Commit | Line | Data |
---|---|---|
de6d9b64 FB |
1 | /* |
2 | * jrevdct.c | |
3 | * | |
4 | * Copyright (C) 1991, 1992, Thomas G. Lane. | |
5 | * This file is part of the Independent JPEG Group's software. | |
6 | * For conditions of distribution and use, see the accompanying README file. | |
7 | * | |
8 | * This file contains the basic inverse-DCT transformation subroutine. | |
9 | * | |
10 | * This implementation is based on an algorithm described in | |
11 | * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT | |
12 | * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics, | |
13 | * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991. | |
14 | * The primary algorithm described there uses 11 multiplies and 29 adds. | |
15 | * We use their alternate method with 12 multiplies and 32 adds. | |
16 | * The advantage of this method is that no data path contains more than one | |
17 | * multiplication; this allows a very simple and accurate implementation in | |
18 | * scaled fixed-point arithmetic, with a minimal number of shifts. | |
19 | * | |
20 | * I've made lots of modifications to attempt to take advantage of the | |
21 | * sparse nature of the DCT matrices we're getting. Although the logic | |
22 | * is cumbersome, it's straightforward and the resulting code is much | |
23 | * faster. | |
24 | * | |
25 | * A better way to do this would be to pass in the DCT block as a sparse | |
26 | * matrix, perhaps with the difference cases encoded. | |
27 | */ | |
983e3246 MN |
28 | |
29 | /** | |
30 | * @file jrevdct.c | |
31 | * Independent JPEG Group's LLM idct. | |
32 | */ | |
33 | ||
de6d9b64 FB |
34 | #include "common.h" |
35 | #include "dsputil.h" | |
36 | ||
37 | #define EIGHT_BIT_SAMPLES | |
38 | ||
39 | #define DCTSIZE 8 | |
40 | #define DCTSIZE2 64 | |
41 | ||
42 | #define GLOBAL | |
43 | ||
44 | #define RIGHT_SHIFT(x, n) ((x) >> (n)) | |
45 | ||
46 | typedef DCTELEM DCTBLOCK[DCTSIZE2]; | |
47 | ||
48 | #define CONST_BITS 13 | |
49 | ||
50 | /* | |
51 | * This routine is specialized to the case DCTSIZE = 8. | |
52 | */ | |
53 | ||
54 | #if DCTSIZE != 8 | |
55 | Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ | |
56 | #endif | |
57 | ||
58 | ||
59 | /* | |
60 | * A 2-D IDCT can be done by 1-D IDCT on each row followed by 1-D IDCT | |
61 | * on each column. Direct algorithms are also available, but they are | |
62 | * much more complex and seem not to be any faster when reduced to code. | |
63 | * | |
64 | * The poop on this scaling stuff is as follows: | |
65 | * | |
66 | * Each 1-D IDCT step produces outputs which are a factor of sqrt(N) | |
67 | * larger than the true IDCT outputs. The final outputs are therefore | |
68 | * a factor of N larger than desired; since N=8 this can be cured by | |
69 | * a simple right shift at the end of the algorithm. The advantage of | |
70 | * this arrangement is that we save two multiplications per 1-D IDCT, | |
71 | * because the y0 and y4 inputs need not be divided by sqrt(N). | |
72 | * | |
73 | * We have to do addition and subtraction of the integer inputs, which | |
74 | * is no problem, and multiplication by fractional constants, which is | |
75 | * a problem to do in integer arithmetic. We multiply all the constants | |
76 | * by CONST_SCALE and convert them to integer constants (thus retaining | |
77 | * CONST_BITS bits of precision in the constants). After doing a | |
78 | * multiplication we have to divide the product by CONST_SCALE, with proper | |
79 | * rounding, to produce the correct output. This division can be done | |
80 | * cheaply as a right shift of CONST_BITS bits. We postpone shifting | |
81 | * as long as possible so that partial sums can be added together with | |
82 | * full fractional precision. | |
83 | * | |
84 | * The outputs of the first pass are scaled up by PASS1_BITS bits so that | |
85 | * they are represented to better-than-integral precision. These outputs | |
86 | * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word | |
87 | * with the recommended scaling. (To scale up 12-bit sample data further, an | |
88 | * intermediate int32 array would be needed.) | |
89 | * | |
90 | * To avoid overflow of the 32-bit intermediate results in pass 2, we must | |
91 | * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis | |
92 | * shows that the values given below are the most effective. | |
93 | */ | |
94 | ||
95 | #ifdef EIGHT_BIT_SAMPLES | |
96 | #define PASS1_BITS 2 | |
97 | #else | |
98 | #define PASS1_BITS 1 /* lose a little precision to avoid overflow */ | |
99 | #endif | |
100 | ||
0c1a9eda | 101 | #define ONE ((int32_t) 1) |
de6d9b64 FB |
102 | |
103 | #define CONST_SCALE (ONE << CONST_BITS) | |
104 | ||
105 | /* Convert a positive real constant to an integer scaled by CONST_SCALE. | |
106 | * IMPORTANT: if your compiler doesn't do this arithmetic at compile time, | |
107 | * you will pay a significant penalty in run time. In that case, figure | |
108 | * the correct integer constant values and insert them by hand. | |
109 | */ | |
110 | ||
111 | /* Actually FIX is no longer used, we precomputed them all */ | |
0c1a9eda | 112 | #define FIX(x) ((int32_t) ((x) * CONST_SCALE + 0.5)) |
de6d9b64 | 113 | |
0c1a9eda | 114 | /* Descale and correctly round an int32_t value that's scaled by N bits. |
de6d9b64 FB |
115 | * We assume RIGHT_SHIFT rounds towards minus infinity, so adding |
116 | * the fudge factor is correct for either sign of X. | |
117 | */ | |
118 | ||
119 | #define DESCALE(x,n) RIGHT_SHIFT((x) + (ONE << ((n)-1)), n) | |
120 | ||
0c1a9eda | 121 | /* Multiply an int32_t variable by an int32_t constant to yield an int32_t result. |
de6d9b64 FB |
122 | * For 8-bit samples with the recommended scaling, all the variable |
123 | * and constant values involved are no more than 16 bits wide, so a | |
124 | * 16x16->32 bit multiply can be used instead of a full 32x32 multiply; | |
125 | * this provides a useful speedup on many machines. | |
126 | * There is no way to specify a 16x16->32 multiply in portable C, but | |
127 | * some C compilers will do the right thing if you provide the correct | |
128 | * combination of casts. | |
129 | * NB: for 12-bit samples, a full 32-bit multiplication will be needed. | |
130 | */ | |
131 | ||
132 | #ifdef EIGHT_BIT_SAMPLES | |
133 | #ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */ | |
0c1a9eda | 134 | #define MULTIPLY(var,const) (((int16_t) (var)) * ((int16_t) (const))) |
de6d9b64 FB |
135 | #endif |
136 | #ifdef SHORTxLCONST_32 /* known to work with Microsoft C 6.0 */ | |
0c1a9eda | 137 | #define MULTIPLY(var,const) (((int16_t) (var)) * ((int32_t) (const))) |
de6d9b64 FB |
138 | #endif |
139 | #endif | |
140 | ||
141 | #ifndef MULTIPLY /* default definition */ | |
142 | #define MULTIPLY(var,const) ((var) * (const)) | |
143 | #endif | |
144 | ||
145 | ||
146 | /* | |
147 | Unlike our decoder where we approximate the FIXes, we need to use exact | |
148 | ones here or successive P-frames will drift too much with Reference frame coding | |
149 | */ | |
150 | #define FIX_0_211164243 1730 | |
151 | #define FIX_0_275899380 2260 | |
152 | #define FIX_0_298631336 2446 | |
