98f31f281a10532518eef3c17aad317ebedb17ff
[libav.git] / libavcodec / aaccoder.c
1 /*
2 * AAC coefficients encoder
3 * Copyright (C) 2008-2009 Konstantin Shishkov
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22 /**
23 * @file libavcodec/aaccoder.c
24 * AAC coefficients encoder
25 */
26
27 /***********************************
28 * TODOs:
29 * speedup quantizer selection
30 * add sane pulse detection
31 ***********************************/
32
33 #include "avcodec.h"
34 #include "put_bits.h"
35 #include "aac.h"
36 #include "aacenc.h"
37 #include "aactab.h"
38
39 /** bits needed to code codebook run value for long windows */
40 static const uint8_t run_value_bits_long[64] = {
41 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
42 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 10,
43 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
44 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 15
45 };
46
47 /** bits needed to code codebook run value for short windows */
48 static const uint8_t run_value_bits_short[16] = {
49 3, 3, 3, 3, 3, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 9
50 };
51
52 static const uint8_t *run_value_bits[2] = {
53 run_value_bits_long, run_value_bits_short
54 };
55
56
57 /**
58 * Quantize one coefficient.
59 * @return absolute value of the quantized coefficient
60 * @see 3GPP TS26.403 5.6.2 "Scalefactor determination"
61 */
62 static av_always_inline int quant(float coef, const float Q)
63 {
64 return pow(coef * Q, 0.75) + 0.4054;
65 }
66
67 static void quantize_bands(int (*out)[2], const float *in, const float *scaled,
68 int size, float Q34, int is_signed, int maxval)
69 {
70 int i;
71 double qc;
72 for (i = 0; i < size; i++) {
73 qc = scaled[i] * Q34;
74 out[i][0] = (int)FFMIN((int)qc, maxval);
75 out[i][1] = (int)FFMIN((int)(qc + 0.4054), maxval);
76 if (is_signed && in[i] < 0.0f) {
77 out[i][0] = -out[i][0];
78 out[i][1] = -out[i][1];
79 }
80 }
81 }
82
83 static void abs_pow34_v(float *out, const float *in, const int size)
84 {
85 #ifndef USE_REALLY_FULL_SEARCH
86 int i;
87 for (i = 0; i < size; i++) {
88 out[i] = pow(fabsf(in[i]), 0.75);
89 }
90 #endif /* USE_REALLY_FULL_SEARCH */
91 }
92
93 static av_always_inline int quant2(float coef, const float Q)
94 {
95 return pow(coef * Q, 0.75);
96 }
97
98 static const uint8_t aac_cb_range [12] = {0, 3, 3, 3, 3, 9, 9, 8, 8, 13, 13, 17};
99 static const uint8_t aac_cb_maxval[12] = {0, 1, 1, 2, 2, 4, 4, 7, 7, 12, 12, 16};
100
101 /**
102 * Calculate rate distortion cost for quantizing with given codebook
103 *
104 * @return quantization distortion
105 */
106 static float quantize_band_cost(struct AACEncContext *s, const float *in,
107 const float *scaled, int size, int scale_idx,
108 int cb, const float lambda, const float uplim,
109 int *bits)
110 {
111 const float IQ = ff_aac_pow2sf_tab[200 + scale_idx - SCALE_ONE_POS + SCALE_DIV_512];
112 const float Q = ff_aac_pow2sf_tab[200 - scale_idx + SCALE_ONE_POS - SCALE_DIV_512];
113 const float CLIPPED_ESCAPE = 165140.0f*IQ;
114 int i, j, k;
115 float cost = 0;
116 const int dim = cb < FIRST_PAIR_BT ? 4 : 2;
117 int resbits = 0;
118 #ifndef USE_REALLY_FULL_SEARCH
119 const float Q34 = pow(Q, 0.75);
120 const int range = aac_cb_range[cb];
121 const int maxval = aac_cb_maxval[cb];
122 int offs[4];
123 #endif /* USE_REALLY_FULL_SEARCH */
124
125 if (!cb) {
126 for (i = 0; i < size; i++)
127 cost += in[i]*in[i]*lambda;
128 return cost;
129 }
130 #ifndef USE_REALLY_FULL_SEARCH
131 offs[0] = 1;
132 for (i = 1; i < dim; i++)
133 offs[i] = offs[i-1]*range;
134 quantize_bands(s->qcoefs, in, scaled, size, Q34, !IS_CODEBOOK_UNSIGNED(cb), maxval);
135 #endif /* USE_REALLY_FULL_SEARCH */
136 for (i = 0; i < size; i += dim) {
137 float mincost;
138 int minidx = 0;
139 int minbits = 0;
140 const float *vec;
141 #ifndef USE_REALLY_FULL_SEARCH
142 int (*quants)[2] = &s->qcoefs[i];
