add the minimal documentation to make this decoder useful
[libav.git] / libavcodec / wmadec.c
CommitLineData
bc8d1857
FB
1/*
2 * WMA compatible decoder
3 * Copyright (c) 2002 The FFmpeg Project.
4 *
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation; either
8 * version 2 of the License, or (at your option) any later version.
9 *
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Lesser General Public License for more details.
14 *
15 * You should have received a copy of the GNU Lesser General Public
16 * License along with this library; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
983e3246
MN
19
20/**
21 * @file wmadec.c
22 * WMA compatible decoder.
7e56cd92
MM
23 * This decoder handles Microsoft Windows Media Audio data, versions 1 & 2.
24 * WMA v1 is identified by audio format 0x160 in Microsoft media files
25 * (ASF/AVI/WAV). WMA v2 is identified by audio format 0x161.
26 *
27 * To use this decoder, a calling application must supply the extra data
28 * bytes provided with the WMA data. These are the extra, codec-specific
29 * bytes at the end of a WAVEFORMATEX data structure. Transmit these bytes
30 * to the decoder using the extradata[_size] fields in AVCodecContext. There
31 * should be 4 extra bytes for v1 data and 6 extra bytes for v2 data.
983e3246
MN
32 */
33
bc8d1857
FB
34#include "avcodec.h"
35#include "dsputil.h"
36
bc8d1857
FB
37/* size of blocks */
38#define BLOCK_MIN_BITS 7
39#define BLOCK_MAX_BITS 11
40#define BLOCK_MAX_SIZE (1 << BLOCK_MAX_BITS)
41
42#define BLOCK_NB_SIZES (BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1)
43
44/* XXX: find exact max size */
45#define HIGH_BAND_MAX_SIZE 16
46
47#define NB_LSP_COEFS 10
48
b8e6ad84 49/* XXX: is it a suitable value ? */
bc8d1857
FB
50#define MAX_CODED_SUPERFRAME_SIZE 4096
51
52#define MAX_CHANNELS 2
53
54#define NOISE_TAB_SIZE 8192
55
56#define LSP_POW_BITS 7
57
58typedef struct WMADecodeContext {
59 GetBitContext gb;
60 int sample_rate;
61 int nb_channels;
62 int bit_rate;
63 int version; /* 1 = 0x160 (WMAV1), 2 = 0x161 (WMAV2) */
64 int block_align;
65 int use_bit_reservoir;
66 int use_variable_block_len;
67 int use_exp_vlc; /* exponent coding: 0 = lsp, 1 = vlc + delta */
68 int use_noise_coding; /* true if perceptual noise is added */
69 int byte_offset_bits;
70 VLC exp_vlc;
71 int exponent_sizes[BLOCK_NB_SIZES];
72 uint16_t exponent_bands[BLOCK_NB_SIZES][25];
73 int high_band_start[BLOCK_NB_SIZES]; /* index of first coef in high band */
74 int coefs_start; /* first coded coef */
75 int coefs_end[BLOCK_NB_SIZES]; /* max number of coded coefficients */
76 int exponent_high_sizes[BLOCK_NB_SIZES];
77 int exponent_high_bands[BLOCK_NB_SIZES][HIGH_BAND_MAX_SIZE];
78 VLC hgain_vlc;
79
80 /* coded values in high bands */
81 int high_band_coded[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
82 int high_band_values[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
83
84 /* there are two possible tables for spectral coefficients */
85 VLC coef_vlc[2];
86 uint16_t *run_table[2];
87 uint16_t *level_table[2];
88 /* frame info */
89 int frame_len; /* frame length in samples */
90 int frame_len_bits; /* frame_len = 1 << frame_len_bits */
91 int nb_block_sizes; /* number of block sizes */
92 /* block info */
93 int reset_block_lengths;
94 int block_len_bits; /* log2 of current block length */
95 int next_block_len_bits; /* log2 of next block length */
96 int prev_block_len_bits; /* log2 of prev block length */
97 int block_len; /* block length in samples */
98 int block_num; /* block number in current frame */
99 int block_pos; /* current position in frame */
100 uint8_t ms_stereo; /* true if mid/side stereo mode */
101 uint8_t channel_coded[MAX_CHANNELS]; /* true if channel is coded */
b35a02d5 102 float exponents[MAX_CHANNELS][BLOCK_MAX_SIZE] __attribute__((aligned(16)));
bc8d1857
FB
103 float max_exponent[MAX_CHANNELS];
104 int16_t coefs1[MAX_CHANNELS][BLOCK_MAX_SIZE];
b35a02d5 105 float coefs[MAX_CHANNELS][BLOCK_MAX_SIZE] __attribute__((aligned(16)));
bc8d1857 106 MDCTContext mdct_ctx[BLOCK_NB_SIZES];
8e1e6f31 107 float *windows[BLOCK_NB_SIZES];
b35a02d5 108 FFTSample mdct_tmp[BLOCK_MAX_SIZE] __attribute__((aligned(16))); /* temporary storage for imdct */
bc8d1857 109 /* output buffer for one frame and the last for IMDCT windowing */
b35a02d5 110 float frame_out[MAX_CHANNELS][BLOCK_MAX_SIZE * 2] __attribute__((aligned(16)));
bc8d1857
FB
111 /* last frame info */
112 uint8_t last_superframe[MAX_CODED_SUPERFRAME_SIZE + 4]; /* padding added */
113 int last_bitoffset;
114 int last_superframe_len;
115 float noise_table[NOISE_TAB_SIZE];
116 int noise_index;
117 float noise_mult; /* XXX: suppress that and integrate it in the noise array */
118 /* lsp_to_curve tables */
