Commit | Line | Data |
---|---|---|
de6d9b64 FB |
1 | /* |
2 | * MPEG Audio decoder | |
ff4ec49e | 3 | * Copyright (c) 2001, 2002 Fabrice Bellard. |
de6d9b64 | 4 | * |
ff4ec49e FB |
5 | * This library is free software; you can redistribute it and/or |
6 | * modify it under the terms of the GNU Lesser General Public | |
7 | * License as published by the Free Software Foundation; either | |
8 | * version 2 of the License, or (at your option) any later version. | |
de6d9b64 | 9 | * |
ff4ec49e | 10 | * This library is distributed in the hope that it will be useful, |
de6d9b64 | 11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
ff4ec49e FB |
12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
13 | * Lesser General Public License for more details. | |
de6d9b64 | 14 | * |
ff4ec49e FB |
15 | * You should have received a copy of the GNU Lesser General Public |
16 | * License along with this library; if not, write to the Free Software | |
17 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | |
de6d9b64 | 18 | */ |
239c2f4c | 19 | //#define DEBUG |
de6d9b64 | 20 | #include "avcodec.h" |
239c2f4c | 21 | #include "mpegaudio.h" |
de6d9b64 FB |
22 | |
23 | /* | |
239c2f4c FB |
24 | * TODO: |
25 | * - in low precision mode, use more 16 bit multiplies in synth filter | |
26 | * - test lsf / mpeg25 extensively. | |
de6d9b64 FB |
27 | */ |
28 | ||
239c2f4c FB |
29 | /* define USE_HIGHPRECISION to have a bit exact (but slower) mpeg |
30 | audio decoder */ | |
31 | //#define USE_HIGHPRECISION | |
32 | ||
33 | #ifdef USE_HIGHPRECISION | |
34 | #define FRAC_BITS 23 /* fractional bits for sb_samples and dct */ | |
35 | #define WFRAC_BITS 16 /* fractional bits for window */ | |
36 | #else | |
37 | #define FRAC_BITS 15 /* fractional bits for sb_samples and dct */ | |
38 | #define WFRAC_BITS 14 /* fractional bits for window */ | |
39 | #endif | |
40 | ||
41 | #define FRAC_ONE (1 << FRAC_BITS) | |
42 | ||
43 | #define MULL(a,b) (((INT64)(a) * (INT64)(b)) >> FRAC_BITS) | |
44 | #define MUL64(a,b) ((INT64)(a) * (INT64)(b)) | |
45 | #define FIX(a) ((int)((a) * FRAC_ONE)) | |
46 | /* WARNING: only correct for posititive numbers */ | |
47 | #define FIXR(a) ((int)((a) * FRAC_ONE + 0.5)) | |
48 | #define FRAC_RND(a) (((a) + (FRAC_ONE/2)) >> FRAC_BITS) | |
49 | ||
50 | #if FRAC_BITS <= 15 | |
51 | typedef INT16 MPA_INT; | |
52 | #else | |
53 | typedef INT32 MPA_INT; | |
54 | #endif | |
55 | ||
56 | /****************/ | |
57 | ||
de6d9b64 FB |
58 | #define HEADER_SIZE 4 |
59 | #define BACKSTEP_SIZE 512 | |
60 | ||
61 | typedef struct MPADecodeContext { | |
239c2f4c | 62 | UINT8 inbuf1[2][MPA_MAX_CODED_FRAME_SIZE + BACKSTEP_SIZE]; /* input buffer */ |
de6d9b64 FB |
63 | int inbuf_index; |
64 | UINT8 *inbuf_ptr, *inbuf; | |
65 | int frame_size; | |
239c2f4c FB |
66 | int free_format_frame_size; /* frame size in case of free format |
67 | (zero if currently unknown) */ | |
68 | /* next header (used in free format parsing) */ | |
69 | UINT32 free_format_next_header; | |
de6d9b64 FB |
70 | int error_protection; |
71 | int layer; | |
72 | int sample_rate; | |
239c2f4c | 73 | int sample_rate_index; /* between 0 and 8 */ |
de6d9b64 FB |
74 | int bit_rate; |
75 | int old_frame_size; | |
76 | GetBitContext gb; | |
239c2f4c FB |
77 | int nb_channels; |
78 | int mode; | |
79 | int mode_ext; | |
80 | int lsf; | |
81 | MPA_INT synth_buf[MPA_MAX_CHANNELS][512 * 2]; | |
82 | int synth_buf_offset[MPA_MAX_CHANNELS]; | |
83 | INT32 sb_samples[MPA_MAX_CHANNELS][36][SBLIMIT]; | |
84 | INT32 mdct_buf[MPA_MAX_CHANNELS][SBLIMIT * 18]; /* previous samples, for layer 3 MDCT */ | |
85 | #ifdef DEBUG | |
86 | int frame_count; | |
87 | #endif | |
de6d9b64 FB |
88 | } MPADecodeContext; |
89 | ||
239c2f4c FB |
90 | /* layer 3 "granule" */ |
91 | typedef struct GranuleDef { | |
92 | UINT8 scfsi; | |
93 | int part2_3_length; | |
94 | int big_values; | |
95 | int global_gain; | |
96 | int scalefac_compress; | |
97 | UINT8 block_type; | |
98 | UINT8 switch_point; | |
99 | int table_select[3]; | |
100 | int subblock_gain[3]; | |
101 | UINT8 scalefac_scale; | |
102 | UINT8 count1table_select; | |
103 | int region_size[3]; /* number of huffman codes in each region */ | |
104 | int preflag; | |
105 | int short_start, long_end; /* long/short band indexes */ | |
106 | UINT8 scale_factors[40]; | |
107 | INT32 sb_hybrid[SBLIMIT * 18]; /* 576 samples */ | |
108 | } GranuleDef; | |
de6d9b64 | 109 | |
239c2f4c FB |
110 | #define MODE_EXT_MS_STEREO 2 |
111 | #define MODE_EXT_I_STEREO 1 | |
112 | ||
113 | /* layer 3 huffman tables */ | |
114 | typedef struct HuffTable { | |
115 | int xsize; | |
116 | const UINT8 *bits; | |
117 | const UINT16 *codes; | |
118 | } HuffTable; | |
119 | ||
120 | #include "mpegaudiodectab.h" | |
121 | ||
122 | /* vlc structure for decoding layer 3 huffman tables */ | |
123 | static VLC huff_vlc[16]; | |
124 | static UINT8 *huff_code_table[16]; | |
125 | static VLC huff_quad_vlc[2]; | |
126 | /* computed from band_size_long */ | |
127 | static UINT16 band_index_long[9][23]; | |
128 | /* XXX: free when all decoders are closed */ | |
129 | #define TABLE_4_3_SIZE (8191 + 16) | |
747a67fb | 130 | static INT8 *table_4_3_exp; |
239c2f4c FB |
131 | #if FRAC_BITS <= 15 |
132 | static UINT16 *table_4_3_value; | |
133 | #else | |
134 | static UINT32 *table_4_3_value; | |
135 | #endif | |
136 | /* intensity stereo coef table */ | |
137 | static INT32 is_table[2][16]; | |
138 | static INT32 is_table_lsf[2][2][16]; | |
139 | static INT32 csa_table[8][2]; | |
140 | static INT32 mdct_win[8][36]; | |
141 | ||
142 | /* lower 2 bits: modulo 3, higher bits: shift */ | |
143 | static UINT16 scale_factor_modshift[64]; | |
144 | /* [i][j]: 2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */ | |
145 | static INT32 scale_factor_mult[15][3]; | |
146 | /* mult table for layer 2 group quantization */ | |
147 | ||
148 | #define SCALE_GEN(v) \ | |
149 | { FIXR(1.0 * (v)), FIXR(0.7937005259 * (v)), FIXR(0.6299605249 * (v)) } | |
150 | ||
151 | static INT32 scale_factor_mult2[3][3] = { | |
152 | SCALE_GEN(1.0 / 3.0), /* 3 steps */ | |
153 | SCALE_GEN(1.0 / 5.0), /* 5 steps */ | |
154 | SCALE_GEN(1.0 / 9.0), /* 9 steps */ | |
155 | }; | |
156 | ||
157 | /* 2^(n/4) */ | |
158 | static UINT32 scale_factor_mult3[4] = { | |
159 | FIXR(1.0), | |
160 | FIXR(1.18920711500272106671), | |
161 | FIXR(1.41421356237309504880), | |
162 | FIXR(1.68179283050742908605), | |
de6d9b64 FB |
163 | }; |
164 | ||
239c2f4c FB |
165 | static MPA_INT window[512]; |
166 | ||
167 | /* layer 1 unscaling */ | |
168 | /* n = number of bits of the mantissa minus 1 */ | |
169 | static inline int l1_unscale(int n, int mant, int scale_factor) | |
170 | { | |
171 | int shift, mod; | |
172 | INT64 val; | |
173 | ||
174 | shift = scale_factor_modshift[scale_factor]; | |
175 | mod = shift & 3; | |
176 | shift >>= 2; | |
177 | val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]); | |
178 | shift += n; | |
179 | return (int)((val + (1 << (shift - 1))) >> shift); | |
180 | } | |
181 | ||
182 | static inline int l2_unscale_group(int steps, int mant, int scale_factor) | |
183 | { | |
184 | int shift, mod, val; | |
185 | ||
186 | shift = scale_factor_modshift[scale_factor]; | |
187 | mod = shift & 3; | |
188 | shift >>= 2; | |
189 | /* XXX: store the result directly */ | |
190 | val = (2 * (mant - (steps >> 1))) * scale_factor_mult2[steps >> 2][mod]; | |
191 | return (val + (1 << (shift - 1))) >> shift; | |
192 | } | |
193 | ||
194 | /* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */ | |
195 | static inline int l3_unscale(int value, int exponent) | |
196 | { | |
197 | #if FRAC_BITS <= 15 | |
198 | unsigned int m; | |
199 | #else | |
200 | UINT64 m; | |
201 | #endif | |
202 | int e; | |
203 | ||
204 | e = table_4_3_exp[value]; | |
205 | e += (exponent >> 2); | |
206 | e = FRAC_BITS - e; | |
207 | #if FRAC_BITS <= 15 | |
208 | if (e > 31) | |
209 | e = 31; | |
210 | #endif | |
211 | m = table_4_3_value[value]; | |
212 | #if FRAC_BITS <= 15 | |
213 | m = (m * scale_factor_mult3[exponent & 3]); | |
214 | m = (m + (1 << (e-1))) >> e; | |
215 | return m; | |
216 | #else | |
217 | m = MUL64(m, scale_factor_mult3[exponent & 3]); | |
218 | m = (m + (UINT64_C(1) << (e-1))) >> e; | |
219 | return m; | |
220 | #endif | |
221 | } | |
222 | ||
f9ed4f88 FB |
223 | /* all integer n^(4/3) computation code */ |
224 | #define DEV_ORDER 13 | |
225 | ||
226 | #define POW_FRAC_BITS 24 | |
227 | #define POW_FRAC_ONE (1 << POW_FRAC_BITS) | |
228 | #define POW_FIX(a) ((int)((a) * POW_FRAC_ONE)) | |
229 | #define POW_MULL(a,b) (((INT64)(a) * (INT64)(b)) >> POW_FRAC_BITS) | |
230 | ||
231 | static int dev_4_3_coefs[DEV_ORDER]; | |
232 | ||
233 | static int pow_mult3[3] = { | |
234 | POW_FIX(1.0), | |
235 | POW_FIX(1.25992104989487316476), | |
236 | POW_FIX(1.58740105196819947474), | |
237 | }; | |
238 | ||
239 | static void int_pow_init(void) | |
240 | { | |
241 | int i, a; | |
242 | ||
243 | a = POW_FIX(1.0); | |
244 | for(i=0;i<DEV_ORDER;i++) { | |
245 | a = POW_MULL(a, POW_FIX(4.0 / 3.0) - i * POW_FIX(1.0)) / (i + 1); | |
246 | dev_4_3_coefs[i] = a; | |
247 | } | |
248 | } | |
249 | ||
250 | /* return the mantissa and the binary exponent */ | |
251 | static int int_pow(int i, int *exp_ptr) | |
252 | { | |
253 | int e, er, eq, j; | |
254 | int a, a1; | |
255 | ||
256 | /* renormalize */ | |
257 | a = i; | |
258 | e = POW_FRAC_BITS; | |
259 | while (a < (1 << (POW_FRAC_BITS - 1))) { | |
260 | a = a << 1; | |
261 | e--; | |
262 | } | |
263 | a -= (1 << POW_FRAC_BITS); | |
264 | a1 = 0; | |
265 | for(j = DEV_ORDER - 1; j >= 0; j--) | |
266 | a1 = POW_MULL(a, dev_4_3_coefs[j] + a1); | |
267 | a = (1 << POW_FRAC_BITS) + a1; | |
268 | /* exponent compute (exact) */ | |
269 | e = e * 4; | |
270 | er = e % 3; | |
271 | eq = e / 3; | |
272 | a = POW_MULL(a, pow_mult3[er]); | |
273 | while (a >= 2 * POW_FRAC_ONE) { | |
274 | a = a >> 1; | |
275 | eq++; | |
276 | } | |
277 | /* convert to float */ | |
278 | while (a < POW_FRAC_ONE) { | |
279 | a = a << 1; | |
280 | eq--; | |
281 | } | |
59d3e367 FB |
282 | /* now POW_FRAC_ONE <= a < 2 * POW_FRAC_ONE */ |
283 | #if (POW_FRAC_BITS - 1) > FRAC_BITS | |
284 | a = (a + (1 << (POW_FRAC_BITS - FRAC_BITS - 1))) >> (POW_FRAC_BITS - FRAC_BITS); | |
285 | /* correct overflow */ | |
286 | if (a >= 2 * (1 << FRAC_BITS)) { | |
287 | a = a >> 1; | |
