3 * Copyright (c) 2005-2006 Oded Shimon ( ods15 ods15 dyndns org )
4 * Copyright (c) 2006-2007 Maxim Gavrilov ( maxim.gavrilov gmail com )
5 * Copyright (c) 2008-2013 Alex Converse <alex.converse@gmail.com>
8 * Copyright (c) 2008-2010 Paul Kendall <paul@kcbbs.gen.nz>
9 * Copyright (c) 2010 Janne Grunau <janne-libav@jannau.net>
11 * This file is part of Libav.
13 * Libav is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU Lesser General Public
15 * License as published by the Free Software Foundation; either
16 * version 2.1 of the License, or (at your option) any later version.
18 * Libav is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * Lesser General Public License for more details.
23 * You should have received a copy of the GNU Lesser General Public
24 * License along with Libav; if not, write to the Free Software
25 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
31 * @author Oded Shimon ( ods15 ods15 dyndns org )
32 * @author Maxim Gavrilov ( maxim.gavrilov gmail com )
39 * N (code in SoC repo) gain control
41 * Y window shapes - standard
42 * N window shapes - Low Delay
43 * Y filterbank - standard
44 * N (code in SoC repo) filterbank - Scalable Sample Rate
45 * Y Temporal Noise Shaping
46 * Y Long Term Prediction
49 * Y frequency domain prediction
50 * Y Perceptual Noise Substitution
52 * N Scalable Inverse AAC Quantization
53 * N Frequency Selective Switch
55 * Y quantization & coding - AAC
56 * N quantization & coding - TwinVQ
57 * N quantization & coding - BSAC
58 * N AAC Error Resilience tools
59 * N Error Resilience payload syntax
60 * N Error Protection tool
62 * N Silence Compression
65 * N Structured Audio tools
66 * N Structured Audio Sample Bank Format
68 * N Harmonic and Individual Lines plus Noise
69 * N Text-To-Speech Interface
70 * Y Spectral Band Replication
71 * Y (not in this code) Layer-1
72 * Y (not in this code) Layer-2
73 * Y (not in this code) Layer-3
74 * N SinuSoidal Coding (Transient, Sinusoid, Noise)
76 * N Direct Stream Transfer
78 * Note: - HE AAC v1 comprises LC AAC with Spectral Band Replication.
79 * - HE AAC v2 comprises LC AAC with Spectral Band Replication and
83 #include "libavutil/float_dsp.h"
95 #include "aacdectab.h"
96 #include "cbrt_tablegen.h"
99 #include "mpeg4audio.h"
100 #include "aacadtsdec.h"
101 #include "libavutil/intfloat.h"
110 # include "arm/aac.h"
113 static VLC vlc_scalefactors
;
114 static VLC vlc_spectral
[11];
116 static const char overread_err
[] = "Input buffer exhausted before END element found\n";
118 static int count_channels(uint8_t (*layout
)[3], int tags
)
121 for (i
= 0; i
< tags
; i
++) {
122 int syn_ele
= layout
[i
][0];
123 int pos
= layout
[i
][2];
124 sum
+= (1 + (syn_ele
== TYPE_CPE
)) *
125 (pos
!= AAC_CHANNEL_OFF
&& pos
!= AAC_CHANNEL_CC
);
131 * Check for the channel element in the current channel position configuration.
132 * If it exists, make sure the appropriate element is allocated and map the
133 * channel order to match the internal Libav channel layout.