143 mincost = 0.0f;
144 for (j = 0; j < dim; j++) {
145 mincost += in[i+j]*in[i+j]*lambda;
146 }
147 minidx = IS_CODEBOOK_UNSIGNED(cb) ? 0 : 40;
148 minbits = ff_aac_spectral_bits[cb-1][minidx];
149 mincost += minbits;
150 for (j = 0; j < (1<<dim); j++) {
151 float rd = 0.0f;
152 int curbits;
153 int curidx = IS_CODEBOOK_UNSIGNED(cb) ? 0 : 40;
154 int same = 0;
155 for (k = 0; k < dim; k++) {
156 if ((j & (1 << k)) && quants[k][0] == quants[k][1]) {
157 same = 1;
158 break;
159 }
160 }
161 if (same)
162 continue;
163 for (k = 0; k < dim; k++)
164 curidx += quants[k][!!(j & (1 << k))] * offs[dim - 1 - k];
165 curbits = ff_aac_spectral_bits[cb-1][curidx];
166 vec = &ff_aac_codebook_vectors[cb-1][curidx*dim];
167 #else
168 mincost = INFINITY;
169 vec = ff_aac_codebook_vectors[cb-1];
170 for (j = 0; j < ff_aac_spectral_sizes[cb-1]; j++, vec += dim) {
171 float rd = 0.0f;
172 int curbits = ff_aac_spectral_bits[cb-1][j];
173 #endif /* USE_REALLY_FULL_SEARCH */
174 if (IS_CODEBOOK_UNSIGNED(cb)) {
175 for (k = 0; k < dim; k++) {
176 float t = fabsf(in[i+k]);
177 float di;
178 //do not code with escape sequence small values
179 if (vec[k] == 64.0f && t < 39.0f*IQ) {
180 rd = INFINITY;
181 break;
182 }
183 if (vec[k] == 64.0f) { //FIXME: slow
184 if (t >= CLIPPED_ESCAPE) {
185 di = t - CLIPPED_ESCAPE;
186 curbits += 21;
187 } else {
188 int c = av_clip(quant(t, Q), 0, 8191);
189 di = t - c*cbrt(c)*IQ;
190 curbits += av_log2(c)*2 - 4 + 1;
191 }
192 } else {
193 di = t - vec[k]*IQ;
194 }
195 if (vec[k] != 0.0f)
196 curbits++;
197 rd += di*di*lambda;
198 }
199 } else {
200 for (k = 0; k < dim; k++) {
201 float di = in[i+k] - vec[k]*IQ;
202 rd += di*di*lambda;
203 }
204 }
205 rd += curbits;
206 if (rd < mincost) {
207 mincost = rd;
208 minidx = j;
209 minbits = curbits;
210 }
211 }
212 cost += mincost;
213 resbits += minbits;
214 if (cost >= uplim)
215 return uplim;
216 }
217
218 if (bits)
219 *bits = resbits;
220 return cost;
221 }
222
223 static void quantize_and_encode_band(struct AACEncContext *s, PutBitContext *pb,
224 const float *in, int size, int scale_idx,
225 int cb, const float lambda)
226 {
227 const float IQ = ff_aac_pow2sf_tab[200 + scale_idx - SCALE_ONE_POS + SCALE_DIV_512];
228 const float Q = ff_aac_pow2sf_tab[200 - scale_idx + SCALE_ONE_POS - SCALE_DIV_512];
229 const float CLIPPED_ESCAPE = 165140.0f*IQ;
230 const int dim = (cb < FIRST_PAIR_BT) ? 4 : 2;
231 int i, j, k;
232 #ifndef USE_REALLY_FULL_SEARCH
233 const float Q34 = pow(Q, 0.75);
234 const int range = aac_cb_range[cb];
235 const int maxval = aac_cb_maxval[cb];
236 int offs[4];
237 float *scaled = s->scoefs;
238 #endif /* USE_REALLY_FULL_SEARCH */
239
240 //START_TIMER
241 if (!cb)
242 return;
243
244 #ifndef USE_REALLY_FULL_SEARCH
245 offs[0] = 1;
246 for (i = 1; i < dim; i++)
247 offs[i] = offs[i-1]*range;
248 abs_pow34_v(scaled, in, size);
249 quantize_bands(s->qcoefs, in, scaled, size, Q34, !IS_CODEBOOK_UNSIGNED(cb), maxval);
250 #endif /* USE_REALLY_FULL_SEARCH */
251 for (i = 0; i < size; i += dim) {
252 float mincost;
253 int minidx = 0;
254 int minbits = 0;
255 const float *vec;
256 #ifndef USE_REALLY_FULL_SEARCH
257 int (*quants)[2] = &s->qcoefs[i];
258 mincost = 0.0f;
259 for (j = 0; j < dim; j++) {
260 mincost += in[i+j]*in[i+j]*lambda;
261 }
262 minidx = IS_CODEBOOK_UNSIGNED(cb) ? 0 : 40;
263 minbits = ff_aac_spectral_bits[cb-1][minidx];
264 mincost += minbits;
265 for (j = 0; j < (1<<dim); j++) {
266 float rd = 0.0f;
267 int curbits;
268 int curidx = IS_CODEBOOK_UNSIGNED(cb) ? 0 : 40;
269 int same = 0;
270 for (k = 0; k < dim; k++) {
271 if ((j & (1 << k)) && quants[k][0] == quants[k][1]) {
272 same = 1;
273 break;
274 }
275 }
276 if (same)
277 continue;
278 for (k = 0; k < dim; k++)
279 curidx += quants[k][!!(j & (1 << k))] * offs[dim - 1 - k];
280 curbits = ff_aac_spectral_bits[cb-1][curidx];
281 vec = &ff_aac_codebook_vectors[cb-1][curidx*dim];
