Commit | Line | Data |
---|---|---|
de6d9b64 FB |
1 | /* |
2 | * The simplest mpeg audio layer 2 encoder | |
3 | * Copyright (c) 2000 Gerard Lantau. | |
4 | * | |
5 | * This program is free software; you can redistribute it and/or modify | |
6 | * it under the terms of the GNU General Public License as published by | |
7 | * the Free Software Foundation; either version 2 of the License, or | |
8 | * (at your option) any later version. | |
9 | * | |
10 | * This program is distributed in the hope that it will be useful, | |
11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 | * GNU General Public License for more details. | |
14 | * | |
15 | * You should have received a copy of the GNU General Public License | |
16 | * along with this program; if not, write to the Free Software | |
17 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | |
18 | */ | |
19 | #include <stdlib.h> | |
20 | #include <stdio.h> | |
21 | #include <string.h> | |
22 | #include <math.h> | |
23 | #include "avcodec.h" | |
24 | #include "mpegaudio.h" | |
25 | ||
26 | #define NDEBUG | |
27 | #include <assert.h> | |
28 | ||
29 | /* define it to use floats in quantization (I don't like floats !) */ | |
30 | //#define USE_FLOATS | |
31 | ||
32 | #define MPA_STEREO 0 | |
33 | #define MPA_JSTEREO 1 | |
34 | #define MPA_DUAL 2 | |
35 | #define MPA_MONO 3 | |
36 | ||
37 | #include "mpegaudiotab.h" | |
38 | ||
39 | int MPA_encode_init(AVCodecContext *avctx) | |
40 | { | |
41 | MpegAudioContext *s = avctx->priv_data; | |
42 | int freq = avctx->sample_rate; | |
43 | int bitrate = avctx->bit_rate; | |
44 | int channels = avctx->channels; | |
45 | int i, v, table, ch_bitrate; | |
46 | float a; | |
47 | ||
48 | if (channels > 2) | |
49 | return -1; | |
50 | bitrate = bitrate / 1000; | |
51 | s->nb_channels = channels; | |
52 | s->freq = freq; | |
53 | s->bit_rate = bitrate * 1000; | |
54 | avctx->frame_size = MPA_FRAME_SIZE; | |
55 | avctx->key_frame = 1; /* always key frame */ | |
56 | ||
57 | /* encoding freq */ | |
58 | s->lsf = 0; | |
59 | for(i=0;i<3;i++) { | |
60 | if (freq_tab[i] == freq) | |
61 | break; | |
62 | if ((freq_tab[i] / 2) == freq) { | |
63 | s->lsf = 1; | |
64 | break; | |
65 | } | |
66 | } | |
67 | if (i == 3) | |
68 | return -1; | |
69 | s->freq_index = i; | |
70 | ||
71 | /* encoding bitrate & frequency */ | |
72 | for(i=0;i<15;i++) { | |
73 | if (bitrate_tab[1-s->lsf][i] == bitrate) | |
74 | break; | |
75 | } | |
76 | if (i == 15) | |
77 | return -1; | |
78 | s->bitrate_index = i; | |
79 | ||
80 | /* compute total header size & pad bit */ | |
81 | ||
82 | a = (float)(bitrate * 1000 * MPA_FRAME_SIZE) / (freq * 8.0); | |
83 | s->frame_size = ((int)a) * 8; | |
84 | ||
85 | /* frame fractional size to compute padding */ | |
86 | s->frame_frac = 0; | |
87 | s->frame_frac_incr = (int)((a - floor(a)) * 65536.0); | |
88 | ||
89 | /* select the right allocation table */ | |
