Commit | Line | Data |
---|---|---|
3b636f21 DC |
1 | /** |
2 | * VP8 compatible video decoder | |
3 | * | |
4 | * Copyright (C) 2010 David Conrad | |
5 | * Copyright (C) 2010 Ronald S. Bultje | |
6 | * | |
7 | * This file is part of FFmpeg. | |
8 | * | |
9 | * FFmpeg is free software; you can redistribute it and/or | |
10 | * modify it under the terms of the GNU Lesser General Public | |
11 | * License as published by the Free Software Foundation; either | |
12 | * version 2.1 of the License, or (at your option) any later version. | |
13 | * | |
14 | * FFmpeg is distributed in the hope that it will be useful, | |
15 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
17 | * Lesser General Public License for more details. | |
18 | * | |
19 | * You should have received a copy of the GNU Lesser General Public | |
20 | * License along with FFmpeg; if not, write to the Free Software | |
21 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
22 | */ | |
23 | ||
24 | #include "avcodec.h" | |
25 | #include "vp56.h" | |
26 | #include "vp8data.h" | |
27 | #include "vp8dsp.h" | |
28 | #include "h264pred.h" | |
29 | #include "rectangle.h" | |
30 | ||
31 | typedef struct { | |
32 | uint8_t segment; | |
33 | uint8_t skip; | |
34 | // todo: make it possible to check for at least (i4x4 or split_mv) | |
35 | // in one op. are others needed? | |
36 | uint8_t mode; | |
37 | uint8_t ref_frame; | |
38 | uint8_t partitioning; | |
39 | VP56mv mv; | |
40 | VP56mv bmv[16]; | |
41 | } VP8Macroblock; | |
42 | ||
43 | typedef struct { | |
44 | AVCodecContext *avctx; | |
45 | DSPContext dsp; | |
46 | VP8DSPContext vp8dsp; | |
47 | H264PredContext hpc; | |
48 | AVFrame frames[4]; | |
49 | AVFrame *framep[4]; | |
50 | uint8_t *edge_emu_buffer; | |
51 | VP56RangeCoder c; ///< header context, includes mb modes and motion vectors | |
52 | int profile; | |
53 | ||
54 | int mb_width; /* number of horizontal MB */ | |
55 | int mb_height; /* number of vertical MB */ | |
56 | int linesize; | |
57 | int uvlinesize; | |
58 | ||
59 | int keyframe; | |
60 | int invisible; | |
61 | int update_last; ///< update VP56_FRAME_PREVIOUS with the current one | |
62 | int update_golden; ///< VP56_FRAME_NONE if not updated, or which frame to copy if so | |
63 | int update_altref; | |
64 | ||
65 | /** | |
66 | * If this flag is not set, all the probability updates | |
67 | * are discarded after this frame is decoded. | |
68 | */ | |
69 | int update_probabilities; | |
70 | ||
71 | /** | |
72 | * All coefficients are contained in separate arith coding contexts. | |
73 | * There can be 1, 2, 4, or 8 of these after the header context. | |
74 | */ | |
75 | int num_coeff_partitions; | |
76 | VP56RangeCoder coeff_partition[8]; | |
77 | ||
78 | VP8Macroblock *macroblocks; | |
79 | VP8Macroblock *macroblocks_base; | |
80 | int mb_stride; | |
81 | ||
82 | uint8_t *intra4x4_pred_mode; | |
83 | uint8_t *intra4x4_pred_mode_base; | |
84 | int b4_stride; | |
85 | ||
86 | /** | |
87 | * For coeff decode, we need to know whether the above block had non-zero | |
88 | * coefficients. This means for each macroblock, we need data for 4 luma | |
89 | * blocks, 2 u blocks, 2 v blocks, and the luma dc block, for a total of 9 | |
90 | * per macroblock. We keep the last row in top_nnz. | |
91 | */ | |
92 | uint8_t (*top_nnz)[9]; | |
93 | DECLARE_ALIGNED(8, uint8_t, left_nnz)[9]; | |
94 | ||
95 | /** | |
96 | * This is the index plus one of the last non-zero coeff | |
97 | * for each of the blocks in the current macroblock. | |
98 | * So, 0 -> no coeffs | |
99 | * 1 -> dc-only (special transform) | |
100 | * 2+-> full transform | |
101 | */ | |
102 | DECLARE_ALIGNED(16, uint8_t, non_zero_count_cache)[6][4]; | |
103 | DECLARE_ALIGNED(16, DCTELEM, block)[6][4][16]; | |
104 | ||
105 | int chroma_pred_mode; ///< 8x8c pred mode of the current macroblock | |
106 | ||
107 | int mbskip_enabled; | |
108 | int sign_bias[4]; ///< one state [0, 1] per ref frame type | |
109 | ||
110 | /** | |
111 | * Base parameters for segmentation, i.e. per-macroblock parameters. | |
112 | * These must be kept unchanged even if segmentation is not used for | |
113 | * a frame, since the values persist between interframes. | |
114 | */ | |
115 | struct { | |
116 | int enabled; | |
117 | int absolute_vals; | |
118 | int update_map; | |
119 | int8_t base_quant[4]; | |
120 | int8_t filter_level[4]; ///< base loop filter level | |
121 | } segmentation; | |
122 | ||
123 | /** | |
124 | * Macroblocks can have one of 4 different quants in a frame when | |
125 | * segmentation is enabled. | |
126 | * If segmentation is disabled, only the first segment's values are used. | |
127 | */ | |
128 | struct { | |
129 | // [0] - DC qmul [1] - AC qmul | |
130 | int16_t luma_qmul[2]; | |
131 | int16_t luma_dc_qmul[2]; ///< luma dc-only block quant | |
132 | int16_t chroma_qmul[2]; | |
133 | } qmat[4]; | |
134 | ||
135 | struct { | |
136 | int simple; | |
137 | int level; | |
138 | int sharpness; | |
139 | } filter; | |
140 | ||
141 | struct { | |
142 | int enabled; ///< whether each mb can have a different strength based on mode/ref | |
143 | ||
144 | /** | |
145 | * filter strength adjustment for the following macroblock modes: | |
146 | * [0] - i4x4 | |
147 | * [1] - zero mv | |
148 | * [2] - inter modes except for zero or split mv | |
149 | * [3] - split mv | |
150 | * i16x16 modes never have any adjustment | |
151 | */ | |
152 | int8_t mode[4]; | |
153 | ||
154 | /** | |
155 | * filter strength adjustment for macroblocks that reference: | |
156 | * [0] - intra / VP56_FRAME_CURRENT | |
157 | * [1] - VP56_FRAME_PREVIOUS | |
158 | * [2] - VP56_FRAME_GOLDEN | |
159 | * [3] - altref / VP56_FRAME_GOLDEN2 | |
160 | */ | |
161 | int8_t ref[4]; | |
162 | } lf_delta; | |
163 | ||
164 | /** | |
165 | * These are all of the updatable probabilities for binary decisions. | |
166 | * They are only implictly reset on keyframes, making it quite likely | |
167 | * for an interframe to desync if a prior frame's header was corrupt | |
168 | * or missing outright! | |
169 | */ | |
170 | struct { | |
171 | uint8_t segmentid[3]; | |
172 | uint8_t mbskip; | |
173 | uint8_t intra; | |
174 | uint8_t last; | |
175 | uint8_t golden; | |
176 | uint8_t pred16x16[4]; | |
177 | uint8_t pred8x8c[3]; | |
178 | uint8_t token[4][8][3][NUM_DCT_TOKENS-1]; | |
179 | uint8_t mvc[2][19]; | |
180 | } prob[2]; | |
181 | } VP8Context; | |
182 | ||
183 | #define RL24(p) (AV_RL16(p) + ((p)[2] << 16)) | |
184 | ||
185 | static void vp8_decode_flush(AVCodecContext *avctx) | |
186 | { | |
187 | VP8Context *s = avctx->priv_data; | |
188 | int i; | |
189 | ||
190 | for (i = 0; i < 4; i++) | |
191 | if (s->frames[i].data[0]) | |
192 | avctx->release_buffer(avctx, &s->frames[i]); | |
193 | memset(s->framep, 0, sizeof(s->framep)); | |