282 #else
283 vec = ff_aac_codebook_vectors[cb-1];
284 mincost = INFINITY;
285 for (j = 0; j < ff_aac_spectral_sizes[cb-1]; j++, vec += dim) {
286 float rd = 0.0f;
287 int curbits = ff_aac_spectral_bits[cb-1][j];
288 int curidx = j;
289 #endif /* USE_REALLY_FULL_SEARCH */
290 if (IS_CODEBOOK_UNSIGNED(cb)) {
291 for (k = 0; k < dim; k++) {
292 float t = fabsf(in[i+k]);
293 float di;
294 //do not code with escape sequence small values
295 if (vec[k] == 64.0f && t < 39.0f*IQ) {
296 rd = INFINITY;
297 break;
298 }
299 if (vec[k] == 64.0f) { //FIXME: slow
300 if (t >= CLIPPED_ESCAPE) {
301 di = t - CLIPPED_ESCAPE;
302 curbits += 21;
303 } else {
304 int c = av_clip(quant(t, Q), 0, 8191);
305 di = t - c*cbrt(c)*IQ;
306 curbits += av_log2(c)*2 - 4 + 1;
307 }
308 } else {
309 di = t - vec[k]*IQ;
310 }
311 if (vec[k] != 0.0f)
312 curbits++;
313 rd += di*di*lambda;
314 }
315 } else {
316 for (k = 0; k < dim; k++) {
317 float di = in[i+k] - vec[k]*IQ;
318 rd += di*di*lambda;
319 }
320 }
321 rd += curbits;
322 if (rd < mincost) {
323 mincost = rd;
324 minidx = curidx;
325 minbits = curbits;
326 }
327 }
328 put_bits(pb, ff_aac_spectral_bits[cb-1][minidx], ff_aac_spectral_codes[cb-1][minidx]);
329 if (IS_CODEBOOK_UNSIGNED(cb))
330 for (j = 0; j < dim; j++)
331 if (ff_aac_codebook_vectors[cb-1][minidx*dim+j] != 0.0f)
332 put_bits(pb, 1, in[i+j] < 0.0f);
333 if (cb == ESC_BT) {
334 for (j = 0; j < 2; j++) {
335 if (ff_aac_codebook_vectors[cb-1][minidx*2+j] == 64.0f) {
336 int coef = av_clip(quant(fabsf(in[i+j]), Q), 0, 8191);
337 int len = av_log2(coef);
338
339 put_bits(pb, len - 4 + 1, (1 << (len - 4 + 1)) - 2);
340 put_bits(pb, len, coef & ((1 << len) - 1));
341 }
342 }
343 }
344 }
345 //STOP_TIMER("quantize_and_encode")
346 }
347
348 /**
349 * structure used in optimal codebook search
350 */
351 typedef struct BandCodingPath {
352 int prev_idx; ///< pointer to the previous path point
353 int codebook; ///< codebook for coding band run
354 float cost; ///< path cost
355 int run;
356 } BandCodingPath;
357
358 /**
359 * Encode band info for single window group bands.
360 */
361 static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce,
362 int win, int group_len, const float lambda)
363 {
364 BandCodingPath path[120][12];
365 int w, swb, cb, start, start2, size;
366 int i, j;
367 const int max_sfb = sce->ics.max_sfb;
368 const int run_bits = sce->ics.num_windows == 1 ? 5 : 3;
369 const int run_esc = (1 << run_bits) - 1;
370 int idx, ppos, count;
371 int stackrun[120], stackcb[120], stack_len;
372 float next_minrd = INFINITY;
373 int next_mincb = 0;
374
375 abs_pow34_v(s->scoefs, sce->coeffs, 1024);
376 start = win*128;
377 for (cb = 0; cb < 12; cb++) {
378 path[0][cb].cost = 0.0f;
379 path[0][cb].prev_idx = -1;
380 path[0][cb].run = 0;
381 }
382 for (swb = 0; swb < max_sfb; swb++) {
383 start2 = start;
384 size = sce->ics.swb_sizes[swb];
385 if (sce->zeroes[win*16 + swb]) {
386 for (cb = 0; cb < 12; cb++) {
387 path[swb+1][cb].prev_idx = cb;
388 path[swb+1][cb].cost = path[swb][cb].cost;
389 path[swb+1][cb].run = path[swb][cb].run + 1;
390 }
391 } else {
392 float minrd = next_minrd;
393 int mincb = next_mincb;
394 next_minrd = INFINITY;
395 next_mincb = 0;
396 for (cb = 0; cb < 12; cb++) {
397 float cost_stay_here, cost_get_here;
398 float rd = 0.0f;
399 for (w = 0; w < group_len; w++) {
400 FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(win+w)*16+swb];
401 rd += quantize_band_cost(s, sce->coeffs + start + w*128,
402 s->scoefs + start + w*128, size,
403 sce->sf_idx[(win+w)*16+swb], cb,
404 lambda / band->threshold, INFINITY, NULL);
405 }
406 cost_stay_here = path[swb][cb].cost + rd;
407 cost_get_here = minrd + rd + run_bits + 4;
408 if ( run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run]
409 != run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1])
