Avoid tracking i4x4 modes in P-frames in VP8
[libav.git] / libavcodec / vp8.c
CommitLineData
3b636f21
DC
1/**
2 * VP8 compatible video decoder
3 *
4 * Copyright (C) 2010 David Conrad
5 * Copyright (C) 2010 Ronald S. Bultje
6 *
7 * This file is part of FFmpeg.
8 *
9 * FFmpeg is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
13 *
14 * FFmpeg is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with FFmpeg; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 */
23
24#include "avcodec.h"
25#include "vp56.h"
26#include "vp8data.h"
27#include "vp8dsp.h"
28#include "h264pred.h"
29#include "rectangle.h"
30
31typedef struct {
32 uint8_t segment;
33 uint8_t skip;
34 // todo: make it possible to check for at least (i4x4 or split_mv)
35 // in one op. are others needed?
36 uint8_t mode;
37 uint8_t ref_frame;
38 uint8_t partitioning;
39 VP56mv mv;
40 VP56mv bmv[16];
41} VP8Macroblock;
42
43typedef struct {
44 AVCodecContext *avctx;
45 DSPContext dsp;
46 VP8DSPContext vp8dsp;
47 H264PredContext hpc;
0ef1dbed 48 vp8_mc_func put_pixels_tab[3][3][3];
3b636f21
DC
49 AVFrame frames[4];
50 AVFrame *framep[4];
51 uint8_t *edge_emu_buffer;
52 VP56RangeCoder c; ///< header context, includes mb modes and motion vectors
53 int profile;
54
55 int mb_width; /* number of horizontal MB */
56 int mb_height; /* number of vertical MB */
57 int linesize;
58 int uvlinesize;
59
60 int keyframe;
61 int invisible;
62 int update_last; ///< update VP56_FRAME_PREVIOUS with the current one
63 int update_golden; ///< VP56_FRAME_NONE if not updated, or which frame to copy if so
64 int update_altref;
9ac831c2 65 int deblock_filter;
3b636f21
DC
66
67 /**
68 * If this flag is not set, all the probability updates
69 * are discarded after this frame is decoded.
70 */
71 int update_probabilities;
72
73 /**
74 * All coefficients are contained in separate arith coding contexts.
75 * There can be 1, 2, 4, or 8 of these after the header context.
76 */
77 int num_coeff_partitions;
78 VP56RangeCoder coeff_partition[8];
79
80 VP8Macroblock *macroblocks;
81 VP8Macroblock *macroblocks_base;
82 int mb_stride;
83
84 uint8_t *intra4x4_pred_mode;
85 uint8_t *intra4x4_pred_mode_base;
86 int b4_stride;
87
88 /**
9ac831c2
DC
89 * Cache of the top row needed for intra prediction
90 * 16 for luma, 8 for each chroma plane
91 */
92 uint8_t (*top_border)[16+8+8];
93
94 /**
3b636f21
DC
95 * For coeff decode, we need to know whether the above block had non-zero
96 * coefficients. This means for each macroblock, we need data for 4 luma
97 * blocks, 2 u blocks, 2 v blocks, and the luma dc block, for a total of 9
98 * per macroblock. We keep the last row in top_nnz.
99 */
100 uint8_t (*top_nnz)[9];
101 DECLARE_ALIGNED(8, uint8_t, left_nnz)[9];
102
103 /**
104 * This is the index plus one of the last non-zero coeff
105 * for each of the blocks in the current macroblock.
106 * So, 0 -> no coeffs
107 * 1 -> dc-only (special transform)
108 * 2+-> full transform
109 */
110 DECLARE_ALIGNED(16, uint8_t, non_zero_count_cache)[6][4];
111 DECLARE_ALIGNED(16, DCTELEM, block)[6][4][16];
d1c58fce 112 uint8_t intra4x4_pred_mode_mb[16];
3b636f21
DC
113
114 int chroma_pred_mode; ///< 8x8c pred mode of the current macroblock
115
116 int mbskip_enabled;
117 int sign_bias[4]; ///< one state [0, 1] per ref frame type
118
119 /**
120 * Base parameters for segmentation, i.e. per-macroblock parameters.
121 * These must be kept unchanged even if segmentation is not used for
122 * a frame, since the values persist between interframes.
123 */
124 struct {
125 int enabled;
126 int absolute_vals;
127 int update_map;
128 int8_t base_quant[4];
129 int8_t filter_level[4]; ///< base loop filter level
130 } segmentation;
131
132 /**
133 * Macroblocks can have one of 4 different quants in a frame when
134 * segmentation is enabled.
135 * If segmentation is disabled, only the first segment's values are used.
136 */
137 struct {
138 // [0] - DC qmul [1] - AC qmul
139 int16_t luma_qmul[2];
140 int16_t luma_dc_qmul[2]; ///< luma dc-only block quant
141 int16_t chroma_qmul[2];
142 } qmat[4];
143
144 struct {
145 int simple;
146 int level;
147 int sharpness;
148 } filter;
149
150 struct {
151 int enabled; ///< whether each mb can have a different strength based on mode/ref
152
153 /**
154 * filter strength adjustment for the following macroblock modes:
155 * [0] - i4x4
156 * [1] - zero mv
157 * [2] - inter modes except for zero or split mv
158 * [3] - split mv
159 * i16x16 modes never have any adjustment
160 */
161 int8_t mode[4];
162
163 /**
164 * filter strength adjustment for macroblocks that reference:
165 * [0] - intra / VP56_FRAME_CURRENT
166 * [1] - VP56_FRAME_PREVIOUS
167 * [2] - VP56_FRAME_GOLDEN
168 * [3] - altref / VP56_FRAME_GOLDEN2
169 */
170 int8_t ref[4];
171 } lf_delta;
172
173 /**
174 * These are all of the updatable probabilities for binary decisions.
175 * They are only implictly reset on keyframes, making it quite likely
176 * for an interframe to desync if a prior frame's header was corrupt
177 * or missing outright!
178 */
179 struct {
180 uint8_t segmentid[3];
181 uint8_t mbskip;
182 uint8_t intra;
183 uint8_t last;
184 uint8_t golden;
185 uint8_t pred16x16[4];
186 uint8_t pred8x8c[3];
187 uint8_t token[4][8][3][NUM_DCT_TOKENS-1];
188 uint8_t mvc[2][19];
189 } prob[2];
190} VP8Context;
191
192#define RL24(p) (AV_RL16(p) + ((p)[2] << 16))
193
194static void vp8_decode_flush(AVCodecContext *avctx)
195{
196 VP8Context *s = avctx->priv_data;
197 int i;
198
199 for (i = 0; i < 4; i++)
200 if (s->frames[i].data[0])
201 avctx->release_buffer(avctx, &s->frames[i]);
202 memset(s->framep, 0, sizeof(s->framep));
203
204 av_freep(&s->macroblocks_base);
205 av_freep(&s->intra4x4_pred_mode_base);
206 av_freep(&s->top_nnz);
207 av_freep(&s->edge_emu_buffer);
9ac831c2 208 av_freep(&s->top_border);
3b636f21
DC
209
210 s->macroblocks = NULL;
211 s->intra4x4_pred_mode = NULL;
212}
213
214static int update_dimensions(VP8Context *s, int width, int height)
215{
216 int i;
217
218 if (avcodec_check_dimensions(s->avctx, width, height))
219 return AVERROR_INVALIDDATA;
220
221 vp8_decode_flush(s->avctx);
222
223 avcodec_set_dimensions(s->avctx, width, height);
224
225 s->mb_width = (s->avctx->coded_width +15) / 16;
226 s->mb_height = (s->avctx->coded_height+15) / 16;
227
228 // we allocate a border around the top/left of intra4x4 modes
229 // this is 4 blocks for intra4x4 to keep 4-byte alignment for fill_rectangle
230 s->mb_stride = s->mb_width+1;
231 s->b4_stride = 4*s->mb_stride;
232
233 s->macroblocks_base = av_mallocz(s->mb_stride*(s->mb_height+1)*sizeof(*s->macroblocks));
234 s->intra4x4_pred_mode_base = av_mallocz(s->b4_stride*(4*s->mb_height+1));
235 s->top_nnz = av_mallocz(s->mb_width*sizeof(*s->top_nnz));
9ac831c2 236 s->top_border = av_mallocz((s->mb_width+1)*sizeof(*s->top_border));
3b636f21 237
9ac831c2 238 if (!s->macroblocks_base || !s->intra4x4_pred_mode_base || !s->top_nnz || !s->top_border)
b6c420ce
DC
239 return AVERROR(ENOMEM);
240
3b636f21
DC