194 | ||
195 | av_freep(&s->macroblocks_base); | |
196 | av_freep(&s->intra4x4_pred_mode_base); | |
197 | av_freep(&s->top_nnz); | |
198 | av_freep(&s->edge_emu_buffer); | |
199 | ||
200 | s->macroblocks = NULL; | |
201 | s->intra4x4_pred_mode = NULL; | |
202 | } | |
203 | ||
204 | static int update_dimensions(VP8Context *s, int width, int height) | |
205 | { | |
206 | int i; | |
207 | ||
208 | if (avcodec_check_dimensions(s->avctx, width, height)) | |
209 | return AVERROR_INVALIDDATA; | |
210 | ||
211 | vp8_decode_flush(s->avctx); | |
212 | ||
213 | avcodec_set_dimensions(s->avctx, width, height); | |
214 | ||
215 | s->mb_width = (s->avctx->coded_width +15) / 16; | |
216 | s->mb_height = (s->avctx->coded_height+15) / 16; | |
217 | ||
218 | // we allocate a border around the top/left of intra4x4 modes | |
219 | // this is 4 blocks for intra4x4 to keep 4-byte alignment for fill_rectangle | |
220 | s->mb_stride = s->mb_width+1; | |
221 | s->b4_stride = 4*s->mb_stride; | |
222 | ||
223 | s->macroblocks_base = av_mallocz(s->mb_stride*(s->mb_height+1)*sizeof(*s->macroblocks)); | |
224 | s->intra4x4_pred_mode_base = av_mallocz(s->b4_stride*(4*s->mb_height+1)); | |
225 | s->top_nnz = av_mallocz(s->mb_width*sizeof(*s->top_nnz)); | |
226 | ||
227 | s->macroblocks = s->macroblocks_base + 1 + s->mb_stride; | |
228 | s->intra4x4_pred_mode = s->intra4x4_pred_mode_base + 4 + s->b4_stride; | |
229 | ||
230 | memset(s->intra4x4_pred_mode_base, DC_PRED, s->b4_stride); | |
231 | for (i = 0; i < 4*s->mb_height; i++) | |
232 | s->intra4x4_pred_mode[i*s->b4_stride-1] = DC_PRED; | |
233 | ||
234 | return 0; | |
235 | } | |
236 | ||
237 | static void parse_segment_info(VP8Context *s) | |
238 | { | |
239 | VP56RangeCoder *c = &s->c; | |
240 | int i; | |
241 | ||
242 | s->segmentation.update_map = vp8_rac_get(c); | |
243 | ||
244 | if (vp8_rac_get(c)) { // update segment feature data | |
245 | s->segmentation.absolute_vals = vp8_rac_get(c); | |
246 | ||
247 | for (i = 0; i < 4; i++) | |
248 | s->segmentation.base_quant[i] = vp8_rac_get_sint(c, 7); | |
249 | ||
250 | for (i = 0; i < 4; i++) | |
251 | s->segmentation.filter_level[i] = vp8_rac_get_sint(c, 6); | |
252 | } | |
253 | if (s->segmentation.update_map) | |
254 | for (i = 0; i < 3; i++) | |
255 | s->prob->segmentid[i] = vp8_rac_get(c) ? vp8_rac_get_uint(c, 8) : 255; | |
256 | } | |
257 | ||
258 | static void update_lf_deltas(VP8Context *s) | |
259 | { | |
260 | VP56RangeCoder *c = &s->c; | |
261 | int i; | |
262 | ||
263 | for (i = 0; i < 4; i++) | |
264 | s->lf_delta.ref[i] = vp8_rac_get_sint(c, 6); | |
265 | ||
266 | for (i = 0; i < 4; i++) | |
267 | s->lf_delta.mode[i] = vp8_rac_get_sint(c, 6); | |
268 | } | |
269 | ||
270 | static int setup_partitions(VP8Context *s, const uint8_t *buf, int buf_size) | |
271 | { | |
272 | const uint8_t *sizes = buf; | |
273 | int i; | |
274 | ||
275 | s->num_coeff_partitions = 1 << vp8_rac_get_uint(&s->c, 2); | |
276 | ||
277 | buf += 3*(s->num_coeff_partitions-1); | |
278 | buf_size -= 3*(s->num_coeff_partitions-1); | |
279 | if (buf_size < 0) | |
280 | return -1; | |
281 | ||
282 | for (i = 0; i < s->num_coeff_partitions-1; i++) { | |
283 | int size = RL24(sizes + 3*i); | |
284 | if (buf_size - size < 0) | |
285 | return -1; | |
286 | ||
287 | vp56_init_range_decoder(&s->coeff_partition[i], buf, size); | |
288 | buf += size; | |
289 | buf_size -= size; | |
290 | } | |
291 | vp56_init_range_decoder(&s->coeff_partition[i], buf, buf_size); | |
292 | ||
293 | return 0; | |
294 | } | |
295 | ||
296 | static void get_quants(VP8Context *s) | |
297 | { | |
298 | VP56RangeCoder *c = &s->c; | |
299 | int i, base_qi; | |
300 | ||
301 | int yac_qi = vp8_rac_get_uint(c, 7); | |
302 | int ydc_delta = vp8_rac_get_sint(c, 4); | |
303 | int y2dc_delta = vp8_rac_get_sint(c, 4); | |
304 | int y2ac_delta = vp8_rac_get_sint(c, 4); | |
305 | int uvdc_delta = vp8_rac_get_sint(c, 4); | |
306 | int uvac_delta = vp8_rac_get_sint(c, 4); | |
307 | ||
308 | for (i = 0; i < 4; i++) { | |
309 | if (s->segmentation.enabled) { | |
310 | base_qi = s->segmentation.base_quant[i]; | |
311 | if (!s->segmentation.absolute_vals) | |
312 | base_qi += yac_qi; | |
313 | } else | |
314 | base_qi = yac_qi; | |
315 | ||
316 | s->qmat[i].luma_qmul[0] = vp8_dc_qlookup[av_clip(base_qi + ydc_delta , 0, 127)]; | |
317 | s->qmat[i].luma_qmul[1] = vp8_ac_qlookup[av_clip(base_qi , 0, 127)]; | |
318 | s->qmat[i].luma_dc_qmul[0] = 2 * vp8_dc_qlookup[av_clip(base_qi + y2dc_delta, 0, 127)]; | |
319 | s->qmat[i].luma_dc_qmul[1] = 155 * vp8_ac_qlookup[av_clip(base_qi + y2ac_delta, 0, 127)] / 100; | |
320 | s->qmat[i].chroma_qmul[0] = vp8_dc_qlookup[av_clip(base_qi + uvdc_delta, 0, 127)]; | |
321 | s->qmat[i].chroma_qmul[1] = vp8_ac_qlookup[av_clip(base_qi + uvac_delta, 0, 127)]; | |
322 | ||
323 | s->qmat[i].luma_dc_qmul[1] = FFMAX(s->qmat[i].luma_dc_qmul[1], 8); | |
324 | s->qmat[i].chroma_qmul[0] = FFMIN(s->qmat[i].chroma_qmul[0], 132); | |
325 | } | |
326 | } | |
327 | ||
328 | /** | |
329 | * Determine which buffers golden and altref should be updated with after this frame. | |
330 | * The spec isn't clear here, so I'm going by my understanding of what libvpx does | |
331 | * | |
332 | * Intra frames update all 3 references | |
333 | * Inter frames update VP56_FRAME_PREVIOUS if the update_last flag is set | |
334 | * If the update (golden|altref) flag is set, it's updated with the current frame | |
335 | * if update_last is set, and VP56_FRAME_PREVIOUS otherwise. | |
336 | * If the flag is not set, the number read means: | |
337 | * 0: no update | |
338 | * 1: VP56_FRAME_PREVIOUS | |
339 | * 2: update golden with altref, or update altref with golden | |
340 | */ | |
341 | static VP56Frame ref_to_update(VP8Context *s, int update, VP56Frame ref) | |
342 | { | |
343 | VP56RangeCoder *c = &s->c; | |
344 | ||
345 | if (update) | |
346 | return VP56_FRAME_CURRENT; | |
347 | ||
348 | switch (vp8_rac_get_uint(c, 2)) { | |
349 | case 1: | |
350 | return VP56_FRAME_PREVIOUS; | |
351 | case 2: | |
352 | return (ref == VP56_FRAME_GOLDEN) ? VP56_FRAME_GOLDEN2 : VP56_FRAME_GOLDEN; | |
353 | } | |
354 | return VP56_FRAME_NONE; | |
355 | } | |
356 | ||
357 | static void update_refs(VP8Context *s) | |
358 | { | |
359 | VP56RangeCoder *c = &s->c; | |
360 | ||
361 | int update_golden = vp8_rac_get(c); | |
362 | int update_altref = vp8_rac_get(c); | |
363 | ||
364 | s->update_golden = ref_to_update(s, update_golden, VP56_FRAME_GOLDEN); | |
365 | s->update_altref = ref_to_update(s, update_altref, VP56_FRAME_GOLDEN2); | |
366 | } | |
367 | ||
368 | static int decode_frame_header(VP8Context *s, const uint8_t *buf, int buf_size) | |
369 | { | |
370 | VP56RangeCoder *c = &s->c; | |
371 | int header_size, hscale, vscale, i, j, k, l, ret; | |