90 | ch_bitrate = bitrate / s->nb_channels; | |
91 | if (!s->lsf) { | |
92 | if ((freq == 48000 && ch_bitrate >= 56) || | |
93 | (ch_bitrate >= 56 && ch_bitrate <= 80)) | |
94 | table = 0; | |
95 | else if (freq != 48000 && ch_bitrate >= 96) | |
96 | table = 1; | |
97 | else if (freq != 32000 && ch_bitrate <= 48) | |
98 | table = 2; | |
99 | else | |
100 | table = 3; | |
101 | } else { | |
102 | table = 4; | |
103 | } | |
104 | /* number of used subbands */ | |
105 | s->sblimit = sblimit_table[table]; | |
106 | s->alloc_table = alloc_tables[table]; | |
107 | ||
108 | #ifdef DEBUG | |
109 | printf("%d kb/s, %d Hz, frame_size=%d bits, table=%d, padincr=%x\n", | |
110 | bitrate, freq, s->frame_size, table, s->frame_frac_incr); | |
111 | #endif | |
112 | ||
113 | for(i=0;i<s->nb_channels;i++) | |
114 | s->samples_offset[i] = 0; | |
115 | ||
116 | for(i=0;i<512;i++) { | |
117 | float a = enwindow[i] * 32768.0 * 16.0; | |
118 | filter_bank[i] = (int)(a); | |
119 | } | |
120 | for(i=0;i<64;i++) { | |
121 | v = (int)(pow(2.0, (3 - i) / 3.0) * (1 << 20)); | |
122 | if (v <= 0) | |
123 | v = 1; | |
124 | scale_factor_table[i] = v; | |
125 | #ifdef USE_FLOATS | |
126 | scale_factor_inv_table[i] = pow(2.0, -(3 - i) / 3.0) / (float)(1 << 20); | |
127 | #else | |
128 | #define P 15 | |
129 | scale_factor_shift[i] = 21 - P - (i / 3); | |
130 | scale_factor_mult[i] = (1 << P) * pow(2.0, (i % 3) / 3.0); | |
131 | #endif | |
132 | } | |
133 | for(i=0;i<128;i++) { | |
134 | v = i - 64; | |
135 | if (v <= -3) | |
136 | v = 0; | |
137 | else if (v < 0) | |
138 | v = 1; | |
139 | else if (v == 0) | |
140 | v = 2; | |
141 | else if (v < 3) | |
142 | v = 3; | |
143 | else | |
144 | v = 4; | |
145 | scale_diff_table[i] = v; | |
146 | } | |
147 | ||
148 | for(i=0;i<17;i++) { | |
149 | v = quant_bits[i]; | |
150 | if (v < 0) | |
151 | v = -v; | |
152 | else | |
153 | v = v * 3; | |
154 | total_quant_bits[i] = 12 * v; | |
155 | } | |
156 | ||
157 | return 0; | |
158 | } | |
159 | ||
160 | /* 32 point floating point IDCT */ | |
161 | static void idct32(int *out, int *tab, int sblimit, int left_shift) | |
162 | { | |
163 | int i, j; | |
164 | int *t, *t1, xr; | |
165 | const int *xp = costab32; | |
166 | ||
167 | for(j=31;j>=3;j-=2) tab[j] += tab[j - 2]; | |
168 | ||
169 | t = tab + 30; | |
170 | t1 = tab + 2; | |
171 | do { | |
172 | t[0] += t[-4]; | |
173 | t[1] += t[1 - 4]; | |
174 | t -= 4; | |
175 | } while (t != t1); | |
176 | ||
177 | t = tab + 28; | |
178 | t1 = tab + 4; | |
179 | do { | |
180 | t[0] += t[-8]; | |
181 | t[1] += t[1-8]; | |
182 | t[2] += t[2-8]; | |
183 | t[3] += t[3-8]; | |
184 | t -= 8; | |
185 | } while (t != t1); | |
186 | ||
187 | t = tab; | |
188 | t1 = tab + 32; | |
189 | do { | |
190 | t[ 3] = -t[ 3]; | |
191 | t[ 6] = -t[ 6]; | |
192 | ||
193 | t[11] = -t[11]; | |
194 | t[12] = -t[12]; | |
195 | t[13] = -t[13]; | |
196 | t[15] = -t[15]; | |
197 | t += 16; | |
198 | } while (t != t1); | |