241 s->macroblocks = s->macroblocks_base + 1 + s->mb_stride;
242 s->intra4x4_pred_mode = s->intra4x4_pred_mode_base + 4 + s->b4_stride;
243
244 memset(s->intra4x4_pred_mode_base, DC_PRED, s->b4_stride);
245 for (i = 0; i < 4*s->mb_height; i++)
246 s->intra4x4_pred_mode[i*s->b4_stride-1] = DC_PRED;
247
248 return 0;
249}
250
251static void parse_segment_info(VP8Context *s)
252{
253 VP56RangeCoder *c = &s->c;
254 int i;
255
256 s->segmentation.update_map = vp8_rac_get(c);
257
258 if (vp8_rac_get(c)) { // update segment feature data
259 s->segmentation.absolute_vals = vp8_rac_get(c);
260
261 for (i = 0; i < 4; i++)
262 s->segmentation.base_quant[i] = vp8_rac_get_sint(c, 7);
263
264 for (i = 0; i < 4; i++)
265 s->segmentation.filter_level[i] = vp8_rac_get_sint(c, 6);
266 }
267 if (s->segmentation.update_map)
268 for (i = 0; i < 3; i++)
269 s->prob->segmentid[i] = vp8_rac_get(c) ? vp8_rac_get_uint(c, 8) : 255;
270}
271
272static void update_lf_deltas(VP8Context *s)
273{
274 VP56RangeCoder *c = &s->c;
275 int i;
276
277 for (i = 0; i < 4; i++)
278 s->lf_delta.ref[i] = vp8_rac_get_sint(c, 6);
279
280 for (i = 0; i < 4; i++)
281 s->lf_delta.mode[i] = vp8_rac_get_sint(c, 6);
282}
283
284static int setup_partitions(VP8Context *s, const uint8_t *buf, int buf_size)
285{
286 const uint8_t *sizes = buf;
287 int i;
288
289 s->num_coeff_partitions = 1 << vp8_rac_get_uint(&s->c, 2);
290
291 buf += 3*(s->num_coeff_partitions-1);
292 buf_size -= 3*(s->num_coeff_partitions-1);
293 if (buf_size < 0)
294 return -1;
295
296 for (i = 0; i < s->num_coeff_partitions-1; i++) {
297 int size = RL24(sizes + 3*i);
298 if (buf_size - size < 0)
299 return -1;
300
301 vp56_init_range_decoder(&s->coeff_partition[i], buf, size);
302 buf += size;
303 buf_size -= size;
304 }
305 vp56_init_range_decoder(&s->coeff_partition[i], buf, buf_size);
306
307 return 0;
308}
309
310static void get_quants(VP8Context *s)
311{
312 VP56RangeCoder *c = &s->c;
313 int i, base_qi;
314
315 int yac_qi = vp8_rac_get_uint(c, 7);
316 int ydc_delta = vp8_rac_get_sint(c, 4);
317 int y2dc_delta = vp8_rac_get_sint(c, 4);
318 int y2ac_delta = vp8_rac_get_sint(c, 4);
319 int uvdc_delta = vp8_rac_get_sint(c, 4);
320 int uvac_delta = vp8_rac_get_sint(c, 4);
321
322 for (i = 0; i < 4; i++) {
323 if (s->segmentation.enabled) {
324 base_qi = s->segmentation.base_quant[i];
325 if (!s->segmentation.absolute_vals)
326 base_qi += yac_qi;
327 } else
328 base_qi = yac_qi;
329
330 s->qmat[i].luma_qmul[0] = vp8_dc_qlookup[av_clip(base_qi + ydc_delta , 0, 127)];
331 s->qmat[i].luma_qmul[1] = vp8_ac_qlookup[av_clip(base_qi , 0, 127)];
332 s->qmat[i].luma_dc_qmul[0] = 2 * vp8_dc_qlookup[av_clip(base_qi + y2dc_delta, 0, 127)];
333 s->qmat[i].luma_dc_qmul[1] = 155 * vp8_ac_qlookup[av_clip(base_qi + y2ac_delta, 0, 127)] / 100;
334 s->qmat[i].chroma_qmul[0] = vp8_dc_qlookup[av_clip(base_qi + uvdc_delta, 0, 127)];
335 s->qmat[i].chroma_qmul[1] = vp8_ac_qlookup[av_clip(base_qi + uvac_delta, 0, 127)];
336
337 s->qmat[i].luma_dc_qmul[1] = FFMAX(s->qmat[i].luma_dc_qmul[1], 8);
338 s->qmat[i].chroma_qmul[0] = FFMIN(s->qmat[i].chroma_qmul[0], 132);
339 }
340}
341
342/**
343 * Determine which buffers golden and altref should be updated with after this frame.
344 * The spec isn't clear here, so I'm going by my understanding of what libvpx does
345 *
346 * Intra frames update all 3 references
347 * Inter frames update VP56_FRAME_PREVIOUS if the update_last flag is set
348 * If the update (golden|altref) flag is set, it's updated with the current frame
349 * if update_last is set, and VP56_FRAME_PREVIOUS otherwise.
350 * If the flag is not set, the number read means:
351 * 0: no update
352 * 1: VP56_FRAME_PREVIOUS
353 * 2: update golden with altref, or update altref with golden
354 */
355static VP56Frame ref_to_update(VP8Context *s, int update, VP56Frame ref)
356{
357 VP56RangeCoder *c = &s->c;
358
359 if (update)
360 return VP56_FRAME_CURRENT;
361
362 switch (vp8_rac_get_uint(c, 2)) {
363 case 1:
364 return VP56_FRAME_PREVIOUS;
365 case 2:
366 return (ref == VP56_FRAME_GOLDEN) ? VP56_FRAME_GOLDEN2 : VP56_FRAME_GOLDEN;
367 }
368 return VP56_FRAME_NONE;
369}
370
371static void update_refs(VP8Context *s)
372{
373 VP56RangeCoder *c = &s->c;
374
375 int update_golden = vp8_rac_get(c);
376 int update_altref = vp8_rac_get(c);
377
378 s->update_golden = ref_to_update(s, update_golden, VP56_FRAME_GOLDEN);
379 s->update_altref = ref_to_update(s, update_altref, VP56_FRAME_GOLDEN2);
380}
381
382static int decode_frame_header(VP8Context *s, const uint8_t *buf, int buf_size)
383{
384 VP56RangeCoder *c = &s->c;
385 int header_size, hscale, vscale, i, j, k, l, ret;
386 int width = s->avctx->width;
387 int height = s->avctx->height;
388
389 s->keyframe = !(buf[0] & 1);
390 s->profile = (buf[0]>>1) & 7;
391 s->invisible = !(buf[0] & 0x10);
392 header_size = RL24(buf) >> 5;
393 buf += 3;
394 buf_size -= 3;
395
0ef1dbed
DC
396 if (s->profile > 3)
397 av_log(s->avctx, AV_LOG_WARNING, "Unknown profile %d\n", s->profile);
398
399 if (!s->profile)
400 memcpy(s->put_pixels_tab, s->vp8dsp.put_vp8_epel_pixels_tab, sizeof(s->put_pixels_tab));
401 else // profile 1-3 use bilinear, 4+ aren't defined so whatever
402 memcpy(s->put_pixels_tab, s->vp8dsp.put_vp8_bilinear_pixels_tab, sizeof(s->put_pixels_tab));
3b636f21
DC
403
404 if (header_size > buf_size - 7*s->keyframe) {
405 av_log(s->avctx, AV_LOG_ERROR, "Header size larger than data provided\n");
406 return AVERROR_INVALIDDATA;
407 }
408
409 if (s->keyframe) {
410 if (RL24(buf) != 0x2a019d) {
411 av_log(s->avctx, AV_LOG_ERROR, "Invalid start code 0x%x\n", RL24(buf));
412 return AVERROR_INVALIDDATA;
413 }
414 width = AV_RL16(buf+3) & 0x3fff;
415 height = AV_RL16(buf+5) & 0x3fff;
416 hscale = buf[4] >> 6;
417 vscale = buf[6] >> 6;
418 buf += 7;
419 buf_size -= 7;
420
92a54426
MR
421 if (hscale || vscale)
422 av_log_missing_feature(s->avctx, "Upscaling", 1);
423
3b636f21
DC
424 s->update_golden = s->update_altref = VP56_FRAME_CURRENT;
425 memcpy(s->prob->token , vp8_token_default_probs , sizeof(s->prob->token));
426 memcpy(s->prob->pred16x16, vp8_pred16x16_prob_inter, sizeof(s->prob->pred16x16));
427 memcpy(s->prob->pred8x8c , vp8_pred8x8c_prob_inter , sizeof(s->prob->pred8x8c));
428 memcpy(s->prob->mvc , vp8_mv_default_prob , sizeof(s->prob->mvc));
429 memset(&s->segmentation, 0, sizeof(s->segmentation));
430 }
431
432 if (!s->macroblocks_base || /* first frame */
433 width != s->avctx->width || height != s->avctx->height) {
434 if ((ret = update_dimensions(s, width, height) < 0))
435 return ret;
436 }
437
438 vp56_init_range_decoder(c, buf, header_size);
439 buf += header_size;
440 buf_size -= header_size;
441
442 if (s->keyframe) {
443 if (vp8_rac_get(c))
444 av_log(s->avctx, AV_LOG_WARNING, "Unspecified colorspace\n");
445 vp8_rac_get(c); // whether we can skip clamping in dsp functions
446 }
447
448 if ((s->segmentation.enabled = vp8_rac_get(c)))
449 parse_segment_info(s);
450 else
451 s->segmentation.update_map = 0; // FIXME: move this to some init function?