410 cost_stay_here += run_bits;
411 if (cost_get_here < cost_stay_here) {
412 path[swb+1][cb].prev_idx = mincb;
413 path[swb+1][cb].cost = cost_get_here;
414 path[swb+1][cb].run = 1;
415 } else {
416 path[swb+1][cb].prev_idx = cb;
417 path[swb+1][cb].cost = cost_stay_here;
418 path[swb+1][cb].run = path[swb][cb].run + 1;
419 }
420 if (path[swb+1][cb].cost < next_minrd) {
421 next_minrd = path[swb+1][cb].cost;
422 next_mincb = cb;
423 }
424 }
425 }
426 start += sce->ics.swb_sizes[swb];
427 }
428
429 //convert resulting path from backward-linked list
430 stack_len = 0;
431 idx = 0;
432 for (cb = 1; cb < 12; cb++) {
433 if (path[max_sfb][cb].cost < path[max_sfb][idx].cost)
434 idx = cb;
435 }
436 ppos = max_sfb;
437 while (ppos > 0) {
438 cb = idx;
439 stackrun[stack_len] = path[ppos][cb].run;
440 stackcb [stack_len] = cb;
441 idx = path[ppos-path[ppos][cb].run+1][cb].prev_idx;
442 ppos -= path[ppos][cb].run;
443 stack_len++;
444 }
445 //perform actual band info encoding
446 start = 0;
447 for (i = stack_len - 1; i >= 0; i--) {
448 put_bits(&s->pb, 4, stackcb[i]);
449 count = stackrun[i];
450 memset(sce->zeroes + win*16 + start, !stackcb[i], count);
451 //XXX: memset when band_type is also uint8_t
452 for (j = 0; j < count; j++) {
453 sce->band_type[win*16 + start] = stackcb[i];
454 start++;
455 }
456 while (count >= run_esc) {
457 put_bits(&s->pb, run_bits, run_esc);
458 count -= run_esc;
459 }
460 put_bits(&s->pb, run_bits, count);
461 }
462 }
463
464 static void encode_window_bands_info_fixed(AACEncContext *s,
465 SingleChannelElement *sce,
466 int win, int group_len,
467 const float lambda)
468 {
469 encode_window_bands_info(s, sce, win, group_len, 1.0f);
470 }
471
472
473 typedef struct TrellisPath {
474 float cost;
475 int prev;
476 int min_val;
477 int max_val;
478 } TrellisPath;
479
480 static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s,
481 SingleChannelElement *sce,
482 const float lambda)
483 {
484 int q, w, w2, g, start = 0;
485 int i;
486 int idx;
487 TrellisPath paths[256*121];
488 int bandaddr[121];
489 int minq;
490 float mincost;
491
492 for (i = 0; i < 256; i++) {
493 paths[i].cost = 0.0f;
494 paths[i].prev = -1;
495 paths[i].min_val = i;
496 paths[i].max_val = i;
497 }
498 for (i = 256; i < 256*121; i++) {
499 paths[i].cost = INFINITY;
500 paths[i].prev = -2;
501 paths[i].min_val = INT_MAX;
502 paths[i].max_val = 0;
503 }
504 idx = 256;
505 abs_pow34_v(s->scoefs, sce->coeffs, 1024);
506 for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
507 start = w*128;
508 for (g = 0; g < sce->ics.num_swb; g++) {
509 const float *coefs = sce->coeffs + start;
510 float qmin, qmax;
511 int nz = 0;
512
513 bandaddr[idx >> 8] = w * 16 + g;
514 qmin = INT_MAX;
515 qmax = 0.0f;
516 for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
517 FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
518 if (band->energy <= band->threshold || band->threshold == 0.0f) {
519 sce->zeroes[(w+w2)*16+g] = 1;
520 continue;
521 }
522 sce->zeroes[(w+w2)*16+g] = 0;
523 nz = 1;
524 for (i = 0; i < sce->ics.swb_sizes[g]; i++) {
525 float t = fabsf(coefs[w2*128+i]);
526 if (t > 0.0f) qmin = fminf(qmin, t);
527 qmax = fmaxf(qmax, t);
528 }
529 }
530 if (nz) {
531 int minscale, maxscale;
532 float minrd = INFINITY;
533 //minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped
534 minscale = av_clip_uint8(log2(qmin)*4 - 69 + SCALE_ONE_POS - SCALE_DIV_512);
535 //maximum scalefactor index is when maximum coefficient after quantizing is still not zero
536 maxscale = av_clip_uint8(log2(qmax)*4 + 6 + SCALE_ONE_POS - SCALE_DIV_512);
537 for (q = minscale; q < maxscale; q++) {
538 float dists[12], dist;
539 memset(dists, 0, sizeof(dists));
540 for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
541 FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
542 int cb;
543 for (cb = 0; cb <= ESC_BT; cb++) {