199 | ||
200 | ||
201 | t = tab; | |
202 | t1 = tab + 8; | |
203 | do { | |
204 | int x1, x2, x3, x4; | |
205 | ||
206 | x3 = MUL(t[16], FIX(SQRT2*0.5)); | |
207 | x4 = t[0] - x3; | |
208 | x3 = t[0] + x3; | |
209 | ||
210 | x2 = MUL(-(t[24] + t[8]), FIX(SQRT2*0.5)); | |
211 | x1 = MUL((t[8] - x2), xp[0]); | |
212 | x2 = MUL((t[8] + x2), xp[1]); | |
213 | ||
214 | t[ 0] = x3 + x1; | |
215 | t[ 8] = x4 - x2; | |
216 | t[16] = x4 + x2; | |
217 | t[24] = x3 - x1; | |
218 | t++; | |
219 | } while (t != t1); | |
220 | ||
221 | xp += 2; | |
222 | t = tab; | |
223 | t1 = tab + 4; | |
224 | do { | |
225 | xr = MUL(t[28],xp[0]); | |
226 | t[28] = (t[0] - xr); | |
227 | t[0] = (t[0] + xr); | |
228 | ||
229 | xr = MUL(t[4],xp[1]); | |
230 | t[ 4] = (t[24] - xr); | |
231 | t[24] = (t[24] + xr); | |
232 | ||
233 | xr = MUL(t[20],xp[2]); | |
234 | t[20] = (t[8] - xr); | |
235 | t[ 8] = (t[8] + xr); | |
236 | ||
237 | xr = MUL(t[12],xp[3]); | |
238 | t[12] = (t[16] - xr); | |
239 | t[16] = (t[16] + xr); | |
240 | t++; | |
241 | } while (t != t1); | |
242 | xp += 4; | |
243 | ||
244 | for (i = 0; i < 4; i++) { | |
245 | xr = MUL(tab[30-i*4],xp[0]); | |
246 | tab[30-i*4] = (tab[i*4] - xr); | |
247 | tab[ i*4] = (tab[i*4] + xr); | |
248 | ||
249 | xr = MUL(tab[ 2+i*4],xp[1]); | |
250 | tab[ 2+i*4] = (tab[28-i*4] - xr); | |
251 | tab[28-i*4] = (tab[28-i*4] + xr); | |
252 | ||
253 | xr = MUL(tab[31-i*4],xp[0]); | |
254 | tab[31-i*4] = (tab[1+i*4] - xr); | |
255 | tab[ 1+i*4] = (tab[1+i*4] + xr); | |
256 | ||
257 | xr = MUL(tab[ 3+i*4],xp[1]); | |
258 | tab[ 3+i*4] = (tab[29-i*4] - xr); | |
259 | tab[29-i*4] = (tab[29-i*4] + xr); | |
260 | ||
261 | xp += 2; | |
262 | } | |
263 | ||
264 | t = tab + 30; | |
265 | t1 = tab + 1; | |
266 | do { | |
267 | xr = MUL(t1[0], *xp); | |
268 | t1[0] = (t[0] - xr); | |
269 | t[0] = (t[0] + xr); | |
270 | t -= 2; | |
271 | t1 += 2; | |
272 | xp++; | |
273 | } while (t >= tab); | |
274 | ||
275 | for(i=0;i<32;i++) { | |
276 | out[i] = tab[bitinv32[i]] << left_shift; | |
277 | } | |
278 | } | |
279 | ||
280 | static void filter(MpegAudioContext *s, int ch, short *samples, int incr) | |
281 | { | |
282 | short *p, *q; | |
283 | int sum, offset, i, j, norm, n; | |
284 | short tmp[64]; | |
285 | int tmp1[32]; | |
286 | int *out; | |
287 | ||
288 | // print_pow1(samples, 1152); | |
289 | ||
290 | offset = s->samples_offset[ch]; | |
291 | out = &s->sb_samples[ch][0][0][0]; | |
292 | for(j=0;j<36;j++) { | |
293 | /* 32 samples at once */ | |
294 | for(i=0;i<32;i++) { | |
295 | s->samples_buf[ch][offset + (31 - i)] = samples[0]; | |
296 | samples += incr; | |
297 | } | |
298 | ||
299 | /* filter */ | |
300 | p = s->samples_buf[ch] + offset; | |
301 | q = filter_bank; | |
302 | /* maxsum = 23169 */ | |
303 | for(i=0;i<64;i++) { | |
304 | sum = p[0*64] * q[0*64]; | |
305 | sum += p[1*64] * q[1*64]; | |
306 | sum += p[2*64] * q[2*64]; | |
