int num_vectors;
99 int bits_per_subpacket;
100 /* states */
101 int random_state;
102
103 /* transform data */
104 FFTContext fft_ctx;
105 FFTSample mlt_tmp[1024] __attribute__((aligned(16))); /* temporary storage for imlt */
106 float* mlt_window;
107 float* mlt_precos;
108 float* mlt_presin;
109 float* mlt_postcos;
110 int fft_size;
111 int fft_order;
112 int mlt_size; //modulated lapped transform size
113
114 /* gain buffers */
115 COOKgain* gain_now_ptr;
116 COOKgain* gain_previous_ptr;
e0f7e329
BL
117 COOKgain gain_current;
118 COOKgain gain_now;
119 COOKgain gain_previous;
560b10a6
BL
120 COOKgain gain_channel1[2];
121 COOKgain gain_channel2[2];
e0f7e329
BL
122
123 /* VLC data */
124 int js_vlc_bits;
125 VLC envelope_quant_index[13];
126 VLC sqvh[7]; //scalar quantization
127 VLC ccpl; //channel coupling
128
129 /* generatable tables and related variables */
130 int gain_size_factor;
131 float gain_table[23];
132 float pow2tab[127];
133 float rootpow2tab[127];
134
135 /* data buffers */
e0f7e329
BL
136
137 uint8_t* decoded_bytes_buffer;
138 float mono_mdct_output[2048] __attribute__((aligned(16)));
139 float* previous_buffer_ptr[2];
140 float mono_previous_buffer1[1024];
141 float mono_previous_buffer2[1024];
142 float* decode_buf_ptr[4];
560b10a6 143 float* decode_buf_ptr2[2];
e0f7e329
BL
144 float decode_buffer_1[1024];
145 float decode_buffer_2[1024];
146 float decode_buffer_3[1024];
147 float decode_buffer_4[1024];
148} COOKContext;
149
150/* debug functions */
151
152#ifdef COOKDEBUG
153static void dump_float_table(float* table, int size, int delimiter) {
154 int i=0;
155 av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
156 for (i=0 ; i<size ; i++) {
157 av_log(NULL, AV_LOG_ERROR, "%5.1f, ", table[i]);
158 if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
159 }
160}
161
162static void dump_int_table(int* table, int size, int delimiter) {
163 int i=0;
164 av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
165 for (i=0 ; i<size ; i++) {
166 av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
167 if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
168 }
169}
170
171static void dump_short_table(short* table, int size, int delimiter) {
172 int i=0;
173 av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
174 for (i=0 ; i<size ; i++) {
175 av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
176 if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
177 }
178}
179
180#endif
181
182/*************** init functions ***************/
183
184/* table generator */
185static void init_pow2table(COOKContext *q){
186 int i;
187 q->pow2tab[63] = 1.0;
188 for (i=1 ; i<64 ; i++){
5c4b1b25
AS
189 q->pow2tab[63+i]=(float)((uint64_t)1<<i);
190 q->pow2tab[63-i]=1.0/(float)((uint64_t)1<<i);
e0f7e329
BL
191 }
192}
193
194/* table generator */
195static void init_rootpow2table(COOKContext *q){
196 int i;
197 q->rootpow2tab[63] = 1.0;
198 for (i=1 ; i<64 ; i++){
5c4b1b25
AS
199 q->rootpow2tab[63+i]=sqrt((float)((uint64_t)1<<i));
200 q->rootpow2tab[63-i]=sqrt(1.0/(float)((uint64_t)1<<i));
e0f7e329
BL
201 }
202}
203
204/* table generator */
205static void init_gain_table(COOKContext *q) {
206 int i;
207 q->gain_size_factor = q->samples_per_channel/8;
208 for (i=0 ; i<23 ; i++) {
209 q->gain_table[i] = pow((double)q->pow2tab[i+52] ,
210 (1.0/(double)q->gain_size_factor));
211 }
e0f7e329
BL
212}
213
214
215static int init_cook_vlc_tables(COOKContext *q) {
216 int i, result;
217
218 result = 0;
219 for (i=0 ; i<13 ; i++) {
220 result &= init_vlc (&q->envelope_quant_index[i], 9, 24,
221 envelope_quant_index_huffbits[i], 1, 1,
222 envelope_quant_index_huffcodes[i], 2, 2, 0);
223 }
224 av_log(NULL,AV_LOG_DEBUG,"sqvh VLC init\n");
225 for (i=0 ; i<7 ; i++) {
226 result &= init_vlc (&q->sqvh[i], vhvlcsize_tab[i], vhsize_tab[i],
227 cvh_huffbits[i], 1, 1,
228 cvh_huffcodes[i], 2, 2, 0);
229 }
230
231 if (q->nb_channels==2 && q->joint_stereo==1){
232 result &= init_vlc (&q->ccpl, 6, (1<<q->js_vlc_bits)-1,
233 ccpl_huffbits[q->js_vlc_bits-2], 1, 1,
234 ccpl_huffcodes[q->js_vlc_bits-2], 2, 2, 0);
235 av_log(NULL,AV_LOG_DEBUG,"Joint-stereo VLC used.\n");
236 }
237
238 av_log(NULL,AV_LOG_DEBUG,"VLC tables initialized.\n");
239 return result;
240}
241
242static int init_cook_mlt(COOKContext *q) {
243 int j;
244 float alpha;
245
246 /* Allocate the buffers, could be replaced with a static [512]
247 array if needed. */
248 q->mlt_size = q->samples_per_channel;
249 q->mlt_window = av_malloc(sizeof(float)*q->mlt_size);
250 q->mlt_precos = av_malloc(sizeof(float)*q->mlt_size/2);
251 q->mlt_presin = av_malloc(sizeof(float)*q->mlt_size/2);
252 q->mlt_postcos = av_malloc(sizeof(float)*q->mlt_size/2);
253
254 /* Initialize the MLT window: simple sine window. */
255 alpha = M_PI / (2.0 * (float)q->mlt_size);
256 for(j=0 ; j<q->mlt_size ; j++) {
257 q->mlt_window[j] = sin((j + 512.0/(float)q->mlt_size) * alpha);
258 }
259
260 /* pre/post twiddle factors */
261 for (j=0 ; j<q->mlt_size/2 ; j++){
262 q->mlt_precos[j] = cos( ((j+0.25)*M_PI)/q->mlt_size);
263 q->mlt_presin[j] = sin( ((j+0.25)*M_PI)/q->mlt_size);
264 q->mlt_postcos[j] = (float)sqrt(2.0/(float)q->mlt_size)*cos( ((float)j*M_PI) /q->mlt_size); //sqrt(2/MLT_size) = scalefactor
265 }
266
267 /* Initialize the FFT. */
268 ff_fft_init(&q->fft_ctx, av_log2(q->mlt_size)-1, 0);
269 av_log(NULL,AV_LOG_DEBUG,"FFT initialized, order = %d.\n",
270 av_log2(q->samples_per_channel)-1);
271
272 return (int)(q->mlt_window && q->mlt_precos && q->mlt_presin && q->mlt_postcos);
273}
274
275/*************** init functions end ***********/
276
277/**
278 * Cook indata decoding, every 32 bits are XORed with 0x37c511f2.
