cook: check output buffer size before decoding
[libav.git] / libavcodec / cook.c
CommitLineData
e0f7e329
BL
1/*
2 * COOK compatible decoder
3 * Copyright (c) 2003 Sascha Sommer
4 * Copyright (c) 2005 Benjamin Larsson
5 *
2912e87a 6 * This file is part of Libav.
b78e7197 7 *
2912e87a 8 * Libav is free software; you can redistribute it and/or
e0f7e329
BL
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
b78e7197 11 * version 2.1 of the License, or (at your option) any later version.
e0f7e329 12 *
2912e87a 13 * Libav is distributed in the hope that it will be useful,
e0f7e329
BL
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
2912e87a 19 * License along with Libav; if not, write to the Free Software
5509bffa 20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
e0f7e329
BL
21 */
22
23/**
ba87f080 24 * @file
940d8f76 25 * Cook compatible decoder. Bastardization of the G.722.1 standard.
e0f7e329
BL
26 * This decoder handles RealNetworks, RealAudio G2 data.
27 * Cook is identified by the codec name cook in RM files.
28 *
29 * To use this decoder, a calling application must supply the extradata
30 * bytes provided from the RM container; 8+ bytes for mono streams and
31 * 16+ for stereo streams (maybe more).
32 *
33 * Codec technicalities (all this assume a buffer length of 1024):
34 * Cook works with several different techniques to achieve its compression.
35 * In the timedomain the buffer is divided into 8 pieces and quantized. If
36 * two neighboring pieces have different quantization index a smooth
37 * quantization curve is used to get a smooth overlap between the different
38 * pieces.
39 * To get to the transformdomain Cook uses a modulated lapped transform.
40 * The transform domain has 50 subbands with 20 elements each. This
41 * means only a maximum of 50*20=1000 coefficients are used out of the 1024
42 * available.
43 */
44
39b60944 45#include "libavutil/lfg.h"
e0f7e329 46#include "avcodec.h"
9106a698 47#include "get_bits.h"
e0f7e329 48#include "dsputil.h"
862be28b 49#include "bytestream.h"
1429224b 50#include "fft.h"
737eb597 51#include "libavutil/audioconvert.h"
4538729a 52#include "sinewin.h"
e0f7e329
BL
53
54#include "cookdata.h"
55
56/* the different Cook versions */
d7973906
BL
57#define MONO 0x1000001
58#define STEREO 0x1000002
e0f7e329
BL
59#define JOINT_STEREO 0x1000003
60#define MC_COOK 0x2000000 //multichannel Cook, not supported
61
62#define SUBBAND_SIZE 20
0eec2875 63#define MAX_SUBPACKETS 5
e0f7e329
BL
64
65typedef struct {
d0429b4f
IB
66 int *now;
67 int *previous;
68} cook_gains;
e0f7e329 69
4a291c90
BL
70typedef struct {
71 int ch_idx;
bdb8d996 72 int size;
4a291c90
BL
73 int num_channels;
74 int cookversion;
75 int samples_per_frame;
76 int subbands;
77 int js_subband_start;
78 int js_vlc_bits;
79 int samples_per_channel;
80 int log2_numvector_size;
81 unsigned int channel_mask;
82 VLC ccpl; ///< channel coupling
83 int joint_stereo;
84 int bits_per_subpacket;
85 int bits_per_subpdiv;
86 int total_subbands;
87 int numvector_size; ///< 1 << log2_numvector_size;
88
89 float mono_previous_buffer1[1024];
90 float mono_previous_buffer2[1024];
91 /** gain buffers */
92 cook_gains gains1;
93 cook_gains gains2;
94 int gain_1[9];
95 int gain_2[9];
96 int gain_3[9];
97 int gain_4[9];
98} COOKSubpacket;
99
28d997f9
MH
100typedef struct cook {
101 /*
102 * The following 5 functions provide the lowlevel arithmetic on
103 * the internal audio buffers.
104 */
105 void (* scalar_dequant)(struct cook *q, int index, int quant_index,
106 int* subband_coef_index, int* subband_coef_sign,
107 float* mlt_p);
108
109 void (* decouple) (struct cook *q,
4a291c90 110 COOKSubpacket *p,
28d997f9
MH
111 int subband,
112 float f1, float f2,
113 float *decode_buffer,
114 float *mlt_buffer1, float *mlt_buffer2);
115
116 void (* imlt_window) (struct cook *q, float *buffer1,
117 cook_gains *gains_ptr, float *previous_buffer);
118
119 void (* interpolate) (struct cook *q, float* buffer,
120 int gain_index, int gain_index_next);
121
c25df223 122 void (* saturate_output) (struct cook *q, int chan, float *out);
28d997f9 123
d4b3d040 124 AVCodecContext* avctx;
e0f7e329
BL
125 GetBitContext gb;
126 /* stream data */
127 int nb_channels;
e0f7e329
BL
128 int bit_rate;
129 int sample_rate;
e0f7e329 130 int num_vectors;
4a291c90 131 int samples_per_channel;
e0f7e329 132 /* states */
39b60944 133 AVLFG random_state;
e0f7e329
BL
134
135 /* transform data */
01b22147 136 FFTContext mdct_ctx;
e0f7e329 137 float* mlt_window;
e0f7e329 138
e0f7e329 139 /* VLC data */
e0f7e329
BL
140 VLC envelope_quant_index[13];
141 VLC sqvh[7]; //scalar quantization
e0f7e329
BL
142
143 /* generatable tables and related variables */
144 int gain_size_factor;
145 float gain_table[23];
e0f7e329
BL
146
147 /* data buffers */
e0f7e329
BL
148
149 uint8_t* decoded_bytes_buffer;
9d35fa52 150 DECLARE_ALIGNED(32, float, mono_mdct_output)[2048];
e0f7e329
BL
151 float decode_buffer_1[1024];
152 float decode_buffer_2[1024];
8c9d2954 153 float decode_buffer_0[1060]; /* static allocation for joint decode */
dae92b62 154
29e15adc 155 const float *cplscales[5];
4a291c90
BL
156 int num_subpackets;
157 COOKSubpacket subpacket[MAX_SUBPACKETS];
e0f7e329
BL
158} COOKContext;
159
0c542158
MN
160static float pow2tab[127];
161static float rootpow2tab[127];
162
e0f7e329
BL
163/*************** init functions ***************/
164
165/* table generator */
5ef251e5 166static av_cold void init_pow2table(void){
e0f7e329 167 int i;
158bf33e 168 for (i=-63 ; i<64 ; i++){
0c542158
MN
169 pow2tab[63+i]= pow(2, i);
170 rootpow2tab[63+i]=sqrt(pow(2, i));
e0f7e329
BL
171 }
172}
173
174/* table generator */
5ef251e5 175static av_cold void init_gain_table(COOKContext *q) {
e0f7e329
BL
176 int i;
177 q->gain_size_factor = q->samples_per_channel/8;
178 for (i=0 ; i<23 ; i++) {
0c542158 179 q->gain_table[i] = pow(pow2tab[i+52] ,
e0f7e329
BL
180 (1.0/(double)q->gain_size_factor));
181 }