452
453 s->filter.simple = vp8_rac_get(c);
454 s->filter.level = vp8_rac_get_uint(c, 6);
455 s->filter.sharpness = vp8_rac_get_uint(c, 3);
456
457 if ((s->lf_delta.enabled = vp8_rac_get(c)))
458 if (vp8_rac_get(c))
459 update_lf_deltas(s);
460
461 if (setup_partitions(s, buf, buf_size)) {
462 av_log(s->avctx, AV_LOG_ERROR, "Invalid partitions\n");
463 return AVERROR_INVALIDDATA;
464 }
465
466 get_quants(s);
467
468 if (!s->keyframe) {
469 update_refs(s);
470 s->sign_bias[VP56_FRAME_GOLDEN] = vp8_rac_get(c);
471 s->sign_bias[VP56_FRAME_GOLDEN2 /* altref */] = vp8_rac_get(c);
472 }
473
474 // if we aren't saving this frame's probabilities for future frames,
475 // make a copy of the current probabilities
476 if (!(s->update_probabilities = vp8_rac_get(c)))
477 s->prob[1] = s->prob[0];
478
479 s->update_last = s->keyframe || vp8_rac_get(c);
480
481 for (i = 0; i < 4; i++)
482 for (j = 0; j < 8; j++)
483 for (k = 0; k < 3; k++)
484 for (l = 0; l < NUM_DCT_TOKENS-1; l++)
485 if (vp56_rac_get_prob(c, vp8_token_update_probs[i][j][k][l]))
486 s->prob->token[i][j][k][l] = vp8_rac_get_uint(c, 8);
487
488 if ((s->mbskip_enabled = vp8_rac_get(c)))
489 s->prob->mbskip = vp8_rac_get_uint(c, 8);
490
491 if (!s->keyframe) {
492 s->prob->intra = vp8_rac_get_uint(c, 8);
493 s->prob->last = vp8_rac_get_uint(c, 8);
494 s->prob->golden = vp8_rac_get_uint(c, 8);
495
496 if (vp8_rac_get(c))
497 for (i = 0; i < 4; i++)
498 s->prob->pred16x16[i] = vp8_rac_get_uint(c, 8);
499 if (vp8_rac_get(c))
500 for (i = 0; i < 3; i++)
501 s->prob->pred8x8c[i] = vp8_rac_get_uint(c, 8);
502
503 // 17.2 MV probability update
504 for (i = 0; i < 2; i++)
505 for (j = 0; j < 19; j++)
506 if (vp56_rac_get_prob(c, vp8_mv_update_prob[i][j]))
507 s->prob->mvc[i][j] = vp8_rac_get_nn(c);
508 }
509
510 return 0;
511}
512
513static inline void clamp_mv(VP8Context *s, VP56mv *dst, const VP56mv *src,
514 int mb_x, int mb_y)
515{
516#define MARGIN (16 << 2)
517 dst->x = av_clip(src->x, -((mb_x << 6) + MARGIN),
518 ((s->mb_width - 1 - mb_x) << 6) + MARGIN);
519 dst->y = av_clip(src->y, -((mb_y << 6) + MARGIN),
520 ((s->mb_height - 1 - mb_y) << 6) + MARGIN);
521}
522
523static void find_near_mvs(VP8Context *s, VP8Macroblock *mb, int mb_x, int mb_y,
702e8d33 524 VP56mv near[2], VP56mv *best, uint8_t cnt[4])
3b636f21 525{
702e8d33
JGG
526 int mb_stride = s->mb_stride;
527 VP8Macroblock *mb_edge[3] = { mb - mb_stride /* top */,
528 mb - 1 /* left */,
529 mb - mb_stride - 1 /* top-left */ };
3b636f21
DC
530 enum { EDGE_TOP, EDGE_LEFT, EDGE_TOPLEFT };
531 VP56mv near_mv[4] = {{ 0 }};
532 enum { CNT_ZERO, CNT_NEAREST, CNT_NEAR, CNT_SPLITMV };
702e8d33 533 int idx = CNT_ZERO;
3b636f21 534 int best_idx = CNT_ZERO;
702e8d33
JGG
535 int cur_sign_bias = s->sign_bias[mb->ref_frame];
536 int *sign_bias = s->sign_bias;
3b636f21
DC
537
538 /* Process MB on top, left and top-left */
702e8d33
JGG
539 #define MV_EDGE_CHECK(n)\
540 {\
541 VP8Macroblock *edge = mb_edge[n];\
542 int edge_ref = edge->ref_frame;\
543 if (edge_ref != VP56_FRAME_CURRENT) {\
544 uint32_t mv = AV_RN32A(&edge->mv);\
545 if (mv) {\
546 if (cur_sign_bias != sign_bias[edge_ref]) {\
547 /* SWAR negate of the values in mv. */\
548 mv = ((mv&0x80008000) + 0x00010001) ^ (mv&0x7fff7fff);\
549 }\
550 if (!n || mv != AV_RN32A(&near_mv[idx]))\
551 AV_WN32A(&near_mv[++idx], mv);\
552 cnt[idx] += 1 + (n != 2);\
553 } else\
554 cnt[CNT_ZERO] += 1 + (n != 2);\
555 }\
3b636f21 556 }
702e8d33
JGG
557 MV_EDGE_CHECK(0)
558 MV_EDGE_CHECK(1)
559 MV_EDGE_CHECK(2)
3b636f21 560
702e8d33
JGG
561 /* If we have three distinct MVs, merge first and last if they're the same */
562 if (cnt[CNT_SPLITMV] && AV_RN32A(&near_mv[1+EDGE_TOP]) == AV_RN32A(&near_mv[1+EDGE_TOPLEFT]))
3b636f21
DC
563 cnt[CNT_NEAREST] += 1;
564
565 cnt[CNT_SPLITMV] = ((mb_edge[EDGE_LEFT]->mode == VP8_MVMODE_SPLIT) +
566 (mb_edge[EDGE_TOP]->mode == VP8_MVMODE_SPLIT)) * 2 +
567 (mb_edge[EDGE_TOPLEFT]->mode == VP8_MVMODE_SPLIT);
568
569 /* Swap near and nearest if necessary */
570 if (cnt[CNT_NEAR] > cnt[CNT_NEAREST]) {
702e8d33
JGG
571 FFSWAP(uint8_t, cnt[CNT_NEAREST], cnt[CNT_NEAR]);
572 FFSWAP( VP56mv, near_mv[CNT_NEAREST], near_mv[CNT_NEAR]);
3b636f21
DC
573 }
574
575 /* Choose the best mv out of 0,0 and the nearest mv */
576 if (cnt[CNT_NEAREST] >= cnt[CNT_ZERO])
577 best_idx = CNT_NEAREST;
578
579 clamp_mv(s, best, &near_mv[best_idx], mb_x, mb_y);
580 near[0] = near_mv[CNT_NEAREST];
581 near[1] = near_mv[CNT_NEAR];
582}
583
584/**
585 * Motion vector coding, 17.1.
586 */
587static int read_mv_component(VP56RangeCoder *c, const uint8_t *p)
588{
589 int x = 0;
590
591 if (vp56_rac_get_prob(c, p[0])) {
592 int i;
593
594 for (i = 0; i < 3; i++)
595 x += vp56_rac_get_prob(c, p[9 + i]) << i;
596 for (i = 9; i > 3; i--)
597 x += vp56_rac_get_prob(c, p[9 + i]) << i;
598 if (!(x & 0xFFF0) || vp56_rac_get_prob(c, p[12]))
599 x += 8;
600 } else
601 x = vp8_rac_get_tree(c, vp8_small_mvtree, &p[2]);
602
603 return (x && vp56_rac_get_prob(c, p[1])) ? -x : x;
604}
605
7bf254c4 606static const uint8_t *get_submv_prob(uint32_t left, uint32_t top)
3b636f21 607{
7bf254c4
JGG
608 if (left == top)
609 return vp8_submv_prob[4-!!left];
610 if (!top)
3b636f21 611 return vp8_submv_prob[2];
7bf254c4 612 return vp8_submv_prob[1-!!left];
3b636f21
DC
613}
614
615/**
616 * Split motion vector prediction, 16.4.