153 | #define FIX_0_390180644 3196 | |
154 | #define FIX_0_509795579 4176 | |
155 | #define FIX_0_541196100 4433 | |
156 | #define FIX_0_601344887 4926 | |
157 | #define FIX_0_765366865 6270 | |
158 | #define FIX_0_785694958 6436 | |
159 | #define FIX_0_899976223 7373 | |
160 | #define FIX_1_061594337 8697 | |
161 | #define FIX_1_111140466 9102 | |
162 | #define FIX_1_175875602 9633 | |
163 | #define FIX_1_306562965 10703 | |
164 | #define FIX_1_387039845 11363 | |
165 | #define FIX_1_451774981 11893 | |
166 | #define FIX_1_501321110 12299 | |
167 | #define FIX_1_662939225 13623 | |
168 | #define FIX_1_847759065 15137 | |
169 | #define FIX_1_961570560 16069 | |
170 | #define FIX_2_053119869 16819 | |
171 | #define FIX_2_172734803 17799 | |
172 | #define FIX_2_562915447 20995 | |
173 | #define FIX_3_072711026 25172 | |
174 | ||
175 | /* | |
176 | * Perform the inverse DCT on one block of coefficients. | |
177 | */ | |
178 | ||
179 | void j_rev_dct(DCTBLOCK data) | |
180 | { | |
0c1a9eda ZK |
181 | int32_t tmp0, tmp1, tmp2, tmp3; |
182 | int32_t tmp10, tmp11, tmp12, tmp13; | |
183 | int32_t z1, z2, z3, z4, z5; | |
184 | int32_t d0, d1, d2, d3, d4, d5, d6, d7; | |
de6d9b64 FB |
185 | register DCTELEM *dataptr; |
186 | int rowctr; | |
187 | ||
188 | /* Pass 1: process rows. */ | |
189 | /* Note results are scaled up by sqrt(8) compared to a true IDCT; */ | |
190 | /* furthermore, we scale the results by 2**PASS1_BITS. */ | |
191 | ||
192 | dataptr = data; | |
193 | ||
194 | for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) { | |
195 | /* Due to quantization, we will usually find that many of the input | |
196 | * coefficients are zero, especially the AC terms. We can exploit this | |
197 | * by short-circuiting the IDCT calculation for any row in which all | |
198 | * the AC terms are zero. In that case each output is equal to the | |
199 | * DC coefficient (with scale factor as needed). | |
200 | * With typical images and quantization tables, half or more of the | |
201 | * row DCT calculations can be simplified this way. | |
202 | */ | |
203 | ||
204 | register int *idataptr = (int*)dataptr; | |
205 | ||
13b54752 FB |
206 | /* WARNING: we do the same permutation as MMX idct to simplify the |
207 | video core */ | |
de6d9b64 | 208 | d0 = dataptr[0]; |
13b54752 FB |
209 | d2 = dataptr[1]; |
210 | d4 = dataptr[2]; | |
211 | d6 = dataptr[3]; | |
212 | d1 = dataptr[4]; | |
213 | d3 = dataptr[5]; | |
214 | d5 = dataptr[6]; | |
de6d9b64 FB |
215 | d7 = dataptr[7]; |
216 | ||
13b54752 | 217 | if ((d1 | d2 | d3 | d4 | d5 | d6 | d7) == 0) { |
de6d9b64 FB |
218 | /* AC terms all zero */ |
219 | if (d0) { | |
220 | /* Compute a 32 bit value to assign. */ | |
221 | DCTELEM dcval = (DCTELEM) (d0 << PASS1_BITS); | |
222 | register int v = (dcval & 0xffff) | ((dcval << 16) & 0xffff0000); | |
223 | ||
224 | idataptr[0] = v; | |
225 | idataptr[1] = v; | |
226 | idataptr[2] = v; | |
227 | idataptr[3] = v; | |
228 | } | |
229 | ||
230 | dataptr += DCTSIZE; /* advance pointer to next row */ | |
231 | continue; | |
232 | } | |
233 | ||
234 | /* Even part: reverse the even part of the forward DCT. */ | |
235 | /* The rotator is sqrt(2)*c(-6). */ | |
236 | { | |
237 | if (d6) { | |
238 | if (d4) { | |
239 | if (d2) { | |
240 | if (d0) { | |
241 | /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */ | |
242 | z1 = MULTIPLY(d2 + d6, FIX_0_541196100); | |
243 | tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065); | |
244 | tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865); | |
245 | ||
246 | tmp0 = (d0 + d4) << CONST_BITS; | |
247 | tmp1 = (d0 - d4) << CONST_BITS; | |
248 | ||
249 | tmp10 = tmp0 + tmp3; | |
250 | tmp13 = tmp0 - tmp3; | |
251 | tmp11 = tmp1 + tmp2; | |
252 | tmp12 = tmp1 - tmp2; | |
253 | } else { | |
254 | /* d0 == 0, d2 != 0, d4 != 0, d6 != 0 */ | |
255 | z1 = MULTIPLY(d2 + d6, FIX_0_541196100); | |
256 | tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065); | |
257 | tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865); | |
258 | ||
259 | tmp0 = d4 << CONST_BITS; | |
260 | ||
261 | tmp10 = tmp0 + tmp3; | |
262 | tmp13 = tmp0 - tmp3; | |
263 | tmp11 = tmp2 - tmp0; | |
264 | tmp12 = -(tmp0 + tmp2); | |
265 | } | |
266 | } else { | |
267 | if (d0) { | |
268 | /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */ | |
269 | tmp2 = MULTIPLY(-d6, FIX_1_306562965); | |
270 | tmp3 = MULTIPLY(d6, FIX_0_541196100); | |
271 | ||
272 | tmp0 = (d0 + d4) << CONST_BITS; | |
273 | tmp1 = (d0 - d4) << CONST_BITS; | |
274 | ||
275 | tmp10 = tmp0 + tmp3; | |
276 | tmp13 = tmp0 - tmp3; | |
277 | tmp11 = tmp1 + tmp2; | |
278 | tmp12 = tmp1 - tmp2; | |
279 | } else { | |
280 | /* d0 == 0, d2 == 0, d4 != 0, d6 != 0 */ | |
281 | tmp2 = MULTIPLY(-d6, FIX_1_306562965); | |
282 | tmp3 = MULTIPLY(d6, FIX_0_541196100); | |
283 | ||
284 | tmp0 = d4 << CONST_BITS; | |
285 | ||
286 | tmp10 = tmp0 + tmp3; | |
287 | tmp13 = tmp0 - tmp3; | |
288 | tmp11 = tmp2 - tmp0; | |
289 | tmp12 = -(tmp0 + tmp2); | |
290 | } | |
291 | } | |
292 | } else { | |
293 | if (d2) { | |
294 | if (d0) { | |
295 | /* d0 != 0, d2 != 0, d4 == 0, d6 != 0 */ | |
296 | z1 = MULTIPLY(d2 + d6, FIX_0_541196100); | |
297 | tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065); | |
298 | tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865); | |
299 | ||
300 | tmp0 = d0 << CONST_BITS; | |
301 | ||
302 | tmp10 = tmp0 + tmp3; | |
303 | tmp13 = tmp0 - tmp3; | |
304 | tmp11 = tmp0 + tmp2; | |
305 | tmp12 = tmp0 - tmp2; | |
306 | } else { | |
307 | /* d0 == 0, d2 != 0, d4 == 0, d6 != 0 */ | |
308 | z1 = MULTIPLY(d2 + d6, FIX_0_541196100); | |
309 | tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065); | |
310 | tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865); | |
311 | ||
312 | tmp10 = tmp3; | |
313 | tmp13 = -tmp3; | |
314 | tmp11 = tmp2; | |
315 | tmp12 = -tmp2; | |
316 | } | |
317 | } else { | |
318 | if (d0) { | |
319 | /* d0 != 0, d2 == 0, d4 == 0, d6 != 0 */ | |
320 | tmp2 = MULTIPLY(-d6, FIX_1_306562965); | |
321 | tmp3 = MULTIPLY(d6, FIX_0_541196100); | |
322 | ||
323 | tmp0 = d0 << CONST_BITS; | |
324 | ||
325 | tmp10 = tmp0 + tmp3; | |
326 | tmp13 = tmp0 - tmp3; | |
327 | tmp11 = tmp0 + tmp2; | |
328 | tmp12 = tmp0 - tmp2; | |
329 | } else { | |
330 | /* d0 == 0, d2 == 0, d4 == 0, d6 != 0 */ | |
331 | tmp2 = MULTIPLY(-d6, FIX_1_306562965); | |
332 | tmp3 = MULTIPLY(d6, FIX_0_541196100); | |
333 | ||
334 | tmp10 = tmp3; | |
335 | tmp13 = -tmp3; | |
336 | tmp11 = tmp2; | |
337 | tmp12 = -tmp2; | |
338 | } | |
339 | } | |
340 | } | |
341 | } else { | |
342 | if (d4) { | |
343 | if (d2) { | |
344 | if (d0) { | |
345 | /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */ | |
346 | tmp2 = MULTIPLY(d2, FIX_0_541196100); | |
347 | tmp3 = MULTIPLY(d2, FIX_1_306562965); | |
348 | ||
349 | tmp0 = (d0 + d4) << CONST_BITS; | |
350 | tmp1 = (d0 - d4) << CONST_BITS; | |
351 | ||
352 | tmp10 = tmp0 + tmp3; | |
353 | tmp13 = tmp0 - tmp3; | |
354 | tmp11 = tmp1 + tmp2; | |
355 | tmp12 = tmp1 - tmp2; | |
356 | } else { | |
357 | /* d0 == 0, d2 != 0, d4 != 0, d6 == 0 */ | |