288 | eq++; | |
289 | } | |
290 | #endif | |
f9ed4f88 | 291 | *exp_ptr = eq; |
f9ed4f88 | 292 | return a; |
f9ed4f88 | 293 | } |
de6d9b64 FB |
294 | |
295 | static int decode_init(AVCodecContext * avctx) | |
296 | { | |
297 | MPADecodeContext *s = avctx->priv_data; | |
de6d9b64 | 298 | static int init; |
239c2f4c | 299 | int i, j, k; |
de6d9b64 FB |
300 | |
301 | if(!init) { | |
239c2f4c FB |
302 | /* scale factors table for layer 1/2 */ |
303 | for(i=0;i<64;i++) { | |
304 | int shift, mod; | |
305 | /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */ | |
306 | shift = (i / 3) - 1; | |
307 | mod = i % 3; | |
308 | #if FRAC_BITS <= 15 | |
309 | if (shift > 31) | |
310 | shift = 31; | |
311 | #endif | |
312 | scale_factor_modshift[i] = mod | (shift << 2); | |
313 | } | |
314 | ||
315 | /* scale factor multiply for layer 1 */ | |
316 | for(i=0;i<15;i++) { | |
317 | int n, norm; | |
318 | n = i + 2; | |
319 | norm = ((INT64_C(1) << n) * FRAC_ONE) / ((1 << n) - 1); | |
320 | scale_factor_mult[i][0] = MULL(FIXR(1.0), norm); | |
321 | scale_factor_mult[i][1] = MULL(FIXR(0.7937005259), norm); | |
322 | scale_factor_mult[i][2] = MULL(FIXR(0.6299605249), norm); | |
323 | dprintf("%d: norm=%x s=%x %x %x\n", | |
324 | i, norm, | |
325 | scale_factor_mult[i][0], | |
326 | scale_factor_mult[i][1], | |
327 | scale_factor_mult[i][2]); | |
328 | } | |
329 | ||
330 | /* window */ | |
331 | /* max = 18760, max sum over all 16 coefs : 44736 */ | |
332 | for(i=0;i<257;i++) { | |
333 | int v; | |
334 | v = mpa_enwindow[i]; | |
335 | #if WFRAC_BITS < 16 | |
336 | v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS); | |
337 | #endif | |
338 | window[i] = v; | |
339 | if ((i & 63) != 0) | |
340 | v = -v; | |
341 | if (i != 0) | |
342 | window[512 - i] = v; | |
343 | } | |
344 | ||
345 | /* huffman decode tables */ | |
346 | huff_code_table[0] = NULL; | |
347 | for(i=1;i<16;i++) { | |
348 | const HuffTable *h = &mpa_huff_tables[i]; | |
349 | int xsize, n, x, y; | |
350 | UINT8 *code_table; | |
351 | ||
352 | xsize = h->xsize; | |
353 | n = xsize * xsize; | |
354 | /* XXX: fail test */ | |
355 | init_vlc(&huff_vlc[i], 8, n, | |
356 | h->bits, 1, 1, h->codes, 2, 2); | |
357 | ||
358 | code_table = av_mallocz(n); | |
359 | j = 0; | |
360 | for(x=0;x<xsize;x++) { | |
361 | for(y=0;y<xsize;y++) | |
362 | code_table[j++] = (x << 4) | y; | |
363 | } | |
364 | huff_code_table[i] = code_table; | |
365 | } | |
366 | for(i=0;i<2;i++) { | |
367 | init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16, | |
368 | mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1); | |
369 | } | |
370 | ||
371 | for(i=0;i<9;i++) { | |
372 | k = 0; | |
373 | for(j=0;j<22;j++) { | |
374 | band_index_long[i][j] = k; | |
375 | k += band_size_long[i][j]; | |
376 | } | |
377 | band_index_long[i][22] = k; | |
378 | } | |
379 | ||
380 | /* compute n ^ (4/3) and store it in mantissa/exp format */ | |
381 | table_4_3_exp = av_mallocz(TABLE_4_3_SIZE * | |
382 | sizeof(table_4_3_exp[0])); | |
383 | if (!table_4_3_exp) | |
384 | return -1; | |
385 | table_4_3_value = av_mallocz(TABLE_4_3_SIZE * | |
386 | sizeof(table_4_3_value[0])); | |
387 | if (!table_4_3_value) { | |
f9ed4f88 | 388 | av_free(table_4_3_exp); |
239c2f4c FB |
389 | return -1; |
390 | } | |
391 | ||
f9ed4f88 | 392 | int_pow_init(); |
239c2f4c | 393 | for(i=1;i<TABLE_4_3_SIZE;i++) { |
239c2f4c | 394 | int e, m; |
f9ed4f88 | 395 | m = int_pow(i, &e); |
f9ed4f88 FB |
396 | #if 0 |
397 | /* test code */ | |
398 | { | |
399 | double f, fm; | |
400 | int e1, m1; | |
401 | f = pow((double)i, 4.0 / 3.0); | |
402 | fm = frexp(f, &e1); | |
403 | m1 = FIXR(2 * fm); | |
404 | #if FRAC_BITS <= 15 | |
59d3e367 FB |
405 | if ((unsigned short)m1 != m1) { |
406 | m1 = m1 >> 1; | |
407 | e1++; | |
408 | } | |
f9ed4f88 FB |
409 | #endif |
410 | e1--; | |
411 | if (m != m1 || e != e1) { | |
412 | printf("%4d: m=%x m1=%x e=%d e1=%d\n", | |
413 | i, m, m1, e, e1); | |
414 | } | |
415 | } | |
416 | #endif | |
239c2f4c FB |
417 | /* normalized to FRAC_BITS */ |
418 | table_4_3_value[i] = m; | |
59d3e367 | 419 | table_4_3_exp[i] = e; |
239c2f4c | 420 | } |
239c2f4c FB |
421 | |
422 | for(i=0;i<7;i++) { | |
423 | float f; | |
424 | int v; | |
425 | if (i != 6) { | |
426 | f = tan((double)i * M_PI / 12.0); | |
427 | v = FIXR(f / (1.0 + f)); | |
428 | } else { | |
429 | v = FIXR(1.0); | |
430 | } | |
431 | is_table[0][i] = v; | |
432 | is_table[1][6 - i] = v; | |
433 | } | |
434 | /* invalid values */ | |
435 | for(i=7;i<16;i++) | |
436 | is_table[0][i] = is_table[1][i] = 0.0; | |
437 | ||
438 | for(i=0;i<16;i++) { | |
439 | double f; | |
440 | int e, k; | |
441 | ||
442 | for(j=0;j<2;j++) { | |
443 | e = -(j + 1) * ((i + 1) >> 1); | |
444 | f = pow(2.0, e / 4.0); | |
445 | k = i & 1; | |
446 | is_table_lsf[j][k ^ 1][i] = FIXR(f); | |
447 | is_table_lsf[j][k][i] = FIXR(1.0); | |
448 | dprintf("is_table_lsf %d %d: %x %x\n", | |
449 | i, j, is_table_lsf[j][0][i], is_table_lsf[j][1][i]); | |
450 | } | |
451 | } | |
452 | ||
453 | for(i=0;i<8;i++) { | |
454 | float ci, cs, ca; | |
455 | ci = ci_table[i]; | |
456 | cs = 1.0 / sqrt(1.0 + ci * ci); | |
457 | ca = cs * ci; | |
458 | csa_table[i][0] = FIX(cs); | |
459 | csa_table[i][1] = FIX(ca); | |
460 | } | |
461 | ||
462 | /* compute mdct windows */ | |
463 | for(i=0;i<36;i++) { | |
464 | int v; | |
465 | v = FIXR(sin(M_PI * (i + 0.5) / 36.0)); | |
466 | mdct_win[0][i] = v; | |
467 | mdct_win[1][i] = v; | |
468 | mdct_win[3][i] = v; | |
469 | } | |
470 | for(i=0;i<6;i++) { | |
471 | mdct_win[1][18 + i] = FIXR(1.0); | |
472 | mdct_win[1][24 + i] = FIXR(sin(M_PI * ((i + 6) + 0.5) / 12.0)); | |
473 | mdct_win[1][30 + i] = FIXR(0.0); | |
474 | ||
475 | mdct_win[3][i] = FIXR(0.0); | |
476 | mdct_win[3][6 + i] = FIXR(sin(M_PI * (i + 0.5) / 12.0)); | |
477 | mdct_win[3][12 + i] = FIXR(1.0); | |
478 | } | |
479 | ||
480 | for(i=0;i<12;i++) | |
481 | mdct_win[2][i] = FIXR(sin(M_PI * (i + 0.5) / 12.0)); | |
482 | ||
483 | /* NOTE: we do frequency inversion adter the MDCT by changing | |
484 | the sign of the right window coefs */ | |
485 | for(j=0;j<4;j++) { | |
486 | for(i=0;i<36;i+=2) { | |
487 | mdct_win[j + 4][i] = mdct_win[j][i]; | |
488 | mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1]; | |
489 | } | |
490 | } | |
491 | ||
492 | #if defined(DEBUG) | |
493 | for(j=0;j<8;j++) { | |
494 | printf("win%d=\n", j); | |
495 | for(i=0;i<36;i++) | |
496 | printf("%f, ", (double)mdct_win[j][i] / FRAC_ONE); | |
497 | printf("\n"); | |
498 | } | |
499 | #endif | |
de6d9b64 | 500 | init = 1; |
de6d9b64 FB |
501 | } |
502 | ||
503 | s->inbuf_index = 0; | |
504 | s->inbuf = &s->inbuf1[s->inbuf_index][BACKSTEP_SIZE]; | |
505 | s->inbuf_ptr = s->inbuf; | |
239c2f4c FB |
506 | #ifdef DEBUG |
507 | s->frame_count = 0; | |
508 | #endif | |
de6d9b64 FB |
509 | return 0; |
510 | } | |
511 | ||
239c2f4c FB |
512 | /* tab[i][j] = 1.0 / (2.0 * cos(pi*(2*k+1) / 2^(6 - j))) */; |
513 | ||
514 | /* cos(i*pi/64) */ | |
515 | ||
516 | #define COS0_0 FIXR(0.50060299823519630134) | |
517 | #define COS0_1 FIXR(0.50547095989754365998) | |
518 | #define COS0_2 FIXR(0.51544730992262454697) | |
519 | #define COS0_3 FIXR(0.53104259108978417447) | |
520 | #define COS0_4 FIXR(0.55310389603444452782) | |
521 | #define COS0_5 FIXR(0.58293496820613387367) | |
522 | #define COS0_6 FIXR(0.62250412303566481615) | |
523 | #define COS0_7 FIXR(0.67480834145500574602) | |
524 | #define COS0_8 FIXR(0.74453627100229844977) | |
525 | #define COS0_9 FIXR(0.83934964541552703873) | |
526 | #define COS0_10 FIXR(0.97256823786196069369) | |
527 | #define COS0_11 FIXR(1.16943993343288495515) | |
528 | #define COS0_12 FIXR(1.48416461631416627724) | |
529 | #define COS0_13 FIXR(2.05778100995341155085) | |
530 | #define COS0_14 FIXR(3.40760841846871878570) | |
531 | #define COS0_15 FIXR(10.19000812354805681150) | |
532 | ||
533 | #define COS1_0 FIXR(0.50241928618815570551) | |
534 | #define COS1_1 FIXR(0.52249861493968888062) | |
535 | #define COS1_2 FIXR(0.56694403481635770368) | |
536 | #define COS1_3 FIXR(0.64682178335999012954) | |
537 | #define COS1_4 FIXR(0.78815462345125022473) | |
538 | #define COS1_5 FIXR(1.06067768599034747134) | |
539 | #define COS1_6 FIXR(1.72244709823833392782) | |
540 | #define COS1_7 FIXR(5.10114861868916385802) | |
541 | ||
542 | #define COS2_0 FIXR(0.50979557910415916894) | |
543 | #define COS2_1 FIXR(0.60134488693504528054) | |
544 | #define COS2_2 FIXR(0.89997622313641570463) | |
545 | #define COS2_3 FIXR(2.56291544774150617881) | |
546 | ||
547 | #define COS3_0 FIXR(0.54119610014619698439) | |
548 | #define COS3_1 FIXR(1.30656296487637652785) | |
549 | ||
550 | #define COS4_0 FIXR(0.70710678118654752439) | |
551 | ||
552 | /* butterfly operator */ | |
553 | #define BF(a, b, c)\ | |
554 | {\ | |
555 | tmp0 = tab[a] + tab[b];\ | |
556 | tmp1 = tab[a] - tab[b];\ | |
557 | tab[a] = tmp0;\ | |
558 | tab[b] = MULL(tmp1, c);\ | |
559 | } | |
560 | ||
561 | #define BF1(a, b, c, d)\ | |
562 | {\ | |
563 | BF(a, b, COS4_0);\ | |
564 | BF(c, d, -COS4_0);\ | |
565 | tab[c] += tab[d];\ | |
566 | } | |
567 | ||
568 | #define BF2(a, b, c, d)\ | |
569 | {\ | |
570 | BF(a, b, COS4_0);\ | |
571 | BF(c, d, -COS4_0);\ | |
572 | tab[c] += tab[d];\ | |
573 | tab[a] += tab[c];\ | |
574 | tab[c] += tab[b];\ | |
575 | tab[b] += tab[d];\ | |
576 | } | |
577 | ||
578 | #define ADD(a, b) tab[a] += tab[b] | |
579 | ||
580 | /* DCT32 without 1/sqrt(2) coef zero scaling. */ | |
581 | static void dct32(INT32 *out, INT32 *tab) | |
582 | { | |
583 | int tmp0, tmp1; | |
584 | ||
585 | /* pass 1 */ | |
586 | BF(0, 31, COS0_0); | |
587 | BF(1, 30, COS0_1); | |
588 | BF(2, 29, COS0_2); | |
589 | BF(3, 28, COS0_3); | |
590 | BF(4, 27, COS0_4); | |
591 | BF(5, 26, COS0_5); | |
592 | BF(6, 25, COS0_6); | |
593 | BF(7, 24, COS0_7); | |
594 | BF(8, 23, COS0_8); | |
595 | BF(9, 22, COS0_9); | |
596 | BF(10, 21, COS0_10); | |
597 | BF(11, 20, COS0_11); | |
598 | BF(12, 19, COS0_12); | |
599 | BF(13, 18, COS0_13); | |
600 | BF(14, 17, COS0_14); | |
601 | BF(15, 16, COS0_15); | |
602 | ||
603 | /* pass 2 */ | |
604 | BF(0, 15, COS1_0); | |
605 | BF(1, 14, COS1_1); | |
606 | BF(2, 13, COS1_2); | |
607 | BF(3, 12, COS1_3); | |
608 | BF(4, 11, COS1_4); | |
609 | BF(5, 10, COS1_5); | |
610 | BF(6, 9, COS1_6); | |
611 | BF(7, 8, COS1_7); | |
612 | ||
613 | BF(16, 31, -COS1_0); | |