7ed06b2b 617 * @returns the number of motion vectors parsed (2, 4 or 16)
3b636f21 618 */
7ed06b2b 619static int decode_splitmvs(VP8Context *s, VP56RangeCoder *c,
3b636f21
DC
620 VP8Macroblock *mb, VP56mv *base_mv)
621{
622 int part_idx = mb->partitioning =
623 vp8_rac_get_tree(c, vp8_mbsplit_tree, vp8_mbsplit_prob);
624 int n, num = vp8_mbsplit_count[part_idx];
7bf254c4
JGG
625 VP8Macroblock *top_mb = &mb[-s->mb_stride];
626 VP8Macroblock *left_mb = &mb[-1];
627 const uint8_t *mbsplits_left = vp8_mbsplits[left_mb->partitioning],
628 *mbsplits_top = vp8_mbsplits[top_mb->partitioning],
629 *mbsplits_cur = vp8_mbsplits[part_idx],
7ed06b2b 630 *firstidx = vp8_mbfirstidx[part_idx];
7bf254c4
JGG
631 VP56mv *top_mv = top_mb->bmv;
632 VP56mv *left_mv = left_mb->bmv;
633 VP56mv *cur_mv = mb->bmv;
3b636f21
DC
634
635 for (n = 0; n < num; n++) {
7ed06b2b 636 int k = firstidx[n];
7bf254c4 637 uint32_t left, above;
7ed06b2b
RB
638 const uint8_t *submv_prob;
639
7bf254c4
JGG
640 if (!(k & 3))
641 left = AV_RN32A(&left_mv[mbsplits_left[k + 3]]);
642 else
643 left = AV_RN32A(&cur_mv[mbsplits_cur[k - 1]]);
644 if (k <= 3)
645 above = AV_RN32A(&top_mv[mbsplits_top[k + 12]]);
646 else
647 above = AV_RN32A(&cur_mv[mbsplits_cur[k - 4]]);
7ed06b2b
RB
648
649 submv_prob = get_submv_prob(left, above);
3b636f21
DC
650
651 switch (vp8_rac_get_tree(c, vp8_submv_ref_tree, submv_prob)) {
652 case VP8_SUBMVMODE_NEW4X4:
7ed06b2b
RB
653 mb->bmv[n].y = base_mv->y + read_mv_component(c, s->prob->mvc[0]);
654 mb->bmv[n].x = base_mv->x + read_mv_component(c, s->prob->mvc[1]);
3b636f21
DC
655 break;
656 case VP8_SUBMVMODE_ZERO4X4:
7bf254c4 657 AV_WN32A(&mb->bmv[n], 0);
3b636f21
DC
658 break;
659 case VP8_SUBMVMODE_LEFT4X4:
7bf254c4 660 AV_WN32A(&mb->bmv[n], left);
3b636f21
DC
661 break;
662 case VP8_SUBMVMODE_TOP4X4:
7bf254c4 663 AV_WN32A(&mb->bmv[n], above);
3b636f21
DC
664 break;
665 }
3b636f21 666 }
7ed06b2b
RB
667
668 return num;
3b636f21
DC
669}
670
671static inline void decode_intra4x4_modes(VP56RangeCoder *c, uint8_t *intra4x4,
672 int stride, int keyframe)
673{
d1c58fce 674 int x, y, t, l, i;
3b636f21 675
d1c58fce
JGG
676 if (keyframe) {
677 const uint8_t *ctx;
678 for (y = 0; y < 4; y++) {
679 for (x = 0; x < 4; x++) {
3b636f21
DC
680 t = intra4x4[x - stride];
681 l = intra4x4[x - 1];
682 ctx = vp8_pred4x4_prob_intra[t][l];
d1c58fce 683 intra4x4[x] = vp8_rac_get_tree(c, vp8_pred4x4_tree, ctx);
3b636f21 684 }
d1c58fce 685 intra4x4 += stride;
3b636f21 686 }
d1c58fce
JGG
687 } else {
688 for (i = 0; i < 16; i++)
689 intra4x4[i] = vp8_rac_get_tree(c, vp8_pred4x4_tree, vp8_pred4x4_prob_inter);
3b636f21
DC
690 }
691}
692
693static void decode_mb_mode(VP8Context *s, VP8Macroblock *mb, int mb_x, int mb_y,
694 uint8_t *intra4x4)
695{
696 VP56RangeCoder *c = &s->c;
3b636f21
DC
697
698 if (s->segmentation.update_map)
699 mb->segment = vp8_rac_get_tree(c, vp8_segmentid_tree, s->prob->segmentid);
700
701 mb->skip = s->mbskip_enabled ? vp56_rac_get_prob(c, s->prob->mbskip) : 0;
702
703 if (s->keyframe) {
704 mb->mode = vp8_rac_get_tree(c, vp8_pred16x16_tree_intra, vp8_pred16x16_prob_intra);
705
706 if (mb->mode == MODE_I4x4) {
707 decode_intra4x4_modes(c, intra4x4, s->b4_stride, 1);
708 } else
709 fill_rectangle(intra4x4, 4, 4, s->b4_stride, vp8_pred4x4_mode[mb->mode], 1);
710
711 s->chroma_pred_mode = vp8_rac_get_tree(c, vp8_pred8x8c_tree, vp8_pred8x8c_prob_intra);
712 mb->ref_frame = VP56_FRAME_CURRENT;
713 } else if (vp56_rac_get_prob(c, s->prob->intra)) {
714 VP56mv near[2], best;
702e8d33 715 uint8_t cnt[4] = { 0 };
3b636f21
DC
716 uint8_t p[4];
717
718 // inter MB, 16.2
719 if (vp56_rac_get_prob(c, s->prob->last))
720 mb->ref_frame = vp56_rac_get_prob(c, s->prob->golden) ?
721 VP56_FRAME_GOLDEN2 /* altref */ : VP56_FRAME_GOLDEN;
722 else
723 mb->ref_frame = VP56_FRAME_PREVIOUS;
724
725 // motion vectors, 16.3
726 find_near_mvs(s, mb, mb_x, mb_y, near, &best, cnt);
702e8d33
JGG
727 p[0] = vp8_mode_contexts[cnt[0]][0];
728 p[1] = vp8_mode_contexts[cnt[1]][1];
729 p[2] = vp8_mode_contexts[cnt[2]][2];
730 p[3] = vp8_mode_contexts[cnt[3]][3];
3b636f21
DC
731 mb->mode = vp8_rac_get_tree(c, vp8_pred16x16_tree_mvinter, p);
732 switch (mb->mode) {
733 case VP8_MVMODE_SPLIT:
7ed06b2b 734 mb->mv = mb->bmv[decode_splitmvs(s, c, mb, &best) - 1];
3b636f21
DC
735 break;
736 case VP8_MVMODE_ZERO:
737 mb->mv.x = 0;
738 mb->mv.y = 0;
739 break;
740 case VP8_MVMODE_NEAREST:
741 clamp_mv(s, &mb->mv, &near[0], mb_x, mb_y);
742 break;
743 case VP8_MVMODE_NEAR:
744 clamp_mv(s, &mb->mv, &near[1], mb_x, mb_y);
745 break;
746 case VP8_MVMODE_NEW:
747 mb->mv.y = best.y + read_mv_component(c, s->prob->mvc[0]);
748 mb->mv.x = best.x + read_mv_component(c, s->prob->mvc[1]);
749 break;
750 }
751 if (mb->mode != VP8_MVMODE_SPLIT) {
7ed06b2b
RB
752 mb->partitioning = VP8_SPLITMVMODE_NONE;
753 mb->bmv[0] = mb->mv;
3b636f21
DC
754 }
755 } else {
756 // intra MB, 16.1
757 mb->mode = vp8_rac_get_tree(c, vp8_pred16x16_tree_inter, s->prob->pred16x16);
758
158e062c 759 if (mb->mode == MODE_I4x4)
d1c58fce 760 decode_intra4x4_modes(c, intra4x4, 4, 0);
3b636f21
DC
761
762 s->chroma_pred_mode = vp8_rac_get_tree(c, vp8_pred8x8c_tree, s->prob->pred8x8c);
763 mb->ref_frame = VP56_FRAME_CURRENT;
764 }
765}
766
767/**
e394953e
RB
768 * @param c arithmetic bitstream reader context
769 * @param block destination for block coefficients
770 * @param probs probabilities to use when reading trees from the bitstream
3b636f21
DC
771 * @param i initial coeff index, 0 unless a separate DC block is coded
772 * @param zero_nhood the initial prediction context for number of surrounding
773 * all-zero blocks (only left/top, so 0-2)
3fa76268 774 * @param qmul array holding the dc/ac dequant factor at position 0/1
3b636f21
DC
775 * @return 0 if no coeffs were decoded
776 * otherwise, the index of the last coeff decoded plus one
777 */
778static int decode_block_coeffs(VP56RangeCoder *c, DCTELEM block[16],
779 uint8_t probs[8][3][NUM_DCT_TOKENS-1],
780 int i, int zero_nhood, int16_t qmul[2])
781{
782 int token, nonzero = 0;
783 int offset = 0;
784
785 for (; i < 16; i++) {
786 token = vp8_rac_get_tree_with_offset(c, vp8_coeff_tree, probs[vp8_coeff_band[i]][zero_nhood], offset);
787
788 if (token == DCT_EOB)
789 break;
790 else if (token >= DCT_CAT1) {
791 int cat = token-DCT_CAT1;
792 token = vp8_rac_get_coeff(c, vp8_dct_cat_prob[cat]);
793 token += vp8_dct_cat_offset[cat];
794 }
795
796 // after the first token, the non-zero prediction context becomes
797 // based on the last decoded coeff
798 if (!token) {
799 zero_nhood = 0;
800 offset = 1;
801 continue;
802 } else if (token == 1)
803 zero_nhood = 1;
804 else
805 zero_nhood = 2;
806
807 // todo: full [16] qmat? load into register?
808 block[zigzag_scan[i]] = (vp8_rac_get(c) ? -token : token) * qmul[!!i];
809 nonzero = i+1;
810 offset = 0;
811 }
812 return nonzero;
813}
814
815static void decode_mb_coeffs(VP8Context *s, VP56RangeCoder *c, VP8Macroblock *mb,
816 uint8_t t_nnz[9], uint8_t l_nnz[9])
817{
818 LOCAL_ALIGNED_16(DCTELEM, dc,[16]);
819 int i, x, y, luma_start = 0, luma_ctx = 3;
820 int nnz_pred, nnz, nnz_total = 0;
821 int segment = s->segmentation.enabled ? mb->segment : 0;
822
823 s->dsp.clear_blocks((DCTELEM *)s->block);
824
825 if (mb->mode != MODE_I4x4 && mb->mode != VP8_MVMODE_SPLIT) {
826 AV_ZERO128(dc);
827 AV_ZERO128(dc+8);
828 nnz_pred = t_nnz[8] + l_nnz[8];
829
830 // decode DC values and do hadamard
831 nnz = decode_block_coeffs(c, dc, s->prob->token[1], 0, nnz_pred,
832 s->qmat[segment].luma_dc_qmul);
833 l_nnz[8] = t_nnz[8] = !!nnz;
834 nnz_total += nnz;
835 s->vp8dsp.vp8_luma_dc_wht(s->block, dc);
836 luma_start = 1;
837 luma_ctx = 0;
838 }
839
840 // luma blocks
841 for (y = 0; y < 4; y++)
842 for (x = 0; x < 4; x++) {
843 nnz_pred = l_nnz[y] + t_nnz[x];
844 nnz = decode_block_coeffs(c, s->block[y][x], s->prob->token[luma_ctx], luma_start,
845 nnz_pred, s->qmat[segment].luma_qmul);
846 // nnz+luma_start may be one more than the actual last index, but we don't care
847 s->non_zero_count_cache[y][x] = nnz + luma_start;
848 t_nnz[x] = l_nnz[y] = !!nnz;
849 nnz_total += nnz;
850 }
851
852 // chroma blocks
853 // TODO: what to do about dimensions? 2nd dim for luma is x,
854 // but for chroma it's (y<<1)|x
855 for (i = 4; i < 6; i++)
856 for (y = 0; y < 2; y++)
857 for (x = 0; x < 2; x++) {
858 nnz_pred = l_nnz[i+2*y] + t_nnz[i+2*x];
859 nnz = decode_block_coeffs(c, s->block[i][(y<<1)+x], s->prob->token[2], 0,
860 nnz_pred, s->qmat[segment].chroma_qmul);
861 s->non_zero_count_cache[i][(y<<1)+x] = nnz;
862 t_nnz[i+2*x] = l_nnz[i+2*y] = !!nnz;
863 nnz_total += nnz;
864 }
865
866 // if there were no coded coeffs despite the macroblock not being marked skip,
867 // we MUST not do the inner loop filter and should not do IDCT
868 // Since skip isn't used for bitstream prediction, just manually set it.