279 * Why? No idea, some checksum/error detection method maybe.
280 * Nice way to waste CPU cycles.
281 *
282 * @param in pointer to 32bit array of indata
283 * @param bits amount of bits
284 * @param out pointer to 32bit array of outdata
285 */
286
287static inline void decode_bytes(uint8_t* inbuffer, uint8_t* out, int bytes){
288 int i;
289 uint32_t* buf = (uint32_t*) inbuffer;
290 uint32_t* obuf = (uint32_t*) out;
291 /* FIXME: 64 bit platforms would be able to do 64 bits at a time.
292 * I'm too lazy though, should be something like
293 * for(i=0 ; i<bitamount/64 ; i++)
294 * (int64_t)out[i] = 0x37c511f237c511f2^be2me_64(int64_t)in[i]);
295 * Buffer alignment needs to be checked. */
296
297
298 for(i=0 ; i<bytes/4 ; i++){
299#ifdef WORDS_BIGENDIAN
300 obuf[i] = 0x37c511f2^buf[i];
301#else
302 obuf[i] = 0xf211c537^buf[i];
303#endif
304 }
305}
306
307/**
308 * Cook uninit
309 */
310
311static int cook_decode_close(AVCodecContext *avctx)
312{
313 int i;
314 COOKContext *q = avctx->priv_data;
162b9835 315 av_log(avctx,AV_LOG_DEBUG, "Deallocating memory.\n");
e0f7e329
BL
316
317 /* Free allocated memory buffers. */
318 av_free(q->mlt_window);
319 av_free(q->mlt_precos);
320 av_free(q->mlt_presin);
321 av_free(q->mlt_postcos);
e0f7e329
BL
322 av_free(q->decoded_bytes_buffer);
323
324 /* Free the transform. */
325 ff_fft_end(&q->fft_ctx);
326
327 /* Free the VLC tables. */
328 for (i=0 ; i<13 ; i++) {
329 free_vlc(&q->envelope_quant_index[i]);
330 }
331 for (i=0 ; i<7 ; i++) {
332 free_vlc(&q->sqvh[i]);
333 }
334 if(q->nb_channels==2 && q->joint_stereo==1 ){
335 free_vlc(&q->ccpl);
336 }
337
338 av_log(NULL,AV_LOG_DEBUG,"Memory deallocated.\n");
339
340 return 0;
341}
342
343/**
344 * Fill the COOKgain structure for the timedomain quantization.
345 *
346 * @param q pointer to the COOKContext
347 * @param gaininfo pointer to the COOKgain
348 */
349
350static void decode_gain_info(GetBitContext *gb, COOKgain* gaininfo) {
351 int i;
352
353 while (get_bits1(gb)) {}
354
355 gaininfo->size = get_bits_count(gb) - 1; //amount of elements*2 to update
356
357 if (get_bits_count(gb) - 1 <= 0) return;
358
359 for (i=0 ; i<gaininfo->size ; i++){
360 gaininfo->qidx_table1[i] = get_bits(gb,3);
361 if (get_bits1(gb)) {
362 gaininfo->qidx_table2[i] = get_bits(gb,4) - 7; //convert to signed
363 } else {
364 gaininfo->qidx_table2[i] = -1;
365 }
366 }
367}
368
369/**
370 * Create the quant index table needed for the envelope.
371 *
372 * @param q pointer to the COOKContext
373 * @param quant_index_table pointer to the array
374 */
375
376static void decode_envelope(COOKContext *q, int* quant_index_table) {
377 int i,j, vlc_index;
378 int bitbias;
379
380 bitbias = get_bits_count(&q->gb);
381 quant_index_table[0]= get_bits(&q->gb,6) - 6; //This is used later in categorize
382
383 for (i=1 ; i < q->total_subbands ; i++){
384 vlc_index=i;
385 if (i >= q->js_subband_start * 2) {
386 vlc_index-=q->js_subband_start;
387 } else {
388 vlc_index/=2;
389 if(vlc_index < 1) vlc_index = 1;
390 }
391 if (vlc_index>13) vlc_index = 13; //the VLC tables >13 are identical to No. 13
392
393 j = get_vlc2(&q->gb, q->envelope_quant_index[vlc_index-1].table,
394 q->envelope_quant_index[vlc_index-1].bits,2);
395 quant_index_table[i] = quant_index_table[i-1] + j - 12; //differential encoding
396 }
397}
398
399/**
400 * Create the quant value table.
401 *
402 * @param q pointer to the COOKContext
403 * @param quant_value_table pointer to the array
404 */
405
406static void inline dequant_envelope(COOKContext *q, int* quant_index_table,
407 float* quant_value_table){
408
409 int i;
410 for(i=0 ; i < q->total_subbands ; i++){
411 quant_value_table[i] = q->rootpow2tab[quant_index_table[i]+63];
412 }
413}
414
415/**
416 * Calculate the category and category_index vector.