307 | sum += p[3*64] * q[3*64]; | |
308 | sum += p[4*64] * q[4*64]; | |
309 | sum += p[5*64] * q[5*64]; | |
310 | sum += p[6*64] * q[6*64]; | |
311 | sum += p[7*64] * q[7*64]; | |
312 | tmp[i] = sum >> 14; | |
313 | p++; | |
314 | q++; | |
315 | } | |
316 | tmp1[0] = tmp[16]; | |
317 | for( i=1; i<=16; i++ ) tmp1[i] = tmp[i+16]+tmp[16-i]; | |
318 | for( i=17; i<=31; i++ ) tmp1[i] = tmp[i+16]-tmp[80-i]; | |
319 | ||
320 | /* integer IDCT 32 with normalization. XXX: There may be some | |
321 | overflow left */ | |
322 | norm = 0; | |
323 | for(i=0;i<32;i++) { | |
324 | norm |= abs(tmp1[i]); | |
325 | } | |
326 | n = log2(norm) - 12; | |
327 | if (n > 0) { | |
328 | for(i=0;i<32;i++) | |
329 | tmp1[i] >>= n; | |
330 | } else { | |
331 | n = 0; | |
332 | } | |
333 | ||
334 | idct32(out, tmp1, s->sblimit, n); | |
335 | ||
336 | /* advance of 32 samples */ | |
337 | offset -= 32; | |
338 | out += 32; | |
339 | /* handle the wrap around */ | |
340 | if (offset < 0) { | |
341 | memmove(s->samples_buf[ch] + SAMPLES_BUF_SIZE - (512 - 32), | |
342 | s->samples_buf[ch], (512 - 32) * 2); | |
343 | offset = SAMPLES_BUF_SIZE - 512; | |
344 | } | |
345 | } | |
346 | s->samples_offset[ch] = offset; | |
347 | ||
348 | // print_pow(s->sb_samples, 1152); | |
349 | } | |
350 | ||
351 | static void compute_scale_factors(unsigned char scale_code[SBLIMIT], | |
352 | unsigned char scale_factors[SBLIMIT][3], | |
353 | int sb_samples[3][12][SBLIMIT], | |
354 | int sblimit) | |
355 | { | |
356 | int *p, vmax, v, n, i, j, k, code; | |
357 | int index, d1, d2; | |
358 | unsigned char *sf = &scale_factors[0][0]; | |
359 | ||
360 | for(j=0;j<sblimit;j++) { | |
361 | for(i=0;i<3;i++) { | |
362 | /* find the max absolute value */ | |
363 | p = &sb_samples[i][0][j]; | |
364 | vmax = abs(*p); | |
365 | for(k=1;k<12;k++) { | |
366 | p += SBLIMIT; | |
367 | v = abs(*p); | |
368 | if (v > vmax) | |
369 | vmax = v; | |
370 | } | |
371 | /* compute the scale factor index using log 2 computations */ | |
372 | if (vmax > 0) { | |
373 | n = log2(vmax); | |
374 | /* n is the position of the MSB of vmax. now | |
375 | use at most 2 compares to find the index */ | |
376 | index = (21 - n) * 3 - 3; | |
377 | if (index >= 0) { | |
378 | while (vmax <= scale_factor_table[index+1]) | |
379 | index++; | |
380 | } else { | |
381 | index = 0; /* very unlikely case of overflow */ | |
382 | } | |
383 | } else { | |
384 | index = 63; | |
385 | } | |
386 | ||
387 | #if 0 | |
388 | printf("%2d:%d in=%x %x %d\n", | |
389 | j, i, vmax, scale_factor_table[index], index); | |
390 | #endif | |
391 | /* store the scale factor */ | |
392 | assert(index >=0 && index <= 63); | |
393 | sf[i] = index; | |
394 | } | |
395 | ||
396 | /* compute the transmission factor : look if the scale factors | |
397 | are close enough to each other */ | |
398 | d1 = scale_diff_table[sf[0] - sf[1] + 64]; | |
399 | d2 = scale_diff_table[sf[1] - sf[2] + 64]; | |