869 if (!nnz_total)
870 mb->skip = 1;
871}
872
9ac831c2
DC
873static av_always_inline
874void backup_mb_border(uint8_t *top_border, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr,
875 int linesize, int uvlinesize, int simple)
876{
877 AV_COPY128(top_border, src_y + 15*linesize);
878 if (!simple) {
879 AV_COPY64(top_border+16, src_cb + 7*uvlinesize);
880 AV_COPY64(top_border+24, src_cr + 7*uvlinesize);
881 }
882}
883
884static av_always_inline
885void xchg_mb_border(uint8_t *top_border, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr,
886 int linesize, int uvlinesize, int mb_x, int mb_y, int mb_width,
887 int simple, int xchg)
888{
889 uint8_t *top_border_m1 = top_border-32; // for TL prediction
890 src_y -= linesize;
891 src_cb -= uvlinesize;
892 src_cr -= uvlinesize;
893
096971e8
MR
894#define XCHG(a,b,xchg) do { \
895 if (xchg) AV_SWAP64(b,a); \
896 else AV_COPY64(b,a); \
897 } while (0)
9ac831c2
DC
898
899 XCHG(top_border_m1+8, src_y-8, xchg);
900 XCHG(top_border, src_y, xchg);
901 XCHG(top_border+8, src_y+8, 1);
070ce7ef 902 if (mb_x < mb_width-1)
9ac831c2 903 XCHG(top_border+32, src_y+16, 1);
070ce7ef 904
9ac831c2
DC
905 // only copy chroma for normal loop filter
906 // or to initialize the top row to 127
907 if (!simple || !mb_y) {
908 XCHG(top_border_m1+16, src_cb-8, xchg);
909 XCHG(top_border_m1+24, src_cr-8, xchg);
910 XCHG(top_border+16, src_cb, 1);
911 XCHG(top_border+24, src_cr, 1);
912 }
913}
914
3b636f21
DC
915static int check_intra_pred_mode(int mode, int mb_x, int mb_y)
916{
917 if (mode == DC_PRED8x8) {
918 if (!(mb_x|mb_y))
919 mode = DC_128_PRED8x8;
920 else if (!mb_y)
921 mode = LEFT_DC_PRED8x8;
922 else if (!mb_x)
923 mode = TOP_DC_PRED8x8;
924 }
925 return mode;
926}
927
928static void intra_predict(VP8Context *s, uint8_t *dst[3], VP8Macroblock *mb,
d1c58fce 929 uint8_t *intra4x4, int mb_x, int mb_y)
3b636f21
DC
930{
931 int x, y, mode, nnz, tr;
932
9ac831c2
DC
933 // for the first row, we need to run xchg_mb_border to init the top edge to 127
934 // otherwise, skip it if we aren't going to deblock
935 if (s->deblock_filter || !mb_y)
936 xchg_mb_border(s->top_border[mb_x+1], dst[0], dst[1], dst[2],
937 s->linesize, s->uvlinesize, mb_x, mb_y, s->mb_width,
938 s->filter.simple, 1);
939
3b636f21
DC
940 if (mb->mode < MODE_I4x4) {
941 mode = check_intra_pred_mode(mb->mode, mb_x, mb_y);
942 s->hpc.pred16x16[mode](dst[0], s->linesize);
943 } else {
944 uint8_t *ptr = dst[0];
d1c58fce 945 int stride = s->keyframe ? s->b4_stride : 4;
3b636f21
DC
946
947 // all blocks on the right edge of the macroblock use bottom edge
948 // the top macroblock for their topright edge
949 uint8_t *tr_right = ptr - s->linesize + 16;
950
951 // if we're on the right edge of the frame, said edge is extended
952 // from the top macroblock
953 if (mb_x == s->mb_width-1) {
954 tr = tr_right[-1]*0x01010101;
955 tr_right = (uint8_t *)&tr;
956 }
957
958 for (y = 0; y < 4; y++) {
959 uint8_t *topright = ptr + 4 - s->linesize;
960 for (x = 0; x < 4; x++) {
961 if (x == 3)
962 topright = tr_right;
963
d1c58fce 964 s->hpc.pred4x4[intra4x4[x]](ptr+4*x, topright, s->linesize);
3b636f21
DC
965
966 nnz = s->non_zero_count_cache[y][x];
967 if (nnz) {
968 if (nnz == 1)
969 s->vp8dsp.vp8_idct_dc_add(ptr+4*x, s->block[y][x], s->linesize);
970 else
971 s->vp8dsp.vp8_idct_add(ptr+4*x, s->block[y][x], s->linesize);
972 }
973 topright += 4;
974 }
975
976 ptr += 4*s->linesize;
d1c58fce 977 intra4x4 += stride;
3b636f21
DC
978 }
979 }
980
981 mode = check_intra_pred_mode(s->chroma_pred_mode, mb_x, mb_y);
982 s->hpc.pred8x8[mode](dst[1], s->uvlinesize);
983 s->hpc.pred8x8[mode](dst[2], s->uvlinesize);
9ac831c2
DC
984
985 if (s->deblock_filter || !mb_y)
986 xchg_mb_border(s->top_border[mb_x+1], dst[0], dst[1], dst[2],
987 s->linesize, s->uvlinesize, mb_x, mb_y, s->mb_width,
988 s->filter.simple, 0);
3b636f21
DC
989}
990
991/**
992 * Generic MC function.
993 *
994 * @param s VP8 decoding context
995 * @param luma 1 for luma (Y) planes, 0 for chroma (Cb/Cr) planes
996 * @param dst target buffer for block data at block position
997 * @param src reference picture buffer at origin (0, 0)
998 * @param mv motion vector (relative to block position) to get pixel data from
999 * @param x_off horizontal position of block from origin (0, 0)
1000 * @param y_off vertical position of block from origin (0, 0)
1001 * @param block_w width of block (16, 8 or 4)
1002 * @param block_h height of block (always same as block_w)
1003 * @param width width of src/dst plane data
1004 * @param height height of src/dst plane data
1005 * @param linesize size of a single line of plane data, including padding
e394953e 1006 * @param mc_func motion compensation function pointers (bilinear or sixtap MC)
3b636f21
DC
1007 */
1008static inline void vp8_mc(VP8Context *s, int luma,
1009 uint8_t *dst, uint8_t *src, const VP56mv *mv,
1010 int x_off, int y_off, int block_w, int block_h,
1011 int width, int height, int linesize,
d6f8476b 1012 vp8_mc_func mc_func[3][3])
3b636f21 1013{
c0498b30
JGG
1014 if (AV_RN32A(mv)) {
1015 static const uint8_t idx[8] = { 0, 1, 2, 1, 2, 1, 2, 1 };
1016 int mx = (mv->x << luma)&7, mx_idx = idx[mx];
1017 int my = (mv->y << luma)&7, my_idx = idx[my];
1018
1019 x_off += mv->x >> (3 - luma);
1020 y_off += mv->y >> (3 - luma);
1021
1022 // edge emulation
1023 src += y_off * linesize + x_off;
1024 if (x_off < 2 || x_off >= width - block_w - 3 ||
1025 y_off < 2 || y_off >= height - block_h - 3) {
1026 ff_emulated_edge_mc(s->edge_emu_buffer, src - 2 * linesize - 2, linesize,
1027 block_w + 5, block_h + 5,
1028 x_off - 2, y_off - 2, width, height);
1029 src = s->edge_emu_buffer + 2 + linesize * 2;
1030 }
1031 mc_func[my_idx][mx_idx](dst, linesize, src, linesize, block_h, mx, my);
1032 } else
1033 mc_func[0][0](dst, linesize, src + y_off * linesize + x_off, linesize, block_h, 0, 0);
3b636f21
DC
1034}
1035
7c4dcf81
RB
1036static inline void vp8_mc_part(VP8Context *s, uint8_t *dst[3],
1037 AVFrame *ref_frame, int x_off, int y_off,
1038 int bx_off, int by_off,
1039 int block_w, int block_h,
1040 int width, int height, VP56mv *mv)
1041{
1042 VP56mv uvmv = *mv;
1043
1044 /* Y */
1045 vp8_mc(s, 1, dst[0] + by_off * s->linesize + bx_off,
1046 ref_frame->data[0], mv, x_off + bx_off, y_off + by_off,
1047 block_w, block_h, width, height, s->linesize,
1048 s->put_pixels_tab[block_w == 8]);
1049
1050 /* U/V */
1051 if (s->profile == 3) {
1052 uvmv.x &= ~7;
1053 uvmv.y &= ~7;
1054 }
1055 x_off >>= 1; y_off >>= 1;
1056 bx_off >>= 1; by_off >>= 1;
1057 width >>= 1; height >>= 1;
1058 block_w >>= 1; block_h >>= 1;
1059 vp8_mc(s, 0, dst[1] + by_off * s->uvlinesize + bx_off,
1060 ref_frame->data[1], &uvmv, x_off + bx_off, y_off + by_off,
1061 block_w, block_h, width, height, s->uvlinesize,
1062 s->put_pixels_tab[1 + (block_w == 4)]);
1063 vp8_mc(s, 0, dst[2] + by_off * s->uvlinesize + bx_off,
1064 ref_frame->data[2], &uvmv, x_off + bx_off, y_off + by_off,
1065 block_w, block_h, width, height, s->uvlinesize,
1066 s->put_pixels_tab[1 + (block_w == 4)]);
1067}
1068
d864dee8
JGG
1069/* Fetch pixels for estimated mv 4 macroblocks ahead.