372 | int width = s->avctx->width; | |
373 | int height = s->avctx->height; | |
374 | ||
375 | s->keyframe = !(buf[0] & 1); | |
376 | s->profile = (buf[0]>>1) & 7; | |
377 | s->invisible = !(buf[0] & 0x10); | |
378 | header_size = RL24(buf) >> 5; | |
379 | buf += 3; | |
380 | buf_size -= 3; | |
381 | ||
382 | if (s->profile) | |
383 | av_log(s->avctx, AV_LOG_WARNING, "Profile %d not fully handled\n", s->profile); | |
384 | ||
385 | if (header_size > buf_size - 7*s->keyframe) { | |
386 | av_log(s->avctx, AV_LOG_ERROR, "Header size larger than data provided\n"); | |
387 | return AVERROR_INVALIDDATA; | |
388 | } | |
389 | ||
390 | if (s->keyframe) { | |
391 | if (RL24(buf) != 0x2a019d) { | |
392 | av_log(s->avctx, AV_LOG_ERROR, "Invalid start code 0x%x\n", RL24(buf)); | |
393 | return AVERROR_INVALIDDATA; | |
394 | } | |
395 | width = AV_RL16(buf+3) & 0x3fff; | |
396 | height = AV_RL16(buf+5) & 0x3fff; | |
397 | hscale = buf[4] >> 6; | |
398 | vscale = buf[6] >> 6; | |
399 | buf += 7; | |
400 | buf_size -= 7; | |
401 | ||
402 | s->update_golden = s->update_altref = VP56_FRAME_CURRENT; | |
403 | memcpy(s->prob->token , vp8_token_default_probs , sizeof(s->prob->token)); | |
404 | memcpy(s->prob->pred16x16, vp8_pred16x16_prob_inter, sizeof(s->prob->pred16x16)); | |
405 | memcpy(s->prob->pred8x8c , vp8_pred8x8c_prob_inter , sizeof(s->prob->pred8x8c)); | |
406 | memcpy(s->prob->mvc , vp8_mv_default_prob , sizeof(s->prob->mvc)); | |
407 | memset(&s->segmentation, 0, sizeof(s->segmentation)); | |
408 | } | |
409 | ||
410 | if (!s->macroblocks_base || /* first frame */ | |
411 | width != s->avctx->width || height != s->avctx->height) { | |
412 | if ((ret = update_dimensions(s, width, height) < 0)) | |
413 | return ret; | |
414 | } | |
415 | ||
416 | vp56_init_range_decoder(c, buf, header_size); | |
417 | buf += header_size; | |
418 | buf_size -= header_size; | |
419 | ||
420 | if (s->keyframe) { | |
421 | if (vp8_rac_get(c)) | |
422 | av_log(s->avctx, AV_LOG_WARNING, "Unspecified colorspace\n"); | |
423 | vp8_rac_get(c); // whether we can skip clamping in dsp functions | |
424 | } | |
425 | ||
426 | if ((s->segmentation.enabled = vp8_rac_get(c))) | |
427 | parse_segment_info(s); | |
428 | else | |
429 | s->segmentation.update_map = 0; // FIXME: move this to some init function? | |
430 | ||
431 | s->filter.simple = vp8_rac_get(c); | |
432 | s->filter.level = vp8_rac_get_uint(c, 6); | |
433 | s->filter.sharpness = vp8_rac_get_uint(c, 3); | |
434 | ||
435 | if ((s->lf_delta.enabled = vp8_rac_get(c))) | |
436 | if (vp8_rac_get(c)) | |
437 | update_lf_deltas(s); | |
438 | ||
439 | if (setup_partitions(s, buf, buf_size)) { | |
440 | av_log(s->avctx, AV_LOG_ERROR, "Invalid partitions\n"); | |
441 | return AVERROR_INVALIDDATA; | |
442 | } | |
443 | ||
444 | get_quants(s); | |
445 | ||
446 | if (!s->keyframe) { | |
447 | update_refs(s); | |
448 | s->sign_bias[VP56_FRAME_GOLDEN] = vp8_rac_get(c); | |
449 | s->sign_bias[VP56_FRAME_GOLDEN2 /* altref */] = vp8_rac_get(c); | |
450 | } | |
451 | ||
452 | // if we aren't saving this frame's probabilities for future frames, | |
453 | // make a copy of the current probabilities | |
454 | if (!(s->update_probabilities = vp8_rac_get(c))) | |
455 | s->prob[1] = s->prob[0]; | |
456 | ||
457 | s->update_last = s->keyframe || vp8_rac_get(c); | |
458 | ||
459 | for (i = 0; i < 4; i++) | |
460 | for (j = 0; j < 8; j++) | |
461 | for (k = 0; k < 3; k++) | |
462 | for (l = 0; l < NUM_DCT_TOKENS-1; l++) | |
463 | if (vp56_rac_get_prob(c, vp8_token_update_probs[i][j][k][l])) | |
464 | s->prob->token[i][j][k][l] = vp8_rac_get_uint(c, 8); | |
465 | ||
466 | if ((s->mbskip_enabled = vp8_rac_get(c))) | |
467 | s->prob->mbskip = vp8_rac_get_uint(c, 8); | |
468 | ||
469 | if (!s->keyframe) { | |
470 | s->prob->intra = vp8_rac_get_uint(c, 8); | |
471 | s->prob->last = vp8_rac_get_uint(c, 8); | |
472 | s->prob->golden = vp8_rac_get_uint(c, 8); | |
473 | ||
474 | if (vp8_rac_get(c)) | |
475 | for (i = 0; i < 4; i++) | |
476 | s->prob->pred16x16[i] = vp8_rac_get_uint(c, 8); | |
477 | if (vp8_rac_get(c)) | |
478 | for (i = 0; i < 3; i++) | |
479 | s->prob->pred8x8c[i] = vp8_rac_get_uint(c, 8); | |
480 | ||
481 | // 17.2 MV probability update | |
482 | for (i = 0; i < 2; i++) | |
483 | for (j = 0; j < 19; j++) | |
484 | if (vp56_rac_get_prob(c, vp8_mv_update_prob[i][j])) | |
485 | s->prob->mvc[i][j] = vp8_rac_get_nn(c); | |
486 | } | |
487 | ||
488 | return 0; | |
489 | } | |
490 | ||
491 | static inline void clamp_mv(VP8Context *s, VP56mv *dst, const VP56mv *src, | |
492 | int mb_x, int mb_y) | |
493 | { | |
494 | #define MARGIN (16 << 2) | |
495 | dst->x = av_clip(src->x, -((mb_x << 6) + MARGIN), | |
496 | ((s->mb_width - 1 - mb_x) << 6) + MARGIN); | |
497 | dst->y = av_clip(src->y, -((mb_y << 6) + MARGIN), | |
498 | ((s->mb_height - 1 - mb_y) << 6) + MARGIN); | |
499 | } | |
500 | ||
501 | static void find_near_mvs(VP8Context *s, VP8Macroblock *mb, int mb_x, int mb_y, | |
502 | VP56mv near[2], VP56mv *best, int cnt[4]) | |
503 | { | |
504 | VP8Macroblock *mb_edge[3] = { mb - s->mb_stride /* top */, | |
505 | mb - 1 /* left */, | |
506 | mb - s->mb_stride - 1 /* top-left */ }; | |
507 | enum { EDGE_TOP, EDGE_LEFT, EDGE_TOPLEFT }; | |
508 | VP56mv near_mv[4] = {{ 0 }}; | |
509 | enum { CNT_ZERO, CNT_NEAREST, CNT_NEAR, CNT_SPLITMV }; | |
510 | int idx = CNT_ZERO, n; | |
511 | int best_idx = CNT_ZERO; | |
512 | ||
513 | /* Process MB on top, left and top-left */ | |
514 | for (n = 0; n < 3; n++) { | |
515 | VP8Macroblock *edge = mb_edge[n]; | |
516 | if (edge->ref_frame != VP56_FRAME_CURRENT) { | |
517 | if (edge->mv.x | edge->mv.y) { | |
518 | VP56mv tmp = edge->mv; | |
519 | if (s->sign_bias[mb->ref_frame] != s->sign_bias[edge->ref_frame]) { | |
520 | tmp.x *= -1; | |
521 | tmp.y *= -1; | |
522 | } | |
523 | if ((tmp.x ^ near_mv[idx].x) | (tmp.y ^ near_mv[idx].y)) | |
524 | near_mv[++idx] = tmp; | |
525 | cnt[idx] += 1 + (n != 2); | |
526 | } else | |
527 | cnt[CNT_ZERO] += 1 + (n != 2); | |
528 | } | |
529 | } | |
530 | ||
531 | /* If we have three distinct MV's, merge first and last if they're the same */ | |
532 | if (cnt[CNT_SPLITMV] && | |
533 | !((near_mv[1+EDGE_TOP].x ^ near_mv[1+EDGE_TOPLEFT].x) | | |
534 | (near_mv[1+EDGE_TOP].y ^ near_mv[1+EDGE_TOPLEFT].y))) | |
535 | cnt[CNT_NEAREST] += 1; | |
536 | ||
537 | cnt[CNT_SPLITMV] = ((mb_edge[EDGE_LEFT]->mode == VP8_MVMODE_SPLIT) + | |
538 | (mb_edge[EDGE_TOP]->mode == VP8_MVMODE_SPLIT)) * 2 + | |
539 | (mb_edge[EDGE_TOPLEFT]->mode == VP8_MVMODE_SPLIT); | |
540 | ||
541 | /* Swap near and nearest if necessary */ | |
542 | if (cnt[CNT_NEAR] > cnt[CNT_NEAREST]) { | |
543 | FFSWAP(int, cnt[CNT_NEAREST], cnt[CNT_NEAR]); | |
544 | FFSWAP(VP56mv, near_mv[CNT_NEAREST], near_mv[CNT_NEAR]); | |