417 *
418 * @param q pointer to the COOKContext
419 * @param quant_index_table pointer to the array
420 * @param category pointer to the category array
421 * @param category_index pointer to the category_index array
422 */
423
424static void categorize(COOKContext *q, int* quant_index_table,
425 int* category, int* category_index){
426 int exp_idx, bias, tmpbias, bits_left, num_bits, index, v, i, j;
427 int exp_index2[102];
428 int exp_index1[102];
429
430 int tmp_categorize_array1[128];
431 int tmp_categorize_array1_idx=0;
432 int tmp_categorize_array2[128];
433 int tmp_categorize_array2_idx=0;
434 int category_index_size=0;
435
436 bits_left = q->bits_per_subpacket - get_bits_count(&q->gb);
437
438 if(bits_left > q->samples_per_channel) {
439 bits_left = q->samples_per_channel +
440 ((bits_left - q->samples_per_channel)*5)/8;
441 //av_log(NULL, AV_LOG_ERROR, "bits_left = %d\n",bits_left);
442 }
443
444 memset(&exp_index1,0,102*sizeof(int));
445 memset(&exp_index2,0,102*sizeof(int));
446 memset(&tmp_categorize_array1,0,128*sizeof(int));
447 memset(&tmp_categorize_array2,0,128*sizeof(int));
448
449 bias=-32;
450
451 /* Estimate bias. */
452 for (i=32 ; i>0 ; i=i/2){
453 num_bits = 0;
454 index = 0;
455 for (j=q->total_subbands ; j>0 ; j--){
456 exp_idx = (i - quant_index_table[index] + bias) / 2;
457 if (exp_idx<0){
458 exp_idx=0;
459 } else if(exp_idx >7) {
460 exp_idx=7;
461 }
462 index++;
463 num_bits+=expbits_tab[exp_idx];
464 }
465 if(num_bits >= bits_left - 32){
466 bias+=i;
467 }
468 }
469
470 /* Calculate total number of bits. */
471 num_bits=0;
472 for (i=0 ; i<q->total_subbands ; i++) {
473 exp_idx = (bias - quant_index_table[i]) / 2;
474 if (exp_idx<0) {
475 exp_idx=0;
476 } else if(exp_idx >7) {
477 exp_idx=7;
478 }
479 num_bits += expbits_tab[exp_idx];
480 exp_index1[i] = exp_idx;
481 exp_index2[i] = exp_idx;
482 }
483 tmpbias = bias = num_bits;
484
485 for (j = 1 ; j < q->numvector_size ; j++) {
486 if (tmpbias + bias > 2*bits_left) { /* ---> */
487 int max = -999999;
488 index=-1;
489 for (i=0 ; i<q->total_subbands ; i++){
490 if (exp_index1[i] < 7) {
491 v = (-2*exp_index1[i]) - quant_index_table[i] - 32;
492 if ( v >= max) {
493 max = v;
494 index = i;
495 }
496 }
497 }
498 if(index==-1)break;
499 tmp_categorize_array1[tmp_categorize_array1_idx++] = index;
500 tmpbias -= expbits_tab[exp_index1[index]] -
501 expbits_tab[exp_index1[index]+1];
502 ++exp_index1[index];
503 } else { /* <--- */
504 int min = 999999;
505 index=-1;
506 for (i=0 ; i<q->total_subbands ; i++){
507 if(exp_index2[i] > 0){
508 v = (-2*exp_index2[i])-quant_index_table[i];
509 if ( v < min) {
510 min = v;
511 index = i;
512 }
513 }
514 }
515 if(index == -1)break;
516 tmp_categorize_array2[tmp_categorize_array2_idx++] = index;
517 tmpbias -= expbits_tab[exp_index2[index]] -
518 expbits_tab[exp_index2[index]-1];
519 --exp_index2[index];
520 }
521 }
522
523 for(i=0 ; i<q->total_subbands ; i++)
524 category[i] = exp_index2[i];
525
526 /* Concatenate the two arrays. */
527 for(i=tmp_categorize_array2_idx-1 ; i >= 0; i--)
528 category_index[category_index_size++] = tmp_categorize_array2[i];
529
530 for(i=0;i<tmp_categorize_array1_idx;i++)
531 category_index[category_index_size++ ] = tmp_categorize_array1[i];
532
533 /* FIXME: mc_sich_ra8_20.rm triggers this, not sure with what we
534 should fill the remaining bytes. */
535 for(i=category_index_size;i<q->numvector_size;i++)
536 category_index[i]=0;
537
538}
539
540
541/**
542 * Expand the category vector.
543 *
544 * @param q pointer to the COOKContext
545 * @param category pointer to the category array
546 * @param category_index pointer to the category_index array
547 */
548
549static void inline expand_category(COOKContext *q, int* category,
550 int* category_index){
551 int i;
552 for(i=0 ; i<q->num_vectors ; i++){
553 ++category[category_index[i]];
554 }
555}
556
557/**
558 * The real requantization of the mltcoefs
559 *
560 * @param q pointer to the COOKContext
561 * @param index index
562 * @param band current subband
563 * @param quant_value_table pointer to the array
564 * @param subband_coef_index array of indexes to quant_centroid_tab
565 * @param subband_coef_noise use random noise instead of predetermined value
566 * @param mlt_buffer pointer to the mlt buffer
567 */
568
569
570static void scalar_dequant(COOKContext *q, int index, int band,
571 float* quant_value_table, int* subband_coef_index,
572 int* subband_coef_noise, float* mlt_buffer){
573 int i;
574 float f1;
575
576 for(i=0 ; i<SUBBAND_SIZE ; i++) {
577 if (subband_coef_index[i]) {
578 if (subband_coef_noise[i]) {
579 f1 = -quant_centroid_tab[index][subband_coef_index[i]];
580 } else {
581 f1 = quant_centroid_tab[index][subband_coef_index[i]];
582 }
583 } else {
584 /* noise coding if subband_coef_noise[i] == 0 */
585 q->random_state = q->random_state * 214013 + 2531011; //typical RNG numbers
586 f1 = randsign[(q->random_state/0x1000000)&1] * dither_tab[index]; //>>31
587 }
588 mlt_buffer[band*20+ i] = f1 * quant_value_table[band];
589 }
590}
591/**
592 * Unpack the subband_coef_index and subband_coef_noise vectors.