135 * @param che_pos current channel position configuration
136 * @param type channel element type
137 * @param id channel element id
138 * @param channels count of the number of channels in the configuration
140 * @return Returns error status. 0 - OK, !0 - error
142 static av_cold
int che_configure(AACContext
*ac
,
143 enum ChannelPosition che_pos
,
144 int type
, int id
, int *channels
)
147 if (!ac
->che
[type
][id
]) {
148 if (!(ac
->che
[type
][id
] = av_mallocz(sizeof(ChannelElement
))))
149 return AVERROR(ENOMEM
);
150 ff_aac_sbr_ctx_init(ac
, &ac
->che
[type
][id
]->sbr
);
152 if (type
!= TYPE_CCE
) {
153 if (*channels
>= MAX_CHANNELS
- 2)
154 return AVERROR_INVALIDDATA
;
155 ac
->output_element
[(*channels
)++] = &ac
->che
[type
][id
]->ch
[0];
156 if (type
== TYPE_CPE
||
157 (type
== TYPE_SCE
&& ac
->oc
[1].m4ac
.ps
== 1)) {
158 ac
->output_element
[(*channels
)++] = &ac
->che
[type
][id
]->ch
[1];
162 if (ac
->che
[type
][id
])
163 ff_aac_sbr_ctx_close(&ac
->che
[type
][id
]->sbr
);
164 av_freep(&ac
->che
[type
][id
]);
169 static int frame_configure_elements(AVCodecContext
*avctx
)
171 AACContext
*ac
= avctx
->priv_data
;
172 int type
, id
, ch
, ret
;
174 /* set channel pointers to internal buffers by default */
175 for (type
= 0; type
< 4; type
++) {
176 for (id
= 0; id
< MAX_ELEM_ID
; id
++) {
177 ChannelElement
*che
= ac
->che
[type
][id
];
179 che
->ch
[0].ret
= che
->ch
[0].ret_buf
;
180 che
->ch
[1].ret
= che
->ch
[1].ret_buf
;
185 /* get output buffer */
186 av_frame_unref(ac
->frame
);
187 ac
->frame
->nb_samples
= 2048;
188 if ((ret
= ff_get_buffer(avctx
, ac
->frame
, 0)) < 0) {
189 av_log(avctx
, AV_LOG_ERROR
, "get_buffer() failed\n");
193 /* map output channel pointers to AVFrame data */
194 for (ch
= 0; ch
< avctx
->channels
; ch
++) {
195 if (ac
->output_element
[ch
])
196 ac
->output_element
[ch
]->ret
= (float *)ac
->frame
->extended_data
[ch
];
202 struct elem_to_channel
{
203 uint64_t av_position
;
206 uint8_t aac_position
;
209 static int assign_pair(struct elem_to_channel e2c_vec
[MAX_ELEM_ID
],
210 uint8_t (*layout_map
)[3], int offset
, uint64_t left
,
211 uint64_t right
, int pos
)
213 if (layout_map
[offset
][0] == TYPE_CPE
) {
214 e2c_vec
[offset
] = (struct elem_to_channel
) {
215 .av_position
= left
| right
,
217 .elem_id
= layout_map
[offset
][1],
222 e2c_vec
[offset
] = (struct elem_to_channel
) {
225 .elem_id
= layout_map
[offset
][1],
228 e2c_vec
[offset
+ 1] = (struct elem_to_channel
) {
229 .av_position
= right
,
231 .elem_id
= layout_map
[offset
+ 1][1],
238 static int count_paired_channels(uint8_t (*layout_map
)[3], int tags
, int pos
,
241 int num_pos_channels
= 0;
245 for (i
= *current
; i
< tags
; i
++) {
246 if (layout_map
[i
][2] != pos
)
248 if (layout_map
[i
][0] == TYPE_CPE
) {
250 if (pos
== AAC_CHANNEL_FRONT
&& !first_cpe
) {
256 num_pos_channels
+= 2;
264 ((pos
== AAC_CHANNEL_FRONT
&& first_cpe
) || pos
== AAC_CHANNEL_SIDE
))
267 return num_pos_channels
;
270 static uint64_t sniff_channel_order(uint8_t (*layout_map
)[3], int tags
)
272 int i
, n
, total_non_cc_elements
;
273 struct elem_to_channel e2c_vec
[4 * MAX_ELEM_ID
] = { { 0 } };
274 int num_front_channels
, num_side_channels
, num_back_channels
;
277 if (FF_ARRAY_ELEMS(e2c_vec
) < tags
)
282 count_paired_channels(layout_map
, tags
, AAC_CHANNEL_FRONT
, &i
);
283 if (num_front_channels
< 0)
286 count_paired_channels(layout_map
, tags
, AAC_CHANNEL_SIDE
, &i
);
287 if (num_side_channels
< 0)
290 count_paired_channels(layout_map
, tags
, AAC_CHANNEL_BACK
, &i
);
291 if (num_back_channels
< 0)
295 if (num_front_channels
& 1) {
296 e2c_vec
[i
] = (struct elem_to_channel
) {
297 .av_position
= AV_CH_FRONT_CENTER
,
299 .elem_id
= layout_map
[i
][1],
