Commit | Line | Data |
---|---|---|
de6d9b64 FB |
1 | /* |
2 | * The simplest mpeg audio layer 2 encoder | |
ff4ec49e | 3 | * Copyright (c) 2000, 2001 Fabrice Bellard. |
de6d9b64 | 4 | * |
ff4ec49e FB |
5 | * This library is free software; you can redistribute it and/or |
6 | * modify it under the terms of the GNU Lesser General Public | |
7 | * License as published by the Free Software Foundation; either | |
8 | * version 2 of the License, or (at your option) any later version. | |
de6d9b64 | 9 | * |
ff4ec49e | 10 | * This library is distributed in the hope that it will be useful, |
de6d9b64 | 11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
ff4ec49e FB |
12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
13 | * Lesser General Public License for more details. | |
de6d9b64 | 14 | * |
ff4ec49e FB |
15 | * You should have received a copy of the GNU Lesser General Public |
16 | * License along with this library; if not, write to the Free Software | |
17 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | |
de6d9b64 | 18 | */ |
de6d9b64 FB |
19 | #include "avcodec.h" |
20 | #include "mpegaudio.h" | |
21 | ||
afa982fd FB |
22 | /* currently, cannot change these constants (need to modify |
23 | quantization stage) */ | |
24 | #define FRAC_BITS 15 | |
25 | #define WFRAC_BITS 14 | |
0c1a9eda | 26 | #define MUL(a,b) (((int64_t)(a) * (int64_t)(b)) >> FRAC_BITS) |
afa982fd | 27 | #define FIX(a) ((int)((a) * (1 << FRAC_BITS))) |
2456e28d FB |
28 | |
29 | #define SAMPLES_BUF_SIZE 4096 | |
30 | ||
31 | typedef struct MpegAudioContext { | |
32 | PutBitContext pb; | |
33 | int nb_channels; | |
34 | int freq, bit_rate; | |
35 | int lsf; /* 1 if mpeg2 low bitrate selected */ | |
36 | int bitrate_index; /* bit rate */ | |
37 | int freq_index; | |
38 | int frame_size; /* frame size, in bits, without padding */ | |
0c1a9eda | 39 | int64_t nb_samples; /* total number of samples encoded */ |
2456e28d FB |
40 | /* padding computation */ |
41 | int frame_frac, frame_frac_incr, do_padding; | |
42 | short samples_buf[MPA_MAX_CHANNELS][SAMPLES_BUF_SIZE]; /* buffer for filter */ | |
43 | int samples_offset[MPA_MAX_CHANNELS]; /* offset in samples_buf */ | |
44 | int sb_samples[MPA_MAX_CHANNELS][3][12][SBLIMIT]; | |
45 | unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3]; /* scale factors */ | |
46 | /* code to group 3 scale factors */ | |
47 | unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT]; | |
48 | int sblimit; /* number of used subbands */ | |
49 | const unsigned char *alloc_table; | |
50 | } MpegAudioContext; | |
51 | ||
de6d9b64 FB |
52 | /* define it to use floats in quantization (I don't like floats !) */ |
53 | //#define USE_FLOATS | |
54 | ||
de6d9b64 FB |
55 | #include "mpegaudiotab.h" |
56 | ||
5c91a675 | 57 | static int MPA_encode_init(AVCodecContext *avctx) |
de6d9b64 FB |
58 | { |
59 | MpegAudioContext *s = avctx->priv_data; | |
60 | int freq = avctx->sample_rate; | |
61 | int bitrate = avctx->bit_rate; | |
62 | int channels = avctx->channels; | |
2456e28d | 63 | int i, v, table; |
de6d9b64 FB |
64 | float a; |
65 | ||
66 | if (channels > 2) | |
67 | return -1; | |