593 *
594 * @param q pointer to the COOKContext
595 * @param category pointer to the category array
596 * @param subband_coef_index array of indexes to quant_centroid_tab
597 * @param subband_coef_noise use random noise instead of predetermined value
598 */
599
600static int unpack_SQVH(COOKContext *q, int category, int* subband_coef_index,
601 int* subband_coef_noise) {
602 int i,j;
603 int vlc, vd ,tmp, result;
604 int ub;
605 int cb;
606
607 vd = vd_tab[category];
608 result = 0;
609 for(i=0 ; i<vpr_tab[category] ; i++){
610 ub = get_bits_count(&q->gb);
611 vlc = get_vlc2(&q->gb, q->sqvh[category].table, q->sqvh[category].bits, 3);
612 cb = get_bits_count(&q->gb);
613 if (q->bits_per_subpacket < get_bits_count(&q->gb)){
614 vlc = 0;
615 result = 1;
616 }
617 for(j=vd-1 ; j>=0 ; j--){
618 tmp = (vlc * invradix_tab[category])/0x100000;
619 subband_coef_index[vd*i+j] = vlc - tmp * (kmax_tab[category]+1);
620 vlc = tmp;
621 }
622 for(j=0 ; j<vd ; j++){
623 if (subband_coef_index[i*vd + j]) {
624 if(get_bits_count(&q->gb) < q->bits_per_subpacket){
625 subband_coef_noise[i*vd+j] = get_bits1(&q->gb);
626 } else {
627 result=1;
628 subband_coef_noise[i*vd+j]=0;
629 }
630 } else {
631 subband_coef_noise[i*vd+j]=0;
632 }
633 }
634 }
635 return result;
636}
637
638
639/**
640 * Fill the mlt_buffer with mlt coefficients.
641 *
642 * @param q pointer to the COOKContext
643 * @param category pointer to the category array
644 * @param quant_value_table pointer to the array
645 * @param mlt_buffer pointer to mlt coefficients
646 */
647
648
649static void decode_vectors(COOKContext* q, int* category,
650 float* quant_value_table, float* mlt_buffer){
651 /* A zero in this table means that the subband coefficient is
652 random noise coded. */
653 int subband_coef_noise[SUBBAND_SIZE];
654 /* A zero in this table means that the subband coefficient is a
655 positive multiplicator. */
656 int subband_coef_index[SUBBAND_SIZE];
657 int band, j;
658 int index=0;
659
660 for(band=0 ; band<q->total_subbands ; band++){
661 index = category[band];
662 if(category[band] < 7){
663 if(unpack_SQVH(q, category[band], subband_coef_index, subband_coef_noise)){
664 index=7;
665 for(j=0 ; j<q->total_subbands ; j++) category[band+j]=7;
666 }
667 }
668 if(index==7) {
669 memset(subband_coef_index, 0, sizeof(subband_coef_index));
670 memset(subband_coef_noise, 0, sizeof(subband_coef_noise));
671 }
672 scalar_dequant(q, index, band, quant_value_table, subband_coef_index,
673 subband_coef_noise, mlt_buffer);
674 }
675
676 if(q->total_subbands*SUBBAND_SIZE >= q->samples_per_channel){
677 return;
678 }
679}
680
681
682/**
683 * function for decoding mono data
684 *
685 * @param q pointer to the COOKContext
686 * @param mlt_buffer1 pointer to left channel mlt coefficients
687 * @param mlt_buffer2 pointer to right channel mlt coefficients
688 */
689
690static void mono_decode(COOKContext *q, float* mlt_buffer) {
691
692 int category_index[128];
693 float quant_value_table[102];
694 int quant_index_table[102];
695 int category[128];
696
697 memset(&category, 0, 128*sizeof(int));
698 memset(&quant_value_table, 0, 102*sizeof(int));
699 memset(&category_index, 0, 128*sizeof(int));
700
701 decode_envelope(q, quant_index_table);
7f129a33 702 q->num_vectors = get_bits(&q->gb,q->log2_numvector_size);
e0f7e329
BL
703 dequant_envelope(q, quant_index_table, quant_value_table);
704 categorize(q, quant_index_table, category, category_index);
705 expand_category(q, category, category_index);
706 decode_vectors(q, category, quant_value_table, mlt_buffer);
707}
708
709
710/**
711 * The modulated lapped transform, this takes transform coefficients
712 * and transforms them into timedomain samples. This is done through
713 * an FFT-based algorithm with pre- and postrotation steps.
714 * A window and reorder step is also included.
715 *
716 * @param q pointer to the COOKContext
717 * @param inbuffer pointer to the mltcoefficients
718 * @param outbuffer pointer to the timedomain buffer
719 * @param mlt_tmp pointer to temporary storage space
720 */
721
722static void cook_imlt(COOKContext *q, float* inbuffer, float* outbuffer,
723 float* mlt_tmp){
724 int i;
725
726 /* prerotation */
727 for(i=0 ; i<q->mlt_size ; i+=2){
728 outbuffer[i] = (q->mlt_presin[i/2] * inbuffer[q->mlt_size-1-i]) +
729 (q->mlt_precos[i/2] * inbuffer[i]);
730 outbuffer[i+1] = (q->mlt_precos[i/2] * inbuffer[q->mlt_size-1-i]) -
731 (q->mlt_presin[i/2] * inbuffer[i]);
732 }
733
734 /* FFT */
735 ff_fft_permute(&q->fft_ctx, (FFTComplex *) outbuffer);
736 ff_fft_calc (&q->fft_ctx, (FFTComplex *) outbuffer);
737
738 /* postrotation */
739 for(i=0 ; i<q->mlt_size ; i+=2){
740 mlt_tmp[i] = (q->mlt_postcos[(q->mlt_size-1-i)/2] * outbuffer[i+1]) +
741 (q->mlt_postcos[i/2] * outbuffer[i]);
742 mlt_tmp[q->mlt_size-1-i] = (q->mlt_postcos[(q->mlt_size-1-i)/2] * outbuffer[i]) -
743 (q->mlt_postcos[i/2] * outbuffer[i+1]);
744 }
745
746 /* window and reorder */
747 for(i=0 ; i<q->mlt_size/2 ; i++){
748 outbuffer[i] = mlt_tmp[q->mlt_size/2-1-i] * q->mlt_window[i];
749 outbuffer[q->mlt_size-1-i]= mlt_tmp[q->mlt_size/2-1-i] *
750 q->mlt_window[q->mlt_size-1-i];
751 outbuffer[q->mlt_size+i]= mlt_tmp[q->mlt_size/2+i] *
752 q->mlt_window[q->mlt_size-1-i];
753 outbuffer[2*q->mlt_size-1-i]= -(mlt_tmp[q->mlt_size/2+i] *
754 q->mlt_window[i]);
755 }
756}
757
758
759/**
760 * the actual requantization of the timedomain samples
761 *
762 * @param q pointer to the COOKContext
763 * @param buffer pointer to the timedomain buffer
764 * @param gain_index index for the block multiplier
765 * @param gain_index_next index for the next block multiplier
766 */
767