119 float lsp_cos_table[BLOCK_MAX_SIZE];
120 float lsp_pow_e_table[256];
121 float lsp_pow_m_table1[(1 << LSP_POW_BITS)];
122 float lsp_pow_m_table2[(1 << LSP_POW_BITS)];
aef3c69d
AB
123
124#ifdef TRACE
125 int frame_count;
126#endif
bc8d1857
FB
127} WMADecodeContext;
128
129typedef struct CoefVLCTable {
130 int n; /* total number of codes */
131 const uint32_t *huffcodes; /* VLC bit values */
132 const uint8_t *huffbits; /* VLC bit size */
133 const uint16_t *levels; /* table to build run/level tables */
134} CoefVLCTable;
135
136static void wma_lsp_to_curve_init(WMADecodeContext *s, int frame_len);
137
138#include "wmadata.h"
139
f2899fb1 140#ifdef TRACE
bc8d1857
FB
141static void dump_shorts(const char *name, const short *tab, int n)
142{
143 int i;
144
f2899fb1 145 tprintf("%s[%d]:\n", name, n);
bc8d1857
FB
146 for(i=0;i<n;i++) {
147 if ((i & 7) == 0)
f2899fb1
AB
148 tprintf("%4d: ", i);
149 tprintf(" %5d.0", tab[i]);
bc8d1857 150 if ((i & 7) == 7)
f2899fb1 151 tprintf("\n");
bc8d1857
FB
152 }
153}
154
155static void dump_floats(const char *name, int prec, const float *tab, int n)
156{
157 int i;
158
f2899fb1 159 tprintf("%s[%d]:\n", name, n);
bc8d1857
FB
160 for(i=0;i<n;i++) {
161 if ((i & 7) == 0)
f2899fb1
AB
162 tprintf("%4d: ", i);
163 tprintf(" %8.*f", prec, tab[i]);
bc8d1857 164 if ((i & 7) == 7)
f2899fb1 165 tprintf("\n");
bc8d1857
FB
166 }
167 if ((i & 7) != 0)
f2899fb1 168 tprintf("\n");
bc8d1857 169}
bc8d1857
FB
170#endif
171
172/* XXX: use same run/length optimization as mpeg decoders */
173static void init_coef_vlc(VLC *vlc,
174 uint16_t **prun_table, uint16_t **plevel_table,
175 const CoefVLCTable *vlc_table)
176{
177 int n = vlc_table->n;
178 const uint8_t *table_bits = vlc_table->huffbits;
179 const uint32_t *table_codes = vlc_table->huffcodes;
180 const uint16_t *levels_table = vlc_table->levels;
181 uint16_t *run_table, *level_table;
182 const uint16_t *p;
183 int i, l, j, level;
184
185 init_vlc(vlc, 9, n, table_bits, 1, 1, table_codes, 4, 4);
186
8e1e6f31
FB
187 run_table = av_malloc(n * sizeof(uint16_t));
188 level_table = av_malloc(n * sizeof(uint16_t));
bc8d1857
FB
189 p = levels_table;
190 i = 2;
191 level = 1;
192 while (i < n) {
193 l = *p++;
194 for(j=0;j<l;j++) {
195 run_table[i] = j;
196 level_table[i] = level;
197 i++;
198 }
199 level++;
200 }
201 *prun_table = run_table;
202 *plevel_table = level_table;
203}
204
205static int wma_decode_init(AVCodecContext * avctx)
206{
207 WMADecodeContext *s = avctx->priv_data;
208 int i, flags1, flags2;
209 float *window;
210 uint8_t *extradata;
211 float bps1, high_freq, bps;
212 int sample_rate1;
213 int coef_vlc_table;
214
215 s->sample_rate = avctx->sample_rate;
216 s->nb_channels = avctx->channels;
217 s->bit_rate = avctx->bit_rate;
218 s->block_align = avctx->block_align;
219
4707cb07 220 if (avctx->codec->id == CODEC_ID_WMAV1) {
bc8d1857
FB
221 s->version = 1;
222 } else {
223 s->version = 2;
224 }
225
226 /* extract flag infos */
227 flags1 = 0;
228 flags2 = 0;
229 extradata = avctx->extradata;
230 if (s->version == 1 && avctx->extradata_size >= 4) {
231 flags1 = extradata[0] | (extradata[1] << 8);
232 flags2 = extradata[2] | (extradata[3] << 8);
233 } else if (s->version == 2 && avctx->extradata_size >= 6) {
234 flags1 = extradata[0] | (extradata[1] << 8) |
235 (extradata[2] << 16) | (extradata[3] << 24);
236 flags2 = extradata[4] | (extradata[5] << 8);
237 }
238 s->use_exp_vlc = flags2 & 0x0001;
239 s->use_bit_reservoir = flags2 & 0x0002;
240 s->use_variable_block_len = flags2 & 0x0004;
241
242 /* compute MDCT block size */
243 if (s->sample_rate <= 16000) {
244 s->frame_len_bits = 9;
ab253fe3
FB
245 } else if (s->sample_rate <= 22050 ||
246 (s->sample_rate <= 32000 && s->version == 1)) {
bc8d1857
FB
247 s->frame_len_bits = 10;
248 } else {
249 s->frame_len_bits = 11;
250 }
251 s->frame_len = 1 << s->frame_len_bits;
252 if (s->use_variable_block_len) {
4707cb07
FB
253 int nb_max, nb;
254 nb = ((flags2 >> 3) & 3) + 1;
255 if ((s->bit_rate / s->nb_channels) >= 32000)
256 nb += 2;
257 nb_max = s->frame_len_bits - BLOCK_MIN_BITS;
258 if (nb > nb_max)
259 nb = nb_max;
260 s->nb_block_sizes = nb + 1;
bc8d1857
FB
261 } else {
262 s->nb_block_sizes = 1;
263 }
264
265 /* init rate dependant parameters */
266 s->use_noise_coding = 1;
267 high_freq = s->sample_rate * 0.5;
268
269 /* if version 2, then the rates are normalized */
270 sample_rate1 = s->sample_rate;
271 if (s->version == 2) {
272 if (sample_rate1 >= 44100)
273 sample_rate1 = 44100;
274 else if (sample_rate1 >= 22050)
275 sample_rate1 = 22050;
276 else if (sample_rate1 >= 16000)
277 sample_rate1 = 16000;
278 else if (sample_rate1 >= 11025)
279 sample_rate1 = 11025;
280 else if (sample_rate1 >= 8000)
281 sample_rate1 = 8000;