1070 * Optimized for 64-byte cache lines. Inspired by ffh264 prefetch_motion. */
1071static inline void prefetch_motion(VP8Context *s, VP8Macroblock *mb, int mb_x, int mb_y, int x_off, int y_off, int ref)
1072{
1073 if (mb->ref_frame != VP56_FRAME_CURRENT) {
1074 int mx = mb->mv.x + x_off + 8;
1075 int my = mb->mv.y + y_off;
1076 uint8_t **src= s->framep[mb->ref_frame]->data;
1077 int off= mx + (my + (mb_x&3)*4)*s->linesize + 64;
1078 s->dsp.prefetch(src[0]+off, s->linesize, 4);
1079 off= (mx>>1) + ((my>>1) + (mb_x&7))*s->uvlinesize + 64;
1080 s->dsp.prefetch(src[1]+off, src[2]-src[1], 2);
1081 }
1082}
1083
3b636f21
DC
1084/**
1085 * Apply motion vectors to prediction buffer, chapter 18.
1086 */
1087static void inter_predict(VP8Context *s, uint8_t *dst[3], VP8Macroblock *mb,
1088 int mb_x, int mb_y)
1089{
1090 int x_off = mb_x << 4, y_off = mb_y << 4;
1091 int width = 16*s->mb_width, height = 16*s->mb_height;
3b636f21 1092
d864dee8
JGG
1093 prefetch_motion(s, mb, mb_x, mb_y, x_off, y_off, VP56_FRAME_PREVIOUS);
1094
3b636f21 1095 if (mb->mode < VP8_MVMODE_SPLIT) {
7c4dcf81
RB
1096 vp8_mc_part(s, dst, s->framep[mb->ref_frame], x_off, y_off,
1097 0, 0, 16, 16, width, height, &mb->mv);
1098 } else switch (mb->partitioning) {
1099 case VP8_SPLITMVMODE_4x4: {
3b636f21 1100 int x, y;
7c4dcf81 1101 VP56mv uvmv;
3b636f21
DC
1102
1103 /* Y */
1104 for (y = 0; y < 4; y++) {
1105 for (x = 0; x < 4; x++) {
1106 vp8_mc(s, 1, dst[0] + 4*y*s->linesize + x*4,
1107 s->framep[mb->ref_frame]->data[0], &mb->bmv[4*y + x],
1108 4*x + x_off, 4*y + y_off, 4, 4,
1109 width, height, s->linesize,
0ef1dbed 1110 s->put_pixels_tab[2]);
3b636f21
DC
1111 }
1112 }
1113
1114 /* U/V */
1115 x_off >>= 1; y_off >>= 1; width >>= 1; height >>= 1;
1116 for (y = 0; y < 2; y++) {
1117 for (x = 0; x < 2; x++) {
1118 uvmv.x = mb->bmv[ 2*y * 4 + 2*x ].x +
1119 mb->bmv[ 2*y * 4 + 2*x+1].x +
1120 mb->bmv[(2*y+1) * 4 + 2*x ].x +
1121 mb->bmv[(2*y+1) * 4 + 2*x+1].x;
1122 uvmv.y = mb->bmv[ 2*y * 4 + 2*x ].y +
1123 mb->bmv[ 2*y * 4 + 2*x+1].y +
1124 mb->bmv[(2*y+1) * 4 + 2*x ].y +
1125 mb->bmv[(2*y+1) * 4 + 2*x+1].y;
8f910a56
SG
1126 uvmv.x = (uvmv.x + 2 + (uvmv.x >> (INT_BIT-1))) >> 2;
1127 uvmv.y = (uvmv.y + 2 + (uvmv.y >> (INT_BIT-1))) >> 2;
3b636f21
DC
1128 if (s->profile == 3) {
1129 uvmv.x &= ~7;
1130 uvmv.y &= ~7;
1131 }
1132 vp8_mc(s, 0, dst[1] + 4*y*s->uvlinesize + x*4,
1133 s->framep[mb->ref_frame]->data[1], &uvmv,
1134 4*x + x_off, 4*y + y_off, 4, 4,
1135 width, height, s->uvlinesize,
0ef1dbed 1136 s->put_pixels_tab[2]);
3b636f21
DC
1137 vp8_mc(s, 0, dst[2] + 4*y*s->uvlinesize + x*4,
1138 s->framep[mb->ref_frame]->data[2], &uvmv,
1139 4*x + x_off, 4*y + y_off, 4, 4,
1140 width, height, s->uvlinesize,
0ef1dbed 1141 s->put_pixels_tab[2]);
3b636f21
DC
1142 }
1143 }
7c4dcf81
RB
1144 break;
1145 }
1146 case VP8_SPLITMVMODE_16x8:
1147 vp8_mc_part(s, dst, s->framep[mb->ref_frame], x_off, y_off,
1148 0, 0, 16, 8, width, height, &mb->bmv[0]);
1149 vp8_mc_part(s, dst, s->framep[mb->ref_frame], x_off, y_off,
7ed06b2b 1150 0, 8, 16, 8, width, height, &mb->bmv[1]);
7c4dcf81
RB
1151 break;
1152 case VP8_SPLITMVMODE_8x16:
1153 vp8_mc_part(s, dst, s->framep[mb->ref_frame], x_off, y_off,
1154 0, 0, 8, 16, width, height, &mb->bmv[0]);
1155 vp8_mc_part(s, dst, s->framep[mb->ref_frame], x_off, y_off,
7ed06b2b 1156 8, 0, 8, 16, width, height, &mb->bmv[1]);
7c4dcf81
RB
1157 break;
1158 case VP8_SPLITMVMODE_8x8:
1159 vp8_mc_part(s, dst, s->framep[mb->ref_frame], x_off, y_off,
1160 0, 0, 8, 8, width, height, &mb->bmv[0]);
1161 vp8_mc_part(s, dst, s->framep[mb->ref_frame], x_off, y_off,
7ed06b2b 1162 8, 0, 8, 8, width, height, &mb->bmv[1]);
7c4dcf81 1163 vp8_mc_part(s, dst, s->framep[mb->ref_frame], x_off, y_off,
7ed06b2b 1164 0, 8, 8, 8, width, height, &mb->bmv[2]);
7c4dcf81 1165 vp8_mc_part(s, dst, s->framep[mb->ref_frame], x_off, y_off,
7ed06b2b 1166 8, 8, 8, 8, width, height, &mb->bmv[3]);
7c4dcf81 1167 break;
3b636f21 1168 }
d864dee8
JGG
1169
1170 prefetch_motion(s, mb, mb_x, mb_y, x_off, y_off, VP56_FRAME_GOLDEN);
3b636f21
DC
1171}
1172
1173static void idct_mb(VP8Context *s, uint8_t *y_dst, uint8_t *u_dst, uint8_t *v_dst,
1174 VP8Macroblock *mb)
1175{
1176 int x, y, nnz;
1177
1178 if (mb->mode != MODE_I4x4)
1179 for (y = 0; y < 4; y++) {
1180 for (x = 0; x < 4; x++) {
1181 nnz = s->non_zero_count_cache[y][x];
1182 if (nnz) {
1183 if (nnz == 1)
1184 s->vp8dsp.vp8_idct_dc_add(y_dst+4*x, s->block[y][x], s->linesize);
1185 else
1186 s->vp8dsp.vp8_idct_add(y_dst+4*x, s->block[y][x], s->linesize);
1187 }
1188 }
1189 y_dst += 4*s->linesize;
1190 }
1191
1192 for (y = 0; y < 2; y++) {
1193 for (x = 0; x < 2; x++) {
1194 nnz = s->non_zero_count_cache[4][(y<<1)+x];
1195 if (nnz) {
1196 if (nnz == 1)
1197 s->vp8dsp.vp8_idct_dc_add(u_dst+4*x, s->block[4][(y<<1)+x], s->uvlinesize);
1198 else
1199 s->vp8dsp.vp8_idct_add(u_dst+4*x, s->block[4][(y<<1)+x], s->uvlinesize);
1200 }
1201
1202 nnz = s->non_zero_count_cache[5][(y<<1)+x];
1203 if (nnz) {
1204 if (nnz == 1)
1205 s->vp8dsp.vp8_idct_dc_add(v_dst+4*x, s->block[5][(y<<1)+x], s->uvlinesize);
1206 else
1207 s->vp8dsp.vp8_idct_add(v_dst+4*x, s->block[5][(y<<1)+x], s->uvlinesize);
1208 }
1209 }
1210 u_dst += 4*s->uvlinesize;
1211 v_dst += 4*s->uvlinesize;
1212 }
1213}
1214
1215static void filter_level_for_mb(VP8Context *s, VP8Macroblock *mb, int *level, int *inner, int *hev_thresh)
1216{
1217 int interior_limit, filter_level;
1218
1219 if (s->segmentation.enabled) {
1220 filter_level = s->segmentation.filter_level[mb->segment];
1221 if (!s->segmentation.absolute_vals)
1222 filter_level += s->filter.level;
1223 } else
1224 filter_level = s->filter.level;
1225
1226 if (s->lf_delta.enabled) {
1227 filter_level += s->lf_delta.ref[mb->ref_frame];
1228
1229 if (mb->ref_frame == VP56_FRAME_CURRENT) {
1230 if (mb->mode == MODE_I4x4)
1231 filter_level += s->lf_delta.mode[0];
1232 } else {
1233 if (mb->mode == VP8_MVMODE_ZERO)
1234 filter_level += s->lf_delta.mode[1];
1235 else if (mb->mode == VP8_MVMODE_SPLIT)
1236 filter_level += s->lf_delta.mode[3];
1237 else
1238 filter_level += s->lf_delta.mode[2];
1239 }
1240 }
1241 filter_level = av_clip(filter_level, 0, 63);
1242
1243 interior_limit = filter_level;
1244 if (s->filter.sharpness) {
1245 interior_limit >>= s->filter.sharpness > 4 ? 2 : 1;
1246 interior_limit = FFMIN(interior_limit, 9 - s->filter.sharpness);
1247 }
1248 interior_limit = FFMAX(interior_limit, 1);
1249
1250 *level = filter_level;
1251 *inner = interior_limit;
1252
1253 if (hev_thresh) {