358 | tmp2 = MULTIPLY(d2, FIX_0_541196100); | |
359 | tmp3 = MULTIPLY(d2, FIX_1_306562965); | |
360 | ||
361 | tmp0 = d4 << CONST_BITS; | |
362 | ||
363 | tmp10 = tmp0 + tmp3; | |
364 | tmp13 = tmp0 - tmp3; | |
365 | tmp11 = tmp2 - tmp0; | |
366 | tmp12 = -(tmp0 + tmp2); | |
367 | } | |
368 | } else { | |
369 | if (d0) { | |
370 | /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */ | |
371 | tmp10 = tmp13 = (d0 + d4) << CONST_BITS; | |
372 | tmp11 = tmp12 = (d0 - d4) << CONST_BITS; | |
373 | } else { | |
374 | /* d0 == 0, d2 == 0, d4 != 0, d6 == 0 */ | |
375 | tmp10 = tmp13 = d4 << CONST_BITS; | |
376 | tmp11 = tmp12 = -tmp10; | |
377 | } | |
378 | } | |
379 | } else { | |
380 | if (d2) { | |
381 | if (d0) { | |
382 | /* d0 != 0, d2 != 0, d4 == 0, d6 == 0 */ | |
383 | tmp2 = MULTIPLY(d2, FIX_0_541196100); | |
384 | tmp3 = MULTIPLY(d2, FIX_1_306562965); | |
385 | ||
386 | tmp0 = d0 << CONST_BITS; | |
387 | ||
388 | tmp10 = tmp0 + tmp3; | |
389 | tmp13 = tmp0 - tmp3; | |
390 | tmp11 = tmp0 + tmp2; | |
391 | tmp12 = tmp0 - tmp2; | |
392 | } else { | |
393 | /* d0 == 0, d2 != 0, d4 == 0, d6 == 0 */ | |
394 | tmp2 = MULTIPLY(d2, FIX_0_541196100); | |
395 | tmp3 = MULTIPLY(d2, FIX_1_306562965); | |
396 | ||
397 | tmp10 = tmp3; | |
398 | tmp13 = -tmp3; | |
399 | tmp11 = tmp2; | |
400 | tmp12 = -tmp2; | |
401 | } | |
402 | } else { | |
403 | if (d0) { | |
404 | /* d0 != 0, d2 == 0, d4 == 0, d6 == 0 */ | |
405 | tmp10 = tmp13 = tmp11 = tmp12 = d0 << CONST_BITS; | |
406 | } else { | |
407 | /* d0 == 0, d2 == 0, d4 == 0, d6 == 0 */ | |
408 | tmp10 = tmp13 = tmp11 = tmp12 = 0; | |
409 | } | |
410 | } | |
411 | } | |
412 | } | |
413 | ||
414 | /* Odd part per figure 8; the matrix is unitary and hence its | |
415 | * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. | |
416 | */ | |
417 | ||
418 | if (d7) { | |
419 | if (d5) { | |
420 | if (d3) { | |
421 | if (d1) { | |
422 | /* d1 != 0, d3 != 0, d5 != 0, d7 != 0 */ | |
423 | z1 = d7 + d1; | |
424 | z2 = d5 + d3; | |
425 | z3 = d7 + d3; | |
426 | z4 = d5 + d1; | |
427 | z5 = MULTIPLY(z3 + z4, FIX_1_175875602); | |
428 | ||
429 | tmp0 = MULTIPLY(d7, FIX_0_298631336); | |
430 | tmp1 = MULTIPLY(d5, FIX_2_053119869); | |
431 | tmp2 = MULTIPLY(d3, FIX_3_072711026); | |
432 | tmp3 = MULTIPLY(d1, FIX_1_501321110); | |
433 | z1 = MULTIPLY(-z1, FIX_0_899976223); | |
434 | z2 = MULTIPLY(-z2, FIX_2_562915447); | |
435 | z3 = MULTIPLY(-z3, FIX_1_961570560); | |
436 | z4 = MULTIPLY(-z4, FIX_0_390180644); | |
437 | ||
438 | z3 += z5; | |
439 | z4 += z5; | |
440 | ||
441 | tmp0 += z1 + z3; | |
442 | tmp1 += z2 + z4; | |
443 | tmp2 += z2 + z3; | |
444 | tmp3 += z1 + z4; | |
445 | } else { | |
446 | /* d1 == 0, d3 != 0, d5 != 0, d7 != 0 */ | |
447 | z2 = d5 + d3; | |
448 | z3 = d7 + d3; | |
449 | z5 = MULTIPLY(z3 + d5, FIX_1_175875602); | |
450 | ||
451 | tmp0 = MULTIPLY(d7, FIX_0_298631336); | |
452 | tmp1 = MULTIPLY(d5, FIX_2_053119869); | |
453 | tmp2 = MULTIPLY(d3, FIX_3_072711026); | |
454 | z1 = MULTIPLY(-d7, FIX_0_899976223); | |
455 | z2 = MULTIPLY(-z2, FIX_2_562915447); | |
456 | z3 = MULTIPLY(-z3, FIX_1_961570560); | |
457 | z4 = MULTIPLY(-d5, FIX_0_390180644); | |
458 | ||
459 | z3 += z5; | |
460 | z4 += z5; | |
461 | ||
462 | tmp0 += z1 + z3; | |
463 | tmp1 += z2 + z4; | |
464 | tmp2 += z2 + z3; | |
465 | tmp3 = z1 + z4; | |
466 | } | |
467 | } else { | |
468 | if (d1) { | |
469 | /* d1 != 0, d3 == 0, d5 != 0, d7 != 0 */ | |
470 | z1 = d7 + d1; | |
471 | z4 = d5 + d1; | |
472 | z5 = MULTIPLY(d7 + z4, FIX_1_175875602); | |
473 | ||
474 | tmp0 = MULTIPLY(d7, FIX_0_298631336); | |
475 | tmp1 = MULTIPLY(d5, FIX_2_053119869); | |
476 | tmp3 = MULTIPLY(d1, FIX_1_501321110); | |
477 | z1 = MULTIPLY(-z1, FIX_0_899976223); | |
478 | z2 = MULTIPLY(-d5, FIX_2_562915447); | |
479 | z3 = MULTIPLY(-d7, FIX_1_961570560); | |
480 | z4 = MULTIPLY(-z4, FIX_0_390180644); | |
481 | ||
482 | z3 += z5; | |
483 | z4 += z5; | |
484 | ||
485 | tmp0 += z1 + z3; | |
486 | tmp1 += z2 + z4; | |
487 | tmp2 = z2 + z3; | |
488 | tmp3 += z1 + z4; | |
489 | } else { | |
490 | /* d1 == 0, d3 == 0, d5 != 0, d7 != 0 */ | |
491 | tmp0 = MULTIPLY(-d7, FIX_0_601344887); | |
492 | z1 = MULTIPLY(-d7, FIX_0_899976223); | |
493 | z3 = MULTIPLY(-d7, FIX_1_961570560); | |
494 | tmp1 = MULTIPLY(-d5, FIX_0_509795579); | |
495 | z2 = MULTIPLY(-d5, FIX_2_562915447); | |
496 | z4 = MULTIPLY(-d5, FIX_0_390180644); | |
497 | z5 = MULTIPLY(d5 + d7, FIX_1_175875602); | |
498 | ||
499 | z3 += z5; | |
500 | z4 += z5; | |
501 | ||
502 | tmp0 += z3; | |
503 | tmp1 += z4; | |
504 | tmp2 = z2 + z3; | |
505 | tmp3 = z1 + z4; | |
506 | } | |
507 | } | |
508 | } else { | |
509 | if (d3) { | |
510 | if (d1) { | |
511 | /* d1 != 0, d3 != 0, d5 == 0, d7 != 0 */ | |
512 | z1 = d7 + d1; | |
513 | z3 = d7 + d3; | |
514 | z5 = MULTIPLY(z3 + d1, FIX_1_175875602); | |
515 | ||
516 | tmp0 = MULTIPLY(d7, FIX_0_298631336); | |
517 | tmp2 = MULTIPLY(d3, FIX_3_072711026); | |
518 | tmp3 = MULTIPLY(d1, FIX_1_501321110); | |
519 | z1 = MULTIPLY(-z1, FIX_0_899976223); | |
520 | z2 = MULTIPLY(-d3, FIX_2_562915447); | |
521 | z3 = MULTIPLY(-z3, FIX_1_961570560); | |
522 | z4 = MULTIPLY(-d1, FIX_0_390180644); | |
523 | ||
524 | z3 += z5; | |
525 | z4 += z5; | |
526 | ||
527 | tmp0 += z1 + z3; | |
528 | tmp1 = z2 + z4; | |
529 | tmp2 += z2 + z3; | |
530 | tmp3 += z1 + z4; | |
531 | } else { | |
532 | /* d1 == 0, d3 != 0, d5 == 0, d7 != 0 */ | |
533 | z3 = d7 + d3; | |
534 | ||
535 | tmp0 = MULTIPLY(-d7, FIX_0_601344887); | |
536 | z1 = MULTIPLY(-d7, FIX_0_899976223); | |
537 | tmp2 = MULTIPLY(d3, FIX_0_509795579); | |
538 | z2 = MULTIPLY(-d3, FIX_2_562915447); | |
539 | z5 = MULTIPLY(z3, FIX_1_175875602); | |
540 | z3 = MULTIPLY(-z3, FIX_0_785694958); | |
541 | ||
542 | tmp0 += z3; | |
543 | tmp1 = z2 + z5; | |
544 | tmp2 += z3; | |
545 | tmp3 = z1 + z5; | |
546 | } | |
547 | } else { | |
548 | if (d1) { | |
549 | /* d1 != 0, d3 == 0, d5 == 0, d7 != 0 */ | |
550 | z1 = d7 + d1; | |
551 | z5 = MULTIPLY(z1, FIX_1_175875602); | |
552 | ||
553 | z1 = MULTIPLY(z1, FIX_0_275899380); | |
554 | z3 = MULTIPLY(-d7, FIX_1_961570560); | |
555 | tmp0 = MULTIPLY(-d7, FIX_1_662939225); | |
556 | z4 = MULTIPLY(-d1, FIX_0_390180644); | |
557 | tmp3 = MULTIPLY(d1, FIX_1_111140466); | |
558 | ||
559 | tmp0 += z1; | |
560 | tmp1 = z4 + z5; | |
561 | tmp2 = z3 + z5; | |
562 | tmp3 += z1; | |
563 | } else { | |
564 | /* d1 == 0, d3 == 0, d5 == 0, d7 != 0 */ | |
565 | tmp0 = MULTIPLY(-d7, FIX_1_387039845); | |
566 | tmp1 = MULTIPLY(d7, FIX_1_175875602); | |
567 | tmp2 = MULTIPLY(-d7, FIX_0_785694958); | |
568 | tmp3 = MULTIPLY(d7, FIX_0_275899380); | |
569 | } | |
570 | } | |
571 | } | |
572 | } else { | |
573 | if (d5) { | |
574 | if (d3) { | |
575 | if (d1) { | |
576 | /* d1 != 0, d3 != 0, d5 != 0, d7 == 0 */ | |
577 | z2 = d5 + d3; | |
578 | z4 = d5 + d1; | |
579 | z5 = MULTIPLY(d3 + z4, FIX_1_175875602); | |
580 | ||
581 | tmp1 = MULTIPLY(d5, FIX_2_053119869); | |
582 | tmp2 = MULTIPLY(d3, FIX_3_072711026); | |
583 | tmp3 = MULTIPLY(d1, FIX_1_501321110); | |
584 | z1 = MULTIPLY(-d1, FIX_0_899976223); | |
585 | z2 = MULTIPLY(-z2, FIX_2_562915447); | |