400 | ||
401 | /* handle the 25 cases */ | |
402 | switch(d1 * 5 + d2) { | |
403 | case 0*5+0: | |
404 | case 0*5+4: | |
405 | case 3*5+4: | |
406 | case 4*5+0: | |
407 | case 4*5+4: | |
408 | code = 0; | |
409 | break; | |
410 | case 0*5+1: | |
411 | case 0*5+2: | |
412 | case 4*5+1: | |
413 | case 4*5+2: | |
414 | code = 3; | |
415 | sf[2] = sf[1]; | |
416 | break; | |
417 | case 0*5+3: | |
418 | case 4*5+3: | |
419 | code = 3; | |
420 | sf[1] = sf[2]; | |
421 | break; | |
422 | case 1*5+0: | |
423 | case 1*5+4: | |
424 | case 2*5+4: | |
425 | code = 1; | |
426 | sf[1] = sf[0]; | |
427 | break; | |
428 | case 1*5+1: | |
429 | case 1*5+2: | |
430 | case 2*5+0: | |
431 | case 2*5+1: | |
432 | case 2*5+2: | |
433 | code = 2; | |
434 | sf[1] = sf[2] = sf[0]; | |
435 | break; | |
436 | case 2*5+3: | |
437 | case 3*5+3: | |
438 | code = 2; | |
439 | sf[0] = sf[1] = sf[2]; | |
440 | break; | |
441 | case 3*5+0: | |
442 | case 3*5+1: | |
443 | case 3*5+2: | |
444 | code = 2; | |
445 | sf[0] = sf[2] = sf[1]; | |
446 | break; | |
447 | case 1*5+3: | |
448 | code = 2; | |
449 | if (sf[0] > sf[2]) | |
450 | sf[0] = sf[2]; | |
451 | sf[1] = sf[2] = sf[0]; | |
452 | break; | |
453 | default: | |
454 | abort(); | |
455 | } | |
456 | ||
457 | #if 0 | |
458 | printf("%d: %2d %2d %2d %d %d -> %d\n", j, | |
459 | sf[0], sf[1], sf[2], d1, d2, code); | |
460 | #endif | |
461 | scale_code[j] = code; | |
462 | sf += 3; | |
463 | } | |
464 | } | |
465 | ||
466 | /* The most important function : psycho acoustic module. In this | |
467 | encoder there is basically none, so this is the worst you can do, | |
468 | but also this is the simpler. */ | |
469 | static void psycho_acoustic_model(MpegAudioContext *s, short smr[SBLIMIT]) | |
470 | { | |
471 | int i; | |
472 | ||
473 | for(i=0;i<s->sblimit;i++) { | |
474 | smr[i] = (int)(fixed_smr[i] * 10); | |
475 | } | |
476 | } | |
477 | ||
478 | ||
479 | #define SB_NOTALLOCATED 0 | |
480 | #define SB_ALLOCATED 1 | |
481 | #define SB_NOMORE 2 | |
482 | ||
483 | /* Try to maximize the smr while using a number of bits inferior to | |
484 | the frame size. I tried to make the code simpler, faster and | |
485 | smaller than other encoders :-) */ | |
486 | static void compute_bit_allocation(MpegAudioContext *s, | |
487 | short smr1[MPA_MAX_CHANNELS][SBLIMIT], | |
488 | unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT], | |
489 | int *padding) | |
490 | { | |
491 | int i, ch, b, max_smr, max_ch, max_sb, current_frame_size, max_frame_size; | |
492 | int incr; | |
493 | short smr[MPA_MAX_CHANNELS][SBLIMIT]; | |
494 | unsigned char subband_status[MPA_MAX_CHANNELS][SBLIMIT]; | |
495 | const unsigned char *alloc; | |
496 | ||
497 | memcpy(smr, smr1, s->nb_channels * sizeof(short) * SBLIMIT); | |
498 | memset(subband_status, SB_NOTALLOCATED, s->nb_channels * SBLIMIT); | |
499 | memset(bit_alloc, 0, s->nb_channels * SBLIMIT); | |
500 | ||