545 | } | |
546 | ||
547 | /* Choose the best mv out of 0,0 and the nearest mv */ | |
548 | if (cnt[CNT_NEAREST] >= cnt[CNT_ZERO]) | |
549 | best_idx = CNT_NEAREST; | |
550 | ||
551 | clamp_mv(s, best, &near_mv[best_idx], mb_x, mb_y); | |
552 | near[0] = near_mv[CNT_NEAREST]; | |
553 | near[1] = near_mv[CNT_NEAR]; | |
554 | } | |
555 | ||
556 | /** | |
557 | * Motion vector coding, 17.1. | |
558 | */ | |
559 | static int read_mv_component(VP56RangeCoder *c, const uint8_t *p) | |
560 | { | |
561 | int x = 0; | |
562 | ||
563 | if (vp56_rac_get_prob(c, p[0])) { | |
564 | int i; | |
565 | ||
566 | for (i = 0; i < 3; i++) | |
567 | x += vp56_rac_get_prob(c, p[9 + i]) << i; | |
568 | for (i = 9; i > 3; i--) | |
569 | x += vp56_rac_get_prob(c, p[9 + i]) << i; | |
570 | if (!(x & 0xFFF0) || vp56_rac_get_prob(c, p[12])) | |
571 | x += 8; | |
572 | } else | |
573 | x = vp8_rac_get_tree(c, vp8_small_mvtree, &p[2]); | |
574 | ||
575 | return (x && vp56_rac_get_prob(c, p[1])) ? -x : x; | |
576 | } | |
577 | ||
578 | static const uint8_t *get_submv_prob(const VP56mv *left, const VP56mv *top) | |
579 | { | |
580 | int l_is_zero = !(left->x | left->y); | |
581 | int t_is_zero = !(top->x | top->y); | |
582 | int equal = !((left->x ^ top->x) | (left->y ^ top->y)); | |
583 | ||
584 | if (equal) | |
585 | return l_is_zero ? vp8_submv_prob[4] : vp8_submv_prob[3]; | |
586 | if (t_is_zero) | |
587 | return vp8_submv_prob[2]; | |
588 | return l_is_zero ? vp8_submv_prob[1] : vp8_submv_prob[0]; | |
589 | } | |
590 | ||
591 | /** | |
592 | * Split motion vector prediction, 16.4. | |
593 | */ | |
594 | static void decode_splitmvs(VP8Context *s, VP56RangeCoder *c, | |
595 | VP8Macroblock *mb, VP56mv *base_mv) | |
596 | { | |
597 | int part_idx = mb->partitioning = | |
598 | vp8_rac_get_tree(c, vp8_mbsplit_tree, vp8_mbsplit_prob); | |
599 | int n, num = vp8_mbsplit_count[part_idx]; | |
600 | VP56mv part_mv[16]; | |
601 | ||
602 | for (n = 0; n < num; n++) { | |
603 | int k = vp8_mbfirstidx[part_idx][n]; | |
604 | const VP56mv *left = (k & 3) ? &mb->bmv[k - 1] : &mb[-1].bmv[k + 3], | |
605 | *above = (k > 3) ? &mb->bmv[k - 4] : &mb[-s->mb_stride].bmv[k + 12]; | |
606 | const uint8_t *submv_prob = get_submv_prob(left, above); | |
607 | ||
608 | switch (vp8_rac_get_tree(c, vp8_submv_ref_tree, submv_prob)) { | |
609 | case VP8_SUBMVMODE_NEW4X4: | |
610 | part_mv[n].y = base_mv->y + read_mv_component(c, s->prob->mvc[0]); | |
611 | part_mv[n].x = base_mv->x + read_mv_component(c, s->prob->mvc[1]); | |
612 | break; | |
613 | case VP8_SUBMVMODE_ZERO4X4: | |
614 | part_mv[n].x = 0; | |
615 | part_mv[n].y = 0; | |
616 | break; | |
617 | case VP8_SUBMVMODE_LEFT4X4: | |
618 | part_mv[n] = *left; | |
619 | break; | |
620 | case VP8_SUBMVMODE_TOP4X4: | |
621 | part_mv[n] = *above; | |
622 | break; | |
623 | } | |
624 | ||
625 | /* fill out over the 4x4 blocks in MB */ | |
626 | for (k = 0; k < 16; k++) | |
627 | if (vp8_mbsplits[part_idx][k] == n) { | |
628 | mb->bmv[k] = part_mv[n]; | |
629 | } | |
630 | } | |
631 | } | |
632 | ||
633 | static inline void decode_intra4x4_modes(VP56RangeCoder *c, uint8_t *intra4x4, | |
634 | int stride, int keyframe) | |
635 | { | |
636 | int x, y, t, l; | |
637 | const uint8_t *ctx = vp8_pred4x4_prob_inter; | |
638 | ||
639 | for (y = 0; y < 4; y++) { | |
640 | for (x = 0; x < 4; x++) { | |
641 | if (keyframe) { | |
642 | t = intra4x4[x - stride]; | |
643 | l = intra4x4[x - 1]; | |
644 | ctx = vp8_pred4x4_prob_intra[t][l]; | |
645 | } | |
646 | intra4x4[x] = vp8_rac_get_tree(c, vp8_pred4x4_tree, ctx); | |
647 | } | |
648 | intra4x4 += stride; | |
649 | } | |
650 | } | |
651 | ||
652 | static void decode_mb_mode(VP8Context *s, VP8Macroblock *mb, int mb_x, int mb_y, | |
653 | uint8_t *intra4x4) | |
654 | { | |
655 | VP56RangeCoder *c = &s->c; | |
656 | int n; | |
657 | ||
658 | if (s->segmentation.update_map) | |
659 | mb->segment = vp8_rac_get_tree(c, vp8_segmentid_tree, s->prob->segmentid); | |
660 | ||
661 | mb->skip = s->mbskip_enabled ? vp56_rac_get_prob(c, s->prob->mbskip) : 0; | |
662 | ||
663 | if (s->keyframe) { | |
664 | mb->mode = vp8_rac_get_tree(c, vp8_pred16x16_tree_intra, vp8_pred16x16_prob_intra); | |
665 | ||
666 | if (mb->mode == MODE_I4x4) { | |
667 | decode_intra4x4_modes(c, intra4x4, s->b4_stride, 1); | |
668 | } else | |
669 | fill_rectangle(intra4x4, 4, 4, s->b4_stride, vp8_pred4x4_mode[mb->mode], 1); | |
670 | ||
671 | s->chroma_pred_mode = vp8_rac_get_tree(c, vp8_pred8x8c_tree, vp8_pred8x8c_prob_intra); | |
672 | mb->ref_frame = VP56_FRAME_CURRENT; | |
673 | } else if (vp56_rac_get_prob(c, s->prob->intra)) { | |
674 | VP56mv near[2], best; | |
675 | int cnt[4] = { 0 }; | |
676 | uint8_t p[4]; | |
677 | ||
678 | // inter MB, 16.2 | |
679 | if (vp56_rac_get_prob(c, s->prob->last)) | |
680 | mb->ref_frame = vp56_rac_get_prob(c, s->prob->golden) ? | |
681 | VP56_FRAME_GOLDEN2 /* altref */ : VP56_FRAME_GOLDEN; | |
682 | else | |
683 | mb->ref_frame = VP56_FRAME_PREVIOUS; | |
684 | ||
685 | // motion vectors, 16.3 | |
686 | find_near_mvs(s, mb, mb_x, mb_y, near, &best, cnt); | |
687 | for (n = 0; n < 4; n++) | |
688 | p[n] = vp8_mode_contexts[cnt[n]][n]; | |
689 | mb->mode = vp8_rac_get_tree(c, vp8_pred16x16_tree_mvinter, p); | |
690 | switch (mb->mode) { | |
691 | case VP8_MVMODE_SPLIT: | |
692 | decode_splitmvs(s, c, mb, &best); | |
693 | mb->mv = mb->bmv[15]; | |
694 | break; | |
695 | case VP8_MVMODE_ZERO: | |
696 | mb->mv.x = 0; | |
697 | mb->mv.y = 0; | |
698 | break; | |
699 | case VP8_MVMODE_NEAREST: | |
700 | clamp_mv(s, &mb->mv, &near[0], mb_x, mb_y); | |
701 | break; | |
702 | case VP8_MVMODE_NEAR: | |
703 | clamp_mv(s, &mb->mv, &near[1], mb_x, mb_y); | |
704 | break; | |
705 | case VP8_MVMODE_NEW: | |
706 | mb->mv.y = best.y + read_mv_component(c, s->prob->mvc[0]); | |
707 | mb->mv.x = best.x + read_mv_component(c, s->prob->mvc[1]); | |
708 | break; | |
709 | } | |
710 | if (mb->mode != VP8_MVMODE_SPLIT) { | |
711 | for (n = 0; n < 16; n++) | |
712 | mb->bmv[n] = mb->mv; | |
713 | } | |
714 | } else { | |
715 | // intra MB, 16.1 | |
716 | mb->mode = vp8_rac_get_tree(c, vp8_pred16x16_tree_inter, s->prob->pred16x16); | |
717 | ||
718 | if (mb->mode == MODE_I4x4) { | |
719 | decode_intra4x4_modes(c, intra4x4, s->b4_stride, 0); | |
720 | } else | |
721 | fill_rectangle(intra4x4, 4, 4, s->b4_stride, vp8_pred4x4_mode[mb->mode], 1); | |
722 | ||
723 | s->chroma_pred_mode = vp8_rac_get_tree(c, vp8_pred8x8c_tree, s->prob->pred8x8c); | |
724 | mb->ref_frame = VP56_FRAME_CURRENT; | |
725 | } | |
726 | } | |
727 | ||
728 | /** | |
729 | * @param i initial coeff index, 0 unless a separate DC block is coded | |
730 | * @param zero_nhood the initial prediction context for number of surrounding | |
731 | * all-zero blocks (only left/top, so 0-2) | |