68 | bitrate = bitrate / 1000; | |
69 | s->nb_channels = channels; | |
70 | s->freq = freq; | |
71 | s->bit_rate = bitrate * 1000; | |
72 | avctx->frame_size = MPA_FRAME_SIZE; | |
de6d9b64 FB |
73 | |
74 | /* encoding freq */ | |
75 | s->lsf = 0; | |
76 | for(i=0;i<3;i++) { | |
2456e28d | 77 | if (mpa_freq_tab[i] == freq) |
de6d9b64 | 78 | break; |
2456e28d | 79 | if ((mpa_freq_tab[i] / 2) == freq) { |
de6d9b64 FB |
80 | s->lsf = 1; |
81 | break; | |
82 | } | |
83 | } | |
84 | if (i == 3) | |
85 | return -1; | |
86 | s->freq_index = i; | |
87 | ||
88 | /* encoding bitrate & frequency */ | |
89 | for(i=0;i<15;i++) { | |
2456e28d | 90 | if (mpa_bitrate_tab[s->lsf][1][i] == bitrate) |
de6d9b64 FB |
91 | break; |
92 | } | |
93 | if (i == 15) | |
94 | return -1; | |
95 | s->bitrate_index = i; | |
96 | ||
97 | /* compute total header size & pad bit */ | |
98 | ||
99 | a = (float)(bitrate * 1000 * MPA_FRAME_SIZE) / (freq * 8.0); | |
100 | s->frame_size = ((int)a) * 8; | |
101 | ||
102 | /* frame fractional size to compute padding */ | |
103 | s->frame_frac = 0; | |
104 | s->frame_frac_incr = (int)((a - floor(a)) * 65536.0); | |
105 | ||
106 | /* select the right allocation table */ | |
2456e28d FB |
107 | table = l2_select_table(bitrate, s->nb_channels, freq, s->lsf); |
108 | ||
de6d9b64 FB |
109 | /* number of used subbands */ |
110 | s->sblimit = sblimit_table[table]; | |
111 | s->alloc_table = alloc_tables[table]; | |
112 | ||
113 | #ifdef DEBUG | |
114 | printf("%d kb/s, %d Hz, frame_size=%d bits, table=%d, padincr=%x\n", | |
115 | bitrate, freq, s->frame_size, table, s->frame_frac_incr); | |
116 | #endif | |
117 | ||
118 | for(i=0;i<s->nb_channels;i++) | |
119 | s->samples_offset[i] = 0; | |
120 | ||
2456e28d FB |
121 | for(i=0;i<257;i++) { |
122 | int v; | |
afa982fd FB |
123 | v = mpa_enwindow[i]; |
124 | #if WFRAC_BITS != 16 | |
125 | v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS); | |
126 | #endif | |
2456e28d FB |
127 | filter_bank[i] = v; |
128 | if ((i & 63) != 0) | |
129 | v = -v; | |
130 | if (i != 0) | |
131 | filter_bank[512 - i] = v; | |
de6d9b64 | 132 | } |
2456e28d | 133 | |
de6d9b64 FB |
134 | for(i=0;i<64;i++) { |
135 | v = (int)(pow(2.0, (3 - i) / 3.0) * (1 << 20)); | |
136 | if (v <= 0) | |
137 | v = 1; | |
138 | scale_factor_table[i] = v; | |
139 | #ifdef USE_FLOATS | |
140 | scale_factor_inv_table[i] = pow(2.0, -(3 - i) / 3.0) / (float)(1 << 20); | |
141 | #else | |
142 | #define P 15 | |
143 | scale_factor_shift[i] = 21 - P - (i / 3); | |
144 | scale_factor_mult[i] = (1 << P) * pow(2.0, (i % 3) / 3.0); | |
145 | #endif | |
146 | } | |
147 | for(i=0;i<128;i++) { | |
148 | v = i - 64; | |
149 | if (v <= -3) | |
150 | v = 0; | |
151 | else if (v < 0) | |
152 | v = 1; | |
153 | else if (v == 0) | |
154 | v = 2; | |
155 | else if (v < 3) | |
156 | v = 3; | |
157 | else | |
158 | v = 4; | |
159 | scale_diff_table[i] = v; | |
160 | } | |
161 | ||
162 | for(i=0;i<17;i++) { | |
163 | v = quant_bits[i]; | |
164 | if (v < 0) | |
165 | v = -v; | |
166 | else | |
167 | v = v * 3; | |
168 | total_quant_bits[i] = 12 * v; | |
169 | } | |
170 | ||
492cd3a9 MN |
171 | avctx->coded_frame= avcodec_alloc_frame(); |