544 dists[cb] += quantize_band_cost(s, coefs + w2*128, s->scoefs + start + w2*128, sce->ics.swb_sizes[g],
545 q, cb, lambda / band->threshold, INFINITY, NULL);
546 }
547 }
548 dist = dists[0];
549 for (i = 1; i <= ESC_BT; i++)
550 dist = fminf(dist, dists[i]);
551 minrd = fminf(minrd, dist);
552
553 for (i = FFMAX(q - SCALE_MAX_DIFF, 0); i < FFMIN(q + SCALE_MAX_DIFF, 256); i++) {
554 float cost;
555 int minv, maxv;
556 if (isinf(paths[idx - 256 + i].cost))
557 continue;
558 cost = paths[idx - 256 + i].cost + dist
559 + ff_aac_scalefactor_bits[q - i + SCALE_DIFF_ZERO];
560 minv = FFMIN(paths[idx - 256 + i].min_val, q);
561 maxv = FFMAX(paths[idx - 256 + i].max_val, q);
562 if (cost < paths[idx + q].cost && maxv-minv < SCALE_MAX_DIFF) {
563 paths[idx + q].cost = cost;
564 paths[idx + q].prev = idx - 256 + i;
565 paths[idx + q].min_val = minv;
566 paths[idx + q].max_val = maxv;
567 }
568 }
569 }
570 } else {
571 for (q = 0; q < 256; q++) {
572 if (!isinf(paths[idx - 256 + q].cost)) {
573 paths[idx + q].cost = paths[idx - 256 + q].cost + 1;
574 paths[idx + q].prev = idx - 256 + q;
575 paths[idx + q].min_val = FFMIN(paths[idx - 256 + q].min_val, q);
576 paths[idx + q].max_val = FFMAX(paths[idx - 256 + q].max_val, q);
577 continue;
578 }
579 for (i = FFMAX(q - SCALE_MAX_DIFF, 0); i < FFMIN(q + SCALE_MAX_DIFF, 256); i++) {
580 float cost;
581 int minv, maxv;
582 if (isinf(paths[idx - 256 + i].cost))
583 continue;
584 cost = paths[idx - 256 + i].cost + ff_aac_scalefactor_bits[q - i + SCALE_DIFF_ZERO];
585 minv = FFMIN(paths[idx - 256 + i].min_val, q);
586 maxv = FFMAX(paths[idx - 256 + i].max_val, q);
587 if (cost < paths[idx + q].cost && maxv-minv < SCALE_MAX_DIFF) {
588 paths[idx + q].cost = cost;
589 paths[idx + q].prev = idx - 256 + i;
590 paths[idx + q].min_val = minv;
591 paths[idx + q].max_val = maxv;
592 }
593 }
594 }
595 }
596 sce->zeroes[w*16+g] = !nz;
597 start += sce->ics.swb_sizes[g];
598 idx += 256;
599 }
600 }
601 idx -= 256;
602 mincost = paths[idx].cost;
603 minq = idx;
604 for (i = 1; i < 256; i++) {
605 if (paths[idx + i].cost < mincost) {
606 mincost = paths[idx + i].cost;
607 minq = idx + i;
608 }
609 }
610 while (minq >= 256) {
611 sce->sf_idx[bandaddr[minq>>8]] = minq & 0xFF;
612 minq = paths[minq].prev;
613 }
614 //set the same quantizers inside window groups
615 for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
616 for (g = 0; g < sce->ics.num_swb; g++)
617 for (w2 = 1; w2 < sce->ics.group_len[w]; w2++)
618 sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
619 }
620
621 /**
622 * two-loop quantizers search taken from ISO 13818-7 Appendix C
623 */
624 static void search_for_quantizers_twoloop(AVCodecContext *avctx,
625 AACEncContext *s,
626 SingleChannelElement *sce,
627 const float lambda)
628 {
629 int start = 0, i, w, w2, g;
630 int destbits = avctx->bit_rate * 1024.0 / avctx->sample_rate / avctx->channels;
631 float dists[128], uplims[128];
632 int fflag, minscaler;
633 int its = 0;
634 int allz = 0;
635 float minthr = INFINITY;
636
637 //XXX: some heuristic to determine initial quantizers will reduce search time
638 memset(dists, 0, sizeof(dists));
639 //determine zero bands and upper limits
640 for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
641 for (g = 0; g < sce->ics.num_swb; g++) {
642 int nz = 0;
643 float uplim = 0.0f;
644 for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
645 FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
646 uplim += band->threshold;
647 if (band->energy <= band->threshold || band->threshold == 0.0f) {
648 sce->zeroes[(w+w2)*16+g] = 1;
649 continue;
650 }
651 nz = 1;
652 }
653 uplims[w*16+g] = uplim *512;
654 sce->zeroes[w*16+g] = !nz;
655 if (nz)
656 minthr = fminf(minthr, uplim);
657 allz = FFMAX(allz, nz);
658 }
659 }
660 for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
661 for (g = 0; g < sce->ics.num_swb; g++) {