1254 *hev_thresh = filter_level >= 15;
1255
1256 if (s->keyframe) {
1257 if (filter_level >= 40)
1258 *hev_thresh = 2;
1259 } else {
1260 if (filter_level >= 40)
1261 *hev_thresh = 3;
1262 else if (filter_level >= 20)
1263 *hev_thresh = 2;
1264 }
1265 }
1266}
1267
3b636f21
DC
1268static void filter_mb(VP8Context *s, uint8_t *dst[3], VP8Macroblock *mb, int mb_x, int mb_y)
1269{
5245c04d 1270 int filter_level, inner_limit, hev_thresh, mbedge_lim, bedge_lim;
3b636f21
DC
1271
1272 filter_level_for_mb(s, mb, &filter_level, &inner_limit, &hev_thresh);
1273 if (!filter_level)
1274 return;
1275
5245c04d
DC
1276 mbedge_lim = 2*(filter_level+2) + inner_limit;
1277 bedge_lim = 2* filter_level + inner_limit;
1278
3b636f21 1279 if (mb_x) {
3facfc99
RB
1280 s->vp8dsp.vp8_h_loop_filter16y(dst[0], s->linesize,
1281 mbedge_lim, inner_limit, hev_thresh);
1282 s->vp8dsp.vp8_h_loop_filter8uv(dst[1], dst[2], s->uvlinesize,
1283 mbedge_lim, inner_limit, hev_thresh);
3b636f21
DC
1284 }
1285
1286 if (!mb->skip || mb->mode == MODE_I4x4 || mb->mode == VP8_MVMODE_SPLIT) {
3facfc99
RB
1287 s->vp8dsp.vp8_h_loop_filter16y_inner(dst[0]+ 4, s->linesize, bedge_lim,
1288 inner_limit, hev_thresh);
1289 s->vp8dsp.vp8_h_loop_filter16y_inner(dst[0]+ 8, s->linesize, bedge_lim,
1290 inner_limit, hev_thresh);
1291 s->vp8dsp.vp8_h_loop_filter16y_inner(dst[0]+12, s->linesize, bedge_lim,
1292 inner_limit, hev_thresh);
1293 s->vp8dsp.vp8_h_loop_filter8uv_inner(dst[1] + 4, dst[2] + 4,
1294 s->uvlinesize, bedge_lim,
1295 inner_limit, hev_thresh);
3b636f21
DC
1296 }
1297
1298 if (mb_y) {
3facfc99
RB
1299 s->vp8dsp.vp8_v_loop_filter16y(dst[0], s->linesize,
1300 mbedge_lim, inner_limit, hev_thresh);
1301 s->vp8dsp.vp8_v_loop_filter8uv(dst[1], dst[2], s->uvlinesize,
1302 mbedge_lim, inner_limit, hev_thresh);
3b636f21
DC
1303 }
1304
1305 if (!mb->skip || mb->mode == MODE_I4x4 || mb->mode == VP8_MVMODE_SPLIT) {
3facfc99
RB
1306 s->vp8dsp.vp8_v_loop_filter16y_inner(dst[0]+ 4*s->linesize,
1307 s->linesize, bedge_lim,
1308 inner_limit, hev_thresh);
1309 s->vp8dsp.vp8_v_loop_filter16y_inner(dst[0]+ 8*s->linesize,
1310 s->linesize, bedge_lim,
1311 inner_limit, hev_thresh);
1312 s->vp8dsp.vp8_v_loop_filter16y_inner(dst[0]+12*s->linesize,
1313 s->linesize, bedge_lim,
1314 inner_limit, hev_thresh);
1315 s->vp8dsp.vp8_v_loop_filter8uv_inner(dst[1] + 4 * s->uvlinesize,
1316 dst[2] + 4 * s->uvlinesize,
1317 s->uvlinesize, bedge_lim,
1318 inner_limit, hev_thresh);
3b636f21
DC
1319 }
1320}
1321
1322static void filter_mb_simple(VP8Context *s, uint8_t *dst, VP8Macroblock *mb, int mb_x, int mb_y)
1323{
1324 int filter_level, inner_limit, mbedge_lim, bedge_lim;
1325
1326 filter_level_for_mb(s, mb, &filter_level, &inner_limit, NULL);
1327 if (!filter_level)
1328 return;
1329
1330 mbedge_lim = 2*(filter_level+2) + inner_limit;
1331 bedge_lim = 2* filter_level + inner_limit;
1332
1333 if (mb_x)
1334 s->vp8dsp.vp8_h_loop_filter_simple(dst, s->linesize, mbedge_lim);
1335 if (!mb->skip || mb->mode == MODE_I4x4 || mb->mode == VP8_MVMODE_SPLIT) {
1336 s->vp8dsp.vp8_h_loop_filter_simple(dst+ 4, s->linesize, bedge_lim);
1337 s->vp8dsp.vp8_h_loop_filter_simple(dst+ 8, s->linesize, bedge_lim);
1338 s->vp8dsp.vp8_h_loop_filter_simple(dst+12, s->linesize, bedge_lim);
1339 }
1340
1341 if (mb_y)
1342 s->vp8dsp.vp8_v_loop_filter_simple(dst, s->linesize, mbedge_lim);
1343 if (!mb->skip || mb->mode == MODE_I4x4 || mb->mode == VP8_MVMODE_SPLIT) {
1344 s->vp8dsp.vp8_v_loop_filter_simple(dst+ 4*s->linesize, s->linesize, bedge_lim);
1345 s->vp8dsp.vp8_v_loop_filter_simple(dst+ 8*s->linesize, s->linesize, bedge_lim);
1346 s->vp8dsp.vp8_v_loop_filter_simple(dst+12*s->linesize, s->linesize, bedge_lim);
1347 }
1348}
1349
1350static void filter_mb_row(VP8Context *s, int mb_y)
1351{
1352 VP8Macroblock *mb = s->macroblocks + mb_y*s->mb_stride;
1353 uint8_t *dst[3] = {
1354 s->framep[VP56_FRAME_CURRENT]->data[0] + 16*mb_y*s->linesize,
1355 s->framep[VP56_FRAME_CURRENT]->data[1] + 8*mb_y*s->uvlinesize,
1356 s->framep[VP56_FRAME_CURRENT]->data[2] + 8*mb_y*s->uvlinesize
1357 };
1358 int mb_x;
1359
1360 for (mb_x = 0; mb_x < s->mb_width; mb_x++) {
9ac831c2 1361 backup_mb_border(s->top_border[mb_x+1], dst[0], dst[1], dst[2], s->linesize, s->uvlinesize, 0);
3b636f21
DC
1362 filter_mb(s, dst, mb++, mb_x, mb_y);
1363 dst[0] += 16;
1364 dst[1] += 8;
1365 dst[2] += 8;
1366 }
1367}
1368
1369static void filter_mb_row_simple(VP8Context *s, int mb_y)
1370{
1371 uint8_t *dst = s->framep[VP56_FRAME_CURRENT]->data[0] + 16*mb_y*s->linesize;
1372 VP8Macroblock *mb = s->macroblocks + mb_y*s->mb_stride;
1373 int mb_x;
1374
1375 for (mb_x = 0; mb_x < s->mb_width; mb_x++) {
9ac831c2 1376 backup_mb_border(s->top_border[mb_x+1], dst, NULL, NULL, s->linesize, 0, 1);
3b636f21
DC
1377 filter_mb_simple(s, dst, mb++, mb_x, mb_y);
1378 dst += 16;
1379 }
1380}
1381
1382static int vp8_decode_frame(AVCodecContext *avctx, void *data, int *data_size,
1383 AVPacket *avpkt)
1384{
1385 VP8Context *s = avctx->priv_data;
1386 int ret, mb_x, mb_y, i, y, referenced;
1387 enum AVDiscard skip_thresh;
1388 AVFrame *curframe;
1389
1390 if ((ret = decode_frame_header(s, avpkt->data, avpkt->size)) < 0)
1391 return ret;
1392
1393 referenced = s->update_last || s->update_golden == VP56_FRAME_CURRENT
1394 || s->update_altref == VP56_FRAME_CURRENT;
1395
1396 skip_thresh = !referenced ? AVDISCARD_NONREF :
1397 !s->keyframe ? AVDISCARD_NONKEY : AVDISCARD_ALL;
1398
1399 if (avctx->skip_frame >= skip_thresh) {
1400 s->invisible = 1;
1401 goto skip_decode;
1402 }
9ac831c2 1403 s->deblock_filter = s->filter.level && avctx->skip_loop_filter < skip_thresh;
3b636f21
DC
1404
1405 for (i = 0; i < 4; i++)
1406 if (&s->frames[i] != s->framep[VP56_FRAME_PREVIOUS] &&
1407 &s->frames[i] != s->framep[VP56_FRAME_GOLDEN] &&
1408 &s->frames[i] != s->framep[VP56_FRAME_GOLDEN2]) {
1409 curframe = s->framep[VP56_FRAME_CURRENT] = &s->frames[i];
1410 break;
1411 }
1412 if (curframe->data[0])
1413 avctx->release_buffer(avctx, curframe);
1414
1415 curframe->key_frame = s->keyframe;
1416 curframe->pict_type = s->keyframe ? FF_I_TYPE : FF_P_TYPE;
1417 curframe->reference = referenced ? 3 : 0;
1418 if ((ret = avctx->get_buffer(avctx, curframe))) {
1419 av_log(avctx, AV_LOG_ERROR, "get_buffer() failed!\n");
1420 return ret;
1421 }
1422
1423 // Given that arithmetic probabilities are updated every frame, it's quite likely
1424 // that the values we have on a random interframe are complete junk if we didn't
1425 // start decode on a keyframe. So just don't display anything rather than junk.