282 }
283
284 bps = (float)s->bit_rate / (float)(s->nb_channels * s->sample_rate);
285 s->byte_offset_bits = av_log2((int)(bps * s->frame_len / 8.0)) + 2;
286
287 /* compute high frequency value and choose if noise coding should
288 be activated */
289 bps1 = bps;
290 if (s->nb_channels == 2)
291 bps1 = bps * 1.6;
292 if (sample_rate1 == 44100) {
293 if (bps1 >= 0.61)
294 s->use_noise_coding = 0;
295 else
296 high_freq = high_freq * 0.4;
297 } else if (sample_rate1 == 22050) {
298 if (bps1 >= 1.16)
299 s->use_noise_coding = 0;
300 else if (bps1 >= 0.72)
301 high_freq = high_freq * 0.7;
302 else
303 high_freq = high_freq * 0.6;
304 } else if (sample_rate1 == 16000) {
305 if (bps > 0.5)
306 high_freq = high_freq * 0.5;
307 else
308 high_freq = high_freq * 0.3;
309 } else if (sample_rate1 == 11025) {
310 high_freq = high_freq * 0.7;
311 } else if (sample_rate1 == 8000) {
312 if (bps <= 0.625) {
313 high_freq = high_freq * 0.5;
314 } else if (bps > 0.75) {
315 s->use_noise_coding = 0;
316 } else {
317 high_freq = high_freq * 0.65;
318 }
319 } else {
320 if (bps >= 0.8) {
321 high_freq = high_freq * 0.75;
322 } else if (bps >= 0.6) {
323 high_freq = high_freq * 0.6;
324 } else {
325 high_freq = high_freq * 0.5;
326 }
327 }
f2899fb1
AB
328 dprintf("flags1=0x%x flags2=0x%x\n", flags1, flags2);
329 dprintf("version=%d channels=%d sample_rate=%d bitrate=%d block_align=%d\n",
bc8d1857
FB
330 s->version, s->nb_channels, s->sample_rate, s->bit_rate,
331 s->block_align);
f2899fb1 332 dprintf("bps=%f bps1=%f high_freq=%f bitoffset=%d\n",
bc8d1857 333 bps, bps1, high_freq, s->byte_offset_bits);
f2899fb1 334 dprintf("use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
4707cb07 335 s->use_noise_coding, s->use_exp_vlc, s->nb_block_sizes);
bc8d1857
FB
336
337 /* compute the scale factor band sizes for each MDCT block size */
338 {
339 int a, b, pos, lpos, k, block_len, i, j, n;
340 const uint8_t *table;
341
342 if (s->version == 1) {
343 s->coefs_start = 3;
344 } else {
345 s->coefs_start = 0;
346 }
347 for(k = 0; k < s->nb_block_sizes; k++) {
348 block_len = s->frame_len >> k;
349
350 if (s->version == 1) {
351 lpos = 0;
352 for(i=0;i<25;i++) {
353 a = wma_critical_freqs[i];
354 b = s->sample_rate;
355 pos = ((block_len * 2 * a) + (b >> 1)) / b;
356 if (pos > block_len)
357 pos = block_len;
358 s->exponent_bands[0][i] = pos - lpos;
359 if (pos >= block_len) {
360 i++;
361 break;
362 }
363 lpos = pos;
364 }
365 s->exponent_sizes[0] = i;
366 } else {
367 /* hardcoded tables */
368 table = NULL;
369 a = s->frame_len_bits - BLOCK_MIN_BITS - k;
370 if (a < 3) {
371 if (s->sample_rate >= 44100)
372 table = exponent_band_44100[a];
373 else if (s->sample_rate >= 32000)
374 table = exponent_band_32000[a];
375 else if (s->sample_rate >= 22050)
376 table = exponent_band_22050[a];
377 }
378 if (table) {
379 n = *table++;
380 for(i=0;i<n;i++)
381 s->exponent_bands[k][i] = table[i];
382 s->exponent_sizes[k] = n;
383 } else {
384 j = 0;
385 lpos = 0;
386 for(i=0;i<25;i++) {
387 a = wma_critical_freqs[i];
388 b = s->sample_rate;
389 pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
390 pos <<= 2;
391 if (pos > block_len)
392 pos = block_len;
393 if (pos > lpos)
394 s->exponent_bands[k][j++] = pos - lpos;
395 if (pos >= block_len)
396 break;
397 lpos = pos;
398 }
399 s->exponent_sizes[k] = j;
400 }
401 }
402
403 /* max number of coefs */
404 s->coefs_end[k] = (s->frame_len - ((s->frame_len * 9) / 100)) >> k;
405 /* high freq computation */
406 s->high_band_start[k] = (int)((block_len * 2 * high_freq) /
407 s->sample_rate + 0.5);
408 n = s->exponent_sizes[k];
409 j = 0;
410 pos = 0;
411 for(i=0;i<n;i++) {
412 int start, end;
413 start = pos;
414 pos += s->exponent_bands[k][i];
415 end = pos;
416 if (start < s->high_band_start[k])
417 start = s->high_band_start[k];
418 if (end > s->coefs_end[k])
419 end = s->coefs_end[k];
420 if (end > start)
421 s->exponent_high_bands[k][j++] = end - start;
422 }
423 s->exponent_high_sizes[k] = j;
424#if 0
f2899fb1 425 tprintf("%5d: coefs_end=%d high_band_start=%d nb_high_bands=%d: ",
bc8d1857
FB
426 s->frame_len >> k,
427 s->coefs_end[k],
428 s->high_band_start[k],
429 s->exponent_high_sizes[k]);
430 for(j=0;j<s->exponent_high_sizes[k];j++)
f2899fb1
AB
431 tprintf(" %d", s->exponent_high_bands[k][j]);
432 tprintf("\n");
bc8d1857
FB
433#endif
434 }
435 }
436
f2899fb1 437#ifdef TRACE
bc8d1857
FB
438 {
439 int i, j;
440 for(i = 0; i < s->nb_block_sizes; i++) {
f2899fb1 441 tprintf("%5d: n=%2d:",
bc8d1857
FB
442 s->frame_len >> i,
443 s->exponent_sizes[i]);
444 for(j=0;j<s->exponent_sizes[i];j++)
f2899fb1
AB
445 tprintf(" %d", s->exponent_bands[i][j]);
446 tprintf("\n");
bc8d1857
FB
447 }
448 }
449#endif
450
451 /* init MDCT */