662 if (sce->zeroes[w*16+g]) {
663 sce->sf_idx[w*16+g] = SCALE_ONE_POS;
664 continue;
665 }
666 sce->sf_idx[w*16+g] = SCALE_ONE_POS + fminf(log2(uplims[w*16+g]/minthr)*4,59);
667 }
668 }
669
670 if (!allz)
671 return;
672 abs_pow34_v(s->scoefs, sce->coeffs, 1024);
673 //perform two-loop search
674 //outer loop - improve quality
675 do {
676 int tbits, qstep;
677 minscaler = sce->sf_idx[0];
678 //inner loop - quantize spectrum to fit into given number of bits
679 qstep = its ? 1 : 32;
680 do {
681 int prev = -1;
682 tbits = 0;
683 fflag = 0;
684 for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
685 start = w*128;
686 for (g = 0; g < sce->ics.num_swb; g++) {
687 const float *coefs = sce->coeffs + start;
688 const float *scaled = s->scoefs + start;
689 int bits = 0;
690 int cb;
691 float mindist = INFINITY;
692 int minbits = 0;
693
694 if (sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218)
695 continue;
696 minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]);
697 for (cb = 0; cb <= ESC_BT; cb++) {
698 float dist = 0.0f;
699 int bb = 0;
700 for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
701 int b;
702 dist += quantize_band_cost(s, coefs + w2*128,
703 scaled + w2*128,
704 sce->ics.swb_sizes[g],
705 sce->sf_idx[w*16+g],
706 ESC_BT,
707 1.0,
708 INFINITY,
709 &b);
710 bb += b;
711 }
712 if (dist < mindist) {
713 mindist = dist;
714 minbits = bb;
715 }
716 }
717 dists[w*16+g] = mindist - minbits;
718 bits = minbits;
719 if (prev != -1) {
720 bits += ff_aac_scalefactor_bits[sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO];
721 }
722 tbits += bits;
723 start += sce->ics.swb_sizes[g];
724 prev = sce->sf_idx[w*16+g];
725 }
726 }
727 if (tbits > destbits) {
728 for (i = 0; i < 128; i++) {
729 if (sce->sf_idx[i] < 218 - qstep) {
730 sce->sf_idx[i] += qstep;
731 }
732 }
733 } else {
734 for (i = 0; i < 128; i++) {
735 if (sce->sf_idx[i] > 60 - qstep) {
736 sce->sf_idx[i] -= qstep;
737 }
738 }
739 }
740 qstep >>= 1;
741 if (!qstep && tbits > destbits*1.02)
742 qstep = 1;
743 if (sce->sf_idx[0] >= 217)break;
744 } while (qstep);
745
746 fflag = 0;
747 minscaler = av_clip(minscaler, 60, 255 - SCALE_MAX_DIFF);
748 for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
749 start = w*128;
750 for (g = 0; g < sce->ics.num_swb; g++) {
751 int prevsc = sce->sf_idx[w*16+g];
752 if (dists[w*16+g] > uplims[w*16+g] && sce->sf_idx[w*16+g] > 60)
753 sce->sf_idx[w*16+g]--;
754 sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler, minscaler + SCALE_MAX_DIFF);
755 sce->sf_idx[w*16+g] = FFMIN(sce->sf_idx[w*16+g], 219);
756 if (sce->sf_idx[w*16+g] != prevsc)
757 fflag = 1;
758 }
759 }
760 its++;
761 } while (fflag && its < 10);
762 }
763
764 static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s,
765 SingleChannelElement *sce,
766 const float lambda)
767 {
768 int start = 0, i, w, w2, g;
769 float uplim[128], maxq[128];
770 int minq, maxsf;
771 float distfact = ((sce->ics.num_windows > 1) ? 85.80 : 147.84) / lambda;
772 int last = 0, lastband = 0, curband = 0;
773 float avg_energy = 0.0;
774 if (sce->ics.num_windows == 1) {
775 start = 0;
776 for (i = 0; i < 1024; i++) {
777 if (i - start >= sce->ics.swb_sizes[curband]) {
778 start += sce->ics.swb_sizes[curband];
779 curband++;
780 }
781 if (sce->coeffs[i]) {
782 avg_energy += sce->coeffs[i] * sce->coeffs[i];
783 last = i;
784 lastband = curband;
785 }
786 }
787 } else {
788 for (w = 0; w < 8; w++) {
789 const float *coeffs = sce->coeffs + w*128;
790 start = 0;
791 for (i = 0; i < 128; i++) {
792 if (i - start >= sce->ics.swb_sizes[curband]) {
793 start += sce->ics.swb_sizes[curband];
794 curband++;
795 }
796 if (coeffs[i]) {
797 avg_energy += coeffs[i] * coeffs[i];
798 last = FFMAX(last, i);
799 lastband = FFMAX(lastband, curband);
800 }
801 }
802 }
803 }
804 last++;
805 avg_energy /= last;
806 if (avg_energy == 0.0f) {
807 for (i = 0; i < FF_ARRAY_ELEMS(sce->sf_idx); i++)