e0f7e329
BL
182}
183
184
5ef251e5 185static av_cold int init_cook_vlc_tables(COOKContext *q) {
e0f7e329
BL
186 int i, result;
187
188 result = 0;
189 for (i=0 ; i<13 ; i++) {
cdb59552 190 result |= init_vlc (&q->envelope_quant_index[i], 9, 24,
e0f7e329
BL
191 envelope_quant_index_huffbits[i], 1, 1,
192 envelope_quant_index_huffcodes[i], 2, 2, 0);
193 }
d4b3d040 194 av_log(q->avctx,AV_LOG_DEBUG,"sqvh VLC init\n");
e0f7e329 195 for (i=0 ; i<7 ; i++) {
cdb59552 196 result |= init_vlc (&q->sqvh[i], vhvlcsize_tab[i], vhsize_tab[i],
e0f7e329
BL
197 cvh_huffbits[i], 1, 1,
198 cvh_huffcodes[i], 2, 2, 0);
199 }
200
4a291c90
BL
201 for(i=0;i<q->num_subpackets;i++){
202 if (q->subpacket[i].joint_stereo==1){
203 result |= init_vlc (&q->subpacket[i].ccpl, 6, (1<<q->subpacket[i].js_vlc_bits)-1,
204 ccpl_huffbits[q->subpacket[i].js_vlc_bits-2], 1, 1,
205 ccpl_huffcodes[q->subpacket[i].js_vlc_bits-2], 2, 2, 0);
206 av_log(q->avctx,AV_LOG_DEBUG,"subpacket %i Joint-stereo VLC used.\n",i);
207 }
e0f7e329
BL
208 }
209
d4b3d040 210 av_log(q->avctx,AV_LOG_DEBUG,"VLC tables initialized.\n");
e0f7e329
BL
211 return result;
212}
213
5ef251e5 214static av_cold int init_cook_mlt(COOKContext *q) {
f193c96f 215 int j, ret;
e7485bf3 216 int mlt_size = q->samples_per_channel;
e0f7e329 217
e694831f 218 if ((q->mlt_window = av_malloc(mlt_size * sizeof(*q->mlt_window))) == 0)
f193c96f 219 return AVERROR(ENOMEM);
e0f7e329
BL
220
221 /* Initialize the MLT window: simple sine window. */
9146e4d6 222 ff_sine_window_init(q->mlt_window, mlt_size);
e7485bf3 223 for(j=0 ; j<mlt_size ; j++)
9146e4d6 224 q->mlt_window[j] *= sqrt(2.0 / q->samples_per_channel);
e7485bf3
IB
225
226 /* Initialize the MDCT. */
f193c96f
JR
227 if ((ret = ff_mdct_init(&q->mdct_ctx, av_log2(mlt_size)+1, 1, 1.0/32768.0))) {
228 av_free(q->mlt_window);
229 return ret;
e0f7e329 230 }
d4b3d040 231 av_log(q->avctx,AV_LOG_DEBUG,"MDCT initialized, order = %d.\n",
e7485bf3 232 av_log2(mlt_size)+1);
e0f7e329 233
e7485bf3 234 return 0;
e0f7e329
BL
235}
236
29e15adc 237static const float *maybe_reformat_buffer32 (COOKContext *q, const float *ptr, int n)
dae92b62
MH
238{
239 if (1)
240 return ptr;
241}
242
5ef251e5 243static av_cold void init_cplscales_table (COOKContext *q) {
dae92b62
MH
244 int i;
245 for (i=0;i<5;i++)
246 q->cplscales[i] = maybe_reformat_buffer32 (q, cplscales[i], (1<<(i+2))-1);
247}
248
e0f7e329
BL
249/*************** init functions end ***********/
250
34630b93
DB
251#define DECODE_BYTES_PAD1(bytes) (3 - ((bytes)+3) % 4)
252#define DECODE_BYTES_PAD2(bytes) ((bytes) % 4 + DECODE_BYTES_PAD1(2 * (bytes)))
253
e0f7e329
BL
254/**
255 * Cook indata decoding, every 32 bits are XORed with 0x37c511f2.
256 * Why? No idea, some checksum/error detection method maybe.
70ab75eb
BL
257 *
258 * Out buffer size: extra bytes are needed to cope with
df3a80b5 259 * padding/misalignment.
70ab75eb
BL
260 * Subpackets passed to the decoder can contain two, consecutive
261 * half-subpackets, of identical but arbitrary size.
262 * 1234 1234 1234 1234 extraA extraB
263 * Case 1: AAAA BBBB 0 0
264 * Case 2: AAAA ABBB BB-- 3 3
265 * Case 3: AAAA AABB BBBB 2 2
266 * Case 4: AAAA AAAB BBBB BB-- 1 5
267 *
e0f7e329
BL
268 * Nice way to waste CPU cycles.
269 *
70ab75eb
BL
270 * @param inbuffer pointer to byte array of indata
271 * @param out pointer to byte array of outdata
272 * @param bytes number of bytes
e0f7e329
BL
273 */
274
21cc343d 275static inline int decode_bytes(const uint8_t* inbuffer, uint8_t* out, int bytes){
70ab75eb
BL
276 int i, off;
277 uint32_t c;
21cc343d 278 const uint32_t* buf;
e0f7e329
BL
279 uint32_t* obuf = (uint32_t*) out;
280 /* FIXME: 64 bit platforms would be able to do 64 bits at a time.
281 * I'm too lazy though, should be something like
282 * for(i=0 ; i<bitamount/64 ; i++)
8fc0162a 283 * (int64_t)out[i] = 0x37c511f237c511f2^av_be2ne64(int64_t)in[i]);
e0f7e329
BL
284 * Buffer alignment needs to be checked. */
285
e05c8d06 286 off = (intptr_t)inbuffer & 3;
21cc343d 287 buf = (const uint32_t*) (inbuffer - off);
8fc0162a 288 c = av_be2ne32((0x37c511f2 >> (off*8)) | (0x37c511f2 << (32-(off*8))));
70ab75eb
BL
289 bytes += 3 + off;
290 for (i = 0; i < bytes/4; i++)
291 obuf[i] = c ^ buf[i];
e0f7e329 292
70ab75eb 293 return off;
e0f7e329
BL
294}
295
296/**
297 * Cook uninit
298 */
299
5ef251e5 300static av_cold int cook_decode_close(AVCodecContext *avctx)
e0f7e329
BL
301{
302 int i;
303 COOKContext *q = avctx->priv_data;
162b9835 304 av_log(avctx,AV_LOG_DEBUG, "Deallocating memory.\n");
e0f7e329
BL
305
306 /* Free allocated memory buffers. */
307 av_free(q->mlt_window);
e0f7e329
BL
308 av_free(q->decoded_bytes_buffer);
309
310 /* Free the transform. */
e7485bf3 311 ff_mdct_end(&q->mdct_ctx);
e0f7e329
BL
312
313 /* Free the VLC tables. */
314 for (i=0 ; i<13 ; i++) {
315 free_vlc(&q->envelope_quant_index[i]);
316 }
317 for (i=0 ; i<7 ; i++) {
318 free_vlc(&q->sqvh[i]);
319 }
4a291c90
BL
320 for (i=0 ; i<q->num_subpackets ; i++) {
321 free_vlc(&q->subpacket[i].ccpl);
e0f7e329
BL
322 }
323
d4b3d040 324 av_log(avctx,AV_LOG_DEBUG,"Memory deallocated.\n");
e0f7e329
BL
325
326 return 0;
327}
328
329/**
d0429b4f 330 * Fill the gain array for the timedomain quantization.
e0f7e329 331 *
e51f0496 332 * @param gb pointer to the GetBitContext
ff993cd7 333 * @param gaininfo array[9] of gain indexes
e0f7e329
BL
334 */
335
d0429b4f
IB
336static void decode_gain_info(GetBitContext *gb, int *gaininfo)
337{
338 int i, n;
e0f7e329
BL
339
340 while (get_bits1(gb)) {}
d0429b4f 341 n = get_bits_count(gb) - 1; //amount of elements*2 to update
e0f7e329 342
d0429b4f
IB
343 i = 0;
344 while (n--) {
345 int index = get_bits(gb, 3);
346 int gain = get_bits1(gb) ? get_bits(gb, 4) - 7 : -1;
e0f7e329 347
d0429b4f 348 while (i <= index) gaininfo[i++] = gain;
e0f7e329 349 }
d0429b4f 350 while (i <= 8) gaininfo[i++] = 0;
e0f7e329
BL
351}
352
353/**
354 * Create the quant index table needed for the envelope.