300 .aac_position
= AAC_CHANNEL_FRONT
303 num_front_channels
--;
305 if (num_front_channels
>= 4) {
306 i
+= assign_pair(e2c_vec
, layout_map
, i
,
307 AV_CH_FRONT_LEFT_OF_CENTER
,
308 AV_CH_FRONT_RIGHT_OF_CENTER
,
310 num_front_channels
-= 2;
312 if (num_front_channels
>= 2) {
313 i
+= assign_pair(e2c_vec
, layout_map
, i
,
317 num_front_channels
-= 2;
319 while (num_front_channels
>= 2) {
320 i
+= assign_pair(e2c_vec
, layout_map
, i
,
324 num_front_channels
-= 2;
327 if (num_side_channels
>= 2) {
328 i
+= assign_pair(e2c_vec
, layout_map
, i
,
332 num_side_channels
-= 2;
334 while (num_side_channels
>= 2) {
335 i
+= assign_pair(e2c_vec
, layout_map
, i
,
339 num_side_channels
-= 2;
342 while (num_back_channels
>= 4) {
343 i
+= assign_pair(e2c_vec
, layout_map
, i
,
347 num_back_channels
-= 2;
349 if (num_back_channels
>= 2) {
350 i
+= assign_pair(e2c_vec
, layout_map
, i
,
354 num_back_channels
-= 2;
356 if (num_back_channels
) {
357 e2c_vec
[i
] = (struct elem_to_channel
) {
358 .av_position
= AV_CH_BACK_CENTER
,
360 .elem_id
= layout_map
[i
][1],
361 .aac_position
= AAC_CHANNEL_BACK
367 if (i
< tags
&& layout_map
[i
][2] == AAC_CHANNEL_LFE
) {
368 e2c_vec
[i
] = (struct elem_to_channel
) {
369 .av_position
= AV_CH_LOW_FREQUENCY
,
371 .elem_id
= layout_map
[i
][1],
372 .aac_position
= AAC_CHANNEL_LFE
376 while (i
< tags
&& layout_map
[i
][2] == AAC_CHANNEL_LFE
) {
377 e2c_vec
[i
] = (struct elem_to_channel
) {
378 .av_position
= UINT64_MAX
,
380 .elem_id
= layout_map
[i
][1],
381 .aac_position
= AAC_CHANNEL_LFE
386 // Must choose a stable sort
387 total_non_cc_elements
= n
= i
;
390 for (i
= 1; i
< n
; i
++)
391 if (e2c_vec
[i
- 1].av_position
> e2c_vec
[i
].av_position
) {
392 FFSWAP(struct elem_to_channel
, e2c_vec
[i
- 1], e2c_vec
[i
]);
399 for (i
= 0; i
< total_non_cc_elements
; i
++) {
400 layout_map
[i
][0] = e2c_vec
[i
].syn_ele
;
401 layout_map
[i
][1] = e2c_vec
[i
].elem_id
;
402 layout_map
[i
][2] = e2c_vec
[i
].aac_position
;
403 if (e2c_vec
[i
].av_position
!= UINT64_MAX
) {
404 layout
|= e2c_vec
[i
].av_position
;
412 * Save current output configuration if and only if it has been locked.
414 static void push_output_configuration(AACContext
*ac
) {
415 if (ac
->oc
[1].status
== OC_LOCKED
) {
416 ac
->oc
[0] = ac
->oc
[1];
418 ac
->oc
[1].status
= OC_NONE
;
422 * Restore the previous output configuration if and only if the current
423 * configuration is unlocked.
425 static void pop_output_configuration(AACContext
*ac
) {
426 if (ac
->oc
[1].status
!= OC_LOCKED
&& ac
->oc
[0].status
!= OC_NONE
) {
427 ac
->oc
[1] = ac
->oc
[0];
428 ac
->avctx
->channels
= ac
->oc
[1].channels
;
429 ac
->avctx
->channel_layout
= ac
->oc
[1].channel_layout
;
434 * Configure output channel order based on the current program
435 * configuration element.
437 * @return Returns error status. 0 - OK, !0 - error
439 static int output_configure(AACContext
*ac
,
440 uint8_t layout_map
[MAX_ELEM_ID
* 4][3], int tags
,
441 enum OCStatus oc_type
, int get_new_frame
)
443 AVCodecContext
*avctx
= ac
->avctx
;
444 int i
, channels
= 0, ret
;
447 if (ac
->oc
[1].layout_map
!= layout_map
) {
448 memcpy(ac
->oc
[1].layout_map
, layout_map
, tags
* sizeof(layout_map
[0]));
449 ac
->oc
[1].layout_map_tags
= tags
;
452 // Try to sniff a reasonable channel order, otherwise output the
453 // channels in the order the PCE declared them.
454 if (avctx
->request_channel_layout
!= AV_CH_LAYOUT_NATIVE
)
455 layout
= sniff_channel_order(layout_map
, tags
);
456 for (i
= 0; i
< tags
; i
++) {
457 int type
= layout_map
[i
][0];
458 int id
= layout_map
[i
][1];
459 int position
= layout_map
[i
][2];
460 // Allocate or free elements depending on if they are in the
461 // current program configuration.