768static void interpolate(COOKContext *q, float* buffer,
769 int gain_index, int gain_index_next){
770 int i;
771 float fc1, fc2;
772 fc1 = q->pow2tab[gain_index+63];
773
774 if(gain_index == gain_index_next){ //static gain
775 for(i=0 ; i<q->gain_size_factor ; i++){
776 buffer[i]*=fc1;
777 }
778 return;
779 } else { //smooth gain
780 fc2 = q->gain_table[11 + (gain_index_next-gain_index)];
781 for(i=0 ; i<q->gain_size_factor ; i++){
782 buffer[i]*=fc1;
783 fc1*=fc2;
784 }
785 return;
786 }
787}
788
789/**
790 * timedomain requantization of the timedomain samples
791 *
792 * @param q pointer to the COOKContext
793 * @param buffer pointer to the timedomain buffer
794 * @param gain_now current gain structure
795 * @param gain_previous previous gain structure
796 */
797
798static void gain_window(COOKContext *q, float* buffer, COOKgain* gain_now,
799 COOKgain* gain_previous){
800 int i, index;
801 int gain_index[9];
802 int tmp_gain_index;
803
804 gain_index[8]=0;
805 index = gain_previous->size;
806 for (i=7 ; i>=0 ; i--) {
807 if(index && gain_previous->qidx_table1[index-1]==i) {
808 gain_index[i] = gain_previous->qidx_table2[index-1];
809 index--;
810 } else {
811 gain_index[i]=gain_index[i+1];
812 }
813 }
814 /* This is applied to the to be previous data buffer. */
815 for(i=0;i<8;i++){
816 interpolate(q, &buffer[q->samples_per_channel+q->gain_size_factor*i],
817 gain_index[i], gain_index[i+1]);
818 }
819
820 tmp_gain_index = gain_index[0];
821 index = gain_now->size;
822 for (i=7 ; i>=0 ; i--) {
823 if(index && gain_now->qidx_table1[index-1]==i) {
824 gain_index[i]= gain_now->qidx_table2[index-1];
825 index--;
826 } else {
827 gain_index[i]=gain_index[i+1];
828 }
829 }
830
831 /* This is applied to the to be current block. */
832 for(i=0;i<8;i++){
833 interpolate(q, &buffer[i*q->gain_size_factor],
834 tmp_gain_index+gain_index[i],
835 tmp_gain_index+gain_index[i+1]);
836 }
837}
838
839
840/**
841 * mlt overlapping and buffer management
842 *
843 * @param q pointer to the COOKContext
844 * @param buffer pointer to the timedomain buffer
845 * @param gain_now current gain structure
846 * @param gain_previous previous gain structure
847 * @param previous_buffer pointer to the previous buffer to be used for overlapping
848 *
849 */
850
851static void gain_compensate(COOKContext *q, float* buffer, COOKgain* gain_now,
852 COOKgain* gain_previous, float* previous_buffer) {
853 int i;
854 if((gain_now->size || gain_previous->size)) {
855 gain_window(q, buffer, gain_now, gain_previous);
856 }
857
858 /* Overlap with the previous block. */
859 for(i=0 ; i<q->samples_per_channel ; i++) buffer[i]+=previous_buffer[i];
860
861 /* Save away the current to be previous block. */
862 memcpy(previous_buffer, buffer+q->samples_per_channel,
863 sizeof(float)*q->samples_per_channel);
864}
865
866
867/**
868 * function for getting the jointstereo coupling information
869 *
870 * @param q pointer to the COOKContext
871 * @param decouple_tab decoupling array
872 *
873 */
874
875static void decouple_info(COOKContext *q, int* decouple_tab){
876 int length, i;
877
878 if(get_bits1(&q->gb)) {
879 if(cplband[q->js_subband_start] > cplband[q->subbands-1]) return;
880
881 length = cplband[q->subbands-1] - cplband[q->js_subband_start] + 1;
882 for (i=0 ; i<length ; i++) {
883 decouple_tab[cplband[q->js_subband_start] + i] = get_vlc2(&q->gb, q->ccpl.table, q->ccpl.bits, 2);
884 }
885 return;
886 }
887
888 if(cplband[q->js_subband_start] > cplband[q->subbands-1]) return;
889
890 length = cplband[q->subbands-1] - cplband[q->js_subband_start] + 1;
891 for (i=0 ; i<length ; i++) {
892 decouple_tab[cplband[q->js_subband_start] + i] = get_bits(&q->gb, q->js_vlc_bits);
893 }
894 return;
895}
896
897
898/**
899 * function for decoding joint stereo data
900 *
901 * @param q pointer to the COOKContext
902 * @param mlt_buffer1 pointer to left channel mlt coefficients
903 * @param mlt_buffer2 pointer to right channel mlt coefficients
904 */
905
906static void joint_decode(COOKContext *q, float* mlt_buffer1,
907 float* mlt_buffer2) {
908 int i,j;
909 int decouple_tab[SUBBAND_SIZE];
70220035 910 float decode_buffer[1060];
e0f7e329
BL
911 int idx, cpl_tmp,tmp_idx;
912 float f1,f2;
913 float* cplscale;
914
915 memset(decouple_tab, 0, sizeof(decouple_tab));
916 memset(decode_buffer, 0, sizeof(decode_buffer));
917
918 /* Make sure the buffers are zeroed out. */
919 memset(mlt_buffer1,0, 1024*sizeof(float));
920 memset(mlt_buffer2,0, 1024*sizeof(float));
921 decouple_info(q, decouple_tab);
922 mono_decode(q, decode_buffer);
923
924 /* The two channels are stored interleaved in decode_buffer. */
925 for (i=0 ; i<q->js_subband_start ; i++) {
926 for (j=0 ; j<SUBBAND_SIZE ; j++) {
927 mlt_buffer1[i*20+j] = decode_buffer[i*40+j];
928 mlt_buffer2[i*20+j] = decode_buffer[i*40+20+j];
929 }
930 }
931
932 /* When we reach js_subband_start (the higher frequencies)
933 the coefficients are stored in a coupling scheme. */
934 idx = (1 << q->js_vlc_bits) - 1;
70220035
BL
935 for (i=q->js_subband_start ; i<q->subbands ; i++) {
936 cpl_tmp = cplband[i];
937 idx -=decouple_tab[cpl_tmp];
938 cplscale = (float*)cplscales[q->js_vlc_bits-2]; //choose decoupler table
939 f1 = cplscale[decouple_tab[cpl_tmp]];
940 f2 = cplscale[idx-1];
941 for (j=0 ; j<SUBBAND_SIZE ; j++) {
942 tmp_idx = ((q->js_subband_start + i)*20)+j;
943 mlt_buffer1[20*i + j] = f1 * decode_buffer[tmp_idx];
944 mlt_buffer2[20*i + j] = f2 * decode_buffer[tmp_idx];
e0f7e329 945 }
70220035 946 idx = (1 << q->js_vlc_bits) - 1;
e0f7e329
BL
947 }
948}
949
950/**
951 * Cook subpacket decoding. This function returns one decoded subpacket,
952 * usually 1024 samples per channel.