355 *
356 * @param q pointer to the COOKContext
357 * @param quant_index_table pointer to the array
358 */
359
4a291c90 360static void decode_envelope(COOKContext *q, COOKSubpacket *p, int* quant_index_table) {
e0f7e329 361 int i,j, vlc_index;
e0f7e329 362
e0f7e329
BL
363 quant_index_table[0]= get_bits(&q->gb,6) - 6; //This is used later in categorize
364
4a291c90 365 for (i=1 ; i < p->total_subbands ; i++){
e0f7e329 366 vlc_index=i;
4a291c90
BL
367 if (i >= p->js_subband_start * 2) {
368 vlc_index-=p->js_subband_start;
e0f7e329
BL
369 } else {
370 vlc_index/=2;
371 if(vlc_index < 1) vlc_index = 1;
372 }
373 if (vlc_index>13) vlc_index = 13; //the VLC tables >13 are identical to No. 13
374
375 j = get_vlc2(&q->gb, q->envelope_quant_index[vlc_index-1].table,
376 q->envelope_quant_index[vlc_index-1].bits,2);
377 quant_index_table[i] = quant_index_table[i-1] + j - 12; //differential encoding
378 }
379}
380
381/**
e0f7e329
BL
382 * Calculate the category and category_index vector.
383 *
384 * @param q pointer to the COOKContext
385 * @param quant_index_table pointer to the array
386 * @param category pointer to the category array
387 * @param category_index pointer to the category_index array
388 */
389
4a291c90 390static void categorize(COOKContext *q, COOKSubpacket *p, int* quant_index_table,
e0f7e329 391 int* category, int* category_index){
6b019970 392 int exp_idx, bias, tmpbias1, tmpbias2, bits_left, num_bits, index, v, i, j;
e0f7e329
BL
393 int exp_index2[102];
394 int exp_index1[102];
395
de8e2c1d 396 int tmp_categorize_array[128*2];
4a291c90
BL
397 int tmp_categorize_array1_idx=p->numvector_size;
398 int tmp_categorize_array2_idx=p->numvector_size;
e0f7e329 399
4a291c90 400 bits_left = p->bits_per_subpacket - get_bits_count(&q->gb);
e0f7e329
BL
401
402 if(bits_left > q->samples_per_channel) {
403 bits_left = q->samples_per_channel +
404 ((bits_left - q->samples_per_channel)*5)/8;
d4b3d040 405 //av_log(q->avctx, AV_LOG_ERROR, "bits_left = %d\n",bits_left);
e0f7e329
BL
406 }
407
e694831f
JR
408 memset(&exp_index1, 0, sizeof(exp_index1));
409 memset(&exp_index2, 0, sizeof(exp_index2));
410 memset(&tmp_categorize_array, 0, sizeof(tmp_categorize_array));
e0f7e329
BL
411
412 bias=-32;
413
414 /* Estimate bias. */
415 for (i=32 ; i>0 ; i=i/2){
416 num_bits = 0;
417 index = 0;
4a291c90 418 for (j=p->total_subbands ; j>0 ; j--){
a31978e9 419 exp_idx = av_clip((i - quant_index_table[index] + bias) / 2, 0, 7);
e0f7e329
BL
420 index++;
421 num_bits+=expbits_tab[exp_idx];
422 }
423 if(num_bits >= bits_left - 32){
424 bias+=i;
425 }
426 }
427
428 /* Calculate total number of bits. */
429 num_bits=0;
4a291c90 430 for (i=0 ; i<p->total_subbands ; i++) {
a31978e9 431 exp_idx = av_clip((bias - quant_index_table[i]) / 2, 0, 7);
e0f7e329
BL
432 num_bits += expbits_tab[exp_idx];
433 exp_index1[i] = exp_idx;
434 exp_index2[i] = exp_idx;
435 }
6b019970 436 tmpbias1 = tmpbias2 = num_bits;
e0f7e329 437
4a291c90 438 for (j = 1 ; j < p->numvector_size ; j++) {
6b019970 439 if (tmpbias1 + tmpbias2 > 2*bits_left) { /* ---> */
e0f7e329
BL
440 int max = -999999;
441 index=-1;
4a291c90 442 for (i=0 ; i<p->total_subbands ; i++){
e0f7e329 443 if (exp_index1[i] < 7) {
a5cb1f13 444 v = (-2*exp_index1[i]) - quant_index_table[i] + bias;
e0f7e329
BL
445 if ( v >= max) {
446 max = v;
447 index = i;
448 }
449 }
450 }
451 if(index==-1)break;
de8e2c1d 452 tmp_categorize_array[tmp_categorize_array1_idx++] = index;
6b019970 453 tmpbias1 -= expbits_tab[exp_index1[index]] -
39938968 454 expbits_tab[exp_index1[index]+1];
e0f7e329
BL
455 ++exp_index1[index];
456 } else { /* <--- */
457 int min = 999999;
458 index=-1;
4a291c90 459 for (i=0 ; i<p->total_subbands ; i++){
e0f7e329 460 if(exp_index2[i] > 0){
a5cb1f13 461 v = (-2*exp_index2[i])-quant_index_table[i]+bias;
e0f7e329
BL
462 if ( v < min) {
463 min = v;
464 index = i;
465 }
466 }
467 }
468 if(index == -1)break;
de8e2c1d 469 tmp_categorize_array[--tmp_categorize_array2_idx] = index;
6b019970 470 tmpbias2 -= expbits_tab[exp_index2[index]] -
39938968 471 expbits_tab[exp_index2[index]-1];
e0f7e329
BL
472 --exp_index2[index];
473 }
474 }
475
4a291c90 476 for(i=0 ; i<p->total_subbands ; i++)
e0f7e329
BL
477 category[i] = exp_index2[i];
478
4a291c90 479 for(i=0 ; i<p->numvector_size-1 ; i++)
de8e2c1d 480 category_index[i] = tmp_categorize_array[tmp_categorize_array2_idx++];
e0f7e329
BL
481
482}
483
484
485/**
486 * Expand the category vector.