172 | avctx->coded_frame->key_frame= 1; | |
173 | ||
de6d9b64 FB |
174 | return 0; |
175 | } | |
176 | ||
2456e28d | 177 | /* 32 point floating point IDCT without 1/sqrt(2) coef zero scaling */ |
afa982fd | 178 | static void idct32(int *out, int *tab) |
de6d9b64 FB |
179 | { |
180 | int i, j; | |
181 | int *t, *t1, xr; | |
182 | const int *xp = costab32; | |
183 | ||
184 | for(j=31;j>=3;j-=2) tab[j] += tab[j - 2]; | |
185 | ||
186 | t = tab + 30; | |
187 | t1 = tab + 2; | |
188 | do { | |
189 | t[0] += t[-4]; | |
190 | t[1] += t[1 - 4]; | |
191 | t -= 4; | |
192 | } while (t != t1); | |
193 | ||
194 | t = tab + 28; | |
195 | t1 = tab + 4; | |
196 | do { | |
197 | t[0] += t[-8]; | |
198 | t[1] += t[1-8]; | |
199 | t[2] += t[2-8]; | |
200 | t[3] += t[3-8]; | |
201 | t -= 8; | |
202 | } while (t != t1); | |
203 | ||
204 | t = tab; | |
205 | t1 = tab + 32; | |
206 | do { | |
207 | t[ 3] = -t[ 3]; | |
208 | t[ 6] = -t[ 6]; | |
209 | ||
210 | t[11] = -t[11]; | |
211 | t[12] = -t[12]; | |
212 | t[13] = -t[13]; | |
213 | t[15] = -t[15]; | |
214 | t += 16; | |
215 | } while (t != t1); | |
216 | ||
217 | ||
218 | t = tab; | |
219 | t1 = tab + 8; | |
220 | do { | |
221 | int x1, x2, x3, x4; | |
222 | ||
223 | x3 = MUL(t[16], FIX(SQRT2*0.5)); | |
224 | x4 = t[0] - x3; | |
225 | x3 = t[0] + x3; | |
226 | ||
227 | x2 = MUL(-(t[24] + t[8]), FIX(SQRT2*0.5)); | |
228 | x1 = MUL((t[8] - x2), xp[0]); | |
229 | x2 = MUL((t[8] + x2), xp[1]); | |
230 | ||
231 | t[ 0] = x3 + x1; | |
232 | t[ 8] = x4 - x2; | |
233 | t[16] = x4 + x2; | |
234 | t[24] = x3 - x1; | |
235 | t++; | |
236 | } while (t != t1); | |
237 | ||
238 | xp += 2; | |
239 | t = tab; | |
240 | t1 = tab + 4; | |
241 | do { | |
242 | xr = MUL(t[28],xp[0]); | |
243 | t[28] = (t[0] - xr); | |
244 | t[0] = (t[0] + xr); | |
245 | ||
246 | xr = MUL(t[4],xp[1]); | |
247 | t[ 4] = (t[24] - xr); | |
248 | t[24] = (t[24] + xr); | |
249 | ||
250 | xr = MUL(t[20],xp[2]); | |
251 | t[20] = (t[8] - xr); | |
252 | t[ 8] = (t[8] + xr); | |
253 | ||
254 | xr = MUL(t[12],xp[3]); | |
255 | t[12] = (t[16] - xr); | |
256 | t[16] = (t[16] + xr); | |
257 | t++; | |
258 | } while (t != t1); | |
259 | xp += 4; | |
260 | ||
261 | for (i = 0; i < 4; i++) { | |
262 | xr = MUL(tab[30-i*4],xp[0]); | |
263 | tab[30-i*4] = (tab[i*4] - xr); | |
264 | tab[ i*4] = (tab[i*4] + xr); | |
265 | ||
266 | xr = MUL(tab[ 2+i*4],xp[1]); | |
267 | tab[ 2+i*4] = (tab[28-i*4] - xr); | |
268 | tab[28-i*4] = (tab[28-i*4] + xr); | |
269 | ||
270 | xr = MUL(tab[31-i*4],xp[0]); | |
271 | tab[31-i*4] = (tab[1+i*4] - xr); | |
272 | tab[ 1+i*4] = (tab[1+i*4] + xr); | |
273 | ||
274 | xr = MUL(tab[ 3+i*4],xp[1]); | |
275 | tab[ 3+i*4] = (tab[29-i*4] - xr); | |
276 | tab[29-i*4] = (tab[29-i*4] + xr); | |
277 | ||
278 | xp += 2; | |
279 | } | |
280 | ||
281 | t = tab + 30; | |
282 | t1 = tab + 1; | |
283 | do { | |
284 | xr = MUL(t1[0], *xp); | |
285 | t1[0] = (t[0] - xr); | |
286 | t[0] = (t[0] + xr); | |
287 | t -= 2; | |
288 | t1 += 2; | |
289 | xp++; | |
290 | } while (t >= tab); | |
291 | ||
292 | for(i=0;i<32;i++) { | |
afa982fd | 293 | out[i] = tab[bitinv32[i]]; |
de6d9b64 FB |