452 for(i = 0; i < s->nb_block_sizes; i++)
ab253fe3 453 ff_mdct_init(&s->mdct_ctx[i], s->frame_len_bits - i + 1, 1);
bc8d1857
FB
454
455 /* init MDCT windows : simple sinus window */
456 for(i = 0; i < s->nb_block_sizes; i++) {
457 int n, j;
458 float alpha;
459 n = 1 << (s->frame_len_bits - i);
460 window = av_malloc(sizeof(float) * n);
461 alpha = M_PI / (2.0 * n);
462 for(j=0;j<n;j++) {
463 window[n - j - 1] = sin((j + 0.5) * alpha);
464 }
465 s->windows[i] = window;
466 }
467
468 s->reset_block_lengths = 1;
469
470 if (s->use_noise_coding) {
471
472 /* init the noise generator */
473 if (s->use_exp_vlc)
474 s->noise_mult = 0.02;
475 else
476 s->noise_mult = 0.04;
477
f2899fb1 478#ifdef TRACE
bc8d1857
FB
479 for(i=0;i<NOISE_TAB_SIZE;i++)
480 s->noise_table[i] = 1.0 * s->noise_mult;
481#else
482 {
483 unsigned int seed;
484 float norm;
485 seed = 1;
486 norm = (1.0 / (float)(1LL << 31)) * sqrt(3) * s->noise_mult;
487 for(i=0;i<NOISE_TAB_SIZE;i++) {
488 seed = seed * 314159 + 1;
489 s->noise_table[i] = (float)((int)seed) * norm;
490 }
491 }
492#endif
493 init_vlc(&s->hgain_vlc, 9, sizeof(hgain_huffbits),
494 hgain_huffbits, 1, 1,
495 hgain_huffcodes, 2, 2);
496 }
497
498 if (s->use_exp_vlc) {
499 init_vlc(&s->exp_vlc, 9, sizeof(scale_huffbits),
500 scale_huffbits, 1, 1,
501 scale_huffcodes, 4, 4);
502 } else {
503 wma_lsp_to_curve_init(s, s->frame_len);
504 }
505
506 /* choose the VLC tables for the coefficients */
507 coef_vlc_table = 2;
508 if (s->sample_rate >= 32000) {
509 if (bps1 < 0.72)
510 coef_vlc_table = 0;
511 else if (bps1 < 1.16)
512 coef_vlc_table = 1;
513 }
514
515 init_coef_vlc(&s->coef_vlc[0], &s->run_table[0], &s->level_table[0],
516 &coef_vlcs[coef_vlc_table * 2]);
517 init_coef_vlc(&s->coef_vlc[1], &s->run_table[1], &s->level_table[1],
518 &coef_vlcs[coef_vlc_table * 2 + 1]);
519 return 0;
520}
521
522/* interpolate values for a bigger or smaller block. The block must
523 have multiple sizes */
524static void interpolate_array(float *scale, int old_size, int new_size)
525{
526 int i, j, jincr, k;
527 float v;
528
529 if (new_size > old_size) {
530 jincr = new_size / old_size;
531 j = new_size;
532 for(i = old_size - 1; i >=0; i--) {
533 v = scale[i];
534 k = jincr;
535 do {
536 scale[--j] = v;
537 } while (--k);
538 }
539 } else if (new_size < old_size) {
540 j = 0;
541 jincr = old_size / new_size;
542 for(i = 0; i < new_size; i++) {
543 scale[i] = scale[j];
544 j += jincr;
545 }
546 }
547}
548
549/* compute x^-0.25 with an exponent and mantissa table. We use linear
550 interpolation to reduce the mantissa table size at a small speed
551 expense (linear interpolation approximately doubles the number of
552 bits of precision). */
553static inline float pow_m1_4(WMADecodeContext *s, float x)
554{
555 union {
556 float f;
557 unsigned int v;
558 } u, t;
559 unsigned int e, m;
560 float a, b;
561
562 u.f = x;
563 e = u.v >> 23;
564 m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
565 /* build interpolation scale: 1 <= t < 2. */
566 t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
567 a = s->lsp_pow_m_table1[m];
568 b = s->lsp_pow_m_table2[m];
569 return s->lsp_pow_e_table[e] * (a + b * t.f);
570}
571
572static void wma_lsp_to_curve_init(WMADecodeContext *s, int frame_len)
573{
574 float wdel, a, b;
575 int i, e, m;
576
577 wdel = M_PI / frame_len;
578 for(i=0;i<frame_len;i++)
579 s->lsp_cos_table[i] = 2.0f * cos(wdel * i);
580
581 /* tables for x^-0.25 computation */
582 for(i=0;i<256;i++) {
583 e = i - 126;
584 s->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
585 }
586
587 /* NOTE: these two tables are needed to avoid two operations in
588 pow_m1_4 */
589 b = 1.0;
590 for(i=(1 << LSP_POW_BITS) - 1;i>=0;i--) {
591 m = (1 << LSP_POW_BITS) + i;
592 a = (float)m * (0.5 / (1 << LSP_POW_BITS));
593 a = pow(a, -0.25);
594 s->lsp_pow_m_table1[i] = 2 * a - b;
595 s->lsp_pow_m_table2[i] = b - a;
596 b = a;
597 }
598#if 0
599 for(i=1;i<20;i++) {
600 float v, r1, r2;
601 v = 5.0 / i;
602 r1 = pow_m1_4(s, v);
603 r2 = pow(v,-0.25);
604 printf("%f^-0.25=%f e=%f\n", v, r1, r2 - r1);
605 }
606#endif
607}
608
609/* NOTE: We use the same code as Vorbis here */
610/* XXX: optimize it further with SSE/3Dnow */
611static void wma_lsp_to_curve(WMADecodeContext *s,
612 float *out, float *val_max_ptr,
613 int n, float *lsp)
614{
615 int i, j;
616 float p, q, w, v, val_max;
617
618 val_max = 0;
619 for(i=0;i<n;i++) {
620 p = 0.5f;
621 q = 0.5f;
622 w = s->lsp_cos_table[i];
623 for(j=1;j<NB_LSP_COEFS;j+=2){
624 q *= w - lsp[j - 1];
625 p *= w - lsp[j];
626 }
627 p *= p * (2.0f - w);
628 q *= q * (2.0f + w);
629 v = p + q;
630 v = pow_m1_4(s, v);
631 if (v > val_max)
632 val_max = v;
633 out[i] = v;
634 }
635 *val_max_ptr = val_max;
636}
637