487 *
488 * @param q pointer to the COOKContext
489 * @param category pointer to the category array
490 * @param category_index pointer to the category_index array
491 */
492
5a6a6cc7 493static inline void expand_category(COOKContext *q, int* category,
e0f7e329
BL
494 int* category_index){
495 int i;
496 for(i=0 ; i<q->num_vectors ; i++){
497 ++category[category_index[i]];
498 }
499}
500
501/**
502 * The real requantization of the mltcoefs
503 *
504 * @param q pointer to the COOKContext
505 * @param index index
058ee0cf 506 * @param quant_index quantisation index
e0f7e329 507 * @param subband_coef_index array of indexes to quant_centroid_tab
baab2957 508 * @param subband_coef_sign signs of coefficients
058ee0cf 509 * @param mlt_p pointer into the mlt buffer
e0f7e329
BL
510 */
511
b5f3f2b8 512static void scalar_dequant_float(COOKContext *q, int index, int quant_index,
058ee0cf
IB
513 int* subband_coef_index, int* subband_coef_sign,
514 float* mlt_p){
e0f7e329
BL
515 int i;
516 float f1;
517
518 for(i=0 ; i<SUBBAND_SIZE ; i++) {
519 if (subband_coef_index[i]) {
058ee0cf
IB
520 f1 = quant_centroid_tab[index][subband_coef_index[i]];
521 if (subband_coef_sign[i]) f1 = -f1;
e0f7e329 522 } else {
baab2957 523 /* noise coding if subband_coef_index[i] == 0 */
058ee0cf 524 f1 = dither_tab[index];
39b60944 525 if (av_lfg_get(&q->random_state) < 0x80000000) f1 = -f1;
e0f7e329 526 }
0c542158 527 mlt_p[i] = f1 * rootpow2tab[quant_index+63];
e0f7e329
BL
528 }
529}
530/**
baab2957 531 * Unpack the subband_coef_index and subband_coef_sign vectors.
e0f7e329
BL
532 *
533 * @param q pointer to the COOKContext
534 * @param category pointer to the category array
535 * @param subband_coef_index array of indexes to quant_centroid_tab
baab2957 536 * @param subband_coef_sign signs of coefficients
e0f7e329
BL
537 */
538
4a291c90 539static int unpack_SQVH(COOKContext *q, COOKSubpacket *p, int category, int* subband_coef_index,
baab2957 540 int* subband_coef_sign) {
e0f7e329
BL
541 int i,j;
542 int vlc, vd ,tmp, result;
e0f7e329
BL
543
544 vd = vd_tab[category];
545 result = 0;
546 for(i=0 ; i<vpr_tab[category] ; i++){
e0f7e329 547 vlc = get_vlc2(&q->gb, q->sqvh[category].table, q->sqvh[category].bits, 3);
4a291c90 548 if (p->bits_per_subpacket < get_bits_count(&q->gb)){
e0f7e329
BL
549 vlc = 0;
550 result = 1;
551 }
552 for(j=vd-1 ; j>=0 ; j--){
553 tmp = (vlc * invradix_tab[category])/0x100000;
554 subband_coef_index[vd*i+j] = vlc - tmp * (kmax_tab[category]+1);
555 vlc = tmp;
556 }
557 for(j=0 ; j<vd ; j++){
558 if (subband_coef_index[i*vd + j]) {
4a291c90 559 if(get_bits_count(&q->gb) < p->bits_per_subpacket){
baab2957 560 subband_coef_sign[i*vd+j] = get_bits1(&q->gb);
e0f7e329
BL
561 } else {
562 result=1;
baab2957 563 subband_coef_sign[i*vd+j]=0;
e0f7e329
BL
564 }
565 } else {
baab2957 566 subband_coef_sign[i*vd+j]=0;
e0f7e329
BL
567 }
568 }
569 }
570 return result;
571}
572
573
574/**
575 * Fill the mlt_buffer with mlt coefficients.
576 *
577 * @param q pointer to the COOKContext
578 * @param category pointer to the category array
058ee0cf 579 * @param quant_index_table pointer to the array
e0f7e329
BL
580 * @param mlt_buffer pointer to mlt coefficients
581 */
582
583
4a291c90 584static void decode_vectors(COOKContext* q, COOKSubpacket* p, int* category,
058ee0cf 585 int *quant_index_table, float* mlt_buffer){
e0f7e329
BL
586 /* A zero in this table means that the subband coefficient is
587 random noise coded. */
baab2957 588 int subband_coef_index[SUBBAND_SIZE];
e0f7e329
BL
589 /* A zero in this table means that the subband coefficient is a
590 positive multiplicator. */
baab2957 591 int subband_coef_sign[SUBBAND_SIZE];
e0f7e329
BL
592 int band, j;
593 int index=0;
594
4a291c90 595 for(band=0 ; band<p->total_subbands ; band++){
e0f7e329
BL
596 index = category[band];
597 if(category[band] < 7){
4a291c90 598 if(unpack_SQVH(q, p, category[band], subband_coef_index, subband_coef_sign)){
e0f7e329 599 index=7;
4a291c90 600 for(j=0 ; j<p->total_subbands ; j++) category[band+j]=7;
e0f7e329
BL
601 }
602 }
7c119ced 603 if(index>=7) {
e0f7e329 604 memset(subband_coef_index, 0, sizeof(subband_coef_index));
baab2957 605 memset(subband_coef_sign, 0, sizeof(subband_coef_sign));
e0f7e329 606 }
28d997f9 607 q->scalar_dequant(q, index, quant_index_table[band],
f1639f69
MH
608 subband_coef_index, subband_coef_sign,
609 &mlt_buffer[band * SUBBAND_SIZE]);
e0f7e329
BL
610 }
611
4a291c90 612 if(p->total_subbands*SUBBAND_SIZE >= q->samples_per_channel){
e0f7e329 613 return;
baab2957 614 } /* FIXME: should this be removed, or moved into loop above? */
e0f7e329
BL
615}
616
617
618/**
619 * function for decoding mono data
620 *
621 * @param q pointer to the COOKContext
b707cbb3 622 * @param mlt_buffer pointer to mlt coefficients
e0f7e329
BL
623 */
624
4a291c90 625static void mono_decode(COOKContext *q, COOKSubpacket *p, float* mlt_buffer) {
e0f7e329
BL
626
627 int category_index[128];
e0f7e329
BL
628 int quant_index_table[102];
629 int category[128];
630
e694831f
JR
631 memset(&category, 0, sizeof(category));
632 memset(&category_index, 0, sizeof(category_index));
e0f7e329 633
4a291c90
BL
634 decode_envelope(q, p, quant_index_table);
635 q->num_vectors = get_bits(&q->gb,p->log2_numvector_size);
636 categorize(q, p, quant_index_table, category, category_index);
e0f7e329 637 expand_category(q, category, category_index);
4a291c90 638 decode_vectors(q, p, category, quant_index_table, mlt_buffer);
e0f7e329
BL
639}
640
641
642/**
e0f7e329
BL
643 * the actual requantization of the timedomain samples
644 *
645 * @param q pointer to the COOKContext
646 * @param buffer pointer to the timedomain buffer
647 * @param gain_index index for the block multiplier
648 * @param gain_index_next index for the next block multiplier
649 */
650
b5f3f2b8 651static void interpolate_float(COOKContext *q, float* buffer,
e0f7e329
BL
652 int gain_index, int gain_index_next){
653 int i;
654 float fc1, fc2;
0c542158 655 fc1 = pow2tab[gain_index+63];
e0f7e329
BL
656
657 if(gain_index == gain_index_next){ //static gain
658 for(i=0 ; i<q->gain_size_factor ; i++){
659 buffer[i]*=fc1;
660 }
e0f7e329
BL
661 } else { //smooth gain
662 fc2 = q->gain_table[11 + (gain_index_next-gain_index)];
663 for(i=0 ; i<q->gain_size_factor ; i++){
664 buffer[i]*=fc1;
665 fc1*=fc2;
666 }
e0f7e329
BL
667 }
668}
669
e66442f4
MH
670/**
671 * Apply transform window, overlap buffers.
672 *
673 * @param q pointer to the COOKContext
65e3f89f 674 * @param inbuffer pointer to the mltcoefficients
e66442f4
MH
675 * @param gains_ptr current and previous gains
676 * @param previous_buffer pointer to the previous buffer to be used for overlapping
677 */
678
65e3f89f 679static void imlt_window_float (COOKContext *q, float *inbuffer,
e66442f4
MH
680 cook_gains *gains_ptr, float *previous_buffer)
681{
0c542158 682 const float fc = pow2tab[gains_ptr->previous[0] + 63];
e66442f4
MH
683 int i;
684 /* The weird thing here, is that the two halves of the time domain
685 * buffer are swapped. Also, the newest data, that we save away for
686 * next frame, has the wrong sign. Hence the subtraction below.