732 | * @param qmul[0] dc dequant factor | |
733 | * @param qmul[1] ac dequant factor | |
734 | * @return 0 if no coeffs were decoded | |
735 | * otherwise, the index of the last coeff decoded plus one | |
736 | */ | |
737 | static int decode_block_coeffs(VP56RangeCoder *c, DCTELEM block[16], | |
738 | uint8_t probs[8][3][NUM_DCT_TOKENS-1], | |
739 | int i, int zero_nhood, int16_t qmul[2]) | |
740 | { | |
741 | int token, nonzero = 0; | |
742 | int offset = 0; | |
743 | ||
744 | for (; i < 16; i++) { | |
745 | token = vp8_rac_get_tree_with_offset(c, vp8_coeff_tree, probs[vp8_coeff_band[i]][zero_nhood], offset); | |
746 | ||
747 | if (token == DCT_EOB) | |
748 | break; | |
749 | else if (token >= DCT_CAT1) { | |
750 | int cat = token-DCT_CAT1; | |
751 | token = vp8_rac_get_coeff(c, vp8_dct_cat_prob[cat]); | |
752 | token += vp8_dct_cat_offset[cat]; | |
753 | } | |
754 | ||
755 | // after the first token, the non-zero prediction context becomes | |
756 | // based on the last decoded coeff | |
757 | if (!token) { | |
758 | zero_nhood = 0; | |
759 | offset = 1; | |
760 | continue; | |
761 | } else if (token == 1) | |
762 | zero_nhood = 1; | |
763 | else | |
764 | zero_nhood = 2; | |
765 | ||
766 | // todo: full [16] qmat? load into register? | |
767 | block[zigzag_scan[i]] = (vp8_rac_get(c) ? -token : token) * qmul[!!i]; | |
768 | nonzero = i+1; | |
769 | offset = 0; | |
770 | } | |
771 | return nonzero; | |
772 | } | |
773 | ||
774 | static void decode_mb_coeffs(VP8Context *s, VP56RangeCoder *c, VP8Macroblock *mb, | |
775 | uint8_t t_nnz[9], uint8_t l_nnz[9]) | |
776 | { | |
777 | LOCAL_ALIGNED_16(DCTELEM, dc,[16]); | |
778 | int i, x, y, luma_start = 0, luma_ctx = 3; | |
779 | int nnz_pred, nnz, nnz_total = 0; | |
780 | int segment = s->segmentation.enabled ? mb->segment : 0; | |
781 | ||
782 | s->dsp.clear_blocks((DCTELEM *)s->block); | |
783 | ||
784 | if (mb->mode != MODE_I4x4 && mb->mode != VP8_MVMODE_SPLIT) { | |
785 | AV_ZERO128(dc); | |
786 | AV_ZERO128(dc+8); | |
787 | nnz_pred = t_nnz[8] + l_nnz[8]; | |
788 | ||
789 | // decode DC values and do hadamard | |
790 | nnz = decode_block_coeffs(c, dc, s->prob->token[1], 0, nnz_pred, | |
791 | s->qmat[segment].luma_dc_qmul); | |
792 | l_nnz[8] = t_nnz[8] = !!nnz; | |
793 | nnz_total += nnz; | |
794 | s->vp8dsp.vp8_luma_dc_wht(s->block, dc); | |
795 | luma_start = 1; | |
796 | luma_ctx = 0; | |
797 | } | |
798 | ||
799 | // luma blocks | |
800 | for (y = 0; y < 4; y++) | |
801 | for (x = 0; x < 4; x++) { | |
802 | nnz_pred = l_nnz[y] + t_nnz[x]; | |
803 | nnz = decode_block_coeffs(c, s->block[y][x], s->prob->token[luma_ctx], luma_start, | |
804 | nnz_pred, s->qmat[segment].luma_qmul); | |
805 | // nnz+luma_start may be one more than the actual last index, but we don't care | |
806 | s->non_zero_count_cache[y][x] = nnz + luma_start; | |
807 | t_nnz[x] = l_nnz[y] = !!nnz; | |
808 | nnz_total += nnz; | |
809 | } | |
810 | ||
811 | // chroma blocks | |
812 | // TODO: what to do about dimensions? 2nd dim for luma is x, | |
813 | // but for chroma it's (y<<1)|x | |
814 | for (i = 4; i < 6; i++) | |
815 | for (y = 0; y < 2; y++) | |
816 | for (x = 0; x < 2; x++) { | |
817 | nnz_pred = l_nnz[i+2*y] + t_nnz[i+2*x]; | |
818 | nnz = decode_block_coeffs(c, s->block[i][(y<<1)+x], s->prob->token[2], 0, | |
819 | nnz_pred, s->qmat[segment].chroma_qmul); | |
820 | s->non_zero_count_cache[i][(y<<1)+x] = nnz; | |
821 | t_nnz[i+2*x] = l_nnz[i+2*y] = !!nnz; | |
822 | nnz_total += nnz; | |
823 | } | |
824 | ||
825 | // if there were no coded coeffs despite the macroblock not being marked skip, | |
826 | // we MUST not do the inner loop filter and should not do IDCT | |
827 | // Since skip isn't used for bitstream prediction, just manually set it. | |
828 | if (!nnz_total) | |
829 | mb->skip = 1; | |
830 | } | |
831 | ||
832 | static int check_intra_pred_mode(int mode, int mb_x, int mb_y) | |
833 | { | |
834 | if (mode == DC_PRED8x8) { | |
835 | if (!(mb_x|mb_y)) | |
836 | mode = DC_128_PRED8x8; | |
837 | else if (!mb_y) | |
838 | mode = LEFT_DC_PRED8x8; | |
839 | else if (!mb_x) | |
840 | mode = TOP_DC_PRED8x8; | |
841 | } | |
842 | return mode; | |
843 | } | |
844 | ||
845 | static void intra_predict(VP8Context *s, uint8_t *dst[3], VP8Macroblock *mb, | |
846 | uint8_t *bmode, int mb_x, int mb_y) | |
847 | { | |
848 | int x, y, mode, nnz, tr; | |
849 | ||
850 | if (mb->mode < MODE_I4x4) { | |
851 | mode = check_intra_pred_mode(mb->mode, mb_x, mb_y); | |
852 | s->hpc.pred16x16[mode](dst[0], s->linesize); | |
853 | } else { | |
854 | uint8_t *ptr = dst[0]; | |
855 | ||
856 | // all blocks on the right edge of the macroblock use bottom edge | |
857 | // the top macroblock for their topright edge | |
858 | uint8_t *tr_right = ptr - s->linesize + 16; | |
859 | ||
860 | // if we're on the right edge of the frame, said edge is extended | |
861 | // from the top macroblock | |
862 | if (mb_x == s->mb_width-1) { | |
863 | tr = tr_right[-1]*0x01010101; | |
864 | tr_right = (uint8_t *)&tr; | |
865 | } | |
866 | ||
867 | for (y = 0; y < 4; y++) { | |
868 | uint8_t *topright = ptr + 4 - s->linesize; | |
869 | for (x = 0; x < 4; x++) { | |
870 | if (x == 3) | |
871 | topright = tr_right; | |
872 | ||
873 | s->hpc.pred4x4[bmode[x]](ptr+4*x, topright, s->linesize); | |
874 | ||
875 | nnz = s->non_zero_count_cache[y][x]; | |
876 | if (nnz) { | |
877 | if (nnz == 1) | |
878 | s->vp8dsp.vp8_idct_dc_add(ptr+4*x, s->block[y][x], s->linesize); | |
879 | else | |
880 | s->vp8dsp.vp8_idct_add(ptr+4*x, s->block[y][x], s->linesize); | |
881 | } | |
882 | topright += 4; | |
883 | } | |
884 | ||
885 | ptr += 4*s->linesize; | |
886 | bmode += s->b4_stride; | |
887 | } | |
888 | } | |
889 | ||
890 | mode = check_intra_pred_mode(s->chroma_pred_mode, mb_x, mb_y); | |
891 | s->hpc.pred8x8[mode](dst[1], s->uvlinesize); | |
892 | s->hpc.pred8x8[mode](dst[2], s->uvlinesize); | |
893 | } | |
894 | ||
895 | /** | |
896 | * Generic MC function. | |
897 | * | |
898 | * @param s VP8 decoding context | |
899 | * @param luma 1 for luma (Y) planes, 0 for chroma (Cb/Cr) planes | |
900 | * @param dst target buffer for block data at block position | |
901 | * @param src reference picture buffer at origin (0, 0) | |
902 | * @param mv motion vector (relative to block position) to get pixel data from | |
903 | * @param x_off horizontal position of block from origin (0, 0) | |
904 | * @param y_off vertical position of block from origin (0, 0) | |
905 | * @param block_w width of block (16, 8 or 4) | |
906 | * @param block_h height of block (always same as block_w) | |
907 | * @param width width of src/dst plane data | |
908 | * @param height height of src/dst plane data | |
909 | * @param linesize size of a single line of plane data, including padding | |