294 | } |
295 | } | |
296 | ||
afa982fd FB |
297 | #define WSHIFT (WFRAC_BITS + 15 - FRAC_BITS) |
298 | ||
de6d9b64 FB |
299 | static void filter(MpegAudioContext *s, int ch, short *samples, int incr) |
300 | { | |
301 | short *p, *q; | |
afa982fd FB |
302 | int sum, offset, i, j; |
303 | int tmp[64]; | |
de6d9b64 FB |
304 | int tmp1[32]; |
305 | int *out; | |
306 | ||
307 | // print_pow1(samples, 1152); | |
308 | ||
309 | offset = s->samples_offset[ch]; | |
310 | out = &s->sb_samples[ch][0][0][0]; | |
311 | for(j=0;j<36;j++) { | |
312 | /* 32 samples at once */ | |
313 | for(i=0;i<32;i++) { | |
314 | s->samples_buf[ch][offset + (31 - i)] = samples[0]; | |
315 | samples += incr; | |
316 | } | |
317 | ||
318 | /* filter */ | |
319 | p = s->samples_buf[ch] + offset; | |
320 | q = filter_bank; | |
321 | /* maxsum = 23169 */ | |
322 | for(i=0;i<64;i++) { | |
323 | sum = p[0*64] * q[0*64]; | |
324 | sum += p[1*64] * q[1*64]; | |
325 | sum += p[2*64] * q[2*64]; | |
326 | sum += p[3*64] * q[3*64]; | |
327 | sum += p[4*64] * q[4*64]; | |
328 | sum += p[5*64] * q[5*64]; | |
329 | sum += p[6*64] * q[6*64]; | |
330 | sum += p[7*64] * q[7*64]; | |
afa982fd | 331 | tmp[i] = sum; |
de6d9b64 FB |
332 | p++; |
333 | q++; | |
334 | } | |
afa982fd FB |
335 | tmp1[0] = tmp[16] >> WSHIFT; |
336 | for( i=1; i<=16; i++ ) tmp1[i] = (tmp[i+16]+tmp[16-i]) >> WSHIFT; | |
337 | for( i=17; i<=31; i++ ) tmp1[i] = (tmp[i+16]-tmp[80-i]) >> WSHIFT; | |
de6d9b64 | 338 | |
afa982fd | 339 | idct32(out, tmp1); |
de6d9b64 FB |
340 | |
341 | /* advance of 32 samples */ | |
342 | offset -= 32; | |
343 | out += 32; | |
344 | /* handle the wrap around */ | |
345 | if (offset < 0) { | |
346 | memmove(s->samples_buf[ch] + SAMPLES_BUF_SIZE - (512 - 32), | |
347 | s->samples_buf[ch], (512 - 32) * 2); | |
348 | offset = SAMPLES_BUF_SIZE - 512; | |
349 | } | |
350 | } | |
351 | s->samples_offset[ch] = offset; | |
352 | ||
353 | // print_pow(s->sb_samples, 1152); | |
354 | } | |
355 | ||
356 | static void compute_scale_factors(unsigned char scale_code[SBLIMIT], | |
357 | unsigned char scale_factors[SBLIMIT][3], | |
358 | int sb_samples[3][12][SBLIMIT], | |
359 | int sblimit) | |
360 | { | |
361 | int *p, vmax, v, n, i, j, k, code; | |
362 | int index, d1, d2; | |
363 | unsigned char *sf = &scale_factors[0][0]; | |
364 | ||
365 | for(j=0;j<sblimit;j++) { | |
366 | for(i=0;i<3;i++) { | |
367 | /* find the max absolute value */ | |
368 | p = &sb_samples[i][0][j]; | |
369 | vmax = abs(*p); | |
370 | for(k=1;k<12;k++) { | |
371 | p += SBLIMIT; | |
372 | v = abs(*p); | |
373 | if (v > vmax) | |
374 | vmax = v; | |
375 | } | |
376 | /* compute the scale factor index using log 2 computations */ | |
377 | if (vmax > 0) { | |
935442b5 | 378 | n = av_log2(vmax); |
de6d9b64 FB |
379 | /* n is the position of the MSB of vmax. now |
380 | use at most 2 compares to find the index */ | |
381 | index = (21 - n) * 3 - 3; | |
382 | if (index >= 0) { | |
383 | while (vmax <= scale_factor_table[index+1]) | |
384 | index++; | |
385 | } else { | |
386 | index = 0; /* very unlikely case of overflow */ | |
387 | } | |
388 | } else { | |
afa982fd | 389 | index = 62; /* value 63 is not allowed */ |