614 | BF(17, 30, -COS1_1); | |
615 | BF(18, 29, -COS1_2); | |
616 | BF(19, 28, -COS1_3); | |
617 | BF(20, 27, -COS1_4); | |
618 | BF(21, 26, -COS1_5); | |
619 | BF(22, 25, -COS1_6); | |
620 | BF(23, 24, -COS1_7); | |
621 | ||
622 | /* pass 3 */ | |
623 | BF(0, 7, COS2_0); | |
624 | BF(1, 6, COS2_1); | |
625 | BF(2, 5, COS2_2); | |
626 | BF(3, 4, COS2_3); | |
627 | ||
628 | BF(8, 15, -COS2_0); | |
629 | BF(9, 14, -COS2_1); | |
630 | BF(10, 13, -COS2_2); | |
631 | BF(11, 12, -COS2_3); | |
632 | ||
633 | BF(16, 23, COS2_0); | |
634 | BF(17, 22, COS2_1); | |
635 | BF(18, 21, COS2_2); | |
636 | BF(19, 20, COS2_3); | |
637 | ||
638 | BF(24, 31, -COS2_0); | |
639 | BF(25, 30, -COS2_1); | |
640 | BF(26, 29, -COS2_2); | |
641 | BF(27, 28, -COS2_3); | |
642 | ||
643 | /* pass 4 */ | |
644 | BF(0, 3, COS3_0); | |
645 | BF(1, 2, COS3_1); | |
646 | ||
647 | BF(4, 7, -COS3_0); | |
648 | BF(5, 6, -COS3_1); | |
649 | ||
650 | BF(8, 11, COS3_0); | |
651 | BF(9, 10, COS3_1); | |
652 | ||
653 | BF(12, 15, -COS3_0); | |
654 | BF(13, 14, -COS3_1); | |
655 | ||
656 | BF(16, 19, COS3_0); | |
657 | BF(17, 18, COS3_1); | |
658 | ||
659 | BF(20, 23, -COS3_0); | |
660 | BF(21, 22, -COS3_1); | |
661 | ||
662 | BF(24, 27, COS3_0); | |
663 | BF(25, 26, COS3_1); | |
664 | ||
665 | BF(28, 31, -COS3_0); | |
666 | BF(29, 30, -COS3_1); | |
667 | ||
668 | /* pass 5 */ | |
669 | BF1(0, 1, 2, 3); | |
670 | BF2(4, 5, 6, 7); | |
671 | BF1(8, 9, 10, 11); | |
672 | BF2(12, 13, 14, 15); | |
673 | BF1(16, 17, 18, 19); | |
674 | BF2(20, 21, 22, 23); | |
675 | BF1(24, 25, 26, 27); | |
676 | BF2(28, 29, 30, 31); | |
677 | ||
678 | /* pass 6 */ | |
679 | ||
680 | ADD( 8, 12); | |
681 | ADD(12, 10); | |
682 | ADD(10, 14); | |
683 | ADD(14, 9); | |
684 | ADD( 9, 13); | |
685 | ADD(13, 11); | |
686 | ADD(11, 15); | |
687 | ||
688 | out[ 0] = tab[0]; | |
689 | out[16] = tab[1]; | |
690 | out[ 8] = tab[2]; | |
691 | out[24] = tab[3]; | |
692 | out[ 4] = tab[4]; | |
693 | out[20] = tab[5]; | |
694 | out[12] = tab[6]; | |
695 | out[28] = tab[7]; | |
696 | out[ 2] = tab[8]; | |
697 | out[18] = tab[9]; | |
698 | out[10] = tab[10]; | |
699 | out[26] = tab[11]; | |
700 | out[ 6] = tab[12]; | |
701 | out[22] = tab[13]; | |
702 | out[14] = tab[14]; | |
703 | out[30] = tab[15]; | |
704 | ||
705 | ADD(24, 28); | |
706 | ADD(28, 26); | |
707 | ADD(26, 30); | |
708 | ADD(30, 25); | |
709 | ADD(25, 29); | |
710 | ADD(29, 27); | |
711 | ADD(27, 31); | |
712 | ||
713 | out[ 1] = tab[16] + tab[24]; | |
714 | out[17] = tab[17] + tab[25]; | |
715 | out[ 9] = tab[18] + tab[26]; | |
716 | out[25] = tab[19] + tab[27]; | |
717 | out[ 5] = tab[20] + tab[28]; | |
718 | out[21] = tab[21] + tab[29]; | |
719 | out[13] = tab[22] + tab[30]; | |
720 | out[29] = tab[23] + tab[31]; | |
721 | out[ 3] = tab[24] + tab[20]; | |
722 | out[19] = tab[25] + tab[21]; | |
723 | out[11] = tab[26] + tab[22]; | |
724 | out[27] = tab[27] + tab[23]; | |
725 | out[ 7] = tab[28] + tab[18]; | |
726 | out[23] = tab[29] + tab[19]; | |
727 | out[15] = tab[30] + tab[17]; | |
728 | out[31] = tab[31]; | |
729 | } | |
730 | ||
731 | #define OUT_SHIFT (WFRAC_BITS + FRAC_BITS - 15) | |
732 | ||
733 | #if FRAC_BITS <= 15 | |
734 | ||
735 | #define OUT_SAMPLE(sum)\ | |
736 | {\ | |
737 | int sum1;\ | |
738 | sum1 = (sum + (1 << (OUT_SHIFT - 1))) >> OUT_SHIFT;\ | |
739 | if (sum1 < -32768)\ | |
740 | sum1 = -32768;\ | |
741 | else if (sum1 > 32767)\ | |
742 | sum1 = 32767;\ | |
743 | *samples = sum1;\ | |
744 | samples += incr;\ | |
745 | } | |
746 | ||
747 | #define SUM8(off, op) \ | |
748 | { \ | |
749 | sum op w[0 * 64 + off] * p[0 * 64];\ | |
750 | sum op w[1 * 64 + off] * p[1 * 64];\ | |
751 | sum op w[2 * 64 + off] * p[2 * 64];\ | |
752 | sum op w[3 * 64 + off] * p[3 * 64];\ | |
753 | sum op w[4 * 64 + off] * p[4 * 64];\ | |
754 | sum op w[5 * 64 + off] * p[5 * 64];\ | |
755 | sum op w[6 * 64 + off] * p[6 * 64];\ | |
756 | sum op w[7 * 64 + off] * p[7 * 64];\ | |
757 | } | |
758 | ||
759 | #else | |
760 | ||
761 | #define OUT_SAMPLE(sum)\ | |
762 | {\ | |
763 | int sum1;\ | |
764 | sum1 = (int)((sum + (INT64_C(1) << (OUT_SHIFT - 1))) >> OUT_SHIFT);\ | |
765 | if (sum1 < -32768)\ | |
766 | sum1 = -32768;\ | |
767 | else if (sum1 > 32767)\ | |
768 | sum1 = 32767;\ | |
769 | *samples = sum1;\ | |
770 | samples += incr;\ | |
771 | } | |
772 | ||
773 | #define SUM8(off, op) \ | |
774 | { \ | |
775 | sum op MUL64(w[0 * 64 + off], p[0 * 64]);\ | |
776 | sum op MUL64(w[1 * 64 + off], p[1 * 64]);\ | |
777 | sum op MUL64(w[2 * 64 + off], p[2 * 64]);\ | |
778 | sum op MUL64(w[3 * 64 + off], p[3 * 64]);\ | |
779 | sum op MUL64(w[4 * 64 + off], p[4 * 64]);\ | |
780 | sum op MUL64(w[5 * 64 + off], p[5 * 64]);\ | |
781 | sum op MUL64(w[6 * 64 + off], p[6 * 64]);\ | |
782 | sum op MUL64(w[7 * 64 + off], p[7 * 64]);\ | |
783 | } | |
784 | ||
785 | #endif | |
786 | ||
787 | /* 32 sub band synthesis filter. Input: 32 sub band samples, Output: | |
788 | 32 samples. */ | |
789 | /* XXX: optimize by avoiding ring buffer usage */ | |
790 | static void synth_filter(MPADecodeContext *s1, | |
791 | int ch, INT16 *samples, int incr, | |
792 | INT32 sb_samples[SBLIMIT]) | |
793 | { | |
794 | INT32 tmp[32]; | |
795 | register MPA_INT *synth_buf, *p; | |
796 | register MPA_INT *w; | |
797 | int j, offset, v; | |
798 | #if FRAC_BITS <= 15 | |
799 | int sum; | |
800 | #else | |
801 | INT64 sum; | |
802 | #endif | |
803 | ||
804 | dct32(tmp, sb_samples); | |
805 | ||
806 | offset = s1->synth_buf_offset[ch]; | |
807 | synth_buf = s1->synth_buf[ch] + offset; | |
808 | ||
809 | for(j=0;j<32;j++) { | |
810 | v = tmp[j]; | |
811 | #if FRAC_BITS <= 15 | |
812 | if (v > 32767) | |
813 | v = 32767; | |
814 | else if (v < -32768) | |
815 | v = -32768; | |
816 | #endif | |
817 | synth_buf[j] = v; | |
818 | } | |
819 | /* copy to avoid wrap */ | |
820 | memcpy(synth_buf + 512, synth_buf, 32 * sizeof(MPA_INT)); | |
821 | ||
822 | w = window; | |
823 | for(j=0;j<16;j++) { | |
824 | sum = 0; | |
825 | p = synth_buf + 16 + j; /* 0-15 */ | |
826 | SUM8(0, +=); | |
827 | p = synth_buf + 48 - j; /* 32-47 */ | |
828 | SUM8(32, -=); | |
829 | OUT_SAMPLE(sum); | |
830 | w++; | |
831 | } | |
832 | ||
833 | p = synth_buf + 32; /* 48 */ | |
834 | sum = 0; | |
835 | SUM8(32, -=); | |
836 | OUT_SAMPLE(sum); | |
837 | w++; | |
838 | ||
839 | for(j=17;j<32;j++) { | |
840 | sum = 0; | |
841 | p = synth_buf + 48 - j; /* 17-31 */ | |
842 | SUM8(0, -=); | |
843 | p = synth_buf + 16 + j; /* 49-63 */ | |
844 | SUM8(32, -=); | |
845 | OUT_SAMPLE(sum); | |
846 | w++; | |
847 | } | |
848 | offset = (offset - 32) & 511; | |
849 | s1->synth_buf_offset[ch] = offset; | |
850 | } | |
851 | ||
852 | /* cos(pi*i/24) */ | |
853 | #define C1 FIXR(0.99144486137381041114) | |
854 | #define C3 FIXR(0.92387953251128675612) | |
855 | #define C5 FIXR(0.79335334029123516458) | |
856 | #define C7 FIXR(0.60876142900872063941) | |
857 | #define C9 FIXR(0.38268343236508977173) | |
858 | #define C11 FIXR(0.13052619222005159154) | |
859 | ||
860 | /* 12 points IMDCT. We compute it "by hand" by factorizing obvious | |
861 | cases. */ | |
862 | static void imdct12(int *out, int *in) | |
863 | { | |
864 | int tmp; | |
865 | INT64 in1_3, in1_9, in4_3, in4_9; | |
866 | ||
867 | in1_3 = MUL64(in[1], C3); | |
868 | in1_9 = MUL64(in[1], C9); | |
869 | in4_3 = MUL64(in[4], C3); | |
870 | in4_9 = MUL64(in[4], C9); | |
871 | ||
872 | tmp = FRAC_RND(MUL64(in[0], C7) - in1_3 - MUL64(in[2], C11) + | |
873 | MUL64(in[3], C1) - in4_9 - MUL64(in[5], C5)); | |
874 | out[0] = tmp; | |
875 | out[5] = -tmp; | |
876 | tmp = FRAC_RND(MUL64(in[0] - in[3], C9) - in1_3 + | |
877 | MUL64(in[2] + in[5], C3) - in4_9); | |
878 | out[1] = tmp; | |
879 | out[4] = -tmp; | |
880 | tmp = FRAC_RND(MUL64(in[0], C11) - in1_9 + MUL64(in[2], C7) - | |
881 | MUL64(in[3], C5) + in4_3 - MUL64(in[5], C1)); | |
882 | out[2] = tmp; | |
883 | out[3] = -tmp; | |
884 | tmp = FRAC_RND(MUL64(-in[0], C5) + in1_9 + MUL64(in[2], C1) + | |
885 | MUL64(in[3], C11) - in4_3 - MUL64(in[5], C7)); | |
886 | out[6] = tmp; | |
887 | out[11] = tmp; | |
888 | tmp = FRAC_RND(MUL64(-in[0] + in[3], C3) - in1_9 + | |
889 | MUL64(in[2] + in[5], C9) + in4_3); | |
890 | out[7] = tmp; | |
891 | out[10] = tmp; | |
892 | tmp = FRAC_RND(-MUL64(in[0], C1) - in1_3 - MUL64(in[2], C5) - | |
893 | MUL64(in[3], C7) - in4_9 - MUL64(in[5], C11)); | |
894 | out[8] = tmp; | |
895 | out[9] = tmp; | |
896 | } | |
897 | ||
898 | #undef C1 | |
899 | #undef C3 | |
900 | #undef C5 | |
901 | #undef C7 | |
902 | #undef C9 | |
903 | #undef C11 | |
904 | ||
905 | /* cos(pi*i/18) */ | |
906 | #define C1 FIXR(0.98480775301220805936) | |
907 | #define C2 FIXR(0.93969262078590838405) | |
908 | #define C3 FIXR(0.86602540378443864676) | |
909 | #define C4 FIXR(0.76604444311897803520) | |
910 | #define C5 FIXR(0.64278760968653932632) | |
911 | #define C6 FIXR(0.5) | |
912 | #define C7 FIXR(0.34202014332566873304) | |
913 | #define C8 FIXR(0.17364817766693034885) | |
914 | ||
915 | /* 0.5 / cos(pi*(2*i+1)/36) */ | |
916 | static const int icos36[9] = { | |
917 | FIXR(0.50190991877167369479), | |
918 | FIXR(0.51763809020504152469), | |
919 | FIXR(0.55168895948124587824), | |
920 | FIXR(0.61038729438072803416), | |
921 | FIXR(0.70710678118654752439), | |
922 | FIXR(0.87172339781054900991), | |
923 | FIXR(1.18310079157624925896), | |
924 | FIXR(1.93185165257813657349), | |
925 | FIXR(5.73685662283492756461), | |
926 | }; | |
927 | ||
928 | static const int icos72[18] = { | |
929 | /* 0.5 / cos(pi*(2*i+19)/72) */ | |
930 | FIXR(0.74009361646113053152), | |
931 | FIXR(0.82133981585229078570), | |
932 | FIXR(0.93057949835178895673), | |
933 | FIXR(1.08284028510010010928), | |
934 | FIXR(1.30656296487637652785), | |
935 | FIXR(1.66275476171152078719), | |
936 | FIXR(2.31011315767264929558), | |
937 | FIXR(3.83064878777019433457), | |
938 | FIXR(11.46279281302667383546), | |
939 | ||
940 | /* 0.5 / cos(pi*(2*(i + 18) +19)/72) */ | |
941 | FIXR(-0.67817085245462840086), | |
942 | FIXR(-0.63023620700513223342), | |
943 | FIXR(-0.59284452371708034528), | |
944 | FIXR(-0.56369097343317117734), | |
945 | FIXR(-0.54119610014619698439), | |
946 | FIXR(-0.52426456257040533932), | |
947 | FIXR(-0.51213975715725461845), | |
948 | FIXR(-0.50431448029007636036), | |
949 | FIXR(-0.50047634258165998492), | |
950 | }; | |
951 | ||
952 | /* using Lee like decomposition followed by hand coded 9 points DCT */ | |