910 | */ | |
911 | static inline void vp8_mc(VP8Context *s, int luma, | |
912 | uint8_t *dst, uint8_t *src, const VP56mv *mv, | |
913 | int x_off, int y_off, int block_w, int block_h, | |
914 | int width, int height, int linesize, | |
915 | h264_chroma_mc_func mc_func[3][3]) | |
916 | { | |
917 | static const uint8_t idx[8] = { 0, 1, 2, 1, 2, 1, 2, 1 }; | |
918 | int mx = (mv->x << luma)&7, mx_idx = idx[mx]; | |
919 | int my = (mv->y << luma)&7, my_idx = idx[my]; | |
920 | ||
921 | x_off += mv->x >> (3 - luma); | |
922 | y_off += mv->y >> (3 - luma); | |
923 | ||
924 | // edge emulation | |
925 | src += y_off * linesize + x_off; | |
926 | if (x_off < 2 || x_off >= width - block_w - 3 || | |
927 | y_off < 2 || y_off >= height - block_h - 3) { | |
928 | ff_emulated_edge_mc(s->edge_emu_buffer, src - 2 * linesize - 2, linesize, | |
929 | block_w + 5, block_h + 5, | |
930 | x_off - 2, y_off - 2, width, height); | |
931 | src = s->edge_emu_buffer + 2 + linesize * 2; | |
932 | } | |
933 | ||
934 | mc_func[my_idx][mx_idx](dst, src, linesize, block_h, mx, my); | |
935 | } | |
936 | ||
937 | /** | |
938 | * Apply motion vectors to prediction buffer, chapter 18. | |
939 | */ | |
940 | static void inter_predict(VP8Context *s, uint8_t *dst[3], VP8Macroblock *mb, | |
941 | int mb_x, int mb_y) | |
942 | { | |
943 | int x_off = mb_x << 4, y_off = mb_y << 4; | |
944 | int width = 16*s->mb_width, height = 16*s->mb_height; | |
945 | VP56mv uvmv; | |
946 | ||
947 | if (mb->mode < VP8_MVMODE_SPLIT) { | |
948 | /* Y */ | |
949 | vp8_mc(s, 1, dst[0], s->framep[mb->ref_frame]->data[0], &mb->mv, | |
950 | x_off, y_off, 16, 16, width, height, s->linesize, | |
951 | s->vp8dsp.put_vp8_epel_pixels_tab[0]); | |
952 | ||
953 | /* U/V */ | |
954 | uvmv = mb->mv; | |
955 | if (s->profile == 3) { | |
956 | uvmv.x &= ~7; | |
957 | uvmv.y &= ~7; | |
958 | } | |
959 | x_off >>= 1; y_off >>= 1; width >>= 1; height >>= 1; | |
960 | vp8_mc(s, 0, dst[1], s->framep[mb->ref_frame]->data[1], &uvmv, | |
961 | x_off, y_off, 8, 8, width, height, s->uvlinesize, | |
962 | s->vp8dsp.put_vp8_epel_pixels_tab[1]); | |
963 | vp8_mc(s, 0, dst[2], s->framep[mb->ref_frame]->data[2], &uvmv, | |
964 | x_off, y_off, 8, 8, width, height, s->uvlinesize, | |
965 | s->vp8dsp.put_vp8_epel_pixels_tab[1]); | |
966 | } else { | |
967 | int x, y; | |
968 | ||
969 | /* Y */ | |
970 | for (y = 0; y < 4; y++) { | |
971 | for (x = 0; x < 4; x++) { | |
972 | vp8_mc(s, 1, dst[0] + 4*y*s->linesize + x*4, | |
973 | s->framep[mb->ref_frame]->data[0], &mb->bmv[4*y + x], | |
974 | 4*x + x_off, 4*y + y_off, 4, 4, | |
975 | width, height, s->linesize, | |
976 | s->vp8dsp.put_vp8_epel_pixels_tab[2]); | |
977 | } | |
978 | } | |
979 | ||
980 | /* U/V */ | |
981 | x_off >>= 1; y_off >>= 1; width >>= 1; height >>= 1; | |
982 | for (y = 0; y < 2; y++) { | |
983 | for (x = 0; x < 2; x++) { | |
984 | uvmv.x = mb->bmv[ 2*y * 4 + 2*x ].x + | |
985 | mb->bmv[ 2*y * 4 + 2*x+1].x + | |
986 | mb->bmv[(2*y+1) * 4 + 2*x ].x + | |
987 | mb->bmv[(2*y+1) * 4 + 2*x+1].x; | |
988 | uvmv.y = mb->bmv[ 2*y * 4 + 2*x ].y + | |
989 | mb->bmv[ 2*y * 4 + 2*x+1].y + | |
990 | mb->bmv[(2*y+1) * 4 + 2*x ].y + | |
991 | mb->bmv[(2*y+1) * 4 + 2*x+1].y; | |
992 | uvmv.x = (uvmv.x + (uvmv.x < 0 ? -2 : 2)) / 4; | |
993 | uvmv.y = (uvmv.y + (uvmv.y < 0 ? -2 : 2)) / 4; | |
994 | if (s->profile == 3) { | |
995 | uvmv.x &= ~7; | |
996 | uvmv.y &= ~7; | |
997 | } | |
998 | vp8_mc(s, 0, dst[1] + 4*y*s->uvlinesize + x*4, | |
999 | s->framep[mb->ref_frame]->data[1], &uvmv, | |
1000 | 4*x + x_off, 4*y + y_off, 4, 4, | |
1001 | width, height, s->uvlinesize, | |
1002 | s->vp8dsp.put_vp8_epel_pixels_tab[2]); | |
1003 | vp8_mc(s, 0, dst[2] + 4*y*s->uvlinesize + x*4, | |
1004 | s->framep[mb->ref_frame]->data[2], &uvmv, | |
1005 | 4*x + x_off, 4*y + y_off, 4, 4, | |
1006 | width, height, s->uvlinesize, | |
1007 | s->vp8dsp.put_vp8_epel_pixels_tab[2]); | |
1008 | } | |
1009 | } | |
1010 | } | |
1011 | } | |
1012 | ||
1013 | static void idct_mb(VP8Context *s, uint8_t *y_dst, uint8_t *u_dst, uint8_t *v_dst, | |
1014 | VP8Macroblock *mb) | |
1015 | { | |
1016 | int x, y, nnz; | |
1017 | ||
1018 | if (mb->mode != MODE_I4x4) | |
1019 | for (y = 0; y < 4; y++) { | |
1020 | for (x = 0; x < 4; x++) { | |
1021 | nnz = s->non_zero_count_cache[y][x]; | |
1022 | if (nnz) { | |
1023 | if (nnz == 1) | |
1024 | s->vp8dsp.vp8_idct_dc_add(y_dst+4*x, s->block[y][x], s->linesize); | |
1025 | else | |
1026 | s->vp8dsp.vp8_idct_add(y_dst+4*x, s->block[y][x], s->linesize); | |
1027 | } | |
1028 | } | |
1029 | y_dst += 4*s->linesize; | |
1030 | } | |
1031 | ||
1032 | for (y = 0; y < 2; y++) { | |
1033 | for (x = 0; x < 2; x++) { | |
1034 | nnz = s->non_zero_count_cache[4][(y<<1)+x]; | |
1035 | if (nnz) { | |
1036 | if (nnz == 1) | |
1037 | s->vp8dsp.vp8_idct_dc_add(u_dst+4*x, s->block[4][(y<<1)+x], s->uvlinesize); | |
1038 | else | |
1039 | s->vp8dsp.vp8_idct_add(u_dst+4*x, s->block[4][(y<<1)+x], s->uvlinesize); | |
1040 | } | |
1041 | ||
1042 | nnz = s->non_zero_count_cache[5][(y<<1)+x]; | |
1043 | if (nnz) { | |
1044 | if (nnz == 1) | |
1045 | s->vp8dsp.vp8_idct_dc_add(v_dst+4*x, s->block[5][(y<<1)+x], s->uvlinesize); | |
1046 | else | |
1047 | s->vp8dsp.vp8_idct_add(v_dst+4*x, s->block[5][(y<<1)+x], s->uvlinesize); | |
1048 | } | |
1049 | } | |
1050 | u_dst += 4*s->uvlinesize; | |
1051 | v_dst += 4*s->uvlinesize; | |
1052 | } | |
1053 | } | |
1054 | ||
1055 | static void filter_level_for_mb(VP8Context *s, VP8Macroblock *mb, int *level, int *inner, int *hev_thresh) | |
1056 | { | |
1057 | int interior_limit, filter_level; | |
1058 | ||
1059 | if (s->segmentation.enabled) { | |
1060 | filter_level = s->segmentation.filter_level[mb->segment]; | |
1061 | if (!s->segmentation.absolute_vals) | |
1062 | filter_level += s->filter.level; | |
1063 | } else | |
1064 | filter_level = s->filter.level; | |
1065 | ||
1066 | if (s->lf_delta.enabled) { | |
1067 | filter_level += s->lf_delta.ref[mb->ref_frame]; | |
1068 | ||
1069 | if (mb->ref_frame == VP56_FRAME_CURRENT) { | |
1070 | if (mb->mode == MODE_I4x4) | |
1071 | filter_level += s->lf_delta.mode[0]; | |
1072 | } else { | |
1073 | if (mb->mode == VP8_MVMODE_ZERO) | |
1074 | filter_level += s->lf_delta.mode[1]; | |
1075 | else if (mb->mode == VP8_MVMODE_SPLIT) | |
1076 | filter_level += s->lf_delta.mode[3]; | |
1077 | else | |
1078 | filter_level += s->lf_delta.mode[2]; | |
1079 | } | |
1080 | } | |
1081 | filter_level = av_clip(filter_level, 0, 63); | |
1082 | ||
1083 | interior_limit = filter_level; | |
1084 | if (s->filter.sharpness) { | |
1085 | interior_limit >>= s->filter.sharpness > 4 ? 2 : 1; | |
1086 | interior_limit = FFMIN(interior_limit, 9 - s->filter.sharpness); | |
1087 | } | |
1088 | interior_limit = FFMAX(interior_limit, 1); | |