de6d9b64 | 390 | } |
afa982fd | 391 | |
de6d9b64 FB |
392 | #if 0 |
393 | printf("%2d:%d in=%x %x %d\n", | |
394 | j, i, vmax, scale_factor_table[index], index); | |
395 | #endif | |
396 | /* store the scale factor */ | |
397 | assert(index >=0 && index <= 63); | |
398 | sf[i] = index; | |
399 | } | |
400 | ||
401 | /* compute the transmission factor : look if the scale factors | |
402 | are close enough to each other */ | |
403 | d1 = scale_diff_table[sf[0] - sf[1] + 64]; | |
404 | d2 = scale_diff_table[sf[1] - sf[2] + 64]; | |
405 | ||
406 | /* handle the 25 cases */ | |
407 | switch(d1 * 5 + d2) { | |
408 | case 0*5+0: | |
409 | case 0*5+4: | |
410 | case 3*5+4: | |
411 | case 4*5+0: | |
412 | case 4*5+4: | |
413 | code = 0; | |
414 | break; | |
415 | case 0*5+1: | |
416 | case 0*5+2: | |
417 | case 4*5+1: | |
418 | case 4*5+2: | |
419 | code = 3; | |
420 | sf[2] = sf[1]; | |
421 | break; | |
422 | case 0*5+3: | |
423 | case 4*5+3: | |
424 | code = 3; | |
425 | sf[1] = sf[2]; | |
426 | break; | |
427 | case 1*5+0: | |
428 | case 1*5+4: | |
429 | case 2*5+4: | |
430 | code = 1; | |
431 | sf[1] = sf[0]; | |
432 | break; | |
433 | case 1*5+1: | |
434 | case 1*5+2: | |
435 | case 2*5+0: | |
436 | case 2*5+1: | |
437 | case 2*5+2: | |
438 | code = 2; | |
439 | sf[1] = sf[2] = sf[0]; | |
440 | break; | |
441 | case 2*5+3: | |
442 | case 3*5+3: | |
443 | code = 2; | |
444 | sf[0] = sf[1] = sf[2]; | |
445 | break; | |
446 | case 3*5+0: | |
447 | case 3*5+1: | |
448 | case 3*5+2: | |
449 | code = 2; | |
450 | sf[0] = sf[2] = sf[1]; | |
451 | break; | |
452 | case 1*5+3: | |
453 | code = 2; | |
454 | if (sf[0] > sf[2]) | |
455 | sf[0] = sf[2]; | |
456 | sf[1] = sf[2] = sf[0]; | |
457 | break; | |
458 | default: | |
02ac3136 | 459 | av_abort(); |
de6d9b64 FB |
460 | } |
461 | ||
462 | #if 0 | |
463 | printf("%d: %2d %2d %2d %d %d -> %d\n", j, | |
464 | sf[0], sf[1], sf[2], d1, d2, code); | |
465 | #endif | |
466 | scale_code[j] = code; | |
467 | sf += 3; | |
468 | } | |
469 | } | |
470 | ||
471 | /* The most important function : psycho acoustic module. In this | |
472 | encoder there is basically none, so this is the worst you can do, | |
473 | but also this is the simpler. */ | |
474 | static void psycho_acoustic_model(MpegAudioContext *s, short smr[SBLIMIT]) | |
475 | { | |
476 | int i; | |
477 | ||
478 | for(i=0;i<s->sblimit;i++) { | |
479 | smr[i] = (int)(fixed_smr[i] * 10); | |
480 | } | |
481 | } | |
482 | ||
483 | ||
484 | #define SB_NOTALLOCATED 0 | |
485 | #define SB_ALLOCATED 1 | |
486 | #define SB_NOMORE 2 | |
487 | ||
488 | /* Try to maximize the smr while using a number of bits inferior to | |
489 | the frame size. I tried to make the code simpler, faster and | |
490 | smaller than other encoders :-) */ | |
491 | static void compute_bit_allocation(MpegAudioContext *s, | |
492 | short smr1[MPA_MAX_CHANNELS][SBLIMIT], | |
493 | unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT], | |
494 | int *padding) | |
495 | { | |
496 | int i, ch, b, max_smr, max_ch, max_sb, current_frame_size, max_frame_size; | |
497 | int incr; | |
498 | short smr[MPA_MAX_CHANNELS][SBLIMIT]; | |