638/* decode exponents coded with LSP coefficients (same idea as Vorbis) */
639static void decode_exp_lsp(WMADecodeContext *s, int ch)
640{
641 float lsp_coefs[NB_LSP_COEFS];
642 int val, i;
643
644 for(i = 0; i < NB_LSP_COEFS; i++) {
645 if (i == 0 || i >= 8)
646 val = get_bits(&s->gb, 3);
647 else
648 val = get_bits(&s->gb, 4);
649 lsp_coefs[i] = lsp_codebook[i][val];
650 }
651
652 wma_lsp_to_curve(s, s->exponents[ch], &s->max_exponent[ch],
653 s->block_len, lsp_coefs);
654}
655
656/* decode exponents coded with VLC codes */
657static int decode_exp_vlc(WMADecodeContext *s, int ch)
658{
659 int last_exp, n, code;
660 const uint16_t *ptr, *band_ptr;
661 float v, *q, max_scale, *q_end;
662
663 band_ptr = s->exponent_bands[s->frame_len_bits - s->block_len_bits];
664 ptr = band_ptr;
665 q = s->exponents[ch];
666 q_end = q + s->block_len;
667 max_scale = 0;
668 if (s->version == 1) {
669 last_exp = get_bits(&s->gb, 5) + 10;
670 /* XXX: use a table */
671 v = pow(10, last_exp * (1.0 / 16.0));
672 max_scale = v;
673 n = *ptr++;
674 do {
675 *q++ = v;
676 } while (--n);
677 }
678 last_exp = 36;
679 while (q < q_end) {
680 code = get_vlc(&s->gb, &s->exp_vlc);
681 if (code < 0)
682 return -1;
683 /* NOTE: this offset is the same as MPEG4 AAC ! */
684 last_exp += code - 60;
685 /* XXX: use a table */
686 v = pow(10, last_exp * (1.0 / 16.0));
687 if (v > max_scale)
688 max_scale = v;
689 n = *ptr++;
690 do {
691 *q++ = v;
692 } while (--n);
693 }
694 s->max_exponent[ch] = max_scale;
695 return 0;
696}
697
698/* return 0 if OK. return 1 if last block of frame. return -1 if
699 unrecorrable error. */
700static int wma_decode_block(WMADecodeContext *s)
701{
702 int n, v, a, ch, code, bsize;
703 int coef_nb_bits, total_gain, parse_exponents;
704 float window[BLOCK_MAX_SIZE * 2];
705 int nb_coefs[MAX_CHANNELS];
706 float mdct_norm;
707
aef3c69d
AB
708#ifdef TRACE
709 tprintf("***decode_block: %d:%d\n", s->frame_count - 1, s->block_num);
710#endif
bc8d1857
FB
711
712 /* compute current block length */
713 if (s->use_variable_block_len) {
714 n = av_log2(s->nb_block_sizes - 1) + 1;
715
716 if (s->reset_block_lengths) {
717 s->reset_block_lengths = 0;
718 v = get_bits(&s->gb, n);
719 if (v >= s->nb_block_sizes)
720 return -1;
721 s->prev_block_len_bits = s->frame_len_bits - v;
722 v = get_bits(&s->gb, n);
723 if (v >= s->nb_block_sizes)
724 return -1;
725 s->block_len_bits = s->frame_len_bits - v;
726 } else {
727 /* update block lengths */
728 s->prev_block_len_bits = s->block_len_bits;
729 s->block_len_bits = s->next_block_len_bits;
730 }
731 v = get_bits(&s->gb, n);
732 if (v >= s->nb_block_sizes)
733 return -1;
734 s->next_block_len_bits = s->frame_len_bits - v;
735 } else {
736 /* fixed block len */
737 s->next_block_len_bits = s->frame_len_bits;
738 s->prev_block_len_bits = s->frame_len_bits;
739 s->block_len_bits = s->frame_len_bits;
740 }
741
742 /* now check if the block length is coherent with the frame length */
743 s->block_len = 1 << s->block_len_bits;
744 if ((s->block_pos + s->block_len) > s->frame_len)
745 return -1;
746
747 if (s->nb_channels == 2) {
748 s->ms_stereo = get_bits(&s->gb, 1);
749 }
750 v = 0;
751 for(ch = 0; ch < s->nb_channels; ch++) {
752 a = get_bits(&s->gb, 1);
753 s->channel_coded[ch] = a;
754 v |= a;
755 }
756 /* if no channel coded, no need to go further */
757 /* XXX: fix potential framing problems */
758 if (!v)
759 goto next;
760
761 bsize = s->frame_len_bits - s->block_len_bits;
762
763 /* read total gain and extract corresponding number of bits for
764 coef escape coding */
765 total_gain = 1;
766 for(;;) {
767 a = get_bits(&s->gb, 7);
768 total_gain += a;
769 if (a != 127)
770 break;
771 }
772
773 if (total_gain < 15)
774 coef_nb_bits = 13;
775 else if (total_gain < 32)
776 coef_nb_bits = 12;
777 else if (total_gain < 40)
778 coef_nb_bits = 11;
779 else if (total_gain < 45)
780 coef_nb_bits = 10;
781 else
782 coef_nb_bits = 9;
783
784 /* compute number of coefficients */
785 n = s->coefs_end[bsize] - s->coefs_start;
786 for(ch = 0; ch < s->nb_channels; ch++)
787 nb_coefs[ch] = n;
788
789 /* complex coding */
790 if (s->use_noise_coding) {
791
792 for(ch = 0; ch < s->nb_channels; ch++) {
793 if (s->channel_coded[ch]) {
794 int i, n, a;
795 n = s->exponent_high_sizes[bsize];
796 for(i=0;i<n;i++) {
797 a = get_bits(&s->gb, 1);
798 s->high_band_coded[ch][i] = a;
799 /* if noise coding, the coefficients are not transmitted */
800 if (a)
801 nb_coefs[ch] -= s->exponent_high_bands[bsize][i];
802 }
803 }
804 }
805 for(ch = 0; ch < s->nb_channels; ch++) {
806 if (s->channel_coded[ch]) {
807 int i, n, val, code;
808
809 n = s->exponent_high_sizes[bsize];
810 val = (int)0x80000000;
811 for(i=0;i<n;i++) {
812 if (s->high_band_coded[ch][i]) {