953 | static void imdct36(int *out, int *in) | |
954 | { | |
955 | int i, j, t0, t1, t2, t3, s0, s1, s2, s3; | |
956 | int tmp[18], *tmp1, *in1; | |
957 | INT64 in3_3, in6_6; | |
958 | ||
959 | for(i=17;i>=1;i--) | |
960 | in[i] += in[i-1]; | |
961 | for(i=17;i>=3;i-=2) | |
962 | in[i] += in[i-2]; | |
963 | ||
964 | for(j=0;j<2;j++) { | |
965 | tmp1 = tmp + j; | |
966 | in1 = in + j; | |
967 | ||
968 | in3_3 = MUL64(in1[2*3], C3); | |
969 | in6_6 = MUL64(in1[2*6], C6); | |
970 | ||
971 | tmp1[0] = FRAC_RND(MUL64(in1[2*1], C1) + in3_3 + | |
972 | MUL64(in1[2*5], C5) + MUL64(in1[2*7], C7)); | |
973 | tmp1[2] = in1[2*0] + FRAC_RND(MUL64(in1[2*2], C2) + | |
974 | MUL64(in1[2*4], C4) + in6_6 + | |
975 | MUL64(in1[2*8], C8)); | |
976 | tmp1[4] = FRAC_RND(MUL64(in1[2*1] - in1[2*5] - in1[2*7], C3)); | |
977 | tmp1[6] = FRAC_RND(MUL64(in1[2*2] - in1[2*4] - in1[2*8], C6)) - | |
978 | in1[2*6] + in1[2*0]; | |
979 | tmp1[8] = FRAC_RND(MUL64(in1[2*1], C5) - in3_3 - | |
980 | MUL64(in1[2*5], C7) + MUL64(in1[2*7], C1)); | |
981 | tmp1[10] = in1[2*0] + FRAC_RND(MUL64(-in1[2*2], C8) - | |
982 | MUL64(in1[2*4], C2) + in6_6 + | |
983 | MUL64(in1[2*8], C4)); | |
984 | tmp1[12] = FRAC_RND(MUL64(in1[2*1], C7) - in3_3 + | |
985 | MUL64(in1[2*5], C1) - | |
986 | MUL64(in1[2*7], C5)); | |
987 | tmp1[14] = in1[2*0] + FRAC_RND(MUL64(-in1[2*2], C4) + | |
988 | MUL64(in1[2*4], C8) + in6_6 - | |
989 | MUL64(in1[2*8], C2)); | |
990 | tmp1[16] = in1[2*0] - in1[2*2] + in1[2*4] - in1[2*6] + in1[2*8]; | |
991 | } | |
992 | ||
993 | i = 0; | |
994 | for(j=0;j<4;j++) { | |
995 | t0 = tmp[i]; | |
996 | t1 = tmp[i + 2]; | |
997 | s0 = t1 + t0; | |
998 | s2 = t1 - t0; | |
999 | ||
1000 | t2 = tmp[i + 1]; | |
1001 | t3 = tmp[i + 3]; | |
1002 | s1 = MULL(t3 + t2, icos36[j]); | |
1003 | s3 = MULL(t3 - t2, icos36[8 - j]); | |
1004 | ||
1005 | t0 = MULL(s0 + s1, icos72[9 + 8 - j]); | |
1006 | t1 = MULL(s0 - s1, icos72[8 - j]); | |
1007 | out[18 + 9 + j] = t0; | |
1008 | out[18 + 8 - j] = t0; | |
1009 | out[9 + j] = -t1; | |
1010 | out[8 - j] = t1; | |
1011 | ||
1012 | t0 = MULL(s2 + s3, icos72[9+j]); | |
1013 | t1 = MULL(s2 - s3, icos72[j]); | |
1014 | out[18 + 9 + (8 - j)] = t0; | |
1015 | out[18 + j] = t0; | |
1016 | out[9 + (8 - j)] = -t1; | |
1017 | out[j] = t1; | |
1018 | i += 4; | |
1019 | } | |
1020 | ||
1021 | s0 = tmp[16]; | |
1022 | s1 = MULL(tmp[17], icos36[4]); | |
1023 | t0 = MULL(s0 + s1, icos72[9 + 4]); | |
1024 | t1 = MULL(s0 - s1, icos72[4]); | |
1025 | out[18 + 9 + 4] = t0; | |
1026 | out[18 + 8 - 4] = t0; | |
1027 | out[9 + 4] = -t1; | |
1028 | out[8 - 4] = t1; | |
1029 | } | |
1030 | ||
de6d9b64 FB |
1031 | /* fast header check for resync */ |
1032 | static int check_header(UINT32 header) | |
1033 | { | |
1034 | /* header */ | |
1035 | if ((header & 0xffe00000) != 0xffe00000) | |
1036 | return -1; | |
1037 | /* layer check */ | |
1038 | if (((header >> 17) & 3) == 0) | |
1039 | return -1; | |
239c2f4c FB |
1040 | /* bit rate */ |
1041 | if (((header >> 12) & 0xf) == 0xf) | |
de6d9b64 FB |
1042 | return -1; |
1043 | /* frequency */ | |
1044 | if (((header >> 10) & 3) == 3) | |
1045 | return -1; | |
1046 | return 0; | |
1047 | } | |
1048 | ||
239c2f4c FB |
1049 | /* header + layer + bitrate + freq + lsf/mpeg25 */ |
1050 | #define SAME_HEADER_MASK \ | |
1051 | (0xffe00000 | (3 << 17) | (0xf << 12) | (3 << 10) | (3 << 19)) | |
1052 | ||
de6d9b64 | 1053 | /* header decoding. MUST check the header before because no |
239c2f4c FB |
1054 | consistency check is done there. Return 1 if free format found and |
1055 | that the frame size must be computed externally */ | |
1056 | static int decode_header(MPADecodeContext *s, UINT32 header) | |
de6d9b64 | 1057 | { |
239c2f4c FB |
1058 | int sample_rate, frame_size, mpeg25, padding; |
1059 | int sample_rate_index, bitrate_index; | |
de6d9b64 | 1060 | if (header & (1<<20)) { |
239c2f4c FB |
1061 | s->lsf = (header & (1<<19)) ? 0 : 1; |
1062 | mpeg25 = 0; | |
de6d9b64 | 1063 | } else { |
239c2f4c FB |
1064 | s->lsf = 1; |
1065 | mpeg25 = 1; | |
de6d9b64 FB |
1066 | } |
1067 | ||
1068 | s->layer = 4 - ((header >> 17) & 3); | |
1069 | /* extract frequency */ | |
239c2f4c FB |
1070 | sample_rate_index = (header >> 10) & 3; |
1071 | sample_rate = mpa_freq_tab[sample_rate_index] >> (s->lsf + mpeg25); | |
de5123dc ZK |
1072 | if (sample_rate == 0) |
1073 | return 1; | |
239c2f4c FB |
1074 | sample_rate_index += 3 * (s->lsf + mpeg25); |
1075 | s->sample_rate_index = sample_rate_index; | |
1076 | s->error_protection = ((header >> 16) & 1) ^ 1; | |
de6d9b64 | 1077 | |
239c2f4c FB |
1078 | bitrate_index = (header >> 12) & 0xf; |
1079 | padding = (header >> 9) & 1; | |
1080 | //extension = (header >> 8) & 1; | |
1081 | s->mode = (header >> 6) & 3; | |
1082 | s->mode_ext = (header >> 4) & 3; | |
1083 | //copyright = (header >> 3) & 1; | |
1084 | //original = (header >> 2) & 1; | |
1085 | //emphasis = header & 3; | |
de6d9b64 | 1086 | |
239c2f4c FB |
1087 | if (s->mode == MPA_MONO) |
1088 | s->nb_channels = 1; | |
1089 | else | |
1090 | s->nb_channels = 2; | |
de6d9b64 | 1091 | |
239c2f4c FB |
1092 | if (bitrate_index != 0) { |
1093 | frame_size = mpa_bitrate_tab[s->lsf][s->layer - 1][bitrate_index]; | |
1094 | s->bit_rate = frame_size * 1000; | |
1095 | switch(s->layer) { | |
1096 | case 1: | |
1097 | frame_size = (frame_size * 12000) / sample_rate; | |
1098 | frame_size = (frame_size + padding) * 4; | |
1099 | break; | |
1100 | case 2: | |
1101 | frame_size = (frame_size * 144000) / sample_rate; | |
1102 | frame_size += padding; | |
1103 | break; | |
1104 | default: | |
1105 | case 3: | |
1106 | frame_size = (frame_size * 144000) / (sample_rate << s->lsf); | |
1107 | frame_size += padding; | |
1108 | break; | |
1109 | } | |
1110 | s->frame_size = frame_size; | |
1111 | } else { | |
1112 | /* if no frame size computed, signal it */ | |
1113 | if (!s->free_format_frame_size) | |
1114 | return 1; | |
1115 | /* free format: compute bitrate and real frame size from the | |
1116 | frame size we extracted by reading the bitstream */ | |
1117 | s->frame_size = s->free_format_frame_size; | |
1118 | switch(s->layer) { | |
1119 | case 1: | |
1120 | s->frame_size += padding * 4; | |
1121 | s->bit_rate = (s->frame_size * sample_rate) / 48000; | |
1122 | break; | |
1123 | case 2: | |
1124 | s->frame_size += padding; | |
1125 | s->bit_rate = (s->frame_size * sample_rate) / 144000; | |
1126 | break; | |
1127 | default: | |
1128 | case 3: | |
1129 | s->frame_size += padding; | |
1130 | s->bit_rate = (s->frame_size * (sample_rate << s->lsf)) / 144000; | |
1131 | break; | |
1132 | } | |
de6d9b64 | 1133 | } |
de6d9b64 | 1134 | s->sample_rate = sample_rate; |
239c2f4c | 1135 | |
fad9f495 | 1136 | #if defined(DEBUG) |
239c2f4c FB |
1137 | printf("layer%d, %d Hz, %d kbits/s, ", |
1138 | s->layer, s->sample_rate, s->bit_rate); | |
1139 | if (s->nb_channels == 2) { | |
1140 | if (s->layer == 3) { | |
1141 | if (s->mode_ext & MODE_EXT_MS_STEREO) | |
1142 | printf("ms-"); | |
1143 | if (s->mode_ext & MODE_EXT_I_STEREO) | |
1144 | printf("i-"); | |
1145 | } | |
1146 | printf("stereo"); | |
1147 | } else { | |
1148 | printf("mono"); | |
1149 | } | |
1150 | printf("\n"); | |
de6d9b64 | 1151 | #endif |
239c2f4c | 1152 | return 0; |
de6d9b64 FB |
1153 | } |
1154 | ||
239c2f4c FB |
1155 | /* return the number of decoded frames */ |
1156 | static int mp_decode_layer1(MPADecodeContext *s) | |
de6d9b64 | 1157 | { |
239c2f4c FB |
1158 | int bound, i, v, n, ch, j, mant; |
1159 | UINT8 allocation[MPA_MAX_CHANNELS][SBLIMIT]; | |
1160 | UINT8 scale_factors[MPA_MAX_CHANNELS][SBLIMIT]; | |
1161 | ||
1162 | if (s->mode == MPA_JSTEREO) | |
1163 | bound = (s->mode_ext + 1) * 4; | |
1164 | else | |
1165 | bound = SBLIMIT; | |
1166 | ||
1167 | /* allocation bits */ | |
1168 | for(i=0;i<bound;i++) { | |
1169 | for(ch=0;ch<s->nb_channels;ch++) { | |
1170 | allocation[ch][i] = get_bits(&s->gb, 4); | |
1171 | } | |
1172 | } | |
1173 | for(i=bound;i<SBLIMIT;i++) { | |
1174 | allocation[0][i] = get_bits(&s->gb, 4); | |
1175 | } | |
1176 | ||
1177 | /* scale factors */ | |
1178 | for(i=0;i<bound;i++) { | |
1179 | for(ch=0;ch<s->nb_channels;ch++) { | |
1180 | if (allocation[ch][i]) | |
1181 | scale_factors[ch][i] = get_bits(&s->gb, 6); | |
1182 | } | |
1183 | } | |
1184 | for(i=bound;i<SBLIMIT;i++) { | |
1185 | if (allocation[0][i]) { | |
1186 | scale_factors[0][i] = get_bits(&s->gb, 6); | |
1187 | scale_factors[1][i] = get_bits(&s->gb, 6); | |
1188 | } | |
1189 | } | |
de6d9b64 | 1190 | |
239c2f4c FB |
1191 | /* compute samples */ |
1192 | for(j=0;j<12;j++) { | |
1193 | for(i=0;i<bound;i++) { | |
1194 | for(ch=0;ch<s->nb_channels;ch++) { | |
1195 | n = allocation[ch][i]; | |
1196 | if (n) { | |
1197 | mant = get_bits(&s->gb, n + 1); | |
1198 | v = l1_unscale(n, mant, scale_factors[ch][i]); | |
1199 | } else { | |
1200 | v = 0; | |
1201 | } | |
1202 | s->sb_samples[ch][j][i] = v; | |
1203 | } | |
1204 | } | |
1205 | for(i=bound;i<SBLIMIT;i++) { | |
1206 | n = allocation[0][i]; | |
1207 | if (n) { | |
1208 | mant = get_bits(&s->gb, n + 1); | |
1209 | v = l1_unscale(n, mant, scale_factors[0][i]); | |
1210 | s->sb_samples[0][j][i] = v; | |
1211 | v = l1_unscale(n, mant, scale_factors[1][i]); | |
1212 | s->sb_samples[1][j][i] = v; | |
1213 | } else { | |
1214 | s->sb_samples[0][j][i] = 0; | |
1215 | s->sb_samples[1][j][i] = 0; | |
1216 | } | |
1217 | } | |
1218 | } | |
1219 | return 12; | |
1220 | } | |
1221 | ||
1222 | /* bitrate is in kb/s */ | |
1223 | int l2_select_table(int bitrate, int nb_channels, int freq, int lsf) | |
1224 | { | |
1225 | int ch_bitrate, table; | |
de6d9b64 | 1226 | |
239c2f4c FB |
1227 | ch_bitrate = bitrate / nb_channels; |
1228 | if (!lsf) { | |
1229 | if ((freq == 48000 && ch_bitrate >= 56) || | |
1230 | (ch_bitrate >= 56 && ch_bitrate <= 80)) | |
1231 | table = 0; | |
1232 | else if (freq != 48000 && ch_bitrate >= 96) | |
1233 | table = 1; | |
1234 | else if (freq != 32000 && ch_bitrate <= 48) | |
1235 | table = 2; | |
1236 | else | |
1237 | table = 3; | |
1238 | } else { | |
1239 | table = 4; | |
1240 | } | |
1241 | return table; | |
1242 | } | |
de6d9b64 | 1243 | |
239c2f4c FB |
1244 | static int mp_decode_layer2(MPADecodeContext *s) |
1245 | { | |
1246 | int sblimit; /* number of used subbands */ | |
1247 | const unsigned char *alloc_table; | |