501 | /* compute frame size and padding */ | |
502 | max_frame_size = s->frame_size; | |
503 | s->frame_frac += s->frame_frac_incr; | |
504 | if (s->frame_frac >= 65536) { | |
505 | s->frame_frac -= 65536; | |
506 | s->do_padding = 1; | |
507 | max_frame_size += 8; | |
508 | } else { | |
509 | s->do_padding = 0; | |
510 | } | |
511 | ||
512 | /* compute the header + bit alloc size */ | |
513 | current_frame_size = 32; | |
514 | alloc = s->alloc_table; | |
515 | for(i=0;i<s->sblimit;i++) { | |
516 | incr = alloc[0]; | |
517 | current_frame_size += incr * s->nb_channels; | |
518 | alloc += 1 << incr; | |
519 | } | |
520 | for(;;) { | |
521 | /* look for the subband with the largest signal to mask ratio */ | |
522 | max_sb = -1; | |
523 | max_ch = -1; | |
524 | max_smr = 0x80000000; | |
525 | for(ch=0;ch<s->nb_channels;ch++) { | |
526 | for(i=0;i<s->sblimit;i++) { | |
527 | if (smr[ch][i] > max_smr && subband_status[ch][i] != SB_NOMORE) { | |
528 | max_smr = smr[ch][i]; | |
529 | max_sb = i; | |
530 | max_ch = ch; | |
531 | } | |
532 | } | |
533 | } | |
534 | #if 0 | |
535 | printf("current=%d max=%d max_sb=%d alloc=%d\n", | |
536 | current_frame_size, max_frame_size, max_sb, | |
537 | bit_alloc[max_sb]); | |
538 | #endif | |
539 | if (max_sb < 0) | |
540 | break; | |
541 | ||
542 | /* find alloc table entry (XXX: not optimal, should use | |
543 | pointer table) */ | |
544 | alloc = s->alloc_table; | |
545 | for(i=0;i<max_sb;i++) { | |
546 | alloc += 1 << alloc[0]; | |
547 | } | |
548 | ||
549 | if (subband_status[max_ch][max_sb] == SB_NOTALLOCATED) { | |
550 | /* nothing was coded for this band: add the necessary bits */ | |
551 | incr = 2 + nb_scale_factors[s->scale_code[max_ch][max_sb]] * 6; | |
552 | incr += total_quant_bits[alloc[1]]; | |
553 | } else { | |
554 | /* increments bit allocation */ | |
555 | b = bit_alloc[max_ch][max_sb]; | |
556 | incr = total_quant_bits[alloc[b + 1]] - | |
557 | total_quant_bits[alloc[b]]; | |
558 | } | |
559 | ||
560 | if (current_frame_size + incr <= max_frame_size) { | |
561 | /* can increase size */ | |
562 | b = ++bit_alloc[max_ch][max_sb]; | |
563 | current_frame_size += incr; | |
564 | /* decrease smr by the resolution we added */ | |
565 | smr[max_ch][max_sb] = smr1[max_ch][max_sb] - quant_snr[alloc[b]]; | |
566 | /* max allocation size reached ? */ | |
567 | if (b == ((1 << alloc[0]) - 1)) | |
568 | subband_status[max_ch][max_sb] = SB_NOMORE; | |
569 | else | |
570 | subband_status[max_ch][max_sb] = SB_ALLOCATED; | |
571 | } else { | |
572 | /* cannot increase the size of this subband */ | |
573 | subband_status[max_ch][max_sb] = SB_NOMORE; | |
574 | } | |
575 | } | |
576 | *padding = max_frame_size - current_frame_size; | |
577 | assert(*padding >= 0); | |
578 | ||
579 | #if 0 | |
580 | for(i=0;i<s->sblimit;i++) { | |
581 | printf("%d ", bit_alloc[i]); | |
582 | } | |
583 | printf("\n"); | |
584 | #endif | |
585 | } | |
586 | ||
587 | /* | |