813 if (val == (int)0x80000000) {
814 val = get_bits(&s->gb, 7) - 19;
815 } else {
816 code = get_vlc(&s->gb, &s->hgain_vlc);
817 if (code < 0)
818 return -1;
819 val += code - 18;
820 }
821 s->high_band_values[ch][i] = val;
822 }
823 }
824 }
825 }
826 }
827
828 /* exposant can be interpolated in short blocks. */
829 parse_exponents = 1;
830 if (s->block_len_bits != s->frame_len_bits) {
831 parse_exponents = get_bits(&s->gb, 1);
832 }
833
834 if (parse_exponents) {
835 for(ch = 0; ch < s->nb_channels; ch++) {
836 if (s->channel_coded[ch]) {
837 if (s->use_exp_vlc) {
838 if (decode_exp_vlc(s, ch) < 0)
839 return -1;
840 } else {
841 decode_exp_lsp(s, ch);
842 }
843 }
844 }
845 } else {
846 for(ch = 0; ch < s->nb_channels; ch++) {
847 if (s->channel_coded[ch]) {
848 interpolate_array(s->exponents[ch], 1 << s->prev_block_len_bits,
849 s->block_len);
850 }
851 }
852 }
853
854 /* parse spectral coefficients : just RLE encoding */
855 for(ch = 0; ch < s->nb_channels; ch++) {
856 if (s->channel_coded[ch]) {
857 VLC *coef_vlc;
858 int level, run, sign, tindex;
859 int16_t *ptr, *eptr;
860 const int16_t *level_table, *run_table;
861
862 /* special VLC tables are used for ms stereo because
863 there is potentially less energy there */
864 tindex = (ch == 1 && s->ms_stereo);
865 coef_vlc = &s->coef_vlc[tindex];
866 run_table = s->run_table[tindex];
867 level_table = s->level_table[tindex];
868 /* XXX: optimize */
869 ptr = &s->coefs1[ch][0];
870 eptr = ptr + nb_coefs[ch];
871 memset(ptr, 0, s->block_len * sizeof(int16_t));
872 for(;;) {
873 code = get_vlc(&s->gb, coef_vlc);
874 if (code < 0)
875 return -1;
876 if (code == 1) {
877 /* EOB */
878 break;
879 } else if (code == 0) {
880 /* escape */
881 level = get_bits(&s->gb, coef_nb_bits);
882 /* NOTE: this is rather suboptimal. reading
883 block_len_bits would be better */
884 run = get_bits(&s->gb, s->frame_len_bits);
885 } else {
886 /* normal code */
887 run = run_table[code];
888 level = level_table[code];
889 }
890 sign = get_bits(&s->gb, 1);
891 if (!sign)
892 level = -level;
893 ptr += run;
894 if (ptr >= eptr)
895 return -1;
896 *ptr++ = level;
897 /* NOTE: EOB can be omitted */
898 if (ptr >= eptr)
899 break;
900 }
901 }
902 if (s->version == 1 && s->nb_channels >= 2) {
903 align_get_bits(&s->gb);
904 }
905 }
906
907 /* normalize */
908 {
909 int n4 = s->block_len / 2;
910 mdct_norm = 1.0 / (float)n4;
911 if (s->version == 1) {
912 mdct_norm *= sqrt(n4);
913 }
914 }
915
916 /* finally compute the MDCT coefficients */
917 for(ch = 0; ch < s->nb_channels; ch++) {
918 if (s->channel_coded[ch]) {
919 int16_t *coefs1;
920 float *coefs, *exponents, mult, mult1, noise, *exp_ptr;
921 int i, j, n, n1, last_high_band;
922 float exp_power[HIGH_BAND_MAX_SIZE];
923
924 coefs1 = s->coefs1[ch];
925 exponents = s->exponents[ch];
926 mult = pow(10, total_gain * 0.05) / s->max_exponent[ch];
927 mult *= mdct_norm;
928 coefs = s->coefs[ch];
929 if (s->use_noise_coding) {
930 mult1 = mult;
931 /* very low freqs : noise */
932 for(i = 0;i < s->coefs_start; i++) {
933 *coefs++ = s->noise_table[s->noise_index] * (*exponents++) * mult1;
934 s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
935 }
936
937 n1 = s->exponent_high_sizes[bsize];
938
939 /* compute power of high bands */
940 exp_ptr = exponents +
941 s->high_band_start[bsize] -
942 s->coefs_start;
943 last_high_band = 0; /* avoid warning */
944 for(j=0;j<n1;j++) {
945 n = s->exponent_high_bands[s->frame_len_bits -
946 s->block_len_bits][j];
947 if (s->high_band_coded[ch][j]) {
948 float e2, v;
949 e2 = 0;
950 for(i = 0;i < n; i++) {
951 v = exp_ptr[i];
952 e2 += v * v;
953 }
954 exp_power[j] = e2 / n;
955 last_high_band = j;
f2899fb1 956 tprintf("%d: power=%f (%d)\n", j, exp_power[j], n);
bc8d1857
FB
957 }
958 exp_ptr += n;
959 }
960
961 /* main freqs and high freqs */
962 for(j=-1;j<n1;j++) {
963 if (j < 0) {
964 n = s->high_band_start[bsize] -
965 s->coefs_start;
966 } else {
967 n = s->exponent_high_bands[s->frame_len_bits -
968 s->block_len_bits][j];
969 }
970 if (j >= 0 && s->high_band_coded[ch][j]) {
971 /* use noise with specified power */
972 mult1 = sqrt(exp_power[j] / exp_power[last_high_band]);
973 /* XXX: use a table */
974 mult1 = mult1 * pow(10, s->high_band_values[ch][j] * 0.05);
975 mult1 = mult1 / (s->max_exponent[ch] * s->noise_mult);
976 mult1 *= mdct_norm;
977 for(i = 0;i < n; i++) {
978 noise = s->noise_table[s->noise_index];
979 s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
980 *coefs++ = (*exponents++) * noise * mult1;
981 }
982 } else {
983 /* coded values + small noise */
984 for(i = 0;i < n; i++) {
985 noise = s->noise_table[s->noise_index];
986 s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