586 | z3 = MULTIPLY(-d3, FIX_1_961570560); | |
587 | z4 = MULTIPLY(-z4, FIX_0_390180644); | |
588 | ||
589 | z3 += z5; | |
590 | z4 += z5; | |
591 | ||
592 | tmp0 = z1 + z3; | |
593 | tmp1 += z2 + z4; | |
594 | tmp2 += z2 + z3; | |
595 | tmp3 += z1 + z4; | |
596 | } else { | |
597 | /* d1 == 0, d3 != 0, d5 != 0, d7 == 0 */ | |
598 | z2 = d5 + d3; | |
599 | ||
600 | z5 = MULTIPLY(z2, FIX_1_175875602); | |
601 | tmp1 = MULTIPLY(d5, FIX_1_662939225); | |
602 | z4 = MULTIPLY(-d5, FIX_0_390180644); | |
603 | z2 = MULTIPLY(-z2, FIX_1_387039845); | |
604 | tmp2 = MULTIPLY(d3, FIX_1_111140466); | |
605 | z3 = MULTIPLY(-d3, FIX_1_961570560); | |
606 | ||
607 | tmp0 = z3 + z5; | |
608 | tmp1 += z2; | |
609 | tmp2 += z2; | |
610 | tmp3 = z4 + z5; | |
611 | } | |
612 | } else { | |
613 | if (d1) { | |
614 | /* d1 != 0, d3 == 0, d5 != 0, d7 == 0 */ | |
615 | z4 = d5 + d1; | |
616 | ||
617 | z5 = MULTIPLY(z4, FIX_1_175875602); | |
618 | z1 = MULTIPLY(-d1, FIX_0_899976223); | |
619 | tmp3 = MULTIPLY(d1, FIX_0_601344887); | |
620 | tmp1 = MULTIPLY(-d5, FIX_0_509795579); | |
621 | z2 = MULTIPLY(-d5, FIX_2_562915447); | |
622 | z4 = MULTIPLY(z4, FIX_0_785694958); | |
623 | ||
624 | tmp0 = z1 + z5; | |
625 | tmp1 += z4; | |
626 | tmp2 = z2 + z5; | |
627 | tmp3 += z4; | |
628 | } else { | |
629 | /* d1 == 0, d3 == 0, d5 != 0, d7 == 0 */ | |
630 | tmp0 = MULTIPLY(d5, FIX_1_175875602); | |
631 | tmp1 = MULTIPLY(d5, FIX_0_275899380); | |
632 | tmp2 = MULTIPLY(-d5, FIX_1_387039845); | |
633 | tmp3 = MULTIPLY(d5, FIX_0_785694958); | |
634 | } | |
635 | } | |
636 | } else { | |
637 | if (d3) { | |
638 | if (d1) { | |
639 | /* d1 != 0, d3 != 0, d5 == 0, d7 == 0 */ | |
640 | z5 = d1 + d3; | |
641 | tmp3 = MULTIPLY(d1, FIX_0_211164243); | |
642 | tmp2 = MULTIPLY(-d3, FIX_1_451774981); | |
643 | z1 = MULTIPLY(d1, FIX_1_061594337); | |
644 | z2 = MULTIPLY(-d3, FIX_2_172734803); | |
645 | z4 = MULTIPLY(z5, FIX_0_785694958); | |
646 | z5 = MULTIPLY(z5, FIX_1_175875602); | |
647 | ||
648 | tmp0 = z1 - z4; | |
649 | tmp1 = z2 + z4; | |
650 | tmp2 += z5; | |
651 | tmp3 += z5; | |
652 | } else { | |
653 | /* d1 == 0, d3 != 0, d5 == 0, d7 == 0 */ | |
654 | tmp0 = MULTIPLY(-d3, FIX_0_785694958); | |
655 | tmp1 = MULTIPLY(-d3, FIX_1_387039845); | |
656 | tmp2 = MULTIPLY(-d3, FIX_0_275899380); | |
657 | tmp3 = MULTIPLY(d3, FIX_1_175875602); | |
658 | } | |
659 | } else { | |
660 | if (d1) { | |
661 | /* d1 != 0, d3 == 0, d5 == 0, d7 == 0 */ | |
662 | tmp0 = MULTIPLY(d1, FIX_0_275899380); | |
663 | tmp1 = MULTIPLY(d1, FIX_0_785694958); | |
664 | tmp2 = MULTIPLY(d1, FIX_1_175875602); | |
665 | tmp3 = MULTIPLY(d1, FIX_1_387039845); | |
666 | } else { | |
667 | /* d1 == 0, d3 == 0, d5 == 0, d7 == 0 */ | |
668 | tmp0 = tmp1 = tmp2 = tmp3 = 0; | |
669 | } | |
670 | } | |
671 | } | |
672 | } | |
673 | } | |
674 | /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ | |
675 | ||
676 | dataptr[0] = (DCTELEM) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS); | |
677 | dataptr[7] = (DCTELEM) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS); | |
678 | dataptr[1] = (DCTELEM) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS); | |
679 | dataptr[6] = (DCTELEM) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS); | |
680 | dataptr[2] = (DCTELEM) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS); | |
681 | dataptr[5] = (DCTELEM) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS); | |
682 | dataptr[3] = (DCTELEM) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS); | |
683 | dataptr[4] = (DCTELEM) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS); | |
684 | ||
685 | dataptr += DCTSIZE; /* advance pointer to next row */ | |
686 | } | |
687 | ||
688 | /* Pass 2: process columns. */ | |
689 | /* Note that we must descale the results by a factor of 8 == 2**3, */ | |
690 | /* and also undo the PASS1_BITS scaling. */ | |
691 | ||
692 | dataptr = data; | |
693 | for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) { | |
694 | /* Columns of zeroes can be exploited in the same way as we did with rows. | |
695 | * However, the row calculation has created many nonzero AC terms, so the | |
696 | * simplification applies less often (typically 5% to 10% of the time). | |
697 | * On machines with very fast multiplication, it's possible that the | |
698 | * test takes more time than it's worth. In that case this section | |
699 | * may be commented out. | |
700 | */ | |
701 | ||
702 | d0 = dataptr[DCTSIZE*0]; | |
703 | d1 = dataptr[DCTSIZE*1]; | |
704 | d2 = dataptr[DCTSIZE*2]; | |
705 | d3 = dataptr[DCTSIZE*3]; | |
706 | d4 = dataptr[DCTSIZE*4]; | |
707 | d5 = dataptr[DCTSIZE*5]; | |
708 | d6 = dataptr[DCTSIZE*6]; | |
709 | d7 = dataptr[DCTSIZE*7]; | |
710 | ||
711 | /* Even part: reverse the even part of the forward DCT. */ | |
712 | /* The rotator is sqrt(2)*c(-6). */ | |
713 | if (d6) { | |
714 | if (d4) { | |
715 | if (d2) { | |
716 | if (d0) { | |
717 | /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */ | |
718 | z1 = MULTIPLY(d2 + d6, FIX_0_541196100); | |
719 | tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065); | |
720 | tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865); | |
721 | ||
722 | tmp0 = (d0 + d4) << CONST_BITS; | |
723 | tmp1 = (d0 - d4) << CONST_BITS; | |
724 | ||
725 | tmp10 = tmp0 + tmp3; | |
726 | tmp13 = tmp0 - tmp3; | |
727 | tmp11 = tmp1 + tmp2; | |
728 | tmp12 = tmp1 - tmp2; | |
729 | } else { | |
730 | /* d0 == 0, d2 != 0, d4 != 0, d6 != 0 */ | |
731 | z1 = MULTIPLY(d2 + d6, FIX_0_541196100); | |
732 | tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065); | |
733 | tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865); | |
734 | ||
735 | tmp0 = d4 << CONST_BITS; | |
736 | ||
737 | tmp10 = tmp0 + tmp3; | |
738 | tmp13 = tmp0 - tmp3; | |
739 | tmp11 = tmp2 - tmp0; | |
740 | tmp12 = -(tmp0 + tmp2); | |
741 | } | |
742 | } else { | |
743 | if (d0) { | |
744 | /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */ | |
745 | tmp2 = MULTIPLY(-d6, FIX_1_306562965); | |
746 | tmp3 = MULTIPLY(d6, FIX_0_541196100); | |
747 | ||
748 | tmp0 = (d0 + d4) << CONST_BITS; | |
749 | tmp1 = (d0 - d4) << CONST_BITS; | |
750 | ||
751 | tmp10 = tmp0 + tmp3; | |
752 | tmp13 = tmp0 - tmp3; | |
753 | tmp11 = tmp1 + tmp2; | |
754 | tmp12 = tmp1 - tmp2; | |
755 | } else { | |
756 | /* d0 == 0, d2 == 0, d4 != 0, d6 != 0 */ | |
757 | tmp2 = MULTIPLY(-d6, FIX_1_306562965); | |
758 | tmp3 = MULTIPLY(d6, FIX_0_541196100); | |
759 | ||
760 | tmp0 = d4 << CONST_BITS; | |
761 | ||
762 | tmp10 = tmp0 + tmp3; | |
763 | tmp13 = tmp0 - tmp3; | |
764 | tmp11 = tmp2 - tmp0; | |
765 | tmp12 = -(tmp0 + tmp2); | |
766 | } | |
767 | } | |
768 | } else { | |
769 | if (d2) { | |
770 | if (d0) { | |
771 | /* d0 != 0, d2 != 0, d4 == 0, d6 != 0 */ | |
772 | z1 = MULTIPLY(d2 + d6, FIX_0_541196100); | |
773 | tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065); | |
774 | tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865); | |
775 | ||
776 | tmp0 = d0 << CONST_BITS; | |
777 | ||
778 | tmp10 = tmp0 + tmp3; | |
779 | tmp13 = tmp0 - tmp3; | |
780 | tmp11 = tmp0 + tmp2; | |
781 | tmp12 = tmp0 - tmp2; | |
782 | } else { | |