1089 | ||
1090 | *level = filter_level; | |
1091 | *inner = interior_limit; | |
1092 | ||
1093 | if (hev_thresh) { | |
1094 | *hev_thresh = filter_level >= 15; | |
1095 | ||
1096 | if (s->keyframe) { | |
1097 | if (filter_level >= 40) | |
1098 | *hev_thresh = 2; | |
1099 | } else { | |
1100 | if (filter_level >= 40) | |
1101 | *hev_thresh = 3; | |
1102 | else if (filter_level >= 20) | |
1103 | *hev_thresh = 2; | |
1104 | } | |
1105 | } | |
1106 | } | |
1107 | ||
1108 | // TODO: look at backup_mb_border / xchg_mb_border in h264.c | |
1109 | static void filter_mb(VP8Context *s, uint8_t *dst[3], VP8Macroblock *mb, int mb_x, int mb_y) | |
1110 | { | |
1111 | int filter_level, inner_limit, hev_thresh; | |
1112 | ||
1113 | filter_level_for_mb(s, mb, &filter_level, &inner_limit, &hev_thresh); | |
1114 | if (!filter_level) | |
1115 | return; | |
1116 | ||
1117 | if (mb_x) { | |
1118 | s->vp8dsp.vp8_h_loop_filter16(dst[0], s->linesize, filter_level+2, inner_limit, hev_thresh); | |
1119 | s->vp8dsp.vp8_h_loop_filter8 (dst[1], s->uvlinesize, filter_level+2, inner_limit, hev_thresh); | |
1120 | s->vp8dsp.vp8_h_loop_filter8 (dst[2], s->uvlinesize, filter_level+2, inner_limit, hev_thresh); | |
1121 | } | |
1122 | ||
1123 | if (!mb->skip || mb->mode == MODE_I4x4 || mb->mode == VP8_MVMODE_SPLIT) { | |
1124 | s->vp8dsp.vp8_h_loop_filter16_inner(dst[0]+ 4, s->linesize, filter_level, inner_limit, hev_thresh); | |
1125 | s->vp8dsp.vp8_h_loop_filter16_inner(dst[0]+ 8, s->linesize, filter_level, inner_limit, hev_thresh); | |
1126 | s->vp8dsp.vp8_h_loop_filter16_inner(dst[0]+12, s->linesize, filter_level, inner_limit, hev_thresh); | |
1127 | s->vp8dsp.vp8_h_loop_filter8_inner (dst[1]+ 4, s->uvlinesize, filter_level, inner_limit, hev_thresh); | |
1128 | s->vp8dsp.vp8_h_loop_filter8_inner (dst[2]+ 4, s->uvlinesize, filter_level, inner_limit, hev_thresh); | |
1129 | } | |
1130 | ||
1131 | if (mb_y) { | |
1132 | s->vp8dsp.vp8_v_loop_filter16(dst[0], s->linesize, filter_level+2, inner_limit, hev_thresh); | |
1133 | s->vp8dsp.vp8_v_loop_filter8 (dst[1], s->uvlinesize, filter_level+2, inner_limit, hev_thresh); | |
1134 | s->vp8dsp.vp8_v_loop_filter8 (dst[2], s->uvlinesize, filter_level+2, inner_limit, hev_thresh); | |
1135 | } | |
1136 | ||
1137 | if (!mb->skip || mb->mode == MODE_I4x4 || mb->mode == VP8_MVMODE_SPLIT) { | |
1138 | s->vp8dsp.vp8_v_loop_filter16_inner(dst[0]+ 4*s->linesize, s->linesize, filter_level, inner_limit, hev_thresh); | |
1139 | s->vp8dsp.vp8_v_loop_filter16_inner(dst[0]+ 8*s->linesize, s->linesize, filter_level, inner_limit, hev_thresh); | |
1140 | s->vp8dsp.vp8_v_loop_filter16_inner(dst[0]+12*s->linesize, s->linesize, filter_level, inner_limit, hev_thresh); | |
1141 | s->vp8dsp.vp8_v_loop_filter8_inner (dst[1]+ 4*s->uvlinesize, s->uvlinesize, filter_level, inner_limit, hev_thresh); | |
1142 | s->vp8dsp.vp8_v_loop_filter8_inner (dst[2]+ 4*s->uvlinesize, s->uvlinesize, filter_level, inner_limit, hev_thresh); | |
1143 | } | |
1144 | } | |
1145 | ||
1146 | static void filter_mb_simple(VP8Context *s, uint8_t *dst, VP8Macroblock *mb, int mb_x, int mb_y) | |
1147 | { | |
1148 | int filter_level, inner_limit, mbedge_lim, bedge_lim; | |
1149 | ||
1150 | filter_level_for_mb(s, mb, &filter_level, &inner_limit, NULL); | |
1151 | if (!filter_level) | |
1152 | return; | |
1153 | ||
1154 | mbedge_lim = 2*(filter_level+2) + inner_limit; | |
1155 | bedge_lim = 2* filter_level + inner_limit; | |
1156 | ||
1157 | if (mb_x) | |
1158 | s->vp8dsp.vp8_h_loop_filter_simple(dst, s->linesize, mbedge_lim); | |
1159 | if (!mb->skip || mb->mode == MODE_I4x4 || mb->mode == VP8_MVMODE_SPLIT) { | |
1160 | s->vp8dsp.vp8_h_loop_filter_simple(dst+ 4, s->linesize, bedge_lim); | |
1161 | s->vp8dsp.vp8_h_loop_filter_simple(dst+ 8, s->linesize, bedge_lim); | |
1162 | s->vp8dsp.vp8_h_loop_filter_simple(dst+12, s->linesize, bedge_lim); | |
1163 | } | |
1164 | ||
1165 | if (mb_y) | |
1166 | s->vp8dsp.vp8_v_loop_filter_simple(dst, s->linesize, mbedge_lim); | |
1167 | if (!mb->skip || mb->mode == MODE_I4x4 || mb->mode == VP8_MVMODE_SPLIT) { | |
1168 | s->vp8dsp.vp8_v_loop_filter_simple(dst+ 4*s->linesize, s->linesize, bedge_lim); | |
1169 | s->vp8dsp.vp8_v_loop_filter_simple(dst+ 8*s->linesize, s->linesize, bedge_lim); | |
1170 | s->vp8dsp.vp8_v_loop_filter_simple(dst+12*s->linesize, s->linesize, bedge_lim); | |
1171 | } | |
1172 | } | |
1173 | ||
1174 | static void filter_mb_row(VP8Context *s, int mb_y) | |
1175 | { | |
1176 | VP8Macroblock *mb = s->macroblocks + mb_y*s->mb_stride; | |
1177 | uint8_t *dst[3] = { | |
1178 | s->framep[VP56_FRAME_CURRENT]->data[0] + 16*mb_y*s->linesize, | |
1179 | s->framep[VP56_FRAME_CURRENT]->data[1] + 8*mb_y*s->uvlinesize, | |
1180 | s->framep[VP56_FRAME_CURRENT]->data[2] + 8*mb_y*s->uvlinesize | |
1181 | }; | |
1182 | int mb_x; | |
1183 | ||
1184 | for (mb_x = 0; mb_x < s->mb_width; mb_x++) { | |
1185 | filter_mb(s, dst, mb++, mb_x, mb_y); | |
1186 | dst[0] += 16; | |
1187 | dst[1] += 8; | |
1188 | dst[2] += 8; | |
1189 | } | |
1190 | } | |
1191 | ||
1192 | static void filter_mb_row_simple(VP8Context *s, int mb_y) | |
1193 | { | |
1194 | uint8_t *dst = s->framep[VP56_FRAME_CURRENT]->data[0] + 16*mb_y*s->linesize; | |
1195 | VP8Macroblock *mb = s->macroblocks + mb_y*s->mb_stride; | |
1196 | int mb_x; | |
1197 | ||
1198 | for (mb_x = 0; mb_x < s->mb_width; mb_x++) { | |
1199 | filter_mb_simple(s, dst, mb++, mb_x, mb_y); | |
1200 | dst += 16; | |
1201 | } | |
1202 | } | |
1203 | ||
1204 | static int vp8_decode_frame(AVCodecContext *avctx, void *data, int *data_size, | |
1205 | AVPacket *avpkt) | |
1206 | { | |
1207 | VP8Context *s = avctx->priv_data; | |
1208 | int ret, mb_x, mb_y, i, y, referenced; | |
1209 | enum AVDiscard skip_thresh; | |
1210 | AVFrame *curframe; | |
1211 | ||
1212 | if ((ret = decode_frame_header(s, avpkt->data, avpkt->size)) < 0) | |
1213 | return ret; | |
1214 | ||
1215 | referenced = s->update_last || s->update_golden == VP56_FRAME_CURRENT | |
1216 | || s->update_altref == VP56_FRAME_CURRENT; | |
1217 | ||
1218 | skip_thresh = !referenced ? AVDISCARD_NONREF : | |
1219 | !s->keyframe ? AVDISCARD_NONKEY : AVDISCARD_ALL; | |
1220 | ||
1221 | if (avctx->skip_frame >= skip_thresh) { | |
1222 | s->invisible = 1; | |
1223 | goto skip_decode; | |
1224 | } | |
1225 | ||
1226 | for (i = 0; i < 4; i++) | |
1227 | if (&s->frames[i] != s->framep[VP56_FRAME_PREVIOUS] && | |
1228 | &s->frames[i] != s->framep[VP56_FRAME_GOLDEN] && | |
1229 | &s->frames[i] != s->framep[VP56_FRAME_GOLDEN2]) { | |
1230 | curframe = s->framep[VP56_FRAME_CURRENT] = &s->frames[i]; | |
1231 | break; | |
1232 | } | |
1233 | if (curframe->data[0]) | |
1234 | avctx->release_buffer(avctx, curframe); | |
1235 | ||
1236 | curframe->key_frame = s->keyframe; | |