953 *
954 * @param q pointer to the COOKContext
955 * @param inbuffer pointer to the inbuffer
956 * @param sub_packet_size subpacket size
957 * @param outbuffer pointer to the outbuffer
e0f7e329
BL
958 */
959
960
961static int decode_subpacket(COOKContext *q, uint8_t *inbuffer,
962 int sub_packet_size, int16_t *outbuffer) {
963 int i,j;
964 int value;
965 float* tmp_ptr;
966
967 /* packet dump */
968// for (i=0 ; i<sub_packet_size ; i++) {
969// av_log(NULL, AV_LOG_ERROR, "%02x", inbuffer[i]);
970// }
971// av_log(NULL, AV_LOG_ERROR, "\n");
972
973 decode_bytes(inbuffer, q->decoded_bytes_buffer, sub_packet_size);
974 init_get_bits(&q->gb, q->decoded_bytes_buffer, sub_packet_size*8);
975 decode_gain_info(&q->gb, &q->gain_current);
b7c24ff6 976
e0f7e329
BL
977 if(q->nb_channels==2 && q->joint_stereo==1){
978 joint_decode(q, q->decode_buf_ptr[0], q->decode_buf_ptr[2]);
979
980 /* Swap buffer pointers. */
981 tmp_ptr = q->decode_buf_ptr[1];
982 q->decode_buf_ptr[1] = q->decode_buf_ptr[0];
983 q->decode_buf_ptr[0] = tmp_ptr;
984 tmp_ptr = q->decode_buf_ptr[3];
985 q->decode_buf_ptr[3] = q->decode_buf_ptr[2];
986 q->decode_buf_ptr[2] = tmp_ptr;
987
988 /* FIXME: Rethink the gainbuffer handling, maybe a rename?
989 now/previous swap */
990 q->gain_now_ptr = &q->gain_now;
991 q->gain_previous_ptr = &q->gain_previous;
992 for (i=0 ; i<q->nb_channels ; i++){
993
994 cook_imlt(q, q->decode_buf_ptr[i*2], q->mono_mdct_output, q->mlt_tmp);
995 gain_compensate(q, q->mono_mdct_output, q->gain_now_ptr,
996 q->gain_previous_ptr, q->previous_buffer_ptr[0]);
997
998 /* Swap out the previous buffer. */
999 tmp_ptr = q->previous_buffer_ptr[0];
1000 q->previous_buffer_ptr[0] = q->previous_buffer_ptr[1];
1001 q->previous_buffer_ptr[1] = tmp_ptr;
1002
1003 /* Clip and convert the floats to 16 bits. */
1004 for (j=0 ; j<q->samples_per_frame ; j++){
1005 value = lrintf(q->mono_mdct_output[j]);
1006 if(value < -32768) value = -32768;
1007 else if(value > 32767) value = 32767;
1008 outbuffer[2*j+i] = value;
1009 }
1010 }
1011
1012 memcpy(&q->gain_now, &q->gain_previous, sizeof(COOKgain));
1013 memcpy(&q->gain_previous, &q->gain_current, sizeof(COOKgain));
1014
1015 } else if (q->nb_channels==2 && q->joint_stereo==0) {
b7c24ff6 1016 /* channel 0 */
560b10a6 1017 mono_decode(q, q->decode_buf_ptr2[0]);
e0f7e329 1018
560b10a6
BL
1019 tmp_ptr = q->decode_buf_ptr2[0];
1020 q->decode_buf_ptr2[0] = q->decode_buf_ptr2[1];
1021 q->decode_buf_ptr2[1] = tmp_ptr;
e0f7e329 1022
560b10a6
BL
1023 memcpy(&q->gain_channel1[0], &q->gain_current ,sizeof(COOKgain));
1024 q->gain_now_ptr = &q->gain_channel1[0];
1025 q->gain_previous_ptr = &q->gain_channel1[1];
e0f7e329 1026
560b10a6 1027 cook_imlt(q, q->decode_buf_ptr2[0], q->mono_mdct_output,q->mlt_tmp);
e0f7e329 1028 gain_compensate(q, q->mono_mdct_output, q->gain_now_ptr,
560b10a6
BL
1029 q->gain_previous_ptr, q->mono_previous_buffer1);
1030
1031 memcpy(&q->gain_channel1[1], &q->gain_channel1[0],sizeof(COOKgain));
1032
e0f7e329
BL
1033
1034 for (j=0 ; j<q->samples_per_frame ; j++){
1035 value = lrintf(q->mono_mdct_output[j]);
1036 if(value < -32768) value = -32768;
1037 else if(value > 32767) value = 32767;
b7c24ff6 1038 outbuffer[2*j+1] = value;
e0f7e329 1039 }
b7c24ff6
BL
1040
1041 /* channel 1 */
1042 //av_log(NULL,AV_LOG_ERROR,"bits = %d\n",get_bits_count(&q->gb));
1043 init_get_bits(&q->gb, q->decoded_bytes_buffer, sub_packet_size*8+q->bits_per_subpacket);
560b10a6
BL
1044
1045 q->gain_now_ptr = &q->gain_channel2[0];
1046 q->gain_previous_ptr = &q->gain_channel2[1];
1047
1048 decode_gain_info(&q->gb, &q->gain_channel2[0]);
b7c24ff6 1049 mono_decode(q, q->decode_buf_ptr[0]);
b7c24ff6 1050
560b10a6
BL
1051 tmp_ptr = q->decode_buf_ptr[0];
1052 q->decode_buf_ptr[0] = q->decode_buf_ptr[1];
1053 q->decode_buf_ptr[1] = tmp_ptr;
b7c24ff6
BL
1054
1055 cook_imlt(q, q->decode_buf_ptr[0], q->mono_mdct_output,q->mlt_tmp);
560b10a6
BL
1056 gain_compensate(q, q->mono_mdct_output, q->gain_now_ptr,
1057 q->gain_previous_ptr, q->mono_previous_buffer2);
b7c24ff6
BL
1058
1059 /* Swap out the previous buffer. */
1060 tmp_ptr = q->previous_buffer_ptr[0];
1061 q->previous_buffer_ptr[0] = q->previous_buffer_ptr[1];
1062 q->previous_buffer_ptr[1] = tmp_ptr;
1063
560b10a6
BL
1064 memcpy(&q->gain_channel2[1], &q->gain_channel2[0] ,sizeof(COOKgain));
1065
b7c24ff6
BL
1066 for (j=0 ; j<q->samples_per_frame ; j++){
1067 value = lrintf(q->mono_mdct_output[j]);
1068 if(value < -32768) value = -32768;
1069 else if(value > 32767) value = 32767;
1070 outbuffer[2*j] = value;
1071 }
1072
e0f7e329
BL
1073 } else {
1074 mono_decode(q, q->decode_buf_ptr[0]);
1075
1076 /* Swap buffer pointers. */
1077 tmp_ptr = q->decode_buf_ptr[1];
1078 q->decode_buf_ptr[1] = q->decode_buf_ptr[0];
1079 q->decode_buf_ptr[0] = tmp_ptr;
1080
1081 /* FIXME: Rethink the gainbuffer handling, maybe a rename?