588 | * Output the mpeg audio layer 2 frame. Note how the code is small | |
589 | * compared to other encoders :-) | |
590 | */ | |
591 | static void encode_frame(MpegAudioContext *s, | |
592 | unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT], | |
593 | int padding) | |
594 | { | |
595 | int i, j, k, l, bit_alloc_bits, b, ch; | |
596 | unsigned char *sf; | |
597 | int q[3]; | |
598 | PutBitContext *p = &s->pb; | |
599 | ||
600 | /* header */ | |
601 | ||
602 | put_bits(p, 12, 0xfff); | |
603 | put_bits(p, 1, 1 - s->lsf); /* 1 = mpeg1 ID, 0 = mpeg2 lsf ID */ | |
604 | put_bits(p, 2, 4-2); /* layer 2 */ | |
605 | put_bits(p, 1, 1); /* no error protection */ | |
606 | put_bits(p, 4, s->bitrate_index); | |
607 | put_bits(p, 2, s->freq_index); | |
608 | put_bits(p, 1, s->do_padding); /* use padding */ | |
609 | put_bits(p, 1, 0); /* private_bit */ | |
610 | put_bits(p, 2, s->nb_channels == 2 ? MPA_STEREO : MPA_MONO); | |
611 | put_bits(p, 2, 0); /* mode_ext */ | |
612 | put_bits(p, 1, 0); /* no copyright */ | |
613 | put_bits(p, 1, 1); /* original */ | |
614 | put_bits(p, 2, 0); /* no emphasis */ | |
615 | ||
616 | /* bit allocation */ | |
617 | j = 0; | |
618 | for(i=0;i<s->sblimit;i++) { | |
619 | bit_alloc_bits = s->alloc_table[j]; | |
620 | for(ch=0;ch<s->nb_channels;ch++) { | |
621 | put_bits(p, bit_alloc_bits, bit_alloc[ch][i]); | |
622 | } | |
623 | j += 1 << bit_alloc_bits; | |
624 | } | |
625 | ||
626 | /* scale codes */ | |
627 | for(i=0;i<s->sblimit;i++) { | |
628 | for(ch=0;ch<s->nb_channels;ch++) { | |
629 | if (bit_alloc[ch][i]) | |
630 | put_bits(p, 2, s->scale_code[ch][i]); | |
631 | } | |
632 | } | |
633 | ||
634 | /* scale factors */ | |
635 | for(i=0;i<s->sblimit;i++) { | |
636 | for(ch=0;ch<s->nb_channels;ch++) { | |
637 | if (bit_alloc[ch][i]) { | |
638 | sf = &s->scale_factors[ch][i][0]; | |
639 | switch(s->scale_code[ch][i]) { | |
640 | case 0: | |
641 | put_bits(p, 6, sf[0]); | |
642 | put_bits(p, 6, sf[1]); | |
643 | put_bits(p, 6, sf[2]); | |
644 | break; | |
645 | case 3: | |
646 | case 1: | |
647 | put_bits(p, 6, sf[0]); | |
648 | put_bits(p, 6, sf[2]); | |
649 | break; | |
650 | case 2: | |
651 | put_bits(p, 6, sf[0]); | |
652 | break; | |
653 | } | |
654 | } | |
655 | } | |
656 | } | |
657 | ||
658 | /* quantization & write sub band samples */ | |
659 | ||
660 | for(k=0;k<3;k++) { | |
661 | for(l=0;l<12;l+=3) { | |
662 | j = 0; | |
663 | for(i=0;i<s->sblimit;i++) { | |
664 | bit_alloc_bits = s->alloc_table[j]; | |
665 | for(ch=0;ch<s->nb_channels;ch++) { | |
666 | b = bit_alloc[ch][i]; | |
667 | if (b) { | |
668 | int qindex, steps, m, sample, bits; | |
669 | /* we encode 3 sub band samples of the same sub band at a time */ | |
670 | qindex = s->alloc_table[j+b]; | |
671 | steps = quant_steps[qindex]; | |
672 | for(m=0;m<3;m++) { | |
673 | sample = s->sb_samples[ch][k][l + m][i]; | |
674 | /* divide by scale factor */ | |