987 *coefs++ = ((*coefs1++) + noise) * (*exponents++) * mult;
988 }
989 }
990 }
991
992 /* very high freqs : noise */
993 n = s->block_len - s->coefs_end[bsize];
994 mult1 = mult * exponents[-1];
995 for(i = 0; i < n; i++) {
996 *coefs++ = s->noise_table[s->noise_index] * mult1;
997 s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
998 }
999 } else {
1000 /* XXX: optimize more */
1001 for(i = 0;i < s->coefs_start; i++)
1002 *coefs++ = 0.0;
1003 n = nb_coefs[ch];
1004 for(i = 0;i < n; i++) {
1005 *coefs++ = coefs1[i] * exponents[i] * mult;
1006 }
1007 n = s->block_len - s->coefs_end[bsize];
1008 for(i = 0;i < n; i++)
1009 *coefs++ = 0.0;
1010 }
1011 }
1012 }
1013
f2899fb1 1014#ifdef TRACE
bc8d1857
FB
1015 for(ch = 0; ch < s->nb_channels; ch++) {
1016 if (s->channel_coded[ch]) {
1017 dump_floats("exponents", 3, s->exponents[ch], s->block_len);
1018 dump_floats("coefs", 1, s->coefs[ch], s->block_len);
1019 }
1020 }
1021#endif
1022
1023 if (s->ms_stereo && s->channel_coded[1]) {
1024 float a, b;
1025 int i;
1026
1027 /* nominal case for ms stereo: we do it before mdct */
1028 /* no need to optimize this case because it should almost
1029 never happen */
1030 if (!s->channel_coded[0]) {
f2899fb1 1031 tprintf("rare ms-stereo case happened\n");
bc8d1857
FB
1032 memset(s->coefs[0], 0, sizeof(float) * s->block_len);
1033 s->channel_coded[0] = 1;
1034 }
1035
1036 for(i = 0; i < s->block_len; i++) {
1037 a = s->coefs[0][i];
1038 b = s->coefs[1][i];
1039 s->coefs[0][i] = a + b;
1040 s->coefs[1][i] = a - b;
1041 }
1042 }
1043
1044 /* build the window : we ensure that when the windows overlap
1045 their squared sum is always 1 (MDCT reconstruction rule) */
1046 /* XXX: merge with output */
1047 {
1048 int i, next_block_len, block_len, prev_block_len, n;
1049 float *wptr;
1050
1051 block_len = s->block_len;
1052 prev_block_len = 1 << s->prev_block_len_bits;
1053 next_block_len = 1 << s->next_block_len_bits;
1054
1055 /* right part */
1056 wptr = window + block_len;
1057 if (block_len <= next_block_len) {
1058 for(i=0;i<block_len;i++)
1059 *wptr++ = s->windows[bsize][i];
1060 } else {
1061 /* overlap */
1062 n = (block_len / 2) - (next_block_len / 2);
1063 for(i=0;i<n;i++)
1064 *wptr++ = 1.0;
1065 for(i=0;i<next_block_len;i++)
1066 *wptr++ = s->windows[s->frame_len_bits - s->next_block_len_bits][i];
1067 for(i=0;i<n;i++)
1068 *wptr++ = 0.0;
1069 }
1070
1071 /* left part */
1072 wptr = window + block_len;
1073 if (block_len <= prev_block_len) {
1074 for(i=0;i<block_len;i++)
1075 *--wptr = s->windows[bsize][i];
1076 } else {
1077 /* overlap */
1078 n = (block_len / 2) - (prev_block_len / 2);
1079 for(i=0;i<n;i++)
1080 *--wptr = 1.0;
1081 for(i=0;i<prev_block_len;i++)
1082 *--wptr = s->windows[s->frame_len_bits - s->prev_block_len_bits][i];
1083 for(i=0;i<n;i++)
1084 *--wptr = 0.0;
1085 }
1086 }
1087
1088
1089 for(ch = 0; ch < s->nb_channels; ch++) {
1090 if (s->channel_coded[ch]) {
b35a02d5 1091 FFTSample output[BLOCK_MAX_SIZE * 2] __attribute__((aligned(16)));
bc8d1857
FB
1092 float *ptr;
1093 int i, n4, index, n;
1094
1095 n = s->block_len;
1096 n4 = s->block_len / 2;
ab253fe3
FB
1097 ff_imdct_calc(&s->mdct_ctx[bsize],
1098 output, s->coefs[ch], s->mdct_tmp);
bc8d1857
FB
1099
1100 /* XXX: optimize all that by build the window and
1101 multipying/adding at the same time */
1102 /* multiply by the window */
1103 for(i=0;i<n * 2;i++) {
1104 output[i] *= window[i];
1105 }
1106
1107 /* add in the frame */
1108 index = (s->frame_len / 2) + s->block_pos - n4;
1109 ptr = &s->frame_out[ch][index];
1110 for(i=0;i<n * 2;i++) {
1111 *ptr += output[i];
1112 ptr++;
1113 }
1114
1115 /* specific fast case for ms-stereo : add to second
1116 channel if it is not coded */
1117 if (s->ms_stereo && !s->channel_coded[1]) {
1118 ptr = &s->frame_out[1][index];
1119 for(i=0;i<n * 2;i++) {
1120 *ptr += output[i];
1121 ptr++;
1122 }
1123 }
1124 }
1125 }
1126 next:
1127 /* update block number */
1128 s->block_num++;
1129 s->block_pos += s->block_len;
1130 if (s->block_pos >= s->frame_len)
1131 return 1;
1132 else
1133 return 0;
1134}
1135
1136/* decode a frame of frame_len samples */
1137static int wma_decode_frame(WMADecodeContext *s, int16_t *samples)
1138{
1139 int ret, i, n, a, ch, incr;
1140 int16_t *ptr;
1141 float *iptr;
1142
aef3c69d
AB
1143#ifdef TRACE
1144 tprintf("***decode_frame: %d size=%d\n", s->frame_count++, s->frame_len);
1145#endif
bc8d1857
FB
1146
1147 /* read each block */
1148 s->block_num = 0;
1149 s->block_pos = 0;
1150 for(;;) {
1151 ret = wma_decode_block(s);
1152 if (ret < 0)
1153 return -1;
1154 if (ret)
1155 break;
1156 }
1157
1158 /* convert frame to integer */
1159 n = s->frame_len;
1160 incr = s->nb_channels;
1161 for(ch = 0; ch < s->nb_channels; ch++) {
1162 ptr = samples + ch;