783 | /* d0 == 0, d2 != 0, d4 == 0, d6 != 0 */ | |
784 | z1 = MULTIPLY(d2 + d6, FIX_0_541196100); | |
785 | tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065); | |
786 | tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865); | |
787 | ||
788 | tmp10 = tmp3; | |
789 | tmp13 = -tmp3; | |
790 | tmp11 = tmp2; | |
791 | tmp12 = -tmp2; | |
792 | } | |
793 | } else { | |
794 | if (d0) { | |
795 | /* d0 != 0, d2 == 0, d4 == 0, d6 != 0 */ | |
796 | tmp2 = MULTIPLY(-d6, FIX_1_306562965); | |
797 | tmp3 = MULTIPLY(d6, FIX_0_541196100); | |
798 | ||
799 | tmp0 = d0 << CONST_BITS; | |
800 | ||
801 | tmp10 = tmp0 + tmp3; | |
802 | tmp13 = tmp0 - tmp3; | |
803 | tmp11 = tmp0 + tmp2; | |
804 | tmp12 = tmp0 - tmp2; | |
805 | } else { | |
806 | /* d0 == 0, d2 == 0, d4 == 0, d6 != 0 */ | |
807 | tmp2 = MULTIPLY(-d6, FIX_1_306562965); | |
808 | tmp3 = MULTIPLY(d6, FIX_0_541196100); | |
809 | ||
810 | tmp10 = tmp3; | |
811 | tmp13 = -tmp3; | |
812 | tmp11 = tmp2; | |
813 | tmp12 = -tmp2; | |
814 | } | |
815 | } | |
816 | } | |
817 | } else { | |
818 | if (d4) { | |
819 | if (d2) { | |
820 | if (d0) { | |
821 | /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */ | |
822 | tmp2 = MULTIPLY(d2, FIX_0_541196100); | |
823 | tmp3 = MULTIPLY(d2, FIX_1_306562965); | |
824 | ||
825 | tmp0 = (d0 + d4) << CONST_BITS; | |
826 | tmp1 = (d0 - d4) << CONST_BITS; | |
827 | ||
828 | tmp10 = tmp0 + tmp3; | |
829 | tmp13 = tmp0 - tmp3; | |
830 | tmp11 = tmp1 + tmp2; | |
831 | tmp12 = tmp1 - tmp2; | |
832 | } else { | |
833 | /* d0 == 0, d2 != 0, d4 != 0, d6 == 0 */ | |
834 | tmp2 = MULTIPLY(d2, FIX_0_541196100); | |
835 | tmp3 = MULTIPLY(d2, FIX_1_306562965); | |
836 | ||
837 | tmp0 = d4 << CONST_BITS; | |
838 | ||
839 | tmp10 = tmp0 + tmp3; | |
840 | tmp13 = tmp0 - tmp3; | |
841 | tmp11 = tmp2 - tmp0; | |
842 | tmp12 = -(tmp0 + tmp2); | |
843 | } | |
844 | } else { | |
845 | if (d0) { | |
846 | /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */ | |
847 | tmp10 = tmp13 = (d0 + d4) << CONST_BITS; | |
848 | tmp11 = tmp12 = (d0 - d4) << CONST_BITS; | |
849 | } else { | |
850 | /* d0 == 0, d2 == 0, d4 != 0, d6 == 0 */ | |
851 | tmp10 = tmp13 = d4 << CONST_BITS; | |
852 | tmp11 = tmp12 = -tmp10; | |
853 | } | |
854 | } | |
855 | } else { | |
856 | if (d2) { | |
857 | if (d0) { | |
858 | /* d0 != 0, d2 != 0, d4 == 0, d6 == 0 */ | |
859 | tmp2 = MULTIPLY(d2, FIX_0_541196100); | |
860 | tmp3 = MULTIPLY(d2, FIX_1_306562965); | |
861 | ||
862 | tmp0 = d0 << CONST_BITS; | |
863 | ||
864 | tmp10 = tmp0 + tmp3; | |
865 | tmp13 = tmp0 - tmp3; | |
866 | tmp11 = tmp0 + tmp2; | |
867 | tmp12 = tmp0 - tmp2; | |
868 | } else { | |
869 | /* d0 == 0, d2 != 0, d4 == 0, d6 == 0 */ | |
870 | tmp2 = MULTIPLY(d2, FIX_0_541196100); | |
871 | tmp3 = MULTIPLY(d2, FIX_1_306562965); | |
872 | ||
873 | tmp10 = tmp3; | |
874 | tmp13 = -tmp3; | |
875 | tmp11 = tmp2; | |
876 | tmp12 = -tmp2; | |
877 | } | |
878 | } else { | |
879 | if (d0) { | |
880 | /* d0 != 0, d2 == 0, d4 == 0, d6 == 0 */ | |
881 | tmp10 = tmp13 = tmp11 = tmp12 = d0 << CONST_BITS; | |
882 | } else { | |
883 | /* d0 == 0, d2 == 0, d4 == 0, d6 == 0 */ | |
884 | tmp10 = tmp13 = tmp11 = tmp12 = 0; | |
885 | } | |
886 | } | |
887 | } | |
888 | } | |
889 | ||
890 | /* Odd part per figure 8; the matrix is unitary and hence its | |
891 | * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. | |
892 | */ | |
893 | if (d7) { | |
894 | if (d5) { | |
895 | if (d3) { | |
896 | if (d1) { | |
897 | /* d1 != 0, d3 != 0, d5 != 0, d7 != 0 */ | |
898 | z1 = d7 + d1; | |
899 | z2 = d5 + d3; | |
900 | z3 = d7 + d3; | |
901 | z4 = d5 + d1; | |
902 | z5 = MULTIPLY(z3 + z4, FIX_1_175875602); | |
903 | ||
904 | tmp0 = MULTIPLY(d7, FIX_0_298631336); | |
905 | tmp1 = MULTIPLY(d5, FIX_2_053119869); | |
906 | tmp2 = MULTIPLY(d3, FIX_3_072711026); | |
907 | tmp3 = MULTIPLY(d1, FIX_1_501321110); | |
908 | z1 = MULTIPLY(-z1, FIX_0_899976223); | |
909 | z2 = MULTIPLY(-z2, FIX_2_562915447); | |
910 | z3 = MULTIPLY(-z3, FIX_1_961570560); | |
911 | z4 = MULTIPLY(-z4, FIX_0_390180644); | |
912 | ||
913 | z3 += z5; | |
914 | z4 += z5; | |
915 | ||
916 | tmp0 += z1 + z3; | |
917 | tmp1 += z2 + z4; | |
918 | tmp2 += z2 + z3; | |
919 | tmp3 += z1 + z4; | |
920 | } else { | |
921 | /* d1 == 0, d3 != 0, d5 != 0, d7 != 0 */ | |
922 | z1 = d7; | |
923 | z2 = d5 + d3; | |
924 | z3 = d7 + d3; | |
925 | z5 = MULTIPLY(z3 + d5, FIX_1_175875602); | |
926 | ||
927 | tmp0 = MULTIPLY(d7, FIX_0_298631336); | |
928 | tmp1 = MULTIPLY(d5, FIX_2_053119869); | |
929 | tmp2 = MULTIPLY(d3, FIX_3_072711026); | |
930 | z1 = MULTIPLY(-d7, FIX_0_899976223); | |
931 | z2 = MULTIPLY(-z2, FIX_2_562915447); | |
932 | z3 = MULTIPLY(-z3, FIX_1_961570560); | |
933 | z4 = MULTIPLY(-d5, FIX_0_390180644); | |
934 | ||
935 | z3 += z5; | |
936 | z4 += z5; | |
937 | ||
938 | tmp0 += z1 + z3; | |
939 | tmp1 += z2 + z4; | |
940 | tmp2 += z2 + z3; | |
941 | tmp3 = z1 + z4; | |
942 | } | |
943 | } else { | |
944 | if (d1) { | |
945 | /* d1 != 0, d3 == 0, d5 != 0, d7 != 0 */ | |
946 | z1 = d7 + d1; | |
947 | z2 = d5; | |
948 | z3 = d7; | |
949 | z4 = d5 + d1; | |
950 | z5 = MULTIPLY(z3 + z4, FIX_1_175875602); | |
951 | ||
952 | tmp0 = MULTIPLY(d7, FIX_0_298631336); | |
953 | tmp1 = MULTIPLY(d5, FIX_2_053119869); | |
954 | tmp3 = MULTIPLY(d1, FIX_1_501321110); | |
955 | z1 = MULTIPLY(-z1, FIX_0_899976223); | |
956 | z2 = MULTIPLY(-d5, FIX_2_562915447); | |
957 | z3 = MULTIPLY(-d7, FIX_1_961570560); | |
958 | z4 = MULTIPLY(-z4, FIX_0_390180644); | |
959 | ||
960 | z3 += z5; | |
961 | z4 += z5; | |
962 | ||
963 | tmp0 += z1 + z3; | |
964 | tmp1 += z2 + z4; | |
965 | tmp2 = z2 + z3; | |
966 | tmp3 += z1 + z4; | |
967 | } else { | |
968 | /* d1 == 0, d3 == 0, d5 != 0, d7 != 0 */ | |
969 | tmp0 = MULTIPLY(-d7, FIX_0_601344887); | |
970 | z1 = MULTIPLY(-d7, FIX_0_899976223); | |
971 | z3 = MULTIPLY(-d7, FIX_1_961570560); | |
972 | tmp1 = MULTIPLY(-d5, FIX_0_509795579); | |
973 | z2 = MULTIPLY(-d5, FIX_2_562915447); | |
974 | z4 = MULTIPLY(-d5, FIX_0_390180644); | |
975 | z5 = MULTIPLY(d5 + d7, FIX_1_175875602); | |
976 | ||
977 | z3 += z5; | |
978 | z4 += z5; | |
979 | ||
980 | tmp0 += z3; | |
981 | tmp1 += z4; | |
982 | tmp2 = z2 + z3; | |
983 | tmp3 = z1 + z4; | |
984 | } | |
985 | } | |
986 | } else { | |
987 | if (d3) { | |
988 | if (d1) { | |
989 | /* d1 != 0, d3 != 0, d5 == 0, d7 != 0 */ | |
990 | z1 = d7 + d1; | |
991 | z3 = d7 + d3; | |
992 | z5 = MULTIPLY(z3 + d1, FIX_1_175875602); | |
993 | ||
994 | tmp0 = MULTIPLY(d7, FIX_0_298631336); | |
995 | tmp2 = MULTIPLY(d3, FIX_3_072711026); | |
996 | tmp3 = MULTIPLY(d1, FIX_1_501321110); | |
997 | z1 = MULTIPLY(-z1, FIX_0_899976223); | |
998 | z2 = MULTIPLY(-d3, FIX_2_562915447); | |
999 | z3 = MULTIPLY(-z3, FIX_1_961570560); | |
1000 | z4 = MULTIPLY(-d1, FIX_0_390180644); | |
1001 | ||
1002 | z3 += z5; | |
1003 | z4 += z5; | |
1004 | ||
1005 | tmp0 += z1 + z3; | |
1006 | tmp1 = z2 + z4; | |
1007 | tmp2 += z2 + z3; | |
1008 | tmp3 += z1 + z4; | |
1009 | } else { | |
1010 | /* d1 == 0, d3 != 0, d5 == 0, d7 != 0 */ | |
1011 | z3 = d7 + d3; | |
1012 | ||
1013 | tmp0 = MULTIPLY(-d7, FIX_0_601344887); | |