687 * Almost sounds like a complex conjugate/reverse data/FFT effect.
688 */
689
690 /* Apply window and overlap */
691 for(i = 0; i < q->samples_per_channel; i++){
65e3f89f 692 inbuffer[i] = inbuffer[i] * fc * q->mlt_window[i] -
e66442f4
MH
693 previous_buffer[i] * q->mlt_window[q->samples_per_channel - 1 - i];
694 }
695}
e0f7e329
BL
696
697/**
85e7386a
IB
698 * The modulated lapped transform, this takes transform coefficients
699 * and transforms them into timedomain samples.
700 * Apply transform window, overlap buffers, apply gain profile
701 * and buffer management.
e0f7e329
BL
702 *
703 * @param q pointer to the COOKContext
85e7386a 704 * @param inbuffer pointer to the mltcoefficients
d0429b4f 705 * @param gains_ptr current and previous gains
e0f7e329 706 * @param previous_buffer pointer to the previous buffer to be used for overlapping
e0f7e329
BL
707 */
708
85e7386a
IB
709static void imlt_gain(COOKContext *q, float *inbuffer,
710 cook_gains *gains_ptr, float* previous_buffer)
d0429b4f 711{
85e7386a
IB
712 float *buffer0 = q->mono_mdct_output;
713 float *buffer1 = q->mono_mdct_output + q->samples_per_channel;
e0f7e329 714 int i;
e0f7e329 715
85e7386a 716 /* Inverse modified discrete cosine transform */
26f548bb 717 q->mdct_ctx.imdct_calc(&q->mdct_ctx, q->mono_mdct_output, inbuffer);
85e7386a 718
28d997f9 719 q->imlt_window (q, buffer1, gains_ptr, previous_buffer);
d0429b4f
IB
720
721 /* Apply gain profile */
722 for (i = 0; i < 8; i++) {
723 if (gains_ptr->now[i] || gains_ptr->now[i + 1])
28d997f9 724 q->interpolate(q, &buffer1[q->gain_size_factor * i],
f1639f69 725 gains_ptr->now[i], gains_ptr->now[i + 1]);
d0429b4f 726 }
e0f7e329
BL
727
728 /* Save away the current to be previous block. */
e694831f
JR
729 memcpy(previous_buffer, buffer0,
730 q->samples_per_channel * sizeof(*previous_buffer));
e0f7e329
BL
731}
732
733
734/**
735 * function for getting the jointstereo coupling information
736 *
737 * @param q pointer to the COOKContext
738 * @param decouple_tab decoupling array
739 *
740 */
c9c841e2
JR
741static void decouple_info(COOKContext *q, COOKSubpacket *p, int *decouple_tab)
742{
743 int i;
744 int vlc = get_bits1(&q->gb);
745 int start = cplband[p->js_subband_start];
746 int end = cplband[p->subbands-1];
747 int length = end - start + 1;
e0f7e329 748
c9c841e2 749 if (start > end)
e0f7e329 750 return;
e0f7e329 751
c9c841e2
JR
752 if (vlc) {
753 for (i = 0; i < length; i++)
754 decouple_tab[start + i] = get_vlc2(&q->gb, p->ccpl.table, p->ccpl.bits, 2);
755 } else {
756 for (i = 0; i < length; i++)
757 decouple_tab[start + i] = get_bits(&q->gb, p->js_vlc_bits);
e0f7e329 758 }
e0f7e329
BL
759}
760
dc0c20f9
MH
761/*
762 * function decouples a pair of signals from a single signal via multiplication.
763 *
764 * @param q pointer to the COOKContext
765 * @param subband index of the current subband
766 * @param f1 multiplier for channel 1 extraction
767 * @param f2 multiplier for channel 2 extraction
768 * @param decode_buffer input buffer
769 * @param mlt_buffer1 pointer to left channel mlt coefficients
770 * @param mlt_buffer2 pointer to right channel mlt coefficients
771 */
772static void decouple_float (COOKContext *q,
4a291c90 773 COOKSubpacket *p,
dc0c20f9
MH
774 int subband,
775 float f1, float f2,
776 float *decode_buffer,
777 float *mlt_buffer1, float *mlt_buffer2)
778{
779 int j, tmp_idx;
780 for (j=0 ; j<SUBBAND_SIZE ; j++) {
4a291c90 781 tmp_idx = ((p->js_subband_start + subband)*SUBBAND_SIZE)+j;
dc0c20f9
MH
782 mlt_buffer1[SUBBAND_SIZE*subband + j] = f1 * decode_buffer[tmp_idx];
783 mlt_buffer2[SUBBAND_SIZE*subband + j] = f2 * decode_buffer[tmp_idx];
784 }
785}
e0f7e329
BL
786
787/**
788 * function for decoding joint stereo data
789 *
790 * @param q pointer to the COOKContext
791 * @param mlt_buffer1 pointer to left channel mlt coefficients
792 * @param mlt_buffer2 pointer to right channel mlt coefficients
793 */
794
4a291c90 795static void joint_decode(COOKContext *q, COOKSubpacket *p, float* mlt_buffer1,
e0f7e329
BL
796 float* mlt_buffer2) {
797 int i,j;
798 int decouple_tab[SUBBAND_SIZE];
8c9d2954 799 float *decode_buffer = q->decode_buffer_0;
31991973 800 int idx, cpl_tmp;
e0f7e329 801 float f1,f2;
29e15adc 802 const float* cplscale;
e0f7e329
BL
803
804 memset(decouple_tab, 0, sizeof(decouple_tab));
e694831f 805 memset(decode_buffer, 0, sizeof(q->decode_buffer_0));
e0f7e329
BL
806
807 /* Make sure the buffers are zeroed out. */
e694831f
JR
808 memset(mlt_buffer1, 0, 1024 * sizeof(*mlt_buffer1));
809 memset(mlt_buffer2, 0, 1024 * sizeof(*mlt_buffer2));
4a291c90
BL
810 decouple_info(q, p, decouple_tab);
811 mono_decode(q, p, decode_buffer);
e0f7e329
BL
812
813 /* The two channels are stored interleaved in decode_buffer. */
4a291c90 814 for (i=0 ; i<p->js_subband_start ; i++) {
e0f7e329
BL
815 for (j=0 ; j<SUBBAND_SIZE ; j++) {
816 mlt_buffer1[i*20+j] = decode_buffer[i*40+j];
817 mlt_buffer2[i*20+j] = decode_buffer[i*40+20+j];
818 }
819 }
820
821 /* When we reach js_subband_start (the higher frequencies)
822 the coefficients are stored in a coupling scheme. */
4a291c90
BL
823 idx = (1 << p->js_vlc_bits) - 1;
824 for (i=p->js_subband_start ; i<p->subbands ; i++) {
70220035
BL
825 cpl_tmp = cplband[i];
826 idx -=decouple_tab[cpl_tmp];
4a291c90 827 cplscale = q->cplscales[p->js_vlc_bits-2]; //choose decoupler table
70220035
BL
828 f1 = cplscale[decouple_tab[cpl_tmp]];
829 f2 = cplscale[idx-1];
4a291c90
BL
830 q->decouple (q, p, i, f1, f2, decode_buffer, mlt_buffer1, mlt_buffer2);
831 idx = (1 << p->js_vlc_bits) - 1;
e0f7e329
BL
832 }
833}
834
835/**
70ab75eb
BL
836 * First part of subpacket decoding:
837 * decode raw stream bytes and read gain info.