1248 | int table, bit_alloc_bits, i, j, ch, bound, v; | |
1249 | unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT]; | |
1250 | unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT]; | |
1251 | unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf; | |
1252 | int scale, qindex, bits, steps, k, l, m, b; | |
de6d9b64 | 1253 | |
239c2f4c FB |
1254 | /* select decoding table */ |
1255 | table = l2_select_table(s->bit_rate / 1000, s->nb_channels, | |
1256 | s->sample_rate, s->lsf); | |
1257 | sblimit = sblimit_table[table]; | |
1258 | alloc_table = alloc_tables[table]; | |
1259 | ||
1260 | if (s->mode == MPA_JSTEREO) | |
1261 | bound = (s->mode_ext + 1) * 4; | |
1262 | else | |
1263 | bound = sblimit; | |
1264 | ||
1265 | dprintf("bound=%d sblimit=%d\n", bound, sblimit); | |
1266 | /* parse bit allocation */ | |
1267 | j = 0; | |
1268 | for(i=0;i<bound;i++) { | |
1269 | bit_alloc_bits = alloc_table[j]; | |
1270 | for(ch=0;ch<s->nb_channels;ch++) { | |
1271 | bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits); | |
1272 | } | |
1273 | j += 1 << bit_alloc_bits; | |
1274 | } | |
1275 | for(i=bound;i<sblimit;i++) { | |
1276 | bit_alloc_bits = alloc_table[j]; | |
1277 | v = get_bits(&s->gb, bit_alloc_bits); | |
1278 | bit_alloc[0][i] = v; | |
1279 | bit_alloc[1][i] = v; | |
1280 | j += 1 << bit_alloc_bits; | |
de6d9b64 | 1281 | } |
239c2f4c FB |
1282 | |
1283 | #ifdef DEBUG | |
1284 | { | |
1285 | for(ch=0;ch<s->nb_channels;ch++) { | |
1286 | for(i=0;i<sblimit;i++) | |
1287 | printf(" %d", bit_alloc[ch][i]); | |
1288 | printf("\n"); | |
1289 | } | |
1290 | } | |
1291 | #endif | |
1292 | ||
1293 | /* scale codes */ | |
1294 | for(i=0;i<sblimit;i++) { | |
1295 | for(ch=0;ch<s->nb_channels;ch++) { | |
1296 | if (bit_alloc[ch][i]) | |
1297 | scale_code[ch][i] = get_bits(&s->gb, 2); | |
1298 | } | |
1299 | } | |
1300 | ||
1301 | /* scale factors */ | |
1302 | for(i=0;i<sblimit;i++) { | |
1303 | for(ch=0;ch<s->nb_channels;ch++) { | |
1304 | if (bit_alloc[ch][i]) { | |
1305 | sf = scale_factors[ch][i]; | |
1306 | switch(scale_code[ch][i]) { | |
1307 | default: | |
1308 | case 0: | |
1309 | sf[0] = get_bits(&s->gb, 6); | |
1310 | sf[1] = get_bits(&s->gb, 6); | |
1311 | sf[2] = get_bits(&s->gb, 6); | |
1312 | break; | |
1313 | case 2: | |
1314 | sf[0] = get_bits(&s->gb, 6); | |
1315 | sf[1] = sf[0]; | |
1316 | sf[2] = sf[0]; | |
1317 | break; | |
1318 | case 1: | |
1319 | sf[0] = get_bits(&s->gb, 6); | |
1320 | sf[2] = get_bits(&s->gb, 6); | |
1321 | sf[1] = sf[0]; | |
1322 | break; | |
1323 | case 3: | |
1324 | sf[0] = get_bits(&s->gb, 6); | |
1325 | sf[2] = get_bits(&s->gb, 6); | |
1326 | sf[1] = sf[2]; | |
1327 | break; | |
1328 | } | |
1329 | } | |
1330 | } | |
1331 | } | |
1332 | ||
1333 | #ifdef DEBUG | |
1334 | for(ch=0;ch<s->nb_channels;ch++) { | |
1335 | for(i=0;i<sblimit;i++) { | |
1336 | if (bit_alloc[ch][i]) { | |
1337 | sf = scale_factors[ch][i]; | |
1338 | printf(" %d %d %d", sf[0], sf[1], sf[2]); | |
1339 | } else { | |
1340 | printf(" -"); | |
1341 | } | |
1342 | } | |
1343 | printf("\n"); | |
1344 | } | |
1345 | #endif | |
1346 | ||
1347 | /* samples */ | |
1348 | for(k=0;k<3;k++) { | |
1349 | for(l=0;l<12;l+=3) { | |
1350 | j = 0; | |
1351 | for(i=0;i<bound;i++) { | |
1352 | bit_alloc_bits = alloc_table[j]; | |
1353 | for(ch=0;ch<s->nb_channels;ch++) { | |
1354 | b = bit_alloc[ch][i]; | |
1355 | if (b) { | |
1356 | scale = scale_factors[ch][i][k]; | |
1357 | qindex = alloc_table[j+b]; | |
1358 | bits = quant_bits[qindex]; | |
1359 | if (bits < 0) { | |
1360 | /* 3 values at the same time */ | |
1361 | v = get_bits(&s->gb, -bits); | |
1362 | steps = quant_steps[qindex]; | |
1363 | s->sb_samples[ch][k * 12 + l + 0][i] = | |
1364 | l2_unscale_group(steps, v % steps, scale); | |
1365 | v = v / steps; | |
1366 | s->sb_samples[ch][k * 12 + l + 1][i] = | |
1367 | l2_unscale_group(steps, v % steps, scale); | |
1368 | v = v / steps; | |
1369 | s->sb_samples[ch][k * 12 + l + 2][i] = | |
1370 | l2_unscale_group(steps, v, scale); | |
1371 | } else { | |
1372 | for(m=0;m<3;m++) { | |
1373 | v = get_bits(&s->gb, bits); | |
1374 | v = l1_unscale(bits - 1, v, scale); | |
1375 | s->sb_samples[ch][k * 12 + l + m][i] = v; | |
1376 | } | |
1377 | } | |
1378 | } else { | |
1379 | s->sb_samples[ch][k * 12 + l + 0][i] = 0; | |
1380 | s->sb_samples[ch][k * 12 + l + 1][i] = 0; | |
1381 | s->sb_samples[ch][k * 12 + l + 2][i] = 0; | |
1382 | } | |
1383 | } | |
1384 | /* next subband in alloc table */ | |
1385 | j += 1 << bit_alloc_bits; | |
1386 | } | |
1387 | /* XXX: find a way to avoid this duplication of code */ | |
1388 | for(i=bound;i<sblimit;i++) { | |
1389 | bit_alloc_bits = alloc_table[j]; | |
1390 | b = bit_alloc[0][i]; | |
1391 | if (b) { | |
1392 | int mant, scale0, scale1; | |
1393 | scale0 = scale_factors[0][i][k]; | |
1394 | scale1 = scale_factors[1][i][k]; | |
1395 | qindex = alloc_table[j+b]; | |
1396 | bits = quant_bits[qindex]; | |
1397 | if (bits < 0) { | |
1398 | /* 3 values at the same time */ | |
1399 | v = get_bits(&s->gb, -bits); | |
1400 | steps = quant_steps[qindex]; | |
1401 | mant = v % steps; | |
1402 | v = v / steps; | |
1403 | s->sb_samples[0][k * 12 + l + 0][i] = | |
1404 | l2_unscale_group(steps, mant, scale0); | |
1405 | s->sb_samples[1][k * 12 + l + 0][i] = | |
1406 | l2_unscale_group(steps, mant, scale1); | |
1407 | mant = v % steps; | |
1408 | v = v / steps; | |
1409 | s->sb_samples[0][k * 12 + l + 1][i] = | |
1410 | l2_unscale_group(steps, mant, scale0); | |
1411 | s->sb_samples[1][k * 12 + l + 1][i] = | |
1412 | l2_unscale_group(steps, mant, scale1); | |
1413 | s->sb_samples[0][k * 12 + l + 2][i] = | |
1414 | l2_unscale_group(steps, v, scale0); | |
1415 | s->sb_samples[1][k * 12 + l + 2][i] = | |
1416 | l2_unscale_group(steps, v, scale1); | |
1417 | } else { | |
1418 | for(m=0;m<3;m++) { | |
1419 | mant = get_bits(&s->gb, bits); | |
1420 | s->sb_samples[0][k * 12 + l + m][i] = | |
1421 | l1_unscale(bits - 1, mant, scale0); | |
1422 | s->sb_samples[1][k * 12 + l + m][i] = | |
1423 | l1_unscale(bits - 1, mant, scale1); | |
1424 | } | |
1425 | } | |
1426 | } else { | |
1427 | s->sb_samples[0][k * 12 + l + 0][i] = 0; | |
1428 | s->sb_samples[0][k * 12 + l + 1][i] = 0; | |
1429 | s->sb_samples[0][k * 12 + l + 2][i] = 0; | |
1430 | s->sb_samples[1][k * 12 + l + 0][i] = 0; | |
1431 | s->sb_samples[1][k * 12 + l + 1][i] = 0; | |
1432 | s->sb_samples[1][k * 12 + l + 2][i] = 0; | |
1433 | } | |
1434 | /* next subband in alloc table */ | |
1435 | j += 1 << bit_alloc_bits; | |
1436 | } | |
1437 | /* fill remaining samples to zero */ | |
1438 | for(i=sblimit;i<SBLIMIT;i++) { | |
1439 | for(ch=0;ch<s->nb_channels;ch++) { | |
1440 | s->sb_samples[ch][k * 12 + l + 0][i] = 0; | |
1441 | s->sb_samples[ch][k * 12 + l + 1][i] = 0; | |
1442 | s->sb_samples[ch][k * 12 + l + 2][i] = 0; | |
1443 | } | |
1444 | } | |
1445 | } | |
1446 | } | |
1447 | return 3 * 12; | |
de6d9b64 FB |
1448 | } |
1449 | ||
1450 | /* | |
239c2f4c | 1451 | * Seek back in the stream for backstep bytes (at most 511 bytes) |
de6d9b64 | 1452 | */ |
239c2f4c | 1453 | static void seek_to_maindata(MPADecodeContext *s, long backstep) |
de6d9b64 FB |
1454 | { |
1455 | UINT8 *ptr; | |
1456 | ||
1457 | /* compute current position in stream */ | |
27a3e2c5 MN |
1458 | #ifdef ALT_BITSTREAM_READER |
1459 | ptr = s->gb.buffer + (s->gb.index>>3); | |
1460 | #else | |
239c2f4c | 1461 | ptr = s->gb.buf_ptr - (s->gb.bit_cnt >> 3); |
27a3e2c5 | 1462 | #endif |
de6d9b64 FB |
1463 | /* copy old data before current one */ |
1464 | ptr -= backstep; | |
239c2f4c FB |
1465 | memcpy(ptr, s->inbuf1[s->inbuf_index ^ 1] + |
1466 | BACKSTEP_SIZE + s->old_frame_size - backstep, backstep); | |
de6d9b64 | 1467 | /* init get bits again */ |
239c2f4c | 1468 | init_get_bits(&s->gb, ptr, s->frame_size + backstep); |
de6d9b64 | 1469 | |
239c2f4c FB |
1470 | /* prepare next buffer */ |
1471 | s->inbuf_index ^= 1; | |
1472 | s->inbuf = &s->inbuf1[s->inbuf_index][BACKSTEP_SIZE]; | |
1473 | s->old_frame_size = s->frame_size; | |
1474 | } | |
1475 | ||
1476 | static inline void lsf_sf_expand(int *slen, | |
1477 | int sf, int n1, int n2, int n3) | |
1478 | { | |
1479 | if (n3) { | |
1480 | slen[3] = sf % n3; | |
1481 | sf /= n3; | |
1482 | } else { | |
1483 | slen[3] = 0; | |
1484 | } | |
1485 | if (n2) { | |
1486 | slen[2] = sf % n2; | |
1487 | sf /= n2; | |
1488 | } else { | |
1489 | slen[2] = 0; | |
1490 | } | |
1491 | slen[1] = sf % n1; | |
1492 | sf /= n1; | |
1493 | slen[0] = sf; | |
1494 | } | |
1495 | ||
1496 | static void exponents_from_scale_factors(MPADecodeContext *s, | |
1497 | GranuleDef *g, | |
1498 | INT16 *exponents) | |
1499 | { | |
1500 | const UINT8 *bstab, *pretab; | |
1501 | int len, i, j, k, l, v0, shift, gain, gains[3]; | |
1502 | INT16 *exp_ptr; | |
1503 | ||
1504 | exp_ptr = exponents; | |
1505 | gain = g->global_gain - 210; | |
1506 | shift = g->scalefac_scale + 1; | |
1507 | ||
1508 | bstab = band_size_long[s->sample_rate_index]; | |
1509 | pretab = mpa_pretab[g->preflag]; | |
1510 | for(i=0;i<g->long_end;i++) { | |
1511 | v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift); | |
1512 | len = bstab[i]; | |
1513 | for(j=len;j>0;j--) | |
1514 | *exp_ptr++ = v0; | |
1515 | } | |
1516 | ||
1517 | if (g->short_start < 13) { | |
1518 | bstab = band_size_short[s->sample_rate_index]; | |
1519 | gains[0] = gain - (g->subblock_gain[0] << 3); | |
1520 | gains[1] = gain - (g->subblock_gain[1] << 3); | |
1521 | gains[2] = gain - (g->subblock_gain[2] << 3); | |
1522 | k = g->long_end; | |
1523 | for(i=g->short_start;i<13;i++) { | |
1524 | len = bstab[i]; | |
1525 | for(l=0;l<3;l++) { | |
1526 | v0 = gains[l] - (g->scale_factors[k++] << shift); | |
1527 | for(j=len;j>0;j--) | |
1528 | *exp_ptr++ = v0; | |
1529 | } | |
1530 | } | |
1531 | } | |
1532 | } | |
1533 | ||
1534 | /* handle n = 0 too */ | |
1535 | static inline int get_bitsz(GetBitContext *s, int n) | |
1536 | { | |
1537 | if (n == 0) | |
1538 | return 0; | |
1539 | else | |
1540 | return get_bits(s, n); | |
1541 | } | |
1542 | ||
1543 | static int huffman_decode(MPADecodeContext *s, GranuleDef *g, | |
1544 | INT16 *exponents, int end_pos) | |
1545 | { | |
1546 | int s_index; | |
1547 | int linbits, code, x, y, l, v, i, j, k, pos; | |
1548 | UINT8 *last_buf_ptr; | |
1549 | UINT32 last_bit_buf; | |
1550 | int last_bit_cnt; | |
1551 | VLC *vlc; | |