1014 | z1 = MULTIPLY(-d7, FIX_0_899976223); | |
1015 | tmp2 = MULTIPLY(d3, FIX_0_509795579); | |
1016 | z2 = MULTIPLY(-d3, FIX_2_562915447); | |
1017 | z5 = MULTIPLY(z3, FIX_1_175875602); | |
1018 | z3 = MULTIPLY(-z3, FIX_0_785694958); | |
1019 | ||
1020 | tmp0 += z3; | |
1021 | tmp1 = z2 + z5; | |
1022 | tmp2 += z3; | |
1023 | tmp3 = z1 + z5; | |
1024 | } | |
1025 | } else { | |
1026 | if (d1) { | |
1027 | /* d1 != 0, d3 == 0, d5 == 0, d7 != 0 */ | |
1028 | z1 = d7 + d1; | |
1029 | z5 = MULTIPLY(z1, FIX_1_175875602); | |
1030 | ||
1031 | z1 = MULTIPLY(z1, FIX_0_275899380); | |
1032 | z3 = MULTIPLY(-d7, FIX_1_961570560); | |
1033 | tmp0 = MULTIPLY(-d7, FIX_1_662939225); | |
1034 | z4 = MULTIPLY(-d1, FIX_0_390180644); | |
1035 | tmp3 = MULTIPLY(d1, FIX_1_111140466); | |
1036 | ||
1037 | tmp0 += z1; | |
1038 | tmp1 = z4 + z5; | |
1039 | tmp2 = z3 + z5; | |
1040 | tmp3 += z1; | |
1041 | } else { | |
1042 | /* d1 == 0, d3 == 0, d5 == 0, d7 != 0 */ | |
1043 | tmp0 = MULTIPLY(-d7, FIX_1_387039845); | |
1044 | tmp1 = MULTIPLY(d7, FIX_1_175875602); | |
1045 | tmp2 = MULTIPLY(-d7, FIX_0_785694958); | |
1046 | tmp3 = MULTIPLY(d7, FIX_0_275899380); | |
1047 | } | |
1048 | } | |
1049 | } | |
1050 | } else { | |
1051 | if (d5) { | |
1052 | if (d3) { | |
1053 | if (d1) { | |
1054 | /* d1 != 0, d3 != 0, d5 != 0, d7 == 0 */ | |
1055 | z2 = d5 + d3; | |
1056 | z4 = d5 + d1; | |
1057 | z5 = MULTIPLY(d3 + z4, FIX_1_175875602); | |
1058 | ||
1059 | tmp1 = MULTIPLY(d5, FIX_2_053119869); | |
1060 | tmp2 = MULTIPLY(d3, FIX_3_072711026); | |
1061 | tmp3 = MULTIPLY(d1, FIX_1_501321110); | |
1062 | z1 = MULTIPLY(-d1, FIX_0_899976223); | |
1063 | z2 = MULTIPLY(-z2, FIX_2_562915447); | |
1064 | z3 = MULTIPLY(-d3, FIX_1_961570560); | |
1065 | z4 = MULTIPLY(-z4, FIX_0_390180644); | |
1066 | ||
1067 | z3 += z5; | |
1068 | z4 += z5; | |
1069 | ||
1070 | tmp0 = z1 + z3; | |
1071 | tmp1 += z2 + z4; | |
1072 | tmp2 += z2 + z3; | |
1073 | tmp3 += z1 + z4; | |
1074 | } else { | |
1075 | /* d1 == 0, d3 != 0, d5 != 0, d7 == 0 */ | |
1076 | z2 = d5 + d3; | |
1077 | ||
1078 | z5 = MULTIPLY(z2, FIX_1_175875602); | |
1079 | tmp1 = MULTIPLY(d5, FIX_1_662939225); | |
1080 | z4 = MULTIPLY(-d5, FIX_0_390180644); | |
1081 | z2 = MULTIPLY(-z2, FIX_1_387039845); | |
1082 | tmp2 = MULTIPLY(d3, FIX_1_111140466); | |
1083 | z3 = MULTIPLY(-d3, FIX_1_961570560); | |
1084 | ||
1085 | tmp0 = z3 + z5; | |
1086 | tmp1 += z2; | |
1087 | tmp2 += z2; | |
1088 | tmp3 = z4 + z5; | |
1089 | } | |
1090 | } else { | |
1091 | if (d1) { | |
1092 | /* d1 != 0, d3 == 0, d5 != 0, d7 == 0 */ | |
1093 | z4 = d5 + d1; | |
1094 | ||
1095 | z5 = MULTIPLY(z4, FIX_1_175875602); | |
1096 | z1 = MULTIPLY(-d1, FIX_0_899976223); | |
1097 | tmp3 = MULTIPLY(d1, FIX_0_601344887); | |
1098 | tmp1 = MULTIPLY(-d5, FIX_0_509795579); | |
1099 | z2 = MULTIPLY(-d5, FIX_2_562915447); | |
1100 | z4 = MULTIPLY(z4, FIX_0_785694958); | |
1101 | ||
1102 | tmp0 = z1 + z5; | |
1103 | tmp1 += z4; | |
1104 | tmp2 = z2 + z5; | |
1105 | tmp3 += z4; | |
1106 | } else { | |
1107 | /* d1 == 0, d3 == 0, d5 != 0, d7 == 0 */ | |
1108 | tmp0 = MULTIPLY(d5, FIX_1_175875602); | |
1109 | tmp1 = MULTIPLY(d5, FIX_0_275899380); | |
1110 | tmp2 = MULTIPLY(-d5, FIX_1_387039845); | |
1111 | tmp3 = MULTIPLY(d5, FIX_0_785694958); | |
1112 | } | |
1113 | } | |
1114 | } else { | |
1115 | if (d3) { | |
1116 | if (d1) { | |
1117 | /* d1 != 0, d3 != 0, d5 == 0, d7 == 0 */ | |
1118 | z5 = d1 + d3; | |
1119 | tmp3 = MULTIPLY(d1, FIX_0_211164243); | |
1120 | tmp2 = MULTIPLY(-d3, FIX_1_451774981); | |
1121 | z1 = MULTIPLY(d1, FIX_1_061594337); | |
1122 | z2 = MULTIPLY(-d3, FIX_2_172734803); | |
1123 | z4 = MULTIPLY(z5, FIX_0_785694958); | |
1124 | z5 = MULTIPLY(z5, FIX_1_175875602); | |
1125 | ||
1126 | tmp0 = z1 - z4; | |
1127 | tmp1 = z2 + z4; | |
1128 | tmp2 += z5; | |
1129 | tmp3 += z5; | |
1130 | } else { | |
1131 | /* d1 == 0, d3 != 0, d5 == 0, d7 == 0 */ | |
1132 | tmp0 = MULTIPLY(-d3, FIX_0_785694958); | |
1133 | tmp1 = MULTIPLY(-d3, FIX_1_387039845); | |
1134 | tmp2 = MULTIPLY(-d3, FIX_0_275899380); | |
1135 | tmp3 = MULTIPLY(d3, FIX_1_175875602); | |
1136 | } | |
1137 | } else { | |
1138 | if (d1) { | |
1139 | /* d1 != 0, d3 == 0, d5 == 0, d7 == 0 */ | |
1140 | tmp0 = MULTIPLY(d1, FIX_0_275899380); | |
1141 | tmp1 = MULTIPLY(d1, FIX_0_785694958); | |
1142 | tmp2 = MULTIPLY(d1, FIX_1_175875602); | |
1143 | tmp3 = MULTIPLY(d1, FIX_1_387039845); | |
1144 | } else { | |
1145 | /* d1 == 0, d3 == 0, d5 == 0, d7 == 0 */ | |
1146 | tmp0 = tmp1 = tmp2 = tmp3 = 0; | |
1147 | } | |
1148 | } | |
1149 | } | |
1150 | } | |
1151 | ||
1152 | /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ | |
1153 | ||
1154 | dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp3, | |
1155 | CONST_BITS+PASS1_BITS+3); | |
1156 | dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp10 - tmp3, | |
1157 | CONST_BITS+PASS1_BITS+3); | |
1158 | dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp11 + tmp2, | |
1159 | CONST_BITS+PASS1_BITS+3); | |
1160 | dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(tmp11 - tmp2, | |
1161 | CONST_BITS+PASS1_BITS+3); | |
1162 | dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(tmp12 + tmp1, | |
1163 | CONST_BITS+PASS1_BITS+3); | |
1164 | dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12 - tmp1, | |
1165 | CONST_BITS+PASS1_BITS+3); | |
1166 | dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp13 + tmp0, | |
1167 | CONST_BITS+PASS1_BITS+3); | |
1168 | dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp13 - tmp0, | |
1169 | CONST_BITS+PASS1_BITS+3); | |
1170 | ||
1171 | dataptr++; /* advance pointer to next column */ | |
1172 | } | |
1173 | } | |
1174 | ||
178fcca8 MN |
1175 | #undef DCTSIZE |
1176 | #define DCTSIZE 4 | |
1177 | #define DCTSTRIDE 8 | |
1178 | ||
1179 | void j_rev_dct4(DCTBLOCK data) | |
1180 | { | |
1181 | int32_t tmp0, tmp1, tmp2, tmp3; | |
1182 | int32_t tmp10, tmp11, tmp12, tmp13; | |
1183 | int32_t z1; | |
1184 | int32_t d0, d2, d4, d6; | |
1185 | register DCTELEM *dataptr; | |
1186 | int rowctr; | |
1187 | ||
1188 | /* Pass 1: process rows. */ | |
1189 | /* Note results are scaled up by sqrt(8) compared to a true IDCT; */ | |
1190 | /* furthermore, we scale the results by 2**PASS1_BITS. */ | |
1191 | ||
1192 | dataptr = data; | |
1193 | ||
1194 | for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) { | |
1195 | /* Due to quantization, we will usually find that many of the input | |
1196 | * coefficients are zero, especially the AC terms. We can exploit this | |
1197 | * by short-circuiting the IDCT calculation for any row in which all | |
1198 | * the AC terms are zero. In that case each output is equal to the | |
1199 | * DC coefficient (with scale factor as needed). | |
1200 | * With typical images and quantization tables, half or more of the | |
1201 | * row DCT calculations can be simplified this way. | |
1202 | */ | |
1203 | ||
1204 | register int *idataptr = (int*)dataptr; | |
1205 | ||
1206 | /* WARNING: we do the same permutation as MMX idct to simplify the | |
1207 | video core */ | |
1208 | d0 = dataptr[0]; | |
1209 | d2 = dataptr[1]; | |
