Commit | Line | Data |
---|---|---|
5ff85f1d | 1 | /* |
89c9ff50 | 2 | * rational numbers |
5ff85f1d MN |
3 | * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at> |
4 | * | |
b78e7197 DB |
5 | * This file is part of FFmpeg. |
6 | * | |
7 | * FFmpeg is free software; you can redistribute it and/or | |
5ff85f1d MN |
8 | * modify it under the terms of the GNU Lesser General Public |
9 | * License as published by the Free Software Foundation; either | |
b78e7197 | 10 | * version 2.1 of the License, or (at your option) any later version. |
5ff85f1d | 11 | * |
b78e7197 | 12 | * FFmpeg is distributed in the hope that it will be useful, |
5ff85f1d MN |
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
15 | * Lesser General Public License for more details. | |
16 | * | |
17 | * You should have received a copy of the GNU Lesser General Public | |
b78e7197 | 18 | * License along with FFmpeg; if not, write to the Free Software |
5509bffa | 19 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
5ff85f1d | 20 | */ |
115329f1 | 21 | |
5ff85f1d MN |
22 | /** |
23 | * @file rational.c | |
89c9ff50 | 24 | * rational numbers |
5ff85f1d MN |
25 | * @author Michael Niedermayer <michaelni@gmx.at> |
26 | */ | |
27 | ||
dfcb6b56 | 28 | #include <assert.h> |
5ff85f1d MN |
29 | //#include <math.h> |
30 | #include <limits.h> | |
115329f1 | 31 | |
5ff85f1d | 32 | #include "common.h" |
c11c2bc2 | 33 | #include "mathematics.h" |
5ff85f1d MN |
34 | #include "rational.h" |
35 | ||
c11c2bc2 AS |
36 | int av_reduce(int *dst_nom, int *dst_den, int64_t nom, int64_t den, int64_t max){ |
37 | AVRational a0={0,1}, a1={1,0}; | |
38 | int sign= (nom<0) ^ (den<0); | |
9ce6c138 | 39 | int64_t gcd= av_gcd(FFABS(nom), FFABS(den)); |
c11c2bc2 | 40 | |
6880edab MN |
41 | if(gcd){ |
42 | nom = FFABS(nom)/gcd; | |
43 | den = FFABS(den)/gcd; | |
44 | } | |
c11c2bc2 AS |
45 | if(nom<=max && den<=max){ |
46 | a1= (AVRational){nom, den}; | |
47 | den=0; | |
48 | } | |
115329f1 | 49 | |
c11c2bc2 | 50 | while(den){ |
62b9fc15 | 51 | uint64_t x = nom / den; |
c11c2bc2 AS |
52 | int64_t next_den= nom - den*x; |
53 | int64_t a2n= x*a1.num + a0.num; | |
54 | int64_t a2d= x*a1.den + a0.den; | |
55 | ||
3db1b8b5 MN |
56 | if(a2n > max || a2d > max){ |
57 | if(a1.num) x= (max - a0.num) / a1.num; | |
58 | if(a1.den) x= FFMIN(x, (max - a0.den) / a1.den); | |
59 | ||
3db1b8b5 MN |
60 | if (den*(2*x*a1.den + a0.den) > nom*a1.den) |
61 | a1 = (AVRational){x*a1.num + a0.num, x*a1.den + a0.den}; | |
62 | break; | |
63 | } | |
c11c2bc2 AS |
64 | |
65 | a0= a1; | |
66 | a1= (AVRational){a2n, a2d}; | |
67 | nom= den; | |
68 | den= next_den; | |
69 | } | |
9ce6c138 | 70 | assert(av_gcd(a1.num, a1.den) <= 1U); |
115329f1 | 71 | |
c11c2bc2 AS |
72 | *dst_nom = sign ? -a1.num : a1.num; |
73 | *dst_den = a1.den; | |
115329f1 | 74 | |
c11c2bc2 AS |
75 | return den==0; |
76 | } | |
77 | ||
5ff85f1d MN |
78 | AVRational av_mul_q(AVRational b, AVRational c){ |
79 | av_reduce(&b.num, &b.den, b.num * (int64_t)c.num, b.den * (int64_t)c.den, INT_MAX); | |
80 | return b; | |
81 | } | |
82 | ||
83 | AVRational av_div_q(AVRational b, AVRational c){ | |
79dc59b7 | 84 | return av_mul_q(b, (AVRational){c.den, c.num}); |
5ff85f1d MN |
85 | } |
86 | ||
87 | AVRational av_add_q(AVRational b, AVRational c){ | |
88 | av_reduce(&b.num, &b.den, b.num * (int64_t)c.den + c.num * (int64_t)b.den, b.den * (int64_t)c.den, INT_MAX); | |
89 | return b; | |
90 | } | |
91 | ||
92 | AVRational av_sub_q(AVRational b, AVRational c){ | |
79dc59b7 | 93 | return av_add_q(b, (AVRational){-c.num, c.den}); |
5ff85f1d MN |
94 | } |
95 | ||
96 | AVRational av_d2q(double d, int max){ | |
97 | AVRational a; | |
79dc59b7 MN |
98 | #define LOG2 0.69314718055994530941723212145817656807550013436025 |
99 | int exponent= FFMAX( (int)(log(fabs(d) + 1e-20)/LOG2), 0); | |
5ff85f1d MN |
100 | int64_t den= 1LL << (61 - exponent); |
101 | av_reduce(&a.num, &a.den, (int64_t)(d * den + 0.5), den, max); | |
102 | ||
103 | return a; | |
104 | } | |
05b90fc0 SS |
105 | |
106 | int av_nearer_q(AVRational q, AVRational q1, AVRational q2) | |
107 | { | |
108 | /* n/d is q, a/b is the median between q1 and q2 */ | |
109 | int64_t a = q1.num * (int64_t)q2.den + q2.num * (int64_t)q1.den; | |
110 | int64_t b = 2 * (int64_t)q1.den * q2.den; | |
111 | ||
112 | /* rnd_up(a*d/b) > n => a*d/b > n */ | |
113 | int64_t x_up = av_rescale_rnd(a, q.den, b, AV_ROUND_UP); | |
114 | ||
115 | /* rnd_down(a*d/b) < n => a*d/b < n */ | |
116 | int64_t x_down = av_rescale_rnd(a, q.den, b, AV_ROUND_DOWN); | |
117 | ||
118 | return ((x_up > q.num) - (x_down < q.num)) * av_cmp_q(q2, q1); | |
119 | } | |
120 | ||
121 | int av_find_nearest_q_idx(AVRational q, const AVRational* q_list) | |
122 | { | |
123 | int i, nearest_q_idx = 0; | |
124 | for(i=0; q_list[i].den; i++) | |
125 | if (av_nearer_q(q, q_list[i], q_list[nearest_q_idx]) > 0) | |
126 | nearest_q_idx = i; | |
127 | ||
128 | return nearest_q_idx; | |
129 | } |