499 | unsigned char subband_status[MPA_MAX_CHANNELS][SBLIMIT]; | |
500 | const unsigned char *alloc; | |
501 | ||
502 | memcpy(smr, smr1, s->nb_channels * sizeof(short) * SBLIMIT); | |
503 | memset(subband_status, SB_NOTALLOCATED, s->nb_channels * SBLIMIT); | |
504 | memset(bit_alloc, 0, s->nb_channels * SBLIMIT); | |
505 | ||
506 | /* compute frame size and padding */ | |
507 | max_frame_size = s->frame_size; | |
508 | s->frame_frac += s->frame_frac_incr; | |
509 | if (s->frame_frac >= 65536) { | |
510 | s->frame_frac -= 65536; | |
511 | s->do_padding = 1; | |
512 | max_frame_size += 8; | |
513 | } else { | |
514 | s->do_padding = 0; | |
515 | } | |
516 | ||
517 | /* compute the header + bit alloc size */ | |
518 | current_frame_size = 32; | |
519 | alloc = s->alloc_table; | |
520 | for(i=0;i<s->sblimit;i++) { | |
521 | incr = alloc[0]; | |
522 | current_frame_size += incr * s->nb_channels; | |
523 | alloc += 1 << incr; | |
524 | } | |
525 | for(;;) { | |
526 | /* look for the subband with the largest signal to mask ratio */ | |
527 | max_sb = -1; | |
528 | max_ch = -1; | |
529 | max_smr = 0x80000000; | |
530 | for(ch=0;ch<s->nb_channels;ch++) { | |
531 | for(i=0;i<s->sblimit;i++) { | |
532 | if (smr[ch][i] > max_smr && subband_status[ch][i] != SB_NOMORE) { | |
533 | max_smr = smr[ch][i]; | |
534 | max_sb = i; | |
535 | max_ch = ch; | |
536 | } | |
537 | } | |
538 | } | |
539 | #if 0 | |
540 | printf("current=%d max=%d max_sb=%d alloc=%d\n", | |
541 | current_frame_size, max_frame_size, max_sb, | |
542 | bit_alloc[max_sb]); | |
543 | #endif | |
544 | if (max_sb < 0) | |
545 | break; | |
546 | ||
547 | /* find alloc table entry (XXX: not optimal, should use | |
548 | pointer table) */ | |
549 | alloc = s->alloc_table; | |
550 | for(i=0;i<max_sb;i++) { | |
551 | alloc += 1 << alloc[0]; | |
552 | } | |
553 | ||
554 | if (subband_status[max_ch][max_sb] == SB_NOTALLOCATED) { | |
555 | /* nothing was coded for this band: add the necessary bits */ | |
556 | incr = 2 + nb_scale_factors[s->scale_code[max_ch][max_sb]] * 6; | |
557 | incr += total_quant_bits[alloc[1]]; | |
558 | } else { | |
559 | /* increments bit allocation */ | |
560 | b = bit_alloc[max_ch][max_sb]; | |
561 | incr = total_quant_bits[alloc[b + 1]] - | |
562 | total_quant_bits[alloc[b]]; | |
563 | } | |
564 | ||
565 | if (current_frame_size + incr <= max_frame_size) { | |
566 | /* can increase size */ | |
567 | b = ++bit_alloc[max_ch][max_sb]; | |
568 | current_frame_size += incr; | |
569 | /* decrease smr by the resolution we added */ | |
570 | smr[max_ch][max_sb] = smr1[max_ch][max_sb] - quant_snr[alloc[b]]; | |
571 | /* max allocation size reached ? */ | |
572 | if (b == ((1 << alloc[0]) - 1)) | |
573 | subband_status[max_ch][max_sb] = SB_NOMORE; | |
574 | else | |
575 | subband_status[max_ch][max_sb] = SB_ALLOCATED; | |
576 | } else { | |
577 | /* cannot increase the size of this subband */ | |
578 | subband_status[max_ch][max_sb] = SB_NOMORE; | |
579 | } | |
580 | } | |
581 | *padding = max_frame_size - current_frame_size; | |
582 | assert(*padding >= 0); | |
583 | ||
584 | #if 0 | |
585 | for(i=0;i<s->sblimit;i++) { | |