1237 | curframe->pict_type = s->keyframe ? FF_I_TYPE : FF_P_TYPE; | |
1238 | curframe->reference = referenced ? 3 : 0; | |
1239 | if ((ret = avctx->get_buffer(avctx, curframe))) { | |
1240 | av_log(avctx, AV_LOG_ERROR, "get_buffer() failed!\n"); | |
1241 | return ret; | |
1242 | } | |
1243 | ||
1244 | // Given that arithmetic probabilities are updated every frame, it's quite likely | |
1245 | // that the values we have on a random interframe are complete junk if we didn't | |
1246 | // start decode on a keyframe. So just don't display anything rather than junk. | |
1247 | if (!s->keyframe && (!s->framep[VP56_FRAME_PREVIOUS] || | |
1248 | !s->framep[VP56_FRAME_GOLDEN] || | |
1249 | !s->framep[VP56_FRAME_GOLDEN2])) { | |
1250 | av_log(avctx, AV_LOG_WARNING, "Discarding interframe without a prior keyframe!\n"); | |
1251 | return AVERROR_INVALIDDATA; | |
1252 | } | |
1253 | ||
1254 | s->linesize = curframe->linesize[0]; | |
1255 | s->uvlinesize = curframe->linesize[1]; | |
1256 | ||
1257 | if (!s->edge_emu_buffer) | |
1258 | s->edge_emu_buffer = av_malloc(21*s->linesize); | |
1259 | ||
1260 | memset(s->top_nnz, 0, s->mb_width*sizeof(*s->top_nnz)); | |
1261 | ||
1262 | // top edge of 127 for intra prediction | |
1263 | if (!(avctx->flags & CODEC_FLAG_EMU_EDGE)) { | |
1264 | memset(curframe->data[0] - s->linesize -1, 127, s->linesize +1); | |
1265 | memset(curframe->data[1] - s->uvlinesize-1, 127, s->uvlinesize+1); | |
1266 | memset(curframe->data[2] - s->uvlinesize-1, 127, s->uvlinesize+1); | |
1267 | } | |
1268 | ||
1269 | for (mb_y = 0; mb_y < s->mb_height; mb_y++) { | |
1270 | VP56RangeCoder *c = &s->coeff_partition[mb_y & (s->num_coeff_partitions-1)]; | |
1271 | VP8Macroblock *mb = s->macroblocks + mb_y*s->mb_stride; | |
1272 | uint8_t *intra4x4 = s->intra4x4_pred_mode + 4*mb_y*s->b4_stride; | |
1273 | uint8_t *dst[3] = { | |
1274 | curframe->data[0] + 16*mb_y*s->linesize, | |
1275 | curframe->data[1] + 8*mb_y*s->uvlinesize, | |
1276 | curframe->data[2] + 8*mb_y*s->uvlinesize | |
1277 | }; | |
1278 | ||
1279 | memset(s->left_nnz, 0, sizeof(s->left_nnz)); | |
1280 | ||
1281 | // left edge of 129 for intra prediction | |
1282 | if (!(avctx->flags & CODEC_FLAG_EMU_EDGE)) | |
1283 | for (i = 0; i < 3; i++) | |
1284 | for (y = 0; y < 16>>!!i; y++) | |
1285 | dst[i][y*curframe->linesize[i]-1] = 129; | |
1286 | ||
1287 | for (mb_x = 0; mb_x < s->mb_width; mb_x++) { | |
1288 | decode_mb_mode(s, mb, mb_x, mb_y, intra4x4 + 4*mb_x); | |
1289 | ||
1290 | if (!mb->skip) | |
1291 | decode_mb_coeffs(s, c, mb, s->top_nnz[mb_x], s->left_nnz); | |
1292 | else { | |
1293 | AV_ZERO128(s->non_zero_count_cache); // luma | |
1294 | AV_ZERO64(s->non_zero_count_cache[4]); // chroma | |
1295 | } | |
1296 | ||
1297 | if (mb->mode <= MODE_I4x4) { | |
1298 | intra_predict(s, dst, mb, intra4x4 + 4*mb_x, mb_x, mb_y); | |
1299 | memset(mb->bmv, 0, sizeof(mb->bmv)); | |
1300 | } else { | |
1301 | inter_predict(s, dst, mb, mb_x, mb_y); | |
1302 | } | |
1303 | ||
1304 | if (!mb->skip) { | |
1305 | idct_mb(s, dst[0], dst[1], dst[2], mb); | |
1306 | } else { | |
1307 | AV_ZERO64(s->left_nnz); | |
1308 | AV_WN64(s->top_nnz[mb_x], 0); // array of 9, so unaligned | |
1309 | ||
1310 | // Reset DC block predictors if they would exist if the mb had coefficients | |
1311 | if (mb->mode != MODE_I4x4 && mb->mode != VP8_MVMODE_SPLIT) { | |
1312 | s->left_nnz[8] = 0; | |
1313 | s->top_nnz[mb_x][8] = 0; | |
1314 | } | |
1315 | } | |
1316 | ||
1317 | dst[0] += 16; | |
1318 | dst[1] += 8; | |
1319 | dst[2] += 8; | |
1320 | mb++; | |
1321 | } | |
1322 | if (mb_y && s->filter.level && avctx->skip_loop_filter < skip_thresh) { | |
1323 | if (s->filter.simple) | |
1324 | filter_mb_row_simple(s, mb_y-1); | |
1325 | else | |
1326 | filter_mb_row(s, mb_y-1); | |
1327 | } | |
1328 | } | |
1329 | if (s->filter.level && avctx->skip_loop_filter < skip_thresh) { | |
1330 | if (s->filter.simple) | |
1331 | filter_mb_row_simple(s, mb_y-1); | |
1332 | else | |
1333 | filter_mb_row(s, mb_y-1); | |
1334 | } | |
1335 | ||
1336 | skip_decode: | |
1337 | // if future frames don't use the updated probabilities, | |
1338 | // reset them to the values we saved | |
1339 | if (!s->update_probabilities) | |
1340 | s->prob[0] = s->prob[1]; | |
1341 | ||
1342 | // check if golden and altref are swapped | |
1343 | if (s->update_altref == VP56_FRAME_GOLDEN && | |
1344 | s->update_golden == VP56_FRAME_GOLDEN2) | |
1345 | FFSWAP(AVFrame *, s->framep[VP56_FRAME_GOLDEN], s->framep[VP56_FRAME_GOLDEN2]); | |
1346 | else { | |
1347 | if (s->update_altref != VP56_FRAME_NONE) | |
1348 | s->framep[VP56_FRAME_GOLDEN2] = s->framep[s->update_altref]; | |
1349 | ||
1350 | if (s->update_golden != VP56_FRAME_NONE) | |
1351 | s->framep[VP56_FRAME_GOLDEN] = s->framep[s->update_golden]; | |
1352 | } | |
1353 | ||
1354 | if (s->update_last) // move cur->prev | |
1355 | s->framep[VP56_FRAME_PREVIOUS] = s->framep[VP56_FRAME_CURRENT]; | |
1356 | ||
1357 | // release no longer referenced frames | |
1358 | for (i = 0; i < 4; i++) | |
1359 | if (s->frames[i].data[0] && | |
1360 | &s->frames[i] != s->framep[VP56_FRAME_CURRENT] && | |
1361 | &s->frames[i] != s->framep[VP56_FRAME_PREVIOUS] && | |
1362 | &s->frames[i] != s->framep[VP56_FRAME_GOLDEN] && | |
1363 | &s->frames[i] != s->framep[VP56_FRAME_GOLDEN2]) | |
1364 | avctx->release_buffer(avctx, &s->frames[i]); | |
1365 | ||
1366 | if (!s->invisible) { | |
1367 | *(AVFrame*)data = *s->framep[VP56_FRAME_CURRENT]; | |
1368 | *data_size = sizeof(AVFrame); | |
1369 | } | |
1370 | ||
1371 | return avpkt->size; | |
1372 | } | |
1373 | ||
1374 | static av_cold int vp8_decode_init(AVCodecContext *avctx) | |
1375 | { | |
1376 | VP8Context *s = avctx->priv_data; | |
1377 | ||
1378 | s->avctx = avctx; | |
1379 | avctx->pix_fmt = PIX_FMT_YUV420P; | |
1380 | ||
1381 | dsputil_init(&s->dsp, avctx); | |
1382 | ff_h264_pred_init(&s->hpc, CODEC_ID_VP8); | |
1383 | ff_vp8dsp_init(&s->vp8dsp); | |
1384 | ||
1385 | // intra pred needs edge emulation among other things | |
1386 | if (avctx->flags&CODEC_FLAG_EMU_EDGE) { | |
1387 | av_log(avctx, AV_LOG_ERROR, "Edge emulation not supproted\n"); | |
1388 | return AVERROR_PATCHWELCOME; | |
1389 | } | |
1390 | ||
1391 | return 0; | |
1392 | } | |
1393 | ||
1394 | static av_cold int vp8_decode_free(AVCodecContext *avctx) | |
1395 | { | |
1396 | vp8_decode_flush(avctx); | |
1397 | return 0; | |
1398 | } | |
1399 | ||
1400 | AVCodec vp8_decoder = { | |
1401 | "vp8", | |
1402 | AVMEDIA_TYPE_VIDEO, | |
1403 | CODEC_ID_VP8, | |
1404 | sizeof(VP8Context), | |
1405 | vp8_decode_init, | |
1406 | NULL, | |
1407 | vp8_decode_free, | |
1408 | vp8_decode_frame, | |
1409 | CODEC_CAP_DR1, | |
1410 | .flush = vp8_decode_flush, | |
1411 | .long_name = NULL_IF_CONFIG_SMALL("On2 VP8"), | |
1412 | }; |