838 *
839 * @param q pointer to the COOKContext
840 * @param inbuffer pointer to raw stream data
9a58234f 841 * @param gains_ptr array of current/prev gain pointers
70ab75eb
BL
842 */
843
844static inline void
4a291c90 845decode_bytes_and_gain(COOKContext *q, COOKSubpacket *p, const uint8_t *inbuffer,
d0429b4f 846 cook_gains *gains_ptr)
70ab75eb
BL
847{
848 int offset;
849
850 offset = decode_bytes(inbuffer, q->decoded_bytes_buffer,
4a291c90 851 p->bits_per_subpacket/8);
70ab75eb 852 init_get_bits(&q->gb, q->decoded_bytes_buffer + offset,
4a291c90 853 p->bits_per_subpacket);
d0429b4f 854 decode_gain_info(&q->gb, gains_ptr->now);
a5b8a69c
BL
855
856 /* Swap current and previous gains */
d0429b4f 857 FFSWAP(int *, gains_ptr->now, gains_ptr->previous);
a5b8a69c
BL
858}
859
29b4b835 860 /**
c25df223 861 * Saturate the output signal and interleave.
29b4b835
MH
862 *
863 * @param q pointer to the COOKContext
864 * @param chan channel to saturate
865 * @param out pointer to the output vector
866 */
c25df223 867static void saturate_output_float(COOKContext *q, int chan, float *out)
29b4b835
MH
868{
869 int j;
f999b63c 870 float *output = q->mono_mdct_output + q->samples_per_channel;
29b4b835 871 for (j = 0; j < q->samples_per_channel; j++) {
c25df223 872 out[chan + q->nb_channels * j] = av_clipf(output[j], -1.0, 1.0);
29b4b835
MH
873 }
874}
875
a5b8a69c
BL
876/**
877 * Final part of subpacket decoding:
878 * Apply modulated lapped transform, gain compensation,
879 * clip and convert to integer.
880 *
881 * @param q pointer to the COOKContext
882 * @param decode_buffer pointer to the mlt coefficients
65e3f89f 883 * @param gains_ptr array of current/prev gain pointers
a5b8a69c
BL
884 * @param previous_buffer pointer to the previous buffer to be used for overlapping
885 * @param out pointer to the output buffer
886 * @param chan 0: left or single channel, 1: right channel
887 */
888
889static inline void
890mlt_compensate_output(COOKContext *q, float *decode_buffer,
65e3f89f 891 cook_gains *gains_ptr, float *previous_buffer,
c25df223 892 float *out, int chan)
a5b8a69c 893{
65e3f89f 894 imlt_gain(q, decode_buffer, gains_ptr, previous_buffer);
28d997f9 895 q->saturate_output (q, chan, out);
70ab75eb
BL
896}
897
898
899/**
e0f7e329
BL
900 * Cook subpacket decoding. This function returns one decoded subpacket,
901 * usually 1024 samples per channel.
902 *
903 * @param q pointer to the COOKContext
904 * @param inbuffer pointer to the inbuffer
e0f7e329 905 * @param outbuffer pointer to the outbuffer
e0f7e329 906 */
c25df223
JR
907static void decode_subpacket(COOKContext *q, COOKSubpacket *p,
908 const uint8_t *inbuffer, float *outbuffer)
909{
4a291c90 910 int sub_packet_size = p->size;
e0f7e329
BL
911 /* packet dump */
912// for (i=0 ; i<sub_packet_size ; i++) {
d4b3d040 913// av_log(q->avctx, AV_LOG_ERROR, "%02x", inbuffer[i]);
e0f7e329 914// }
d4b3d040 915// av_log(q->avctx, AV_LOG_ERROR, "\n");
4a291c90
BL
916 memset(q->decode_buffer_1,0,sizeof(q->decode_buffer_1));
917 decode_bytes_and_gain(q, p, inbuffer, &p->gains1);
e0f7e329 918
4a291c90
BL
919 if (p->joint_stereo) {
920 joint_decode(q, p, q->decode_buffer_1, q->decode_buffer_2);
a5b8a69c 921 } else {
4a291c90 922 mono_decode(q, p, q->decode_buffer_1);
b7c24ff6 923
4a291c90
BL
924 if (p->num_channels == 2) {
925 decode_bytes_and_gain(q, p, inbuffer + sub_packet_size/2, &p->gains2);
926 mono_decode(q, p, q->decode_buffer_2);
a5b8a69c
BL
927 }
928 }
560b10a6 929
4a291c90
BL
930 mlt_compensate_output(q, q->decode_buffer_1, &p->gains1,
931 p->mono_previous_buffer1, outbuffer, p->ch_idx);
932
933 if (p->num_channels == 2) {
934 if (p->joint_stereo) {
935 mlt_compensate_output(q, q->decode_buffer_2, &p->gains1,
936 p->mono_previous_buffer2, outbuffer, p->ch_idx + 1);
937 } else {
938 mlt_compensate_output(q, q->decode_buffer_2, &p->gains2,
939 p->mono_previous_buffer2, outbuffer, p->ch_idx + 1);
940 }
941 }
b7c24ff6 942
e0f7e329
BL
943}
944
945
946/**
947 * Cook frame decoding
948 *
949 * @param avctx pointer to the AVCodecContext
950 */
951
952static int cook_decode_frame(AVCodecContext *avctx,
953 void *data, int *data_size,
7a00bbad
TB
954 AVPacket *avpkt) {
955 const uint8_t *buf = avpkt->data;
956 int buf_size = avpkt->size;
e0f7e329 957 COOKContext *q = avctx->priv_data;
e34c6c97 958 int i, out_size;
4a291c90
BL
959 int offset = 0;
960 int chidx = 0;
e0f7e329
BL
961
962 if (buf_size < avctx->block_align)
963 return buf_size;
964
e34c6c97
JR
965 out_size = q->nb_channels * q->samples_per_channel *
966 av_get_bytes_per_sample(avctx->sample_fmt);
967 if (*data_size < out_size) {
968 av_log(avctx, AV_LOG_ERROR, "Output buffer is too small\n");
969 return AVERROR(EINVAL);
970 }
971
4a291c90
BL
972 /* estimate subpacket sizes */
973 q->subpacket[0].size = avctx->block_align;
974
da75426b
BL
975 for(i=1;i<q->num_subpackets;i++){
976 q->subpacket[i].size = 2 * buf[avctx->block_align - q->num_subpackets + i];
bb1135c8 977 q->subpacket[0].size -= q->subpacket[i].size + 1;
bdb8d996
BL
978 if (q->subpacket[0].size < 0) {
979 av_log(avctx,AV_LOG_DEBUG,"frame subpacket size total > avctx->block_align!\n");
f193c96f 980 return AVERROR_INVALIDDATA;
bdb8d996 981 }
da75426b 982 }
67da3182 983
4a291c90 984 /* decode supbackets */
4a291c90
BL
985 for(i=0;i<q->num_subpackets;i++){
986 q->subpacket[i].bits_per_subpacket = (q->subpacket[i].size*8)>>q->subpacket[i].bits_per_subpdiv;
987 q->subpacket[i].ch_idx = chidx;