1082 now/previous swap */
1083 q->gain_now_ptr = &q->gain_now;
1084 q->gain_previous_ptr = &q->gain_previous;
1085
1086 cook_imlt(q, q->decode_buf_ptr[0], q->mono_mdct_output,q->mlt_tmp);
1087 gain_compensate(q, q->mono_mdct_output, q->gain_now_ptr,
1088 q->gain_previous_ptr, q->mono_previous_buffer1);
1089
1090 /* Clip and convert the floats to 16 bits */
1091 for (j=0 ; j<q->samples_per_frame ; j++){
1092 value = lrintf(q->mono_mdct_output[j]);
1093 if(value < -32768) value = -32768;
1094 else if(value > 32767) value = 32767;
1095 outbuffer[j] = value;
1096 }
1097 memcpy(&q->gain_now, &q->gain_previous, sizeof(COOKgain));
1098 memcpy(&q->gain_previous, &q->gain_current, sizeof(COOKgain));
1099 }
b7c24ff6 1100 return q->samples_per_frame * sizeof(int16_t);
e0f7e329
BL
1101}
1102
1103
1104/**
1105 * Cook frame decoding
1106 *
1107 * @param avctx pointer to the AVCodecContext
1108 */
1109
1110static int cook_decode_frame(AVCodecContext *avctx,
1111 void *data, int *data_size,
1112 uint8_t *buf, int buf_size) {
e0f7e329
BL
1113 COOKContext *q = avctx->priv_data;
1114
1115 if (buf_size < avctx->block_align)
1116 return buf_size;
1117
1118 *data_size = decode_subpacket(q, buf, avctx->block_align, data);
1119
1120 return avctx->block_align;
1121}
7f129a33 1122
e0f7e329
BL
1123#ifdef COOKDEBUG
1124static void dump_cook_context(COOKContext *q, COOKextradata *e)
1125{
1126 //int i=0;
1127#define PRINT(a,b) av_log(NULL,AV_LOG_ERROR," %s = %d\n", a, b);
1128 av_log(NULL,AV_LOG_ERROR,"COOKextradata\n");
1129 av_log(NULL,AV_LOG_ERROR,"cookversion=%x\n",e->cookversion);
1130 if (e->cookversion > MONO_COOK2) {
1131 PRINT("js_subband_start",e->js_subband_start);
1132 PRINT("js_vlc_bits",e->js_vlc_bits);
1133 }
1134 av_log(NULL,AV_LOG_ERROR,"COOKContext\n");
1135 PRINT("nb_channels",q->nb_channels);
1136 PRINT("bit_rate",q->bit_rate);
1137 PRINT("sample_rate",q->sample_rate);
1138 PRINT("samples_per_channel",q->samples_per_channel);
1139 PRINT("samples_per_frame",q->samples_per_frame);
1140 PRINT("subbands",q->subbands);
1141 PRINT("random_state",q->random_state);
1142 PRINT("mlt_size",q->mlt_size);
1143 PRINT("js_subband_start",q->js_subband_start);
7f129a33 1144 PRINT("log2_numvector_size",q->log2_numvector_size);
e0f7e329
BL
1145 PRINT("numvector_size",q->numvector_size);
1146 PRINT("total_subbands",q->total_subbands);
e0f7e329
BL
1147}
1148#endif
7f129a33 1149
e0f7e329
BL
1150/**
1151 * Cook initialization
1152 *
1153 * @param avctx pointer to the AVCodecContext
1154 */
1155
1156static int cook_decode_init(AVCodecContext *avctx)
1157{
b3203b64 1158 COOKextradata *e = (COOKextradata *)avctx->extradata;
e0f7e329
BL
1159 COOKContext *q = avctx->priv_data;
1160
1161 /* Take care of the codec specific extradata. */
1162 if (avctx->extradata_size <= 0) {
162b9835 1163 av_log(avctx,AV_LOG_ERROR,"Necessary extradata missing!\n");
e0f7e329
BL
1164 return -1;
1165 } else {
1166 /* 8 for mono, 16 for stereo, ? for multichannel
1167 Swap to right endianness so we don't need to care later on. */
162b9835 1168 av_log(avctx,AV_LOG_DEBUG,"codecdata_length=%d\n",avctx->extradata_size);
e0f7e329
BL
1169 if (avctx->extradata_size >= 8){
1170 e->cookversion = be2me_32(e->cookversion);
1171 e->samples_per_frame = be2me_16(e->samples_per_frame);
1172 e->subbands = be2me_16(e->subbands);
1173 }
1174 if (avctx->extradata_size >= 16){
1175 e->js_subband_start = be2me_16(e->js_subband_start);
1176 e->js_vlc_bits = be2me_16(e->js_vlc_bits);
1177 }
1178 }
1179
1180 /* Take data from the AVCodecContext (RM container). */
1181 q->sample_rate = avctx->sample_rate;
1182 q->nb_channels = avctx->channels;
1183 q->bit_rate = avctx->bit_rate;
1184
1185 /* Initialize state. */
1186 q->random_state = 1;
1187
1188 /* Initialize extradata related variables. */
1189 q->samples_per_channel = e->samples_per_frame / q->nb_channels;
1190 q->samples_per_frame = e->samples_per_frame;
1191 q->subbands = e->subbands;
1192 q->bits_per_subpacket = avctx->block_align * 8;
1193
1194 /* Initialize default data states. */
1195 q->js_subband_start = 0;