1210 | d4 = dataptr[2]; | |
1211 | d6 = dataptr[3]; | |
1212 | ||
1213 | if ((d2 | d4 | d6) == 0) { | |
1214 | /* AC terms all zero */ | |
1215 | if (d0) { | |
1216 | /* Compute a 32 bit value to assign. */ | |
1217 | DCTELEM dcval = (DCTELEM) (d0 << PASS1_BITS); | |
1218 | register int v = (dcval & 0xffff) | ((dcval << 16) & 0xffff0000); | |
1219 | ||
1220 | idataptr[0] = v; | |
1221 | idataptr[1] = v; | |
1222 | } | |
1223 | ||
1224 | dataptr += DCTSTRIDE; /* advance pointer to next row */ | |
1225 | continue; | |
1226 | } | |
1227 | ||
1228 | /* Even part: reverse the even part of the forward DCT. */ | |
1229 | /* The rotator is sqrt(2)*c(-6). */ | |
1230 | if (d6) { | |
1231 | if (d4) { | |
1232 | if (d2) { | |
1233 | if (d0) { | |
1234 | /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */ | |
1235 | z1 = MULTIPLY(d2 + d6, FIX_0_541196100); | |
1236 | tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065); | |
1237 | tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865); | |
1238 | ||
1239 | tmp0 = (d0 + d4) << CONST_BITS; | |
1240 | tmp1 = (d0 - d4) << CONST_BITS; | |
1241 | ||
1242 | tmp10 = tmp0 + tmp3; | |
1243 | tmp13 = tmp0 - tmp3; | |
1244 | tmp11 = tmp1 + tmp2; | |
1245 | tmp12 = tmp1 - tmp2; | |
1246 | } else { | |
1247 | /* d0 == 0, d2 != 0, d4 != 0, d6 != 0 */ | |
1248 | z1 = MULTIPLY(d2 + d6, FIX_0_541196100); | |
1249 | tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065); | |
1250 | tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865); | |
1251 | ||
1252 | tmp0 = d4 << CONST_BITS; | |
1253 | ||
1254 | tmp10 = tmp0 + tmp3; | |
1255 | tmp13 = tmp0 - tmp3; | |
1256 | tmp11 = tmp2 - tmp0; | |
1257 | tmp12 = -(tmp0 + tmp2); | |
1258 | } | |
1259 | } else { | |
1260 | if (d0) { | |
1261 | /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */ | |
1262 | tmp2 = MULTIPLY(-d6, FIX_1_306562965); | |
1263 | tmp3 = MULTIPLY(d6, FIX_0_541196100); | |
1264 | ||
1265 | tmp0 = (d0 + d4) << CONST_BITS; | |
1266 | tmp1 = (d0 - d4) << CONST_BITS; | |
1267 | ||
1268 | tmp10 = tmp0 + tmp3; | |
1269 | tmp13 = tmp0 - tmp3; | |
1270 | tmp11 = tmp1 + tmp2; | |
1271 | tmp12 = tmp1 - tmp2; | |
1272 | } else { | |
1273 | /* d0 == 0, d2 == 0, d4 != 0, d6 != 0 */ | |
1274 | tmp2 = MULTIPLY(-d6, FIX_1_306562965); | |
1275 | tmp3 = MULTIPLY(d6, FIX_0_541196100); | |
1276 | ||
1277 | tmp0 = d4 << CONST_BITS; | |
1278 | ||
1279 | tmp10 = tmp0 + tmp3; | |
1280 | tmp13 = tmp0 - tmp3; | |
1281 | tmp11 = tmp2 - tmp0; | |
1282 | tmp12 = -(tmp0 + tmp2); | |
1283 | } | |
1284 | } | |
1285 | } else { | |
1286 | if (d2) { | |
1287 | if (d0) { | |
1288 | /* d0 != 0, d2 != 0, d4 == 0, d6 != 0 */ | |
1289 | z1 = MULTIPLY(d2 + d6, FIX_0_541196100); | |
1290 | tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065); | |
1291 | tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865); | |
1292 | ||
1293 | tmp0 = d0 << CONST_BITS; | |
1294 | ||
1295 | tmp10 = tmp0 + tmp3; | |
1296 | tmp13 = tmp0 - tmp3; | |
1297 | tmp11 = tmp0 + tmp2; | |
1298 | tmp12 = tmp0 - tmp2; | |
1299 | } else { | |
1300 | /* d0 == 0, d2 != 0, d4 == 0, d6 != 0 */ | |
1301 | z1 = MULTIPLY(d2 + d6, FIX_0_541196100); | |
1302 | tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065); | |
1303 | tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865); | |
1304 | ||
1305 | tmp10 = tmp3; | |
1306 | tmp13 = -tmp3; | |
1307 | tmp11 = tmp2; | |
1308 | tmp12 = -tmp2; | |
1309 | } | |
1310 | } else { | |
1311 | if (d0) { | |
1312 | /* d0 != 0, d2 == 0, d4 == 0, d6 != 0 */ | |
1313 | tmp2 = MULTIPLY(-d6, FIX_1_306562965); | |
1314 | tmp3 = MULTIPLY(d6, FIX_0_541196100); | |
1315 | ||
1316 | tmp0 = d0 << CONST_BITS; | |
1317 | ||
1318 | tmp10 = tmp0 + tmp3; | |
1319 | tmp13 = tmp0 - tmp3; | |
1320 | tmp11 = tmp0 + tmp2; | |
1321 | tmp12 = tmp0 - tmp2; | |
1322 | } else { | |
1323 | /* d0 == 0, d2 == 0, d4 == 0, d6 != 0 */ | |
1324 | tmp2 = MULTIPLY(-d6, FIX_1_306562965); | |
1325 | tmp3 = MULTIPLY(d6, FIX_0_541196100); | |
1326 | ||
1327 | tmp10 = tmp3; | |
1328 | tmp13 = -tmp3; | |
1329 | tmp11 = tmp2; | |
1330 | tmp12 = -tmp2; | |
1331 | } | |
1332 | } | |
1333 | } | |
1334 | } else { | |
1335 | if (d4) { | |
1336 | if (d2) { | |
1337 | if (d0) { | |
1338 | /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */ | |
1339 | tmp2 = MULTIPLY(d2, FIX_0_541196100); | |
1340 | tmp3 = MULTIPLY(d2, FIX_1_306562965); | |
1341 | ||
1342 | tmp0 = (d0 + d4) << CONST_BITS; | |
1343 | tmp1 = (d0 - d4) << CONST_BITS; | |
1344 | ||
1345 | tmp10 = tmp0 + tmp3; | |
1346 | tmp13 = tmp0 - tmp3; | |
1347 | tmp11 = tmp1 + tmp2; | |
1348 | tmp12 = tmp1 - tmp2; | |
1349 | } else { | |
1350 | /* d0 == 0, d2 != 0, d4 != 0, d6 == 0 */ | |
1351 | tmp2 = MULTIPLY(d2, FIX_0_541196100); | |
1352 | tmp3 = MULTIPLY(d2, FIX_1_306562965); | |
1353 | ||
1354 | tmp0 = d4 << CONST_BITS; | |
1355 | ||
1356 | tmp10 = tmp0 + tmp3; | |
1357 | tmp13 = tmp0 - tmp3; | |
1358 | tmp11 = tmp2 - tmp0; | |
1359 | tmp12 = -(tmp0 + tmp2); | |
1360 | } | |
1361 | } else { | |
1362 | if (d0) { | |
1363 | /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */ | |
1364 | tmp10 = tmp13 = (d0 + d4) << CONST_BITS; | |
1365 | tmp11 = tmp12 = (d0 - d4) << CONST_BITS; | |
1366 | } else { | |
1367 | /* d0 == 0, d2 == 0, d4 != 0, d6 == 0 */ | |
1368 | tmp10 = tmp13 = d4 << CONST_BITS; | |
1369 | tmp11 = tmp12 = -tmp10; | |
1370 | } | |
1371 | } | |
1372 | } else { | |
1373 | if (d2) { | |
1374 | if (d0) { | |
1375 | /* d0 != 0, d2 != 0, d4 == 0, d6 == 0 */ | |
1376 | tmp2 = MULTIPLY(d2, FIX_0_541196100); | |
1377 | tmp3 = MULTIPLY(d2, FIX_1_306562965); | |
1378 | ||
1379 | tmp0 = d0 << CONST_BITS; | |
1380 | ||
1381 | tmp10 = tmp0 + tmp3; | |
1382 | tmp13 = tmp0 - tmp3; | |
1383 | tmp11 = tmp0 + tmp2; | |
1384 | tmp12 = tmp0 - tmp2; | |
1385 | } else { | |
1386 | /* d0 == 0, d2 != 0, d4 == 0, d6 == 0 */ | |
1387 | tmp2 = MULTIPLY(d2, FIX_0_541196100); | |
1388 | tmp3 = MULTIPLY(d2, FIX_1_306562965); | |
1389 | ||
1390 | tmp10 = tmp3; | |
1391 | tmp13 = -tmp3; | |
1392 | tmp11 = tmp2; | |
1393 | tmp12 = -tmp2; | |
1394 | } | |
1395 | } else { | |
1396 | if (d0) { | |
1397 | /* d0 != 0, d2 == 0, d4 == 0, d6 == 0 */ | |
1398 | tmp10 = tmp13 = tmp11 = tmp12 = d0 << CONST_BITS; | |
1399 | } else { | |
1400 | /* d0 == 0, d2 == 0, d4 == 0, d6 == 0 */ | |
1401 | tmp10 = tmp13 = tmp11 = tmp12 = 0; | |
1402 | } | |
1403 | } | |
1404 | } | |
1405 | } | |
1406 | ||
1407 | /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ | |
1408 | ||
1409 | dataptr[0] = (DCTELEM) DESCALE(tmp10, CONST_BITS-PASS1_BITS); | |
1410 | dataptr[1] = (DCTELEM) DESCALE(tmp11, CONST_BITS-PASS1_BITS); | |
1411 | dataptr[2] = (DCTELEM) DESCALE(tmp12, CONST_BITS-PASS1_BITS); | |
1412 | dataptr[3] = (DCTELEM) DESCALE(tmp13, CONST_BITS-PASS1_BITS); | |
1413 | ||
1414 | dataptr += DCTSTRIDE; /* advance pointer to next row */ | |
1415 | } | |
1416 | ||
1417 | /* Pass 2: process columns. */ | |
1418 | /* Note that we must descale the results by a factor of 8 == 2**3, */ | |
1419 | /* and also undo the PASS1_BITS scaling. */ | |
1420 | ||
1421 | dataptr = data; | |
1422 | for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) { | |