1426 if (!s->keyframe && (!s->framep[VP56_FRAME_PREVIOUS] ||
1427 !s->framep[VP56_FRAME_GOLDEN] ||
1428 !s->framep[VP56_FRAME_GOLDEN2])) {
1429 av_log(avctx, AV_LOG_WARNING, "Discarding interframe without a prior keyframe!\n");
1430 return AVERROR_INVALIDDATA;
1431 }
1432
1433 s->linesize = curframe->linesize[0];
1434 s->uvlinesize = curframe->linesize[1];
1435
1436 if (!s->edge_emu_buffer)
1437 s->edge_emu_buffer = av_malloc(21*s->linesize);
1438
1439 memset(s->top_nnz, 0, s->mb_width*sizeof(*s->top_nnz));
1440
1441 // top edge of 127 for intra prediction
9ac831c2 1442 memset(s->top_border, 127, (s->mb_width+1)*sizeof(*s->top_border));
3b636f21
DC
1443
1444 for (mb_y = 0; mb_y < s->mb_height; mb_y++) {
1445 VP56RangeCoder *c = &s->coeff_partition[mb_y & (s->num_coeff_partitions-1)];
1446 VP8Macroblock *mb = s->macroblocks + mb_y*s->mb_stride;
1447 uint8_t *intra4x4 = s->intra4x4_pred_mode + 4*mb_y*s->b4_stride;
1448 uint8_t *dst[3] = {
1449 curframe->data[0] + 16*mb_y*s->linesize,
1450 curframe->data[1] + 8*mb_y*s->uvlinesize,
1451 curframe->data[2] + 8*mb_y*s->uvlinesize
1452 };
1453
1454 memset(s->left_nnz, 0, sizeof(s->left_nnz));
1455
1456 // left edge of 129 for intra prediction
1457 if (!(avctx->flags & CODEC_FLAG_EMU_EDGE))
1458 for (i = 0; i < 3; i++)
1459 for (y = 0; y < 16>>!!i; y++)
1460 dst[i][y*curframe->linesize[i]-1] = 129;
9ac831c2
DC
1461 if (mb_y)
1462 memset(s->top_border, 129, sizeof(*s->top_border));
3b636f21
DC
1463
1464 for (mb_x = 0; mb_x < s->mb_width; mb_x++) {
d1c58fce
JGG
1465 uint8_t *intra4x4_mb = s->keyframe ? intra4x4 + 4*mb_x : s->intra4x4_pred_mode_mb;
1466
d864dee8
JGG
1467 /* Prefetch the current frame, 4 MBs ahead */
1468 s->dsp.prefetch(dst[0] + (mb_x&3)*4*s->linesize + 64, s->linesize, 4);
1469 s->dsp.prefetch(dst[1] + (mb_x&7)*s->uvlinesize + 64, dst[2] - dst[1], 2);
1470
d1c58fce 1471 decode_mb_mode(s, mb, mb_x, mb_y, intra4x4_mb);
3b636f21
DC
1472
1473 if (!mb->skip)
1474 decode_mb_coeffs(s, c, mb, s->top_nnz[mb_x], s->left_nnz);
1475 else {
1476 AV_ZERO128(s->non_zero_count_cache); // luma
1477 AV_ZERO64(s->non_zero_count_cache[4]); // chroma
1478 }
1479
1480 if (mb->mode <= MODE_I4x4) {
d1c58fce 1481 intra_predict(s, dst, mb, intra4x4_mb, mb_x, mb_y);
3b636f21
DC
1482 memset(mb->bmv, 0, sizeof(mb->bmv));
1483 } else {
1484 inter_predict(s, dst, mb, mb_x, mb_y);
1485 }
1486
1487 if (!mb->skip) {
1488 idct_mb(s, dst[0], dst[1], dst[2], mb);
1489 } else {
1490 AV_ZERO64(s->left_nnz);
1491 AV_WN64(s->top_nnz[mb_x], 0); // array of 9, so unaligned
1492
1493 // Reset DC block predictors if they would exist if the mb had coefficients
1494 if (mb->mode != MODE_I4x4 && mb->mode != VP8_MVMODE_SPLIT) {
1495 s->left_nnz[8] = 0;
1496 s->top_nnz[mb_x][8] = 0;
1497 }
1498 }
1499
1500 dst[0] += 16;
1501 dst[1] += 8;
1502 dst[2] += 8;
1503 mb++;
1504 }
9ac831c2 1505 if (s->deblock_filter) {
3b636f21 1506 if (s->filter.simple)
9ac831c2 1507 filter_mb_row_simple(s, mb_y);
3b636f21 1508 else
9ac831c2 1509 filter_mb_row(s, mb_y);
3b636f21
DC
1510 }
1511 }
3b636f21
DC
1512
1513skip_decode:
1514 // if future frames don't use the updated probabilities,
1515 // reset them to the values we saved
1516 if (!s->update_probabilities)
1517 s->prob[0] = s->prob[1];
1518
1519 // check if golden and altref are swapped
1520 if (s->update_altref == VP56_FRAME_GOLDEN &&
1521 s->update_golden == VP56_FRAME_GOLDEN2)
1522 FFSWAP(AVFrame *, s->framep[VP56_FRAME_GOLDEN], s->framep[VP56_FRAME_GOLDEN2]);
1523 else {
1524 if (s->update_altref != VP56_FRAME_NONE)
1525 s->framep[VP56_FRAME_GOLDEN2] = s->framep[s->update_altref];
1526
1527 if (s->update_golden != VP56_FRAME_NONE)
1528 s->framep[VP56_FRAME_GOLDEN] = s->framep[s->update_golden];
1529 }
1530
1531 if (s->update_last) // move cur->prev
1532 s->framep[VP56_FRAME_PREVIOUS] = s->framep[VP56_FRAME_CURRENT];
1533
1534 // release no longer referenced frames
1535 for (i = 0; i < 4; i++)
1536 if (s->frames[i].data[0] &&
1537 &s->frames[i] != s->framep[VP56_FRAME_CURRENT] &&
1538 &s->frames[i] != s->framep[VP56_FRAME_PREVIOUS] &&
1539 &s->frames[i] != s->framep[VP56_FRAME_GOLDEN] &&
1540 &s->frames[i] != s->framep[VP56_FRAME_GOLDEN2])
1541 avctx->release_buffer(avctx, &s->frames[i]);
1542
1543 if (!s->invisible) {
1544 *(AVFrame*)data = *s->framep[VP56_FRAME_CURRENT];
1545 *data_size = sizeof(AVFrame);
1546 }
1547
1548 return avpkt->size;
1549}
1550
1551static av_cold int vp8_decode_init(AVCodecContext *avctx)
1552{
1553 VP8Context *s = avctx->priv_data;
1554
1555 s->avctx = avctx;
1556 avctx->pix_fmt = PIX_FMT_YUV420P;
1557
1558 dsputil_init(&s->dsp, avctx);
1559 ff_h264_pred_init(&s->hpc, CODEC_ID_VP8);
1560 ff_vp8dsp_init(&s->vp8dsp);
1561
1562 // intra pred needs edge emulation among other things
1563 if (avctx->flags&CODEC_FLAG_EMU_EDGE) {
03ac56e7 1564 av_log(avctx, AV_LOG_ERROR, "Edge emulation not supported\n");
3b636f21
DC
1565 return AVERROR_PATCHWELCOME;
1566 }
1567
1568 return 0;
1569}
1570
1571static av_cold int vp8_decode_free(AVCodecContext *avctx)
1572{
1573 vp8_decode_flush(avctx);
1574 return 0;
1575}
1576
1577AVCodec vp8_decoder = {
1578 "vp8",
1579 AVMEDIA_TYPE_VIDEO,
1580 CODEC_ID_VP8,
1581 sizeof(VP8Context),
1582 vp8_decode_init,
1583 NULL,
1584 vp8_decode_free,
1585 vp8_decode_frame,
1586 CODEC_CAP_DR1,
1587 .flush = vp8_decode_flush,
1588 .long_name = NULL_IF_CONFIG_SMALL("On2 VP8"),
1589};