7f129a33 1196 q->log2_numvector_size = 5;
e0f7e329
BL
1197 q->total_subbands = q->subbands;
1198
1199 /* Initialize version-dependent variables */
1200 av_log(NULL,AV_LOG_DEBUG,"e->cookversion=%x\n",e->cookversion);
1201 switch (e->cookversion) {
1202 case MONO_COOK1:
1203 if (q->nb_channels != 1) {
162b9835 1204 av_log(avctx,AV_LOG_ERROR,"Container channels != 1, report sample!\n");
e0f7e329
BL
1205 return -1;
1206 }
162b9835 1207 av_log(avctx,AV_LOG_DEBUG,"MONO_COOK1\n");
e0f7e329
BL
1208 break;
1209 case MONO_COOK2:
1210 if (q->nb_channels != 1) {
1211 q->joint_stereo = 0;
b7c24ff6 1212 q->bits_per_subpacket = q->bits_per_subpacket/2;
e0f7e329 1213 }
162b9835 1214 av_log(avctx,AV_LOG_DEBUG,"MONO_COOK2\n");
e0f7e329
BL
1215 break;
1216 case JOINT_STEREO:
1217 if (q->nb_channels != 2) {
162b9835 1218 av_log(avctx,AV_LOG_ERROR,"Container channels != 2, report sample!\n");
e0f7e329
BL
1219 return -1;
1220 }
162b9835 1221 av_log(avctx,AV_LOG_DEBUG,"JOINT_STEREO\n");
e0f7e329
BL
1222 if (avctx->extradata_size >= 16){
1223 q->total_subbands = q->subbands + e->js_subband_start;
1224 q->js_subband_start = e->js_subband_start;
1225 q->joint_stereo = 1;
1226 q->js_vlc_bits = e->js_vlc_bits;
1227 }
1228 if (q->samples_per_channel > 256) {
2e9c78d3 1229 q->log2_numvector_size = 6;
e0f7e329
BL
1230 }
1231 if (q->samples_per_channel > 512) {
2e9c78d3 1232 q->log2_numvector_size = 7;
e0f7e329
BL
1233 }
1234 break;
1235 case MC_COOK:
162b9835 1236 av_log(avctx,AV_LOG_ERROR,"MC_COOK not supported!\n");
e0f7e329
BL
1237 return -1;
1238 break;
1239 default:
162b9835 1240 av_log(avctx,AV_LOG_ERROR,"Unknown Cook version, report sample!\n");
e0f7e329
BL
1241 return -1;
1242 break;
1243 }
1244
1245 /* Initialize variable relations */
1246 q->mlt_size = q->samples_per_channel;
7f129a33 1247 q->numvector_size = (1 << q->log2_numvector_size);
e0f7e329
BL
1248
1249 /* Generate tables */
1250 init_rootpow2table(q);
1251 init_pow2table(q);
1252 init_gain_table(q);
1253
1254 if (init_cook_vlc_tables(q) != 0)
1255 return -1;
1256
3a1a7e32
MN
1257
1258 if(avctx->block_align >= UINT_MAX/2)
1259 return -1;
1260
e0f7e329
BL
1261 /* Pad the databuffer with FF_INPUT_BUFFER_PADDING_SIZE,
1262 this is for the bitstreamreader. */
1263 if ((q->decoded_bytes_buffer = av_mallocz((avctx->block_align+(4-avctx->block_align%4) + FF_INPUT_BUFFER_PADDING_SIZE)*sizeof(uint8_t))) == NULL)
1264 return -1;
1265
1266 q->decode_buf_ptr[0] = q->decode_buffer_1;
1267 q->decode_buf_ptr[1] = q->decode_buffer_2;
1268 q->decode_buf_ptr[2] = q->decode_buffer_3;
1269 q->decode_buf_ptr[3] = q->decode_buffer_4;
1270
560b10a6
BL
1271 q->decode_buf_ptr2[0] = q->decode_buffer_3;
1272 q->decode_buf_ptr2[1] = q->decode_buffer_4;
1273
e0f7e329
BL
1274 q->previous_buffer_ptr[0] = q->mono_previous_buffer1;
1275 q->previous_buffer_ptr[1] = q->mono_previous_buffer2;
1276
e0f7e329
BL
1277 /* Initialize transform. */
1278 if ( init_cook_mlt(q) == 0 )
1279 return -1;
560b10a6
BL
1280
1281 /* Try to catch some obviously faulty streams, othervise it might be exploitable */
1282 if (q->total_subbands > 53) {
162b9835 1283 av_log(avctx,AV_LOG_ERROR,"total_subbands > 53, report sample!\n");
560b10a6
BL
1284 return -1;
1285 }
560b10a6 1286 if (q->subbands > 50) {
162b9835 1287 av_log(avctx,AV_LOG_ERROR,"subbands > 50, report sample!\n");
560b10a6
BL
1288 return -1;
1289 }
2e9c78d3
BL
1290 if ((q->samples_per_channel == 256) || (q->samples_per_channel == 512) || (q->samples_per_channel == 1024)) {
1291 } else {
162b9835 1292 av_log(avctx,AV_LOG_ERROR,"unknown amount of samples_per_channel = %d, report sample!\n",q->samples_per_channel);
2e9c78d3
BL
1293 return -1;
1294 }
560b10a6 1295
70220035
BL
1296#ifdef COOKDEBUG
1297 dump_cook_context(q,e);
1298#endif
e0f7e329
BL
1299 return 0;
1300}
1301
1302
1303AVCodec cook_decoder =
1304{
1305 .name = "cook",
1306 .type = CODEC_TYPE_AUDIO,
1307 .id = CODEC_ID_COOK,
1308 .priv_data_size = sizeof(COOKContext),
1309 .init = cook_decode_init,
1310 .close = cook_decode_close,
1311 .decode = cook_decode_frame,
1312};