1163 iptr = s->frame_out[ch];
1164
1165 for(i=0;i<n;i++) {
bc423886 1166 a = lrintf(*iptr++);
bc8d1857
FB
1167 if (a > 32767)
1168 a = 32767;
1169 else if (a < -32768)
1170 a = -32768;
1171 *ptr = a;
1172 ptr += incr;
1173 }
1174 /* prepare for next block */
1175 memmove(&s->frame_out[ch][0], &s->frame_out[ch][s->frame_len],
1176 s->frame_len * sizeof(float));
1177 /* XXX: suppress this */
1178 memset(&s->frame_out[ch][s->frame_len], 0,
1179 s->frame_len * sizeof(float));
1180 }
1181
f2899fb1 1182#ifdef TRACE
bc8d1857
FB
1183 dump_shorts("samples", samples, n * s->nb_channels);
1184#endif
1185 return 0;
1186}
1187
1188static int wma_decode_superframe(AVCodecContext *avctx,
1189 void *data, int *data_size,
0c1a9eda 1190 uint8_t *buf, int buf_size)
bc8d1857
FB
1191{
1192 WMADecodeContext *s = avctx->priv_data;
1193 int nb_frames, bit_offset, i, pos, len;
1194 uint8_t *q;
1195 int16_t *samples;
1196
f2899fb1 1197 tprintf("***decode_superframe:\n");
bc8d1857 1198
40a3105d
MN
1199 if(buf_size==0){
1200 s->last_superframe_len = 0;
1201 return 0;
1202 }
1203
bc8d1857
FB
1204 samples = data;
1205
68f593b4 1206 init_get_bits(&s->gb, buf, buf_size*8);
bc8d1857
FB
1207
1208 if (s->use_bit_reservoir) {
1209 /* read super frame header */
1210 get_bits(&s->gb, 4); /* super frame index */
1211 nb_frames = get_bits(&s->gb, 4) - 1;
1212
1213 bit_offset = get_bits(&s->gb, s->byte_offset_bits + 3);
1214
1215 if (s->last_superframe_len > 0) {
1216 // printf("skip=%d\n", s->last_bitoffset);
1217 /* add bit_offset bits to last frame */
1218 if ((s->last_superframe_len + ((bit_offset + 7) >> 3)) >
1219 MAX_CODED_SUPERFRAME_SIZE)
2f62e147 1220 goto fail;
bc8d1857
FB
1221 q = s->last_superframe + s->last_superframe_len;
1222 len = bit_offset;
1223 while (len > 0) {
1224 *q++ = (get_bits)(&s->gb, 8);
1225 len -= 8;
1226 }
1227 if (len > 0) {
1228 *q++ = (get_bits)(&s->gb, len) << (8 - len);
1229 }
1230
1231 /* XXX: bit_offset bits into last frame */
68f593b4 1232 init_get_bits(&s->gb, s->last_superframe, MAX_CODED_SUPERFRAME_SIZE*8);
bc8d1857
FB
1233 /* skip unused bits */
1234 if (s->last_bitoffset > 0)
1235 skip_bits(&s->gb, s->last_bitoffset);
1236 /* this frame is stored in the last superframe and in the
1237 current one */
1238 if (wma_decode_frame(s, samples) < 0)
2f62e147 1239 goto fail;
bc8d1857
FB
1240 samples += s->nb_channels * s->frame_len;
1241 }
1242
1243 /* read each frame starting from bit_offset */
1244 pos = bit_offset + 4 + 4 + s->byte_offset_bits + 3;
68f593b4 1245 init_get_bits(&s->gb, buf + (pos >> 3), (MAX_CODED_SUPERFRAME_SIZE - (pos >> 3))*8);
bc8d1857
FB
1246 len = pos & 7;
1247 if (len > 0)
1248 skip_bits(&s->gb, len);
1249
1250 s->reset_block_lengths = 1;
1251 for(i=0;i<nb_frames;i++) {
1252 if (wma_decode_frame(s, samples) < 0)
2f62e147 1253 goto fail;
bc8d1857
FB
1254 samples += s->nb_channels * s->frame_len;
1255 }
1256
1257 /* we copy the end of the frame in the last frame buffer */
1258 pos = get_bits_count(&s->gb) + ((bit_offset + 4 + 4 + s->byte_offset_bits + 3) & ~7);
1259 s->last_bitoffset = pos & 7;
1260 pos >>= 3;
1261 len = buf_size - pos;
f408fc67 1262 if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0) {
2f62e147 1263 goto fail;
bc8d1857
FB
1264 }
1265 s->last_superframe_len = len;
1266 memcpy(s->last_superframe, buf + pos, len);
1267 } else {
1268 /* single frame decode */
1269 if (wma_decode_frame(s, samples) < 0)
2f62e147 1270 goto fail;
bc8d1857
FB
1271 samples += s->nb_channels * s->frame_len;
1272 }
1273 *data_size = (int8_t *)samples - (int8_t *)data;
1274 return s->block_align;
2f62e147
FB
1275 fail:
1276 /* when error, we reset the bit reservoir */
1277 s->last_superframe_len = 0;
1278 return -1;
bc8d1857
FB
1279}
1280
1281static int wma_decode_end(AVCodecContext *avctx)
1282{
1283 WMADecodeContext *s = avctx->priv_data;
1284 int i;
1285
1286 for(i = 0; i < s->nb_block_sizes; i++)
ab253fe3 1287 ff_mdct_end(&s->mdct_ctx[i]);
bc8d1857
FB
1288 for(i = 0; i < s->nb_block_sizes; i++)
1289 av_free(s->windows[i]);
1290
1291 if (s->use_exp_vlc) {
1292 free_vlc(&s->exp_vlc);
1293 }
1294 if (s->use_noise_coding) {
1295 free_vlc(&s->hgain_vlc);
1296 }
1297 for(i = 0;i < 2; i++) {
1298 free_vlc(&s->coef_vlc[i]);
1299 av_free(s->run_table[i]);
1300 av_free(s->level_table[i]);
1301 }
1302
1303 return 0;
1304}
1305
1306AVCodec wmav1_decoder =
1307{
1308 "wmav1",
1309 CODEC_TYPE_AUDIO,
1310 CODEC_ID_WMAV1,
1311 sizeof(WMADecodeContext),
1312 wma_decode_init,
1313 NULL,
1314 wma_decode_end,
1315 wma_decode_superframe,
1316};
1317
1318AVCodec wmav2_decoder =
1319{
1320 "wmav2",
1321 CODEC_TYPE_AUDIO,
1322 CODEC_ID_WMAV2,
1323 sizeof(WMADecodeContext),
1324 wma_decode_init,
1325 NULL,
1326 wma_decode_end,
1327 wma_decode_superframe,
1328};