675 | #ifdef USE_FLOATS | |
676 | { | |
677 | float a; | |
678 | a = (float)sample * scale_factor_inv_table[s->scale_factors[ch][i][k]]; | |
679 | q[m] = (int)((a + 1.0) * steps * 0.5); | |
680 | } | |
681 | #else | |
682 | { | |
683 | int q1, e, shift, mult; | |
684 | e = s->scale_factors[ch][i][k]; | |
685 | shift = scale_factor_shift[e]; | |
686 | mult = scale_factor_mult[e]; | |
687 | ||
688 | /* normalize to P bits */ | |
689 | if (shift < 0) | |
690 | q1 = sample << (-shift); | |
691 | else | |
692 | q1 = sample >> shift; | |
693 | q1 = (q1 * mult) >> P; | |
694 | q[m] = ((q1 + (1 << P)) * steps) >> (P + 1); | |
695 | } | |
696 | #endif | |
697 | if (q[m] >= steps) | |
698 | q[m] = steps - 1; | |
699 | assert(q[m] >= 0 && q[m] < steps); | |
700 | } | |
701 | bits = quant_bits[qindex]; | |
702 | if (bits < 0) { | |
703 | /* group the 3 values to save bits */ | |
704 | put_bits(p, -bits, | |
705 | q[0] + steps * (q[1] + steps * q[2])); | |
706 | #if 0 | |
707 | printf("%d: gr1 %d\n", | |
708 | i, q[0] + steps * (q[1] + steps * q[2])); | |
709 | #endif | |
710 | } else { | |
711 | #if 0 | |
712 | printf("%d: gr3 %d %d %d\n", | |
713 | i, q[0], q[1], q[2]); | |
714 | #endif | |
715 | put_bits(p, bits, q[0]); | |
716 | put_bits(p, bits, q[1]); | |
717 | put_bits(p, bits, q[2]); | |
718 | } | |
719 | } | |
720 | } | |
721 | /* next subband in alloc table */ | |
722 | j += 1 << bit_alloc_bits; | |
723 | } | |
724 | } | |
725 | } | |
726 | ||
727 | /* padding */ | |
728 | for(i=0;i<padding;i++) | |
729 | put_bits(p, 1, 0); | |
730 | ||
731 | /* flush */ | |
732 | flush_put_bits(p); | |
733 | } | |
734 | ||
735 | int MPA_encode_frame(AVCodecContext *avctx, | |
736 | unsigned char *frame, int buf_size, void *data) | |
737 | { | |
738 | MpegAudioContext *s = avctx->priv_data; | |
739 | short *samples = data; | |
740 | short smr[MPA_MAX_CHANNELS][SBLIMIT]; | |
741 | unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT]; | |
742 | int padding, i; | |
743 | ||
744 | for(i=0;i<s->nb_channels;i++) { | |
745 | filter(s, i, samples + i, s->nb_channels); | |
746 | } | |
747 | ||
748 | for(i=0;i<s->nb_channels;i++) { | |
749 | compute_scale_factors(s->scale_code[i], s->scale_factors[i], | |
750 | s->sb_samples[i], s->sblimit); | |
751 | } | |
752 | for(i=0;i<s->nb_channels;i++) { | |
753 | psycho_acoustic_model(s, smr[i]); | |
754 | } | |
755 | compute_bit_allocation(s, smr, bit_alloc, &padding); | |
756 | ||
757 | init_put_bits(&s->pb, frame, MPA_MAX_CODED_FRAME_SIZE, NULL, NULL); | |
758 | ||
759 | encode_frame(s, bit_alloc, padding); | |
760 | ||
761 | s->nb_samples += MPA_FRAME_SIZE; | |
762 | return s->pb.buf_ptr - s->pb.buf; | |
763 | } | |
764 | ||
765 | ||
766 | AVCodec mp2_encoder = { | |
767 | "mp2", | |
768 | CODEC_TYPE_AUDIO, | |
769 | CODEC_ID_MP2, | |
770 | sizeof(MpegAudioContext), | |
771 | MPA_encode_init, | |
772 | MPA_encode_frame, | |
773 | NULL, | |
774 | }; |