586 | printf("%d ", bit_alloc[i]); | |
587 | } | |
588 | printf("\n"); | |
589 | #endif | |
590 | } | |
591 | ||
592 | /* | |
593 | * Output the mpeg audio layer 2 frame. Note how the code is small | |
594 | * compared to other encoders :-) | |
595 | */ | |
596 | static void encode_frame(MpegAudioContext *s, | |
597 | unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT], | |
598 | int padding) | |
599 | { | |
600 | int i, j, k, l, bit_alloc_bits, b, ch; | |
601 | unsigned char *sf; | |
602 | int q[3]; | |
603 | PutBitContext *p = &s->pb; | |
604 | ||
605 | /* header */ | |
606 | ||
607 | put_bits(p, 12, 0xfff); | |
608 | put_bits(p, 1, 1 - s->lsf); /* 1 = mpeg1 ID, 0 = mpeg2 lsf ID */ | |
609 | put_bits(p, 2, 4-2); /* layer 2 */ | |
610 | put_bits(p, 1, 1); /* no error protection */ | |
611 | put_bits(p, 4, s->bitrate_index); | |
612 | put_bits(p, 2, s->freq_index); | |
613 | put_bits(p, 1, s->do_padding); /* use padding */ | |
614 | put_bits(p, 1, 0); /* private_bit */ | |
615 | put_bits(p, 2, s->nb_channels == 2 ? MPA_STEREO : MPA_MONO); | |
616 | put_bits(p, 2, 0); /* mode_ext */ | |
617 | put_bits(p, 1, 0); /* no copyright */ | |
618 | put_bits(p, 1, 1); /* original */ | |
619 | put_bits(p, 2, 0); /* no emphasis */ | |
620 | ||
621 | /* bit allocation */ | |
622 | j = 0; | |
623 | for(i=0;i<s->sblimit;i++) { | |
624 | bit_alloc_bits = s->alloc_table[j]; | |
625 | for(ch=0;ch<s->nb_channels;ch++) { | |
626 | put_bits(p, bit_alloc_bits, bit_alloc[ch][i]); | |
627 | } | |
628 | j += 1 << bit_alloc_bits; | |
629 | } | |
630 | ||
631 | /* scale codes */ | |
632 | for(i=0;i<s->sblimit;i++) { | |
633 | for(ch=0;ch<s->nb_channels;ch++) { | |
634 | if (bit_alloc[ch][i]) | |
635 | put_bits(p, 2, s->scale_code[ch][i]); | |
636 | } | |
637 | } | |
638 | ||
639 | /* scale factors */ | |
640 | for(i=0;i<s->sblimit;i++) { | |
641 | for(ch=0;ch<s->nb_channels;ch++) { | |
642 | if (bit_alloc[ch][i]) { | |
643 | sf = &s->scale_factors[ch][i][0]; | |
644 | switch(s->scale_code[ch][i]) { | |
645 | case 0: | |
646 | put_bits(p, 6, sf[0]); | |
647 | put_bits(p, 6, sf[1]); | |
648 | put_bits(p, 6, sf[2]); | |
649 | break; | |
650 | case 3: | |
651 | case 1: | |
652 | put_bits(p, 6, sf[0]); | |
653 | put_bits(p, 6, sf[2]); | |
654 | break; | |
655 | case 2: | |
656 | put_bits(p, 6, sf[0]); | |
657 | break; | |
658 | } | |
659 | } | |
660 | } | |
661 | } | |
662 | ||
663 | /* quantization & write sub band samples */ | |
664 | ||
665 | for(k=0;k<3;k++) { | |
666 | for(l=0;l<12;l+=3) { | |
667 | j = 0; | |
668 | for(i=0;i<s->sblimit;i++) { | |
669 | bit_alloc_bits = s->alloc_table[j]; | |
670 | for(ch=0;ch<s->nb_channels;ch++) { | |
671 | b = bit_alloc[ch][i]; | |
672 | if (b) { | |
673 | int qindex, steps, m, sample, bits; | |
674 | /* we encode 3 sub band samples of the same sub band at a time */ | |
675 | qindex = s->alloc_table[j+b]; | |
676 | steps = quant_steps[qindex]; | |
677 | for(m=0;m<3;m++) { | |
678 | sample = s->sb_samples[ch][k][l + m][i]; | |
679 | /* divide by scale factor */ | |
680 | #ifdef USE_FLOATS | |
681 | { | |
682 | float a; | |
683 | a = (float)sample * scale_factor_inv_table[s->scale_factors[ch][i][k]]; | |