1552 | UINT8 *code_table; | |
1553 | ||
1554 | /* low frequencies (called big values) */ | |
1555 | s_index = 0; | |
1556 | for(i=0;i<3;i++) { | |
1557 | j = g->region_size[i]; | |
1558 | if (j == 0) | |
1559 | continue; | |
1560 | /* select vlc table */ | |
1561 | k = g->table_select[i]; | |
1562 | l = mpa_huff_data[k][0]; | |
1563 | linbits = mpa_huff_data[k][1]; | |
1564 | vlc = &huff_vlc[l]; | |
1565 | code_table = huff_code_table[l]; | |
1566 | ||
1567 | /* read huffcode and compute each couple */ | |
1568 | for(;j>0;j--) { | |
1569 | if (get_bits_count(&s->gb) >= end_pos) | |
1570 | break; | |
1571 | if (code_table) { | |
1572 | code = get_vlc(&s->gb, vlc); | |
1573 | if (code < 0) | |
1574 | return -1; | |
1575 | y = code_table[code]; | |
1576 | x = y >> 4; | |
1577 | y = y & 0x0f; | |
1578 | } else { | |
1579 | x = 0; | |
1580 | y = 0; | |
1581 | } | |
1582 | dprintf("region=%d n=%d x=%d y=%d exp=%d\n", | |
1583 | i, g->region_size[i] - j, x, y, exponents[s_index]); | |
1584 | if (x) { | |
1585 | if (x == 15) | |
1586 | x += get_bitsz(&s->gb, linbits); | |
1587 | v = l3_unscale(x, exponents[s_index]); | |
1588 | if (get_bits1(&s->gb)) | |
1589 | v = -v; | |
1590 | } else { | |
1591 | v = 0; | |
1592 | } | |
1593 | g->sb_hybrid[s_index++] = v; | |
1594 | if (y) { | |
1595 | if (y == 15) | |
1596 | y += get_bitsz(&s->gb, linbits); | |
1597 | v = l3_unscale(y, exponents[s_index]); | |
1598 | if (get_bits1(&s->gb)) | |
1599 | v = -v; | |
1600 | } else { | |
1601 | v = 0; | |
1602 | } | |
1603 | g->sb_hybrid[s_index++] = v; | |
1604 | } | |
1605 | } | |
1606 | ||
1607 | /* high frequencies */ | |
1608 | vlc = &huff_quad_vlc[g->count1table_select]; | |
1609 | last_buf_ptr = NULL; | |
1610 | last_bit_buf = 0; | |
1611 | last_bit_cnt = 0; | |
1612 | while (s_index <= 572) { | |
1613 | pos = get_bits_count(&s->gb); | |
1614 | if (pos >= end_pos) { | |
1615 | if (pos > end_pos && last_buf_ptr != NULL) { | |
1616 | /* some encoders generate an incorrect size for this | |
1617 | part. We must go back into the data */ | |
1618 | s_index -= 4; | |
27a3e2c5 MN |
1619 | #ifdef ALT_BITSTREAM_READER |
1620 | s->gb.buffer = last_buf_ptr; | |
1621 | s->gb.index = last_bit_cnt; | |
1622 | #else | |
239c2f4c FB |
1623 | s->gb.buf_ptr = last_buf_ptr; |
1624 | s->gb.bit_buf = last_bit_buf; | |
1625 | s->gb.bit_cnt = last_bit_cnt; | |
27a3e2c5 | 1626 | #endif |
239c2f4c FB |
1627 | } |
1628 | break; | |
1629 | } | |
27a3e2c5 MN |
1630 | #ifdef ALT_BITSTREAM_READER |
1631 | last_buf_ptr = s->gb.buffer; | |
1632 | last_bit_cnt = s->gb.index; | |
1633 | #else | |
239c2f4c FB |
1634 | last_buf_ptr = s->gb.buf_ptr; |
1635 | last_bit_buf = s->gb.bit_buf; | |
1636 | last_bit_cnt = s->gb.bit_cnt; | |
27a3e2c5 | 1637 | #endif |
239c2f4c FB |
1638 | |
1639 | code = get_vlc(&s->gb, vlc); | |
1640 | dprintf("t=%d code=%d\n", g->count1table_select, code); | |
1641 | if (code < 0) | |
1642 | return -1; | |
1643 | for(i=0;i<4;i++) { | |
1644 | if (code & (8 >> i)) { | |
1645 | /* non zero value. Could use a hand coded function for | |
1646 | 'one' value */ | |
1647 | v = l3_unscale(1, exponents[s_index]); | |
1648 | if(get_bits1(&s->gb)) | |
1649 | v = -v; | |
1650 | } else { | |
1651 | v = 0; | |
1652 | } | |
1653 | g->sb_hybrid[s_index++] = v; | |
1654 | } | |
1655 | } | |
1656 | while (s_index < 576) | |
1657 | g->sb_hybrid[s_index++] = 0; | |
de6d9b64 FB |
1658 | return 0; |
1659 | } | |
1660 | ||
239c2f4c FB |
1661 | /* Reorder short blocks from bitstream order to interleaved order. It |
1662 | would be faster to do it in parsing, but the code would be far more | |
1663 | complicated */ | |
1664 | static void reorder_block(MPADecodeContext *s, GranuleDef *g) | |
1665 | { | |
1666 | int i, j, k, len; | |
1667 | INT32 *ptr, *dst, *ptr1; | |
1668 | INT32 tmp[576]; | |
1669 | ||
1670 | if (g->block_type != 2) | |
1671 | return; | |
1672 | ||
1673 | if (g->switch_point) { | |
1674 | if (s->sample_rate_index != 8) { | |
1675 | ptr = g->sb_hybrid + 36; | |
1676 | } else { | |
1677 | ptr = g->sb_hybrid + 48; | |
1678 | } | |
1679 | } else { | |
1680 | ptr = g->sb_hybrid; | |
1681 | } | |
1682 | ||
1683 | for(i=g->short_start;i<13;i++) { | |
1684 | len = band_size_short[s->sample_rate_index][i]; | |
1685 | ptr1 = ptr; | |
1686 | for(k=0;k<3;k++) { | |
1687 | dst = tmp + k; | |
1688 | for(j=len;j>0;j--) { | |
1689 | *dst = *ptr++; | |
1690 | dst += 3; | |
1691 | } | |
1692 | } | |
1693 | memcpy(ptr1, tmp, len * 3 * sizeof(INT32)); | |
1694 | } | |
1695 | } | |
1696 | ||
1697 | #define ISQRT2 FIXR(0.70710678118654752440) | |
1698 | ||
1699 | static void compute_stereo(MPADecodeContext *s, | |
1700 | GranuleDef *g0, GranuleDef *g1) | |
1701 | { | |
1702 | int i, j, k, l; | |
1703 | INT32 v1, v2; | |
1704 | int sf_max, tmp0, tmp1, sf, len, non_zero_found; | |
1705 | INT32 (*is_tab)[16]; | |
1706 | INT32 *tab0, *tab1; | |
1707 | int non_zero_found_short[3]; | |
1708 | ||
1709 | /* intensity stereo */ | |
1710 | if (s->mode_ext & MODE_EXT_I_STEREO) { | |
1711 | if (!s->lsf) { | |
1712 | is_tab = is_table; | |
1713 | sf_max = 7; | |
1714 | } else { | |
1715 | is_tab = is_table_lsf[g1->scalefac_compress & 1]; | |
1716 | sf_max = 16; | |
1717 | } | |
1718 | ||
1719 | tab0 = g0->sb_hybrid + 576; | |
1720 | tab1 = g1->sb_hybrid + 576; | |
1721 | ||
1722 | non_zero_found_short[0] = 0; | |
1723 | non_zero_found_short[1] = 0; | |
1724 | non_zero_found_short[2] = 0; | |
1725 | k = (13 - g1->short_start) * 3 + g1->long_end - 3; | |
1726 | for(i = 12;i >= g1->short_start;i--) { | |
1727 | /* for last band, use previous scale factor */ | |
1728 | if (i != 11) | |
1729 | k -= 3; | |
1730 | len = band_size_short[s->sample_rate_index][i]; | |
1731 | for(l=2;l>=0;l--) { | |
1732 | tab0 -= len; | |
1733 | tab1 -= len; | |
1734 | if (!non_zero_found_short[l]) { | |
1735 | /* test if non zero band. if so, stop doing i-stereo */ | |
1736 | for(j=0;j<len;j++) { | |
1737 | if (tab1[j] != 0) { | |
1738 | non_zero_found_short[l] = 1; | |
1739 | goto found1; | |
1740 | } | |
1741 | } | |
1742 | sf = g1->scale_factors[k + l]; | |
1743 | if (sf >= sf_max) | |
1744 | goto found1; | |
1745 | ||
1746 | v1 = is_tab[0][sf]; | |
1747 | v2 = is_tab[1][sf]; | |
1748 | for(j=0;j<len;j++) { | |
1749 | tmp0 = tab0[j]; | |
1750 | tab0[j] = MULL(tmp0, v1); | |
1751 | tab1[j] = MULL(tmp0, v2); | |
1752 | } | |
1753 | } else { | |
1754 | found1: | |
1755 | if (s->mode_ext & MODE_EXT_MS_STEREO) { | |
1756 | /* lower part of the spectrum : do ms stereo | |
1757 | if enabled */ | |
1758 | for(j=0;j<len;j++) { | |
1759 | tmp0 = tab0[j]; | |
1760 | tmp1 = tab1[j]; | |
1761 | tab0[j] = MULL(tmp0 + tmp1, ISQRT2); | |
1762 | tab1[j] = MULL(tmp0 - tmp1, ISQRT2); | |
1763 | } | |
1764 | } | |
1765 | } | |
1766 | } | |
1767 | } | |
1768 | ||
1769 | non_zero_found = non_zero_found_short[0] | | |
1770 | non_zero_found_short[1] | | |
1771 | non_zero_found_short[2]; | |
1772 | ||
1773 | for(i = g1->long_end - 1;i >= 0;i--) { | |
1774 | len = band_size_long[s->sample_rate_index][i]; | |
1775 | tab0 -= len; | |
1776 | tab1 -= len; | |
1777 | /* test if non zero band. if so, stop doing i-stereo */ | |
1778 | if (!non_zero_found) { | |
1779 | for(j=0;j<len;j++) { | |
1780 | if (tab1[j] != 0) { | |
1781 | non_zero_found = 1; | |
1782 | goto found2; | |
1783 | } | |
1784 | } | |
1785 | /* for last band, use previous scale factor */ | |
1786 | k = (i == 21) ? 20 : i; | |
1787 | sf = g1->scale_factors[k]; | |
1788 | if (sf >= sf_max) | |
1789 | goto found2; | |
1790 | v1 = is_tab[0][sf]; | |
1791 | v2 = is_tab[1][sf]; | |
1792 | for(j=0;j<len;j++) { | |
1793 | tmp0 = tab0[j]; | |
1794 | tab0[j] = MULL(tmp0, v1); | |
1795 | tab1[j] = MULL(tmp0, v2); | |
1796 | } | |
1797 | } else { | |
1798 | found2: | |
1799 | if (s->mode_ext & MODE_EXT_MS_STEREO) { | |
1800 | /* lower part of the spectrum : do ms stereo | |
1801 | if enabled */ | |
1802 | for(j=0;j<len;j++) { | |
1803 | tmp0 = tab0[j]; | |
1804 | tmp1 = tab1[j]; | |
1805 | tab0[j] = MULL(tmp0 + tmp1, ISQRT2); | |
1806 | tab1[j] = MULL(tmp0 - tmp1, ISQRT2); | |
1807 | } | |
1808 | } | |
1809 | } | |
1810 | } | |
1811 | } else if (s->mode_ext & MODE_EXT_MS_STEREO) { | |
1812 | /* ms stereo ONLY */ | |
1813 | /* NOTE: the 1/sqrt(2) normalization factor is included in the | |
1814 | global gain */ | |
1815 | tab0 = g0->sb_hybrid; | |
1816 | tab1 = g1->sb_hybrid; | |
1817 | for(i=0;i<576;i++) { | |
1818 | tmp0 = tab0[i]; | |
1819 | tmp1 = tab1[i]; | |
1820 | tab0[i] = tmp0 + tmp1; | |
1821 | tab1[i] = tmp0 - tmp1; | |
1822 | } | |
1823 | } | |
1824 | } | |
1825 | ||
1826 | static void compute_antialias(MPADecodeContext *s, | |
1827 | GranuleDef *g) | |
1828 | { | |
1829 | INT32 *ptr, *p0, *p1, *csa; | |
1830 | int n, tmp0, tmp1, i, j; | |
1831 | ||
1832 | /* we antialias only "long" bands */ | |
1833 | if (g->block_type == 2) { | |
1834 | if (!g->switch_point) | |
1835 | return; | |
1836 | /* XXX: check this for 8000Hz case */ | |
1837 | n = 1; | |
1838 | } else { | |
1839 | n = SBLIMIT - 1; | |
1840 | } | |
1841 | ||
1842 | ptr = g->sb_hybrid + 18; | |
1843 | for(i = n;i > 0;i--) { | |
1844 | p0 = ptr - 1; | |
1845 | p1 = ptr; | |
1846 | csa = &csa_table[0][0]; | |
1847 | for(j=0;j<8;j++) { | |
1848 | tmp0 = *p0; | |
1849 | tmp1 = *p1; | |
1850 | *p0 = FRAC_RND(MUL64(tmp0, csa[0]) - MUL64(tmp1, csa[1])); | |
1851 | *p1 = FRAC_RND(MUL64(tmp0, csa[1]) + MUL64(tmp1, csa[0])); | |
1852 | p0--; | |
1853 | p1++; | |
1854 | csa += 2; | |
1855 | } | |
1856 | ptr += 18; | |
1857 | } | |
1858 | } | |
1859 | ||
1860 | static void compute_imdct(MPADecodeContext *s, | |
1861 | GranuleDef *g, | |
1862 | INT32 *sb_samples, | |
1863 | INT32 *mdct_buf) | |
1864 | { | |
1865 | INT32 *ptr, *win, *win1, *buf, *buf2, *out_ptr, *ptr1; | |
1866 | INT32 in[6]; | |
1867 | INT32 out[36]; | |
1868 | INT32 out2[12]; | |
1869 | int i, j, k, mdct_long_end, v, sblimit; | |
1870 | ||
1871 | /* find last non zero block */ | |
1872 | ptr = g->sb_hybrid + 576; | |
1873 | ptr1 = g->sb_hybrid + 2 * 18; | |
1874 | while (ptr >= ptr1) { | |
1875 | ptr -= 6; | |
1876 | v = ptr[0] | ptr[1] | ptr[2] | ptr[3] | ptr[4] | ptr[5]; | |
1877 | if (v != 0) | |
1878 | break; | |
1879 | } | |
1880 | sblimit = ((ptr - g->sb_hybrid) / 18) + 1; | |
1881 | ||
1882 | if (g->block_type == 2) { | |
1883 | /* XXX: check for 8000 Hz */ | |
1884 | if (g->switch_point) | |