808 sce->sf_idx[i] = SCALE_ONE_POS;
809 return;
810 }
811 for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
812 start = w*128;
813 for (g = 0; g < sce->ics.num_swb; g++) {
814 float *coefs = sce->coeffs + start;
815 const int size = sce->ics.swb_sizes[g];
816 int start2 = start, end2 = start + size, peakpos = start;
817 float maxval = -1, thr = 0.0f, t;
818 maxq[w*16+g] = 0.0f;
819 if (g > lastband) {
820 maxq[w*16+g] = 0.0f;
821 start += size;
822 for (w2 = 0; w2 < sce->ics.group_len[w]; w2++)
823 memset(coefs + w2*128, 0, sizeof(coefs[0])*size);
824 continue;
825 }
826 for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
827 for (i = 0; i < size; i++) {
828 float t = coefs[w2*128+i]*coefs[w2*128+i];
829 maxq[w*16+g] = fmaxf(maxq[w*16+g], fabsf(coefs[w2*128 + i]));
830 thr += t;
831 if (sce->ics.num_windows == 1 && maxval < t) {
832 maxval = t;
833 peakpos = start+i;
834 }
835 }
836 }
837 if (sce->ics.num_windows == 1) {
838 start2 = FFMAX(peakpos - 2, start2);
839 end2 = FFMIN(peakpos + 3, end2);
840 } else {
841 start2 -= start;
842 end2 -= start;
843 }
844 start += size;
845 thr = pow(thr / (avg_energy * (end2 - start2)), 0.3 + 0.1*(lastband - g) / lastband);
846 t = 1.0 - (1.0 * start2 / last);
847 uplim[w*16+g] = distfact / (1.4 * thr + t*t*t + 0.075);
848 }
849 }
850 memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
851 abs_pow34_v(s->scoefs, sce->coeffs, 1024);
852 for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
853 start = w*128;
854 for (g = 0; g < sce->ics.num_swb; g++) {
855 const float *coefs = sce->coeffs + start;
856 const float *scaled = s->scoefs + start;
857 const int size = sce->ics.swb_sizes[g];
858 int scf, prev_scf, step;
859 int min_scf = 0, max_scf = 255;
860 float curdiff;
861 if (maxq[w*16+g] < 21.544) {
862 sce->zeroes[w*16+g] = 1;
863 start += size;
864 continue;
865 }
866 sce->zeroes[w*16+g] = 0;
867 scf = prev_scf = av_clip(SCALE_ONE_POS - SCALE_DIV_512 - log2(1/maxq[w*16+g])*16/3, 60, 218);
868 step = 16;
869 for (;;) {
870 float dist = 0.0f;
871 int quant_max;
872
873 for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
874 int b;
875 dist += quantize_band_cost(s, coefs + w2*128,
876 scaled + w2*128,
877 sce->ics.swb_sizes[g],
878 scf,
879 ESC_BT,
880 1.0,
881 INFINITY,
882 &b);
883 dist -= b;
884 }
885 dist *= 1.0f/512.0f;
886 quant_max = quant(maxq[w*16+g], ff_aac_pow2sf_tab[200 - scf + SCALE_ONE_POS - SCALE_DIV_512]);
887 if (quant_max >= 8191) { // too much, return to the previous quantizer
888 sce->sf_idx[w*16+g] = prev_scf;
889 break;
890 }
891 prev_scf = scf;
892 curdiff = fabsf(dist - uplim[w*16+g]);
893 if (curdiff == 0.0f)
894 step = 0;
895 else
896 step = fabsf(log2(curdiff));
897 if (dist > uplim[w*16+g])
898 step = -step;
899 if (FFABS(step) <= 1 || (step > 0 && scf >= max_scf) || (step < 0 && scf <= min_scf)) {
900 sce->sf_idx[w*16+g] = scf;
901 break;
902 }
903 scf += step;
904 if (step > 0)
905 min_scf = scf;
906 else
907 max_scf = scf;
908 }
909 start += size;
910 }
911 }
912 minq = sce->sf_idx[0] ? sce->sf_idx[0] : INT_MAX;
913 for (i = 1; i < 128; i++) {
914 if (!sce->sf_idx[i])
915 sce->sf_idx[i] = sce->sf_idx[i-1];
916 else
917 minq = FFMIN(minq, sce->sf_idx[i]);
918 }
919 if (minq == INT_MAX) minq = 0;
920 minq = FFMIN(minq, SCALE_MAX_POS);
921 maxsf = FFMIN(minq + SCALE_MAX_DIFF, SCALE_MAX_POS);
922 for (i = 126; i >= 0; i--) {
923 if (!sce->sf_idx[i])
924 sce->sf_idx[i] = sce->sf_idx[i+1];
925 sce->sf_idx[i] = av_clip(sce->sf_idx[i], minq, maxsf);
926 }
927 }
928
929 static void search_for_quantizers_fast(AVCodecContext *avctx, AACEncContext *s,
930 SingleChannelElement *sce,
931 const float lambda)
932 {
933 int start = 0, i, w, w2, g;
934 int minq = 255;
935
936 memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
937 for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
938 start = w*128;