988 av_log(avctx,AV_LOG_DEBUG,"subpacket[%i] size %i js %i %i block_align %i\n",i,q->subpacket[i].size,q->subpacket[i].joint_stereo,offset,avctx->block_align);
c25df223 989 decode_subpacket(q, &q->subpacket[i], buf + offset, data);
4a291c90
BL
990 offset += q->subpacket[i].size;
991 chidx += q->subpacket[i].num_channels;
992 av_log(avctx,AV_LOG_DEBUG,"subpacket[%i] %i %i\n",i,q->subpacket[i].size * 8,get_bits_count(&q->gb));
993 }
e34c6c97 994 *data_size = out_size;
e0f7e329 995
4ff5e656
IB
996 /* Discard the first two frames: no valid audio. */
997 if (avctx->frame_number < 2) *data_size = 0;
998
e0f7e329
BL
999 return avctx->block_align;
1000}
7f129a33 1001
f190f676 1002#ifdef DEBUG
862be28b 1003static void dump_cook_context(COOKContext *q)
e0f7e329
BL
1004{
1005 //int i=0;
d4b3d040
BL
1006#define PRINT(a,b) av_log(q->avctx,AV_LOG_ERROR," %s = %d\n", a, b);
1007 av_log(q->avctx,AV_LOG_ERROR,"COOKextradata\n");
7204850e
BL
1008 av_log(q->avctx,AV_LOG_ERROR,"cookversion=%x\n",q->subpacket[0].cookversion);
1009 if (q->subpacket[0].cookversion > STEREO) {
1010 PRINT("js_subband_start",q->subpacket[0].js_subband_start);
1011 PRINT("js_vlc_bits",q->subpacket[0].js_vlc_bits);
e0f7e329 1012 }
d4b3d040 1013 av_log(q->avctx,AV_LOG_ERROR,"COOKContext\n");
e0f7e329
BL
1014 PRINT("nb_channels",q->nb_channels);
1015 PRINT("bit_rate",q->bit_rate);
1016 PRINT("sample_rate",q->sample_rate);
7204850e
BL
1017 PRINT("samples_per_channel",q->subpacket[0].samples_per_channel);
1018 PRINT("samples_per_frame",q->subpacket[0].samples_per_frame);
1019 PRINT("subbands",q->subpacket[0].subbands);
7204850e
BL
1020 PRINT("js_subband_start",q->subpacket[0].js_subband_start);
1021 PRINT("log2_numvector_size",q->subpacket[0].log2_numvector_size);
1022 PRINT("numvector_size",q->subpacket[0].numvector_size);
1023 PRINT("total_subbands",q->subpacket[0].total_subbands);
e0f7e329
BL
1024}
1025#endif
7f129a33 1026
b2170247
BL
1027static av_cold int cook_count_channels(unsigned int mask){
1028 int i;
1029 int channels = 0;
1030 for(i = 0;i<32;i++){
1031 if(mask & (1<<i))
1032 ++channels;
1033 }
1034 return channels;
1035}
1036
e0f7e329
BL
1037/**
1038 * Cook initialization
1039 *
1040 * @param avctx pointer to the AVCodecContext
1041 */
1042
4b81366b 1043static av_cold int cook_decode_init(AVCodecContext *avctx)
e0f7e329 1044{
e0f7e329 1045 COOKContext *q = avctx->priv_data;
21cc343d 1046 const uint8_t *edata_ptr = avctx->extradata;
4a291c90
BL
1047 const uint8_t *edata_ptr_end = edata_ptr + avctx->extradata_size;
1048 int extradata_size = avctx->extradata_size;
1049 int s = 0;
67da3182 1050 unsigned int channel_mask = 0;
f193c96f 1051 int ret;
d4b3d040 1052 q->avctx = avctx;
e0f7e329
BL
1053
1054 /* Take care of the codec specific extradata. */
4a291c90 1055 if (extradata_size <= 0) {
162b9835 1056 av_log(avctx,AV_LOG_ERROR,"Necessary extradata missing!\n");
f193c96f 1057 return AVERROR_INVALIDDATA;
e0f7e329 1058 }
4a291c90 1059 av_log(avctx,AV_LOG_DEBUG,"codecdata_length=%d\n",avctx->extradata_size);
e0f7e329
BL
1060
1061 /* Take data from the AVCodecContext (RM container). */
1062 q->sample_rate = avctx->sample_rate;
1063 q->nb_channels = avctx->channels;
1064 q->bit_rate = avctx->bit_rate;
1065
058ee0cf 1066 /* Initialize RNG. */
2d2e72b1 1067 av_lfg_init(&q->random_state, 0);
e0f7e329 1068
4a291c90
BL
1069 while(edata_ptr < edata_ptr_end){
1070 /* 8 for mono, 16 for stereo, ? for multichannel
1071 Swap to right endianness so we don't need to care later on. */
1072 if (extradata_size >= 8){
1073 q->subpacket[s].cookversion = bytestream_get_be32(&edata_ptr);
1074 q->subpacket[s].samples_per_frame = bytestream_get_be16(&edata_ptr);
1075 q->subpacket[s].subbands = bytestream_get_be16(&edata_ptr);
1076 extradata_size -= 8;
1077 }
1078 if (avctx->extradata_size >= 8){
1079 bytestream_get_be32(&edata_ptr); //Unknown unused
1080 q->subpacket[s].js_subband_start = bytestream_get_be16(&edata_ptr);
1081 q->subpacket[s].js_vlc_bits = bytestream_get_be16(&edata_ptr);
1082 extradata_size -= 8;
1083 }
1084
1085 /* Initialize extradata related variables. */
1086 q->subpacket[s].samples_per_channel = q->subpacket[s].samples_per_frame / q->nb_channels;
1087 q->subpacket[s].bits_per_subpacket = avctx->block_align * 8;
1088
1089 /* Initialize default data states. */
1090 q->subpacket[s].log2_numvector_size = 5;
1091 q->subpacket[s].total_subbands = q->subpacket[s].subbands;
1092 q->subpacket[s].num_channels = 1;
1093
1094 /* Initialize version-dependent variables */
1095
1096 av_log(avctx,AV_LOG_DEBUG,"subpacket[%i].cookversion=%x\n",s,q->subpacket[s].cookversion);
1097 q->subpacket[s].joint_stereo = 0;
1098 switch (q->subpacket[s].cookversion) {
1099 case MONO:
1100 if (q->nb_channels != 1) {
62582a69 1101 av_log_ask_for_sample(avctx, "Container channels != 1.\n");
f193c96f 1102 return AVERROR(ENOTSUP);
4a291c90
BL
1103 }
1104 av_log(avctx,AV_LOG_DEBUG,"MONO\n");
1105 break;
1106 case STEREO:
e5cd2d3d 1107 if (q->nb_channels != 1) {
4a291c90 1108 q->subpacket[s].bits_per_subpdiv = 1;
e5cd2d3d
BL
1109 q->subpacket[s].num_channels = 2;
1110 }
4a291c90
BL
1111 av_log(avctx,AV_LOG_DEBUG,"STEREO\n");
1112 break;
1113 case JOINT_STEREO:
1114 if (q->nb_channels != 2) {
70fb031c 1115 av_log_ask_for_sample(avctx, "Container channels != 2.\n");
f193c96f 1116 return AVERROR(ENOTSUP);
4a291c90
BL
1117 }
1118 av_log(avctx,AV_LOG_DEBUG,"JOINT_STEREO\n");
1119 if (avctx->extradata_size >= 16){
1120 q->subpacket[s].total_subbands = q->subpacket[s].subbands + q->subpacket[s].js_subband_start;