1885 | mdct_long_end = 2; | |
1886 | else | |
1887 | mdct_long_end = 0; | |
1888 | } else { | |
1889 | mdct_long_end = sblimit; | |
1890 | } | |
1891 | ||
1892 | buf = mdct_buf; | |
1893 | ptr = g->sb_hybrid; | |
1894 | for(j=0;j<mdct_long_end;j++) { | |
1895 | imdct36(out, ptr); | |
1896 | /* apply window & overlap with previous buffer */ | |
1897 | out_ptr = sb_samples + j; | |
1898 | /* select window */ | |
1899 | if (g->switch_point && j < 2) | |
1900 | win1 = mdct_win[0]; | |
1901 | else | |
1902 | win1 = mdct_win[g->block_type]; | |
1903 | /* select frequency inversion */ | |
1904 | win = win1 + ((4 * 36) & -(j & 1)); | |
1905 | for(i=0;i<18;i++) { | |
1906 | *out_ptr = MULL(out[i], win[i]) + buf[i]; | |
1907 | buf[i] = MULL(out[i + 18], win[i + 18]); | |
1908 | out_ptr += SBLIMIT; | |
1909 | } | |
1910 | ptr += 18; | |
1911 | buf += 18; | |
1912 | } | |
1913 | for(j=mdct_long_end;j<sblimit;j++) { | |
1914 | for(i=0;i<6;i++) { | |
1915 | out[i] = 0; | |
1916 | out[6 + i] = 0; | |
1917 | out[30+i] = 0; | |
1918 | } | |
1919 | /* select frequency inversion */ | |
1920 | win = mdct_win[2] + ((4 * 36) & -(j & 1)); | |
1921 | buf2 = out + 6; | |
1922 | for(k=0;k<3;k++) { | |
1923 | /* reorder input for short mdct */ | |
1924 | ptr1 = ptr + k; | |
1925 | for(i=0;i<6;i++) { | |
1926 | in[i] = *ptr1; | |
1927 | ptr1 += 3; | |
1928 | } | |
1929 | imdct12(out2, in); | |
1930 | /* apply 12 point window and do small overlap */ | |
1931 | for(i=0;i<6;i++) { | |
1932 | buf2[i] = MULL(out2[i], win[i]) + buf2[i]; | |
1933 | buf2[i + 6] = MULL(out2[i + 6], win[i + 6]); | |
1934 | } | |
1935 | buf2 += 6; | |
1936 | } | |
1937 | /* overlap */ | |
1938 | out_ptr = sb_samples + j; | |
1939 | for(i=0;i<18;i++) { | |
1940 | *out_ptr = out[i] + buf[i]; | |
1941 | buf[i] = out[i + 18]; | |
1942 | out_ptr += SBLIMIT; | |
1943 | } | |
1944 | ptr += 18; | |
1945 | buf += 18; | |
1946 | } | |
1947 | /* zero bands */ | |
1948 | for(j=sblimit;j<SBLIMIT;j++) { | |
1949 | /* overlap */ | |
1950 | out_ptr = sb_samples + j; | |
1951 | for(i=0;i<18;i++) { | |
1952 | *out_ptr = buf[i]; | |
1953 | buf[i] = 0; | |
1954 | out_ptr += SBLIMIT; | |
1955 | } | |
1956 | buf += 18; | |
1957 | } | |
1958 | } | |
1959 | ||
747a67fb | 1960 | #if defined(DEBUG) |
239c2f4c FB |
1961 | void sample_dump(int fnum, INT32 *tab, int n) |
1962 | { | |
1963 | static FILE *files[16], *f; | |
1964 | char buf[512]; | |
1965 | ||
1966 | f = files[fnum]; | |
1967 | if (!f) { | |
1968 | sprintf(buf, "/tmp/out%d.pcm", fnum); | |
1969 | f = fopen(buf, "w"); | |
1970 | if (!f) | |
1971 | return; | |
1972 | files[fnum] = f; | |
1973 | } | |
1974 | ||
1975 | if (fnum == 0) { | |
1976 | int i; | |
1977 | static int pos = 0; | |
1978 | printf("pos=%d\n", pos); | |
1979 | for(i=0;i<n;i++) { | |
1980 | printf(" %f", (double)tab[i] / 32768.0); | |
1981 | if ((i % 18) == 17) | |
1982 | printf("\n"); | |
1983 | } | |
1984 | pos += n; | |
1985 | } | |
1986 | ||
1987 | fwrite(tab, 1, n * sizeof(INT32), f); | |
1988 | } | |
1989 | #endif | |
1990 | ||
1991 | ||
1992 | /* main layer3 decoding function */ | |
1993 | static int mp_decode_layer3(MPADecodeContext *s) | |
1994 | { | |
1995 | int nb_granules, main_data_begin, private_bits; | |
1996 | int gr, ch, blocksplit_flag, i, j, k, n, bits_pos, bits_left; | |
1997 | GranuleDef granules[2][2], *g; | |
1998 | INT16 exponents[576]; | |
1999 | ||
2000 | /* read side info */ | |
2001 | if (s->lsf) { | |
2002 | main_data_begin = get_bits(&s->gb, 8); | |
2003 | if (s->nb_channels == 2) | |
2004 | private_bits = get_bits(&s->gb, 2); | |
2005 | else | |
2006 | private_bits = get_bits(&s->gb, 1); | |
2007 | nb_granules = 1; | |
2008 | } else { | |
2009 | main_data_begin = get_bits(&s->gb, 9); | |
2010 | if (s->nb_channels == 2) | |
2011 | private_bits = get_bits(&s->gb, 3); | |
2012 | else | |
2013 | private_bits = get_bits(&s->gb, 5); | |
2014 | nb_granules = 2; | |
2015 | for(ch=0;ch<s->nb_channels;ch++) { | |
2016 | granules[ch][0].scfsi = 0; /* all scale factors are transmitted */ | |
2017 | granules[ch][1].scfsi = get_bits(&s->gb, 4); | |
2018 | } | |
2019 | } | |
2020 | ||
2021 | for(gr=0;gr<nb_granules;gr++) { | |
2022 | for(ch=0;ch<s->nb_channels;ch++) { | |
2023 | dprintf("gr=%d ch=%d: side_info\n", gr, ch); | |
2024 | g = &granules[ch][gr]; | |
2025 | g->part2_3_length = get_bits(&s->gb, 12); | |
2026 | g->big_values = get_bits(&s->gb, 9); | |
2027 | g->global_gain = get_bits(&s->gb, 8); | |
2028 | /* if MS stereo only is selected, we precompute the | |
2029 | 1/sqrt(2) renormalization factor */ | |
2030 | if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) == | |
2031 | MODE_EXT_MS_STEREO) | |
2032 | g->global_gain -= 2; | |
2033 | if (s->lsf) | |
2034 | g->scalefac_compress = get_bits(&s->gb, 9); | |
2035 | else | |
2036 | g->scalefac_compress = get_bits(&s->gb, 4); | |
2037 | blocksplit_flag = get_bits(&s->gb, 1); | |
2038 | if (blocksplit_flag) { | |
2039 | g->block_type = get_bits(&s->gb, 2); | |
2040 | if (g->block_type == 0) | |
2041 | return -1; | |
2042 | g->switch_point = get_bits(&s->gb, 1); | |
2043 | for(i=0;i<2;i++) | |
2044 | g->table_select[i] = get_bits(&s->gb, 5); | |
2045 | for(i=0;i<3;i++) | |
2046 | g->subblock_gain[i] = get_bits(&s->gb, 3); | |
2047 | /* compute huffman coded region sizes */ | |
2048 | if (g->block_type == 2) | |
2049 | g->region_size[0] = (36 / 2); | |
2050 | else { | |
2051 | if (s->sample_rate_index <= 2) | |
2052 | g->region_size[0] = (36 / 2); | |
2053 | else if (s->sample_rate_index != 8) | |
2054 | g->region_size[0] = (54 / 2); | |
2055 | else | |
2056 | g->region_size[0] = (108 / 2); | |
2057 | } | |
2058 | g->region_size[1] = (576 / 2); | |
2059 | } else { | |
2060 | int region_address1, region_address2, l; | |
2061 | g->block_type = 0; | |
2062 | g->switch_point = 0; | |
2063 | for(i=0;i<3;i++) | |
2064 | g->table_select[i] = get_bits(&s->gb, 5); | |
2065 | /* compute huffman coded region sizes */ | |
2066 | region_address1 = get_bits(&s->gb, 4); | |
2067 | region_address2 = get_bits(&s->gb, 3); | |
2068 | dprintf("region1=%d region2=%d\n", | |
2069 | region_address1, region_address2); | |
2070 | g->region_size[0] = | |
2071 | band_index_long[s->sample_rate_index][region_address1 + 1] >> 1; | |
2072 | l = region_address1 + region_address2 + 2; | |
2073 | /* should not overflow */ | |
2074 | if (l > 22) | |
2075 | l = 22; | |
2076 | g->region_size[1] = | |
2077 | band_index_long[s->sample_rate_index][l] >> 1; | |
2078 | } | |
2079 | /* convert region offsets to region sizes and truncate | |
2080 | size to big_values */ | |
2081 | g->region_size[2] = (576 / 2); | |
2082 | j = 0; | |
2083 | for(i=0;i<3;i++) { | |
2084 | k = g->region_size[i]; | |
2085 | if (k > g->big_values) | |
2086 | k = g->big_values; | |
2087 | g->region_size[i] = k - j; | |
2088 | j = k; | |
2089 | } | |
2090 | ||
2091 | /* compute band indexes */ | |
2092 | if (g->block_type == 2) { | |
2093 | if (g->switch_point) { | |
2094 | /* if switched mode, we handle the 36 first samples as | |
2095 | long blocks. For 8000Hz, we handle the 48 first | |
2096 | exponents as long blocks (XXX: check this!) */ | |
2097 | if (s->sample_rate_index <= 2) | |
2098 | g->long_end = 8; | |
2099 | else if (s->sample_rate_index != 8) | |
2100 | g->long_end = 6; | |
2101 | else | |
2102 | g->long_end = 4; /* 8000 Hz */ | |
2103 | ||
2104 | if (s->sample_rate_index != 8) | |
2105 | g->short_start = 3; | |
2106 | else | |
2107 | g->short_start = 2; | |
2108 | } else { | |
2109 | g->long_end = 0; | |
2110 | g->short_start = 0; | |
2111 | } | |
2112 | } else { | |
2113 | g->short_start = 13; | |
2114 | g->long_end = 22; | |
2115 | } | |
2116 | ||
2117 | g->preflag = 0; | |
2118 | if (!s->lsf) | |
2119 | g->preflag = get_bits(&s->gb, 1); | |
2120 | g->scalefac_scale = get_bits(&s->gb, 1); | |
2121 | g->count1table_select = get_bits(&s->gb, 1); | |
2122 | dprintf("block_type=%d switch_point=%d\n", | |
2123 | g->block_type, g->switch_point); | |
2124 | } | |
2125 | } | |
2126 | ||
2127 | /* now we get bits from the main_data_begin offset */ | |
2128 | dprintf("seekback: %d\n", main_data_begin); | |
2129 | seek_to_maindata(s, main_data_begin); | |
2130 | ||
2131 | for(gr=0;gr<nb_granules;gr++) { | |
2132 | for(ch=0;ch<s->nb_channels;ch++) { | |
2133 | g = &granules[ch][gr]; | |
2134 | ||
2135 | bits_pos = get_bits_count(&s->gb); | |
2136 | ||
2137 | if (!s->lsf) { | |
2138 | UINT8 *sc; | |
2139 | int slen, slen1, slen2; | |
2140 | ||
2141 | /* MPEG1 scale factors */ | |
2142 | slen1 = slen_table[0][g->scalefac_compress]; | |
2143 | slen2 = slen_table[1][g->scalefac_compress]; | |
2144 | dprintf("slen1=%d slen2=%d\n", slen1, slen2); | |
2145 | if (g->block_type == 2) { | |
2146 | n = g->switch_point ? 17 : 18; | |
2147 | j = 0; | |
2148 | for(i=0;i<n;i++) | |
2149 | g->scale_factors[j++] = get_bitsz(&s->gb, slen1); | |
2150 | for(i=0;i<18;i++) | |
2151 | g->scale_factors[j++] = get_bitsz(&s->gb, slen2); | |
2152 | for(i=0;i<3;i++) | |
2153 | g->scale_factors[j++] = 0; | |
2154 | } else { | |
2155 | sc = granules[ch][0].scale_factors; | |
2156 | j = 0; | |
2157 | for(k=0;k<4;k++) { | |
2158 | n = (k == 0 ? 6 : 5); | |
2159 | if ((g->scfsi & (0x8 >> k)) == 0) { | |
2160 | slen = (k < 2) ? slen1 : slen2; | |
2161 | for(i=0;i<n;i++) | |
2162 | g->scale_factors[j++] = get_bitsz(&s->gb, slen); | |
2163 | } else { | |
2164 | /* simply copy from last granule */ | |
2165 | for(i=0;i<n;i++) { | |
2166 | g->scale_factors[j] = sc[j]; | |
2167 | j++; | |
2168 | } | |
2169 | } | |
2170 | } | |
2171 | g->scale_factors[j++] = 0; | |
2172 | } | |
747a67fb | 2173 | #if defined(DEBUG) |
239c2f4c FB |
2174 | { |
2175 | printf("scfsi=%x gr=%d ch=%d scale_factors:\n", | |
2176 | g->scfsi, gr, ch); | |
2177 | for(i=0;i<j;i++) | |
2178 | printf(" %d", g->scale_factors[i]); | |
2179 | printf("\n"); | |
2180 | } | |
2181 | #endif | |
2182 | } else { | |
2183 | int tindex, tindex2, slen[4], sl, sf; | |
2184 | ||
2185 | /* LSF scale factors */ | |
2186 | if (g->block_type == 2) { | |
2187 | tindex = g->switch_point ? 2 : 1; | |
2188 | } else { | |
2189 | tindex = 0; | |
2190 | } | |
2191 | sf = g->scalefac_compress; | |
2192 | if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) { | |
2193 | /* intensity stereo case */ | |
2194 | sf >>= 1; | |
2195 | if (sf < 180) { | |
2196 | lsf_sf_expand(slen, sf, 6, 6, 0); | |