939 for (g = 0; g < sce->ics.num_swb; g++) {
940 for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
941 FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
942 if (band->energy <= band->threshold) {
943 sce->sf_idx[(w+w2)*16+g] = 218;
944 sce->zeroes[(w+w2)*16+g] = 1;
945 } else {
946 sce->sf_idx[(w+w2)*16+g] = av_clip(SCALE_ONE_POS - SCALE_DIV_512 + log2(band->threshold), 80, 218);
947 sce->zeroes[(w+w2)*16+g] = 0;
948 }
949 minq = FFMIN(minq, sce->sf_idx[(w+w2)*16+g]);
950 }
951 }
952 }
953 for (i = 0; i < 128; i++) {
954 sce->sf_idx[i] = 140;//av_clip(sce->sf_idx[i], minq, minq + SCALE_MAX_DIFF - 1);
955 }
956 //set the same quantizers inside window groups
957 for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
958 for (g = 0; g < sce->ics.num_swb; g++)
959 for (w2 = 1; w2 < sce->ics.group_len[w]; w2++)
960 sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
961 }
962
963 static void search_for_ms(AACEncContext *s, ChannelElement *cpe,
964 const float lambda)
965 {
966 int start = 0, i, w, w2, g;
967 float M[128], S[128];
968 float *L34 = s->scoefs, *R34 = s->scoefs + 128, *M34 = s->scoefs + 128*2, *S34 = s->scoefs + 128*3;
969 SingleChannelElement *sce0 = &cpe->ch[0];
970 SingleChannelElement *sce1 = &cpe->ch[1];
971 if (!cpe->common_window)
972 return;
973 for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) {
974 for (g = 0; g < sce0->ics.num_swb; g++) {
975 if (!cpe->ch[0].zeroes[w*16+g] && !cpe->ch[1].zeroes[w*16+g]) {
976 float dist1 = 0.0f, dist2 = 0.0f;
977 for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
978 FFPsyBand *band0 = &s->psy.psy_bands[(s->cur_channel+0)*PSY_MAX_BANDS+(w+w2)*16+g];
979 FFPsyBand *band1 = &s->psy.psy_bands[(s->cur_channel+1)*PSY_MAX_BANDS+(w+w2)*16+g];
980 float minthr = fminf(band0->threshold, band1->threshold);
981 float maxthr = fmaxf(band0->threshold, band1->threshold);
982 for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
983 M[i] = (sce0->coeffs[start+w2*128+i]
984 + sce1->coeffs[start+w2*128+i]) * 0.5;
985 S[i] = sce0->coeffs[start+w2*128+i]
986 - sce1->coeffs[start+w2*128+i];
987 }
988 abs_pow34_v(L34, sce0->coeffs+start+w2*128, sce0->ics.swb_sizes[g]);
989 abs_pow34_v(R34, sce1->coeffs+start+w2*128, sce0->ics.swb_sizes[g]);
990 abs_pow34_v(M34, M, sce0->ics.swb_sizes[g]);
991 abs_pow34_v(S34, S, sce0->ics.swb_sizes[g]);
992 dist1 += quantize_band_cost(s, sce0->coeffs + start + w2*128,
993 L34,
994 sce0->ics.swb_sizes[g],
995 sce0->sf_idx[(w+w2)*16+g],
996 sce0->band_type[(w+w2)*16+g],
997 lambda / band0->threshold, INFINITY, NULL);
998 dist1 += quantize_band_cost(s, sce1->coeffs + start + w2*128,
999 R34,
1000 sce1->ics.swb_sizes[g],
1001 sce1->sf_idx[(w+w2)*16+g],
1002 sce1->band_type[(w+w2)*16+g],
1003 lambda / band1->threshold, INFINITY, NULL);
1004 dist2 += quantize_band_cost(s, M,
1005 M34,
1006 sce0->ics.swb_sizes[g],
1007 sce0->sf_idx[(w+w2)*16+g],
1008 sce0->band_type[(w+w2)*16+g],
1009 lambda / maxthr, INFINITY, NULL);
1010 dist2 += quantize_band_cost(s, S,
1011 S34,
1012 sce1->ics.swb_sizes[g],
1013 sce1->sf_idx[(w+w2)*16+g],
1014 sce1->band_type[(w+w2)*16+g],
1015 lambda / minthr, INFINITY, NULL);
1016 }
1017 cpe->ms_mask[w*16+g] = dist2 < dist1;
1018 }
1019 start += sce0->ics.swb_sizes[g];
1020 }
1021 }
1022 }
1023
1024 AACCoefficientsEncoder ff_aac_coders[] = {
1025 {
1026 search_for_quantizers_faac,
1027 encode_window_bands_info_fixed,
1028 quantize_and_encode_band,
1029 // search_for_ms,
1030 },
1031 {
1032 search_for_quantizers_anmr,
1033 encode_window_bands_info,
1034 quantize_and_encode_band,
1035 // search_for_ms,
1036 },
1037 {
1038 search_for_quantizers_twoloop,
1039 encode_window_bands_info,
1040 quantize_and_encode_band,
1041 // search_for_ms,
1042 },
1043 {
1044 search_for_quantizers_fast,
1045 encode_window_bands_info,
1046 quantize_and_encode_band,
1047 // search_for_ms,
1048 },
1049 };