684 | q[m] = (int)((a + 1.0) * steps * 0.5); | |
685 | } | |
686 | #else | |
687 | { | |
688 | int q1, e, shift, mult; | |
689 | e = s->scale_factors[ch][i][k]; | |
690 | shift = scale_factor_shift[e]; | |
691 | mult = scale_factor_mult[e]; | |
692 | ||
693 | /* normalize to P bits */ | |
694 | if (shift < 0) | |
695 | q1 = sample << (-shift); | |
696 | else | |
697 | q1 = sample >> shift; | |
698 | q1 = (q1 * mult) >> P; | |
699 | q[m] = ((q1 + (1 << P)) * steps) >> (P + 1); | |
700 | } | |
701 | #endif | |
702 | if (q[m] >= steps) | |
703 | q[m] = steps - 1; | |
704 | assert(q[m] >= 0 && q[m] < steps); | |
705 | } | |
706 | bits = quant_bits[qindex]; | |
707 | if (bits < 0) { | |
708 | /* group the 3 values to save bits */ | |
709 | put_bits(p, -bits, | |
710 | q[0] + steps * (q[1] + steps * q[2])); | |
711 | #if 0 | |
712 | printf("%d: gr1 %d\n", | |
713 | i, q[0] + steps * (q[1] + steps * q[2])); | |
714 | #endif | |
715 | } else { | |
716 | #if 0 | |
717 | printf("%d: gr3 %d %d %d\n", | |
718 | i, q[0], q[1], q[2]); | |
719 | #endif | |
720 | put_bits(p, bits, q[0]); | |
721 | put_bits(p, bits, q[1]); | |
722 | put_bits(p, bits, q[2]); | |
723 | } | |
724 | } | |
725 | } | |
726 | /* next subband in alloc table */ | |
727 | j += 1 << bit_alloc_bits; | |
728 | } | |
729 | } | |
730 | } | |
731 | ||
732 | /* padding */ | |
733 | for(i=0;i<padding;i++) | |
734 | put_bits(p, 1, 0); | |
735 | ||
736 | /* flush */ | |
737 | flush_put_bits(p); | |
738 | } | |
739 | ||
5c91a675 ZK |
740 | static int MPA_encode_frame(AVCodecContext *avctx, |
741 | unsigned char *frame, int buf_size, void *data) | |
de6d9b64 FB |
742 | { |
743 | MpegAudioContext *s = avctx->priv_data; | |
744 | short *samples = data; | |
745 | short smr[MPA_MAX_CHANNELS][SBLIMIT]; | |
746 | unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT]; | |
747 | int padding, i; | |
748 | ||
749 | for(i=0;i<s->nb_channels;i++) { | |
750 | filter(s, i, samples + i, s->nb_channels); | |
751 | } | |
752 | ||
753 | for(i=0;i<s->nb_channels;i++) { | |
754 | compute_scale_factors(s->scale_code[i], s->scale_factors[i], | |
755 | s->sb_samples[i], s->sblimit); | |
756 | } | |
757 | for(i=0;i<s->nb_channels;i++) { | |
758 | psycho_acoustic_model(s, smr[i]); | |
759 | } | |
760 | compute_bit_allocation(s, smr, bit_alloc, &padding); | |
761 | ||
762 | init_put_bits(&s->pb, frame, MPA_MAX_CODED_FRAME_SIZE, NULL, NULL); | |
763 | ||
764 | encode_frame(s, bit_alloc, padding); | |
765 | ||
766 | s->nb_samples += MPA_FRAME_SIZE; | |
17592475 | 767 | return pbBufPtr(&s->pb) - s->pb.buf; |
de6d9b64 FB |
768 | } |
769 | ||
492cd3a9 MN |
770 | static int MPA_encode_close(AVCodecContext *avctx) |
771 | { | |
772 | av_freep(&avctx->coded_frame); | |
8e1e6f31 | 773 | return 0; |
492cd3a9 | 774 | } |
de6d9b64 FB |
775 | |
776 | AVCodec mp2_encoder = { | |
777 | "mp2", | |
778 | CODEC_TYPE_AUDIO, | |
779 | CODEC_ID_MP2, | |
780 | sizeof(MpegAudioContext), | |
781 | MPA_encode_init, | |
782 | MPA_encode_frame, | |
492cd3a9 | 783 | MPA_encode_close, |
de6d9b64 FB |
784 | NULL, |
785 | }; | |
cd4af68a ZK |
786 | |
787 | #undef FIX |