1423 | /* Columns of zeroes can be exploited in the same way as we did with rows. | |
1424 | * However, the row calculation has created many nonzero AC terms, so the | |
1425 | * simplification applies less often (typically 5% to 10% of the time). | |
1426 | * On machines with very fast multiplication, it's possible that the | |
1427 | * test takes more time than it's worth. In that case this section | |
1428 | * may be commented out. | |
1429 | */ | |
1430 | ||
1431 | d0 = dataptr[DCTSTRIDE*0]; | |
1432 | d2 = dataptr[DCTSTRIDE*1]; | |
1433 | d4 = dataptr[DCTSTRIDE*2]; | |
1434 | d6 = dataptr[DCTSTRIDE*3]; | |
1435 | ||
1436 | /* Even part: reverse the even part of the forward DCT. */ | |
1437 | /* The rotator is sqrt(2)*c(-6). */ | |
1438 | if (d6) { | |
1439 | if (d4) { | |
1440 | if (d2) { | |
1441 | if (d0) { | |
1442 | /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */ | |
1443 | z1 = MULTIPLY(d2 + d6, FIX_0_541196100); | |
1444 | tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065); | |
1445 | tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865); | |
1446 | ||
1447 | tmp0 = (d0 + d4) << CONST_BITS; | |
1448 | tmp1 = (d0 - d4) << CONST_BITS; | |
1449 | ||
1450 | tmp10 = tmp0 + tmp3; | |
1451 | tmp13 = tmp0 - tmp3; | |
1452 | tmp11 = tmp1 + tmp2; | |
1453 | tmp12 = tmp1 - tmp2; | |
1454 | } else { | |
1455 | /* d0 == 0, d2 != 0, d4 != 0, d6 != 0 */ | |
1456 | z1 = MULTIPLY(d2 + d6, FIX_0_541196100); | |
1457 | tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065); | |
1458 | tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865); | |
1459 | ||
1460 | tmp0 = d4 << CONST_BITS; | |
1461 | ||
1462 | tmp10 = tmp0 + tmp3; | |
1463 | tmp13 = tmp0 - tmp3; | |
1464 | tmp11 = tmp2 - tmp0; | |
1465 | tmp12 = -(tmp0 + tmp2); | |
1466 | } | |
1467 | } else { | |
1468 | if (d0) { | |
1469 | /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */ | |
1470 | tmp2 = MULTIPLY(-d6, FIX_1_306562965); | |
1471 | tmp3 = MULTIPLY(d6, FIX_0_541196100); | |
1472 | ||
1473 | tmp0 = (d0 + d4) << CONST_BITS; | |
1474 | tmp1 = (d0 - d4) << CONST_BITS; | |
1475 | ||
1476 | tmp10 = tmp0 + tmp3; | |
1477 | tmp13 = tmp0 - tmp3; | |
1478 | tmp11 = tmp1 + tmp2; | |
1479 | tmp12 = tmp1 - tmp2; | |
1480 | } else { | |
1481 | /* d0 == 0, d2 == 0, d4 != 0, d6 != 0 */ | |
1482 | tmp2 = MULTIPLY(-d6, FIX_1_306562965); | |
1483 | tmp3 = MULTIPLY(d6, FIX_0_541196100); | |
1484 | ||
1485 | tmp0 = d4 << CONST_BITS; | |
1486 | ||
1487 | tmp10 = tmp0 + tmp3; | |
1488 | tmp13 = tmp0 - tmp3; | |
1489 | tmp11 = tmp2 - tmp0; | |
1490 | tmp12 = -(tmp0 + tmp2); | |
1491 | } | |
1492 | } | |
1493 | } else { | |
1494 | if (d2) { | |
1495 | if (d0) { | |
1496 | /* d0 != 0, d2 != 0, d4 == 0, d6 != 0 */ | |
1497 | z1 = MULTIPLY(d2 + d6, FIX_0_541196100); | |
1498 | tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065); | |
1499 | tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865); | |
1500 | ||
1501 | tmp0 = d0 << CONST_BITS; | |
1502 | ||
1503 | tmp10 = tmp0 + tmp3; | |
1504 | tmp13 = tmp0 - tmp3; | |
1505 | tmp11 = tmp0 + tmp2; | |
1506 | tmp12 = tmp0 - tmp2; | |
1507 | } else { | |
1508 | /* d0 == 0, d2 != 0, d4 == 0, d6 != 0 */ | |
1509 | z1 = MULTIPLY(d2 + d6, FIX_0_541196100); | |
1510 | tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065); | |
1511 | tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865); | |
1512 | ||
1513 | tmp10 = tmp3; | |
1514 | tmp13 = -tmp3; | |
1515 | tmp11 = tmp2; | |
1516 | tmp12 = -tmp2; | |
1517 | } | |
1518 | } else { | |
1519 | if (d0) { | |
1520 | /* d0 != 0, d2 == 0, d4 == 0, d6 != 0 */ | |
1521 | tmp2 = MULTIPLY(-d6, FIX_1_306562965); | |
1522 | tmp3 = MULTIPLY(d6, FIX_0_541196100); | |
1523 | ||
1524 | tmp0 = d0 << CONST_BITS; | |
1525 | ||
1526 | tmp10 = tmp0 + tmp3; | |
1527 | tmp13 = tmp0 - tmp3; | |
1528 | tmp11 = tmp0 + tmp2; | |
1529 | tmp12 = tmp0 - tmp2; | |
1530 | } else { | |
1531 | /* d0 == 0, d2 == 0, d4 == 0, d6 != 0 */ | |
1532 | tmp2 = MULTIPLY(-d6, FIX_1_306562965); | |
1533 | tmp3 = MULTIPLY(d6, FIX_0_541196100); | |
1534 | ||
1535 | tmp10 = tmp3; | |
1536 | tmp13 = -tmp3; | |
1537 | tmp11 = tmp2; | |
1538 | tmp12 = -tmp2; | |
1539 | } | |
1540 | } | |
1541 | } | |
1542 | } else { | |
1543 | if (d4) { | |
1544 | if (d2) { | |
1545 | if (d0) { | |
1546 | /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */ | |
1547 | tmp2 = MULTIPLY(d2, FIX_0_541196100); | |
1548 | tmp3 = MULTIPLY(d2, FIX_1_306562965); | |
1549 | ||
1550 | tmp0 = (d0 + d4) << CONST_BITS; | |
1551 | tmp1 = (d0 - d4) << CONST_BITS; | |
1552 | ||
1553 | tmp10 = tmp0 + tmp3; | |
1554 | tmp13 = tmp0 - tmp3; | |
1555 | tmp11 = tmp1 + tmp2; | |
1556 | tmp12 = tmp1 - tmp2; | |
1557 | } else { | |
1558 | /* d0 == 0, d2 != 0, d4 != 0, d6 == 0 */ | |
1559 | tmp2 = MULTIPLY(d2, FIX_0_541196100); | |
1560 | tmp3 = MULTIPLY(d2, FIX_1_306562965); | |
1561 | ||
1562 | tmp0 = d4 << CONST_BITS; | |
1563 | ||
1564 | tmp10 = tmp0 + tmp3; | |
1565 | tmp13 = tmp0 - tmp3; | |
1566 | tmp11 = tmp2 - tmp0; | |
1567 | tmp12 = -(tmp0 + tmp2); | |
1568 | } | |
1569 | } else { | |
1570 | if (d0) { | |
1571 | /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */ | |
1572 | tmp10 = tmp13 = (d0 + d4) << CONST_BITS; | |
1573 | tmp11 = tmp12 = (d0 - d4) << CONST_BITS; | |
1574 | } else { | |
1575 | /* d0 == 0, d2 == 0, d4 != 0, d6 == 0 */ | |
1576 | tmp10 = tmp13 = d4 << CONST_BITS; | |
1577 | tmp11 = tmp12 = -tmp10; | |
1578 | } | |
1579 | } | |
1580 | } else { | |
1581 | if (d2) { | |
1582 | if (d0) { | |
1583 | /* d0 != 0, d2 != 0, d4 == 0, d6 == 0 */ | |
1584 | tmp2 = MULTIPLY(d2, FIX_0_541196100); | |
1585 | tmp3 = MULTIPLY(d2, FIX_1_306562965); | |
1586 | ||
1587 | tmp0 = d0 << CONST_BITS; | |
1588 | ||
1589 | tmp10 = tmp0 + tmp3; | |
1590 | tmp13 = tmp0 - tmp3; | |
1591 | tmp11 = tmp0 + tmp2; | |
1592 | tmp12 = tmp0 - tmp2; | |
1593 | } else { | |
1594 | /* d0 == 0, d2 != 0, d4 == 0, d6 == 0 */ | |
1595 | tmp2 = MULTIPLY(d2, FIX_0_541196100); | |
1596 | tmp3 = MULTIPLY(d2, FIX_1_306562965); | |
1597 | ||
1598 | tmp10 = tmp3; | |
1599 | tmp13 = -tmp3; | |
1600 | tmp11 = tmp2; | |
1601 | tmp12 = -tmp2; | |
1602 | } | |
1603 | } else { | |
1604 | if (d0) { | |
1605 | /* d0 != 0, d2 == 0, d4 == 0, d6 == 0 */ | |
1606 | tmp10 = tmp13 = tmp11 = tmp12 = d0 << CONST_BITS; | |
1607 | } else { | |
1608 | /* d0 == 0, d2 == 0, d4 == 0, d6 == 0 */ | |
1609 | tmp10 = tmp13 = tmp11 = tmp12 = 0; | |
1610 | } | |
1611 | } | |
1612 | } | |
1613 | } | |
1614 | ||
1615 | /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ | |
1616 | ||
1617 | dataptr[DCTSTRIDE*0] = (DCTELEM) DESCALE(tmp10, | |
1618 | CONST_BITS+PASS1_BITS+3); | |
1619 | dataptr[DCTSTRIDE*1] = (DCTELEM) DESCALE(tmp11, | |
1620 | CONST_BITS+PASS1_BITS+3); | |
1621 | dataptr[DCTSTRIDE*2] = (DCTELEM) DESCALE(tmp12, | |
1622 | CONST_BITS+PASS1_BITS+3); | |
1623 | dataptr[DCTSTRIDE*3] = (DCTELEM) DESCALE(tmp13, | |
1624 | CONST_BITS+PASS1_BITS+3); | |
1625 | ||
1626 | dataptr++; /* advance pointer to next column */ | |
1627 | } | |
1628 | } | |
1629 | ||
1630 | ||
cd4af68a ZK |
1631 | #undef FIX |
1632 | #undef CONST_BITS |