2197 | tindex2 = 3; | |
2198 | } else if (sf < 244) { | |
2199 | lsf_sf_expand(slen, sf - 180, 4, 4, 0); | |
2200 | tindex2 = 4; | |
2201 | } else { | |
2202 | lsf_sf_expand(slen, sf - 244, 3, 0, 0); | |
2203 | tindex2 = 5; | |
2204 | } | |
2205 | } else { | |
2206 | /* normal case */ | |
2207 | if (sf < 400) { | |
2208 | lsf_sf_expand(slen, sf, 5, 4, 4); | |
2209 | tindex2 = 0; | |
2210 | } else if (sf < 500) { | |
2211 | lsf_sf_expand(slen, sf - 400, 5, 4, 0); | |
2212 | tindex2 = 1; | |
2213 | } else { | |
2214 | lsf_sf_expand(slen, sf - 500, 3, 0, 0); | |
2215 | tindex2 = 2; | |
2216 | g->preflag = 1; | |
2217 | } | |
2218 | } | |
2219 | ||
2220 | j = 0; | |
2221 | for(k=0;k<4;k++) { | |
2222 | n = lsf_nsf_table[tindex2][tindex][k]; | |
2223 | sl = slen[k]; | |
2224 | for(i=0;i<n;i++) | |
2225 | g->scale_factors[j++] = get_bitsz(&s->gb, sl); | |
2226 | } | |
2227 | /* XXX: should compute exact size */ | |
2228 | for(;j<40;j++) | |
2229 | g->scale_factors[j] = 0; | |
747a67fb | 2230 | #if defined(DEBUG) |
239c2f4c FB |
2231 | { |
2232 | printf("gr=%d ch=%d scale_factors:\n", | |
2233 | gr, ch); | |
2234 | for(i=0;i<40;i++) | |
2235 | printf(" %d", g->scale_factors[i]); | |
2236 | printf("\n"); | |
2237 | } | |
2238 | #endif | |
2239 | } | |
2240 | ||
2241 | exponents_from_scale_factors(s, g, exponents); | |
2242 | ||
2243 | /* read Huffman coded residue */ | |
2244 | if (huffman_decode(s, g, exponents, | |
2245 | bits_pos + g->part2_3_length) < 0) | |
2246 | return -1; | |
747a67fb FB |
2247 | #if defined(DEBUG) |
2248 | sample_dump(0, g->sb_hybrid, 576); | |
239c2f4c FB |
2249 | #endif |
2250 | ||
2251 | /* skip extension bits */ | |
2252 | bits_left = g->part2_3_length - (get_bits_count(&s->gb) - bits_pos); | |
2253 | if (bits_left < 0) { | |
2254 | dprintf("bits_left=%d\n", bits_left); | |
2255 | return -1; | |
2256 | } | |
2257 | while (bits_left >= 16) { | |
2258 | skip_bits(&s->gb, 16); | |
2259 | bits_left -= 16; | |
2260 | } | |
2261 | if (bits_left > 0) | |
2262 | skip_bits(&s->gb, bits_left); | |
2263 | } /* ch */ | |
2264 | ||
2265 | if (s->nb_channels == 2) | |
2266 | compute_stereo(s, &granules[0][gr], &granules[1][gr]); | |
2267 | ||
2268 | for(ch=0;ch<s->nb_channels;ch++) { | |
2269 | g = &granules[ch][gr]; | |
2270 | ||
2271 | reorder_block(s, g); | |
747a67fb | 2272 | #if defined(DEBUG) |
239c2f4c FB |
2273 | sample_dump(0, g->sb_hybrid, 576); |
2274 | #endif | |
2275 | compute_antialias(s, g); | |
2276 | #ifdef DEBUG | |
2277 | sample_dump(1, g->sb_hybrid, 576); | |
2278 | #endif | |
2279 | compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]); | |
2280 | #ifdef DEBUG | |
2281 | sample_dump(2, &s->sb_samples[ch][18 * gr][0], 576); | |
2282 | #endif | |
2283 | } | |
2284 | } /* gr */ | |
2285 | return nb_granules * 18; | |
2286 | } | |
2287 | ||
2288 | static int mp_decode_frame(MPADecodeContext *s, | |
2289 | short *samples) | |
2290 | { | |
2291 | int i, nb_frames, ch; | |
2292 | short *samples_ptr; | |
2293 | ||
2294 | init_get_bits(&s->gb, s->inbuf + HEADER_SIZE, | |
2295 | s->inbuf_ptr - s->inbuf - HEADER_SIZE); | |
2296 | ||
2297 | /* skip error protection field */ | |
2298 | if (s->error_protection) | |
2299 | get_bits(&s->gb, 16); | |
2300 | ||
2301 | dprintf("frame %d:\n", s->frame_count); | |
2302 | switch(s->layer) { | |
2303 | case 1: | |
2304 | nb_frames = mp_decode_layer1(s); | |
2305 | break; | |
2306 | case 2: | |
2307 | nb_frames = mp_decode_layer2(s); | |
2308 | break; | |
2309 | case 3: | |
2310 | default: | |
2311 | nb_frames = mp_decode_layer3(s); | |
2312 | break; | |
2313 | } | |
2314 | #if defined(DEBUG) | |
2315 | for(i=0;i<nb_frames;i++) { | |
2316 | for(ch=0;ch<s->nb_channels;ch++) { | |
2317 | int j; | |
2318 | printf("%d-%d:", i, ch); | |
2319 | for(j=0;j<SBLIMIT;j++) | |
2320 | printf(" %0.6f", (double)s->sb_samples[ch][i][j] / FRAC_ONE); | |
2321 | printf("\n"); | |
2322 | } | |
2323 | } | |
2324 | #endif | |
2325 | /* apply the synthesis filter */ | |
2326 | for(ch=0;ch<s->nb_channels;ch++) { | |
2327 | samples_ptr = samples + ch; | |
2328 | for(i=0;i<nb_frames;i++) { | |
2329 | synth_filter(s, ch, samples_ptr, s->nb_channels, | |
2330 | s->sb_samples[ch][i]); | |
2331 | samples_ptr += 32 * s->nb_channels; | |
2332 | } | |
2333 | } | |
2334 | #ifdef DEBUG | |
2335 | s->frame_count++; | |
2336 | #endif | |
2337 | return nb_frames * 32 * sizeof(short) * s->nb_channels; | |
2338 | } | |
2339 | ||
de6d9b64 FB |
2340 | static int decode_frame(AVCodecContext * avctx, |
2341 | void *data, int *data_size, | |
2342 | UINT8 * buf, int buf_size) | |
2343 | { | |
2344 | MPADecodeContext *s = avctx->priv_data; | |
2345 | UINT32 header; | |
2346 | UINT8 *buf_ptr; | |
2347 | int len, out_size; | |
2348 | short *out_samples = data; | |
2349 | ||
2350 | *data_size = 0; | |
2351 | buf_ptr = buf; | |
2352 | while (buf_size > 0) { | |
2353 | len = s->inbuf_ptr - s->inbuf; | |
2354 | if (s->frame_size == 0) { | |
239c2f4c FB |
2355 | /* special case for next header for first frame in free |
2356 | format case (XXX: find a simpler method) */ | |
2357 | if (s->free_format_next_header != 0) { | |
2358 | s->inbuf[0] = s->free_format_next_header >> 24; | |
2359 | s->inbuf[1] = s->free_format_next_header >> 16; | |
2360 | s->inbuf[2] = s->free_format_next_header >> 8; | |
2361 | s->inbuf[3] = s->free_format_next_header; | |
2362 | s->inbuf_ptr = s->inbuf + 4; | |
2363 | s->free_format_next_header = 0; | |
2364 | goto got_header; | |
2365 | } | |
2366 | /* no header seen : find one. We need at least HEADER_SIZE | |
2367 | bytes to parse it */ | |
de6d9b64 FB |
2368 | len = HEADER_SIZE - len; |
2369 | if (len > buf_size) | |
2370 | len = buf_size; | |
92d24f49 | 2371 | if (len > 0) { |
2d83f323 ZK |
2372 | memcpy(s->inbuf_ptr, buf_ptr, len); |
2373 | buf_ptr += len; | |
2374 | buf_size -= len; | |
c152c983 ZK |
2375 | s->inbuf_ptr += len; |
2376 | } | |
2377 | if ((s->inbuf_ptr - s->inbuf) >= HEADER_SIZE) { | |
239c2f4c | 2378 | got_header: |
de6d9b64 FB |
2379 | header = (s->inbuf[0] << 24) | (s->inbuf[1] << 16) | |
2380 | (s->inbuf[2] << 8) | s->inbuf[3]; | |
92d24f49 | 2381 | |
de6d9b64 FB |
2382 | if (check_header(header) < 0) { |
2383 | /* no sync found : move by one byte (inefficient, but simple!) */ | |
2d83f323 | 2384 | memcpy(s->inbuf, s->inbuf + 1, s->inbuf_ptr - s->inbuf - 1); |
de6d9b64 | 2385 | s->inbuf_ptr--; |
239c2f4c FB |
2386 | dprintf("skip %x\n", header); |
2387 | /* reset free format frame size to give a chance | |
2388 | to get a new bitrate */ | |
2389 | s->free_format_frame_size = 0; | |
de6d9b64 | 2390 | } else { |
239c2f4c FB |
2391 | if (decode_header(s, header) == 1) { |
2392 | /* free format: compute frame size */ | |
2d83f323 ZK |
2393 | s->frame_size = -1; |
2394 | memcpy(s->inbuf, s->inbuf + 1, s->inbuf_ptr - s->inbuf - 1); | |
de5123dc | 2395 | s->inbuf_ptr--; |
239c2f4c FB |
2396 | } else { |
2397 | /* update codec info */ | |
2398 | avctx->sample_rate = s->sample_rate; | |
2399 | avctx->channels = s->nb_channels; | |
2d83f323 | 2400 | avctx->bit_rate = s->bit_rate; |
10bb7023 | 2401 | avctx->frame_size = s->frame_size; |
239c2f4c | 2402 | } |
de6d9b64 FB |
2403 | } |
2404 | } | |
239c2f4c FB |
2405 | } else if (s->frame_size == -1) { |
2406 | /* free format : find next sync to compute frame size */ | |
2407 | len = MPA_MAX_CODED_FRAME_SIZE - len; | |
2408 | if (len > buf_size) | |
2409 | len = buf_size; | |
2410 | if (len == 0) { | |
2411 | /* frame too long: resync */ | |
2412 | s->frame_size = 0; | |
2413 | } else { | |
2414 | UINT8 *p, *pend; | |
2415 | UINT32 header1; | |
2416 | int padding; | |
2417 | ||
2418 | memcpy(s->inbuf_ptr, buf_ptr, len); | |
2419 | /* check for header */ | |
2420 | p = s->inbuf_ptr - 3; | |
2421 | pend = s->inbuf_ptr + len - 4; | |
2422 | while (p <= pend) { | |
2423 | header = (p[0] << 24) | (p[1] << 16) | | |
2424 | (p[2] << 8) | p[3]; | |
2425 | header1 = (s->inbuf[0] << 24) | (s->inbuf[1] << 16) | | |
2426 | (s->inbuf[2] << 8) | s->inbuf[3]; | |
2427 | /* check with high probability that we have a | |
2428 | valid header */ | |
2429 | if ((header & SAME_HEADER_MASK) == | |
2430 | (header1 & SAME_HEADER_MASK)) { | |
2431 | /* header found: update pointers */ | |
2432 | len = (p + 4) - s->inbuf_ptr; | |
2433 | buf_ptr += len; | |
2434 | buf_size -= len; | |
2435 | s->inbuf_ptr = p; | |
2436 | /* compute frame size */ | |
2437 | s->free_format_next_header = header; | |
2438 | s->free_format_frame_size = s->inbuf_ptr - s->inbuf; | |
2439 | padding = (header1 >> 9) & 1; | |
2440 | if (s->layer == 1) | |
2441 | s->free_format_frame_size -= padding * 4; | |
2442 | else | |
2443 | s->free_format_frame_size -= padding; | |
2444 | dprintf("free frame size=%d padding=%d\n", | |
2445 | s->free_format_frame_size, padding); | |
2446 | decode_header(s, header1); | |
2447 | goto next_data; | |
2448 | } | |
2449 | p++; | |
2450 | } | |
2451 | /* not found: simply increase pointers */ | |
2452 | buf_ptr += len; | |
2453 | s->inbuf_ptr += len; | |
2454 | buf_size -= len; | |
2455 | } | |
de6d9b64 | 2456 | } else if (len < s->frame_size) { |
de5123dc ZK |
2457 | if (s->frame_size > MPA_MAX_CODED_FRAME_SIZE) |
2458 | s->frame_size = MPA_MAX_CODED_FRAME_SIZE; | |
de6d9b64 FB |
2459 | len = s->frame_size - len; |
2460 | if (len > buf_size) | |
2461 | len = buf_size; | |
de6d9b64 FB |
2462 | memcpy(s->inbuf_ptr, buf_ptr, len); |
2463 | buf_ptr += len; | |
2464 | s->inbuf_ptr += len; | |
2465 | buf_size -= len; | |
2466 | } else { | |
2467 | out_size = mp_decode_frame(s, out_samples); | |
2468 | s->inbuf_ptr = s->inbuf; | |
2469 | s->frame_size = 0; | |
2470 | *data_size = out_size; | |
2471 | break; | |
2472 | } | |
239c2f4c | 2473 | next_data: |
de6d9b64 FB |
2474 | } |
2475 | return buf_ptr - buf; | |
2476 | } | |
2477 | ||
4b1f4f23 | 2478 | AVCodec mp2_decoder = |
de6d9b64 | 2479 | { |
4b1f4f23 | 2480 | "mp2", |
de6d9b64 FB |
2481 | CODEC_TYPE_AUDIO, |
2482 | CODEC_ID_MP2, | |
2483 | sizeof(MPADecodeContext), | |
2484 | decode_init, | |
2485 | NULL, | |
2486 | NULL, | |
2487 | decode_frame, | |
2488 | }; | |
4b1f4f23 J |
2489 | |
2490 | AVCodec mp3_decoder = | |
2491 | { | |
2492 | "mp3", | |
2493 | CODEC_TYPE_AUDIO, | |
2494 | CODEC_ID_MP3LAME, | |
2495 | sizeof(MPADecodeContext), | |
2496 | decode_init, | |
2497 | NULL, | |
2498 | NULL, | |
2499 | decode_frame, | |
2500 | }; |