1121 q->subpacket[s].joint_stereo = 1;
1122 q->subpacket[s].num_channels = 2;
1123 }
1124 if (q->subpacket[s].samples_per_channel > 256) {
1125 q->subpacket[s].log2_numvector_size = 6;
1126 }
1127 if (q->subpacket[s].samples_per_channel > 512) {
1128 q->subpacket[s].log2_numvector_size = 7;
1129 }
1130 break;
1131 case MC_COOK:
67da3182
BL
1132 av_log(avctx,AV_LOG_DEBUG,"MULTI_CHANNEL\n");
1133 if(extradata_size >= 4)
1134 channel_mask |= q->subpacket[s].channel_mask = bytestream_get_be32(&edata_ptr);
1135
1136 if(cook_count_channels(q->subpacket[s].channel_mask) > 1){
1137 q->subpacket[s].total_subbands = q->subpacket[s].subbands + q->subpacket[s].js_subband_start;
1138 q->subpacket[s].joint_stereo = 1;
1139 q->subpacket[s].num_channels = 2;
1140 q->subpacket[s].samples_per_channel = q->subpacket[s].samples_per_frame >> 1;
1141
1142 if (q->subpacket[s].samples_per_channel > 256) {
1143 q->subpacket[s].log2_numvector_size = 6;
1144 }
1145 if (q->subpacket[s].samples_per_channel > 512) {
1146 q->subpacket[s].log2_numvector_size = 7;
1147 }
1148 }else
1149 q->subpacket[s].samples_per_channel = q->subpacket[s].samples_per_frame;
1150
4a291c90
BL
1151 break;
1152 default:
70fb031c 1153 av_log_ask_for_sample(avctx, "Unknown Cook version.\n");
f193c96f 1154 return AVERROR(ENOTSUP);
4a291c90
BL
1155 }
1156
1157 if(s > 1 && q->subpacket[s].samples_per_channel != q->samples_per_channel) {
1158 av_log(avctx,AV_LOG_ERROR,"different number of samples per channel!\n");
f193c96f 1159 return AVERROR_INVALIDDATA;
4a291c90
BL
1160 } else
1161 q->samples_per_channel = q->subpacket[0].samples_per_channel;
1162
1163
1164 /* Initialize variable relations */
1165 q->subpacket[s].numvector_size = (1 << q->subpacket[s].log2_numvector_size);
1166
1167 /* Try to catch some obviously faulty streams, othervise it might be exploitable */
1168 if (q->subpacket[s].total_subbands > 53) {
70fb031c 1169 av_log_ask_for_sample(avctx, "total_subbands > 53\n");
f193c96f 1170 return AVERROR(ENOTSUP);
4a291c90
BL
1171 }
1172
3a742470
LA
1173 if ((q->subpacket[s].js_vlc_bits > 6) || (q->subpacket[s].js_vlc_bits < 2*q->subpacket[s].joint_stereo)) {
1174 av_log(avctx,AV_LOG_ERROR,"js_vlc_bits = %d, only >= %d and <= 6 allowed!\n",
1175 q->subpacket[s].js_vlc_bits, 2*q->subpacket[s].joint_stereo);
f193c96f 1176 return AVERROR_INVALIDDATA;
4a291c90 1177 }
e0f7e329 1178
4a291c90 1179 if (q->subpacket[s].subbands > 50) {
70fb031c 1180 av_log_ask_for_sample(avctx, "subbands > 50\n");
f193c96f 1181 return AVERROR(ENOTSUP);
4a291c90
BL
1182 }
1183 q->subpacket[s].gains1.now = q->subpacket[s].gain_1;
1184 q->subpacket[s].gains1.previous = q->subpacket[s].gain_2;
1185 q->subpacket[s].gains2.now = q->subpacket[s].gain_3;
1186 q->subpacket[s].gains2.previous = q->subpacket[s].gain_4;
e0f7e329 1187
4a291c90
BL
1188 q->num_subpackets++;
1189 s++;
ec32cfd2 1190 if (s > MAX_SUBPACKETS) {
70fb031c 1191 av_log_ask_for_sample(avctx, "Too many subpackets > 5\n");
f193c96f 1192 return AVERROR(ENOTSUP);
ec32cfd2 1193 }
4a291c90 1194 }
e0f7e329 1195 /* Generate tables */
0c542158 1196 init_pow2table();
e0f7e329 1197 init_gain_table(q);
dae92b62 1198 init_cplscales_table(q);
e0f7e329 1199
f193c96f
JR
1200 if ((ret = init_cook_vlc_tables(q)))
1201 return ret;
e0f7e329 1202
3a1a7e32
MN
1203
1204 if(avctx->block_align >= UINT_MAX/2)
f193c96f 1205 return AVERROR(EINVAL);
3a1a7e32 1206
70ab75eb
BL
1207 /* Pad the databuffer with:
1208 DECODE_BYTES_PAD1 or DECODE_BYTES_PAD2 for decode_bytes(),
1209 FF_INPUT_BUFFER_PADDING_SIZE, for the bitstreamreader. */
70ab75eb
BL
1210 q->decoded_bytes_buffer =
1211 av_mallocz(avctx->block_align
1212 + DECODE_BYTES_PAD1(avctx->block_align)
1213 + FF_INPUT_BUFFER_PADDING_SIZE);
70ab75eb 1214 if (q->decoded_bytes_buffer == NULL)
f193c96f 1215 return AVERROR(ENOMEM);
e0f7e329 1216
e0f7e329 1217 /* Initialize transform. */
f193c96f
JR
1218 if ((ret = init_cook_mlt(q)))
1219 return ret;
560b10a6 1220
28d997f9
MH
1221 /* Initialize COOK signal arithmetic handling */
1222 if (1) {
b5f3f2b8 1223 q->scalar_dequant = scalar_dequant_float;
28d997f9
MH
1224 q->decouple = decouple_float;
1225 q->imlt_window = imlt_window_float;
b5f3f2b8 1226 q->interpolate = interpolate_float;
28d997f9
MH
1227 q->saturate_output = saturate_output_float;
1228 }
1229
560b10a6 1230 /* Try to catch some obviously faulty streams, othervise it might be exploitable */
2e9c78d3
BL
1231 if ((q->samples_per_channel == 256) || (q->samples_per_channel == 512) || (q->samples_per_channel == 1024)) {
1232 } else {
d9dee728
DB
1233 av_log_ask_for_sample(avctx,
1234 "unknown amount of samples_per_channel = %d\n",
1235 q->samples_per_channel);
f193c96f 1236 return AVERROR(ENOTSUP);
2e9c78d3 1237 }
560b10a6 1238
c25df223 1239 avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
67da3182
BL
1240 if (channel_mask)
1241 avctx->channel_layout = channel_mask;
1242 else
c2fcd0a7 1243 avctx->channel_layout = (avctx->channels==2) ? AV_CH_LAYOUT_STEREO : AV_CH_LAYOUT_MONO;
fd76c37f 1244
f190f676 1245#ifdef DEBUG
862be28b 1246 dump_cook_context(q);
70220035 1247#endif
e0f7e329
BL
1248 return 0;
1249}
1250
1251
d36beb3f 1252AVCodec ff_cook_decoder =
e0f7e329
BL
1253{
1254 .name = "cook",
72415b2a 1255 .type = AVMEDIA_TYPE_AUDIO,
e0f7e329
BL
1256 .id = CODEC_ID_COOK,
1257 .priv_data_size = sizeof(COOKContext),
1258 .init = cook_decode_init,
1259 .close = cook_decode_close,
1260 .decode = cook_decode_frame,
fe4bf374 1261 .long_name = NULL_IF_CONFIG_SMALL("COOK"),
e0f7e329 1262};