462 ret
= che_configure(ac
, position
, type
, id
, &channels
);
466 if (ac
->oc
[1].m4ac
.ps
== 1 && channels
== 2) {
467 if (layout
== AV_CH_FRONT_CENTER
) {
468 layout
= AV_CH_FRONT_LEFT
|AV_CH_FRONT_RIGHT
;
474 memcpy(ac
->tag_che_map
, ac
->che
, 4 * MAX_ELEM_ID
* sizeof(ac
->che
[0][0]));
475 avctx
->channel_layout
= ac
->oc
[1].channel_layout
= layout
;
476 avctx
->channels
= ac
->oc
[1].channels
= channels
;
477 ac
->oc
[1].status
= oc_type
;
480 if ((ret
= frame_configure_elements(ac
->avctx
)) < 0)
488 * Set up channel positions based on a default channel configuration
489 * as specified in table 1.17.
491 * @return Returns error status. 0 - OK, !0 - error
493 static int set_default_channel_config(AVCodecContext
*avctx
,
494 uint8_t (*layout_map
)[3],
498 if (channel_config
< 1 || channel_config
> 7) {
499 av_log(avctx
, AV_LOG_ERROR
,
500 "invalid default channel configuration (%d)\n",
502 return AVERROR_INVALIDDATA
;
504 *tags
= tags_per_config
[channel_config
];
505 memcpy(layout_map
, aac_channel_layout_map
[channel_config
- 1],
506 *tags
* sizeof(*layout_map
));
510 static ChannelElement
*get_che(AACContext
*ac
, int type
, int elem_id
)
512 /* For PCE based channel configurations map the channels solely based
514 if (!ac
->oc
[1].m4ac
.chan_config
) {
515 return ac
->tag_che_map
[type
][elem_id
];
517 // Allow single CPE stereo files to be signalled with mono configuration.
518 if (!ac
->tags_mapped
&& type
== TYPE_CPE
&&
519 ac
->oc
[1].m4ac
.chan_config
== 1) {
520 uint8_t layout_map
[MAX_ELEM_ID
*4][3];
522 push_output_configuration(ac
);
524 if (set_default_channel_config(ac
->avctx
, layout_map
,
525 &layout_map_tags
, 2) < 0)
527 if (output_configure(ac
, layout_map
, layout_map_tags
,
528 OC_TRIAL_FRAME
, 1) < 0)
531 ac
->oc
[1].m4ac
.chan_config
= 2;
532 ac
->oc
[1].m4ac
.ps
= 0;
535 if (!ac
->tags_mapped
&& type
== TYPE_SCE
&&
536 ac
->oc
[1].m4ac
.chan_config
== 2) {
537 uint8_t layout_map
[MAX_ELEM_ID
* 4][3];
539 push_output_configuration(ac
);
541 if (set_default_channel_config(ac
->avctx
, layout_map
,
542 &layout_map_tags
, 1) < 0)
544 if (output_configure(ac
, layout_map
, layout_map_tags
,
545 OC_TRIAL_FRAME
, 1) < 0)
548 ac
->oc
[1].m4ac
.chan_config
= 1;
549 if (ac
->oc
[1].m4ac
.sbr
)
550 ac
->oc
[1].m4ac
.ps
= -1;
552 /* For indexed channel configurations map the channels solely based
554 switch (ac
->oc
[1].m4ac
.chan_config
) {
556 if (ac
->tags_mapped
== 3 && type
== TYPE_CPE
) {
558 return ac
->tag_che_map
[TYPE_CPE
][elem_id
] = ac
->che
[TYPE_CPE
][2];
561 /* Some streams incorrectly code 5.1 audio as
562 * SCE[0] CPE[0] CPE[1] SCE[1]
564 * SCE[0] CPE[0] CPE[1] LFE[0].
565 * If we seem to have encountered such a stream, transfer
566 * the LFE[0] element to the SCE[1]'s mapping */
567 if (ac
->tags_mapped
== tags_per_config
[ac
->oc
[1].m4ac
.chan_config
] - 1 && (type
== TYPE_LFE
|| type
== TYPE_SCE
)) {
569 return ac
->tag_che_map
[type
][elem_id
] = ac
->che
[TYPE_LFE
][0];
572 if (ac
->tags_mapped
== 2 && type
== TYPE_CPE
) {
574 return ac
->tag_che_map
[TYPE_CPE
][elem_id
] = ac
->che
[TYPE_CPE
][1];
577 if (ac
->tags_mapped
== 2 &&
578 ac
->oc
[1].m4ac
.chan_config
== 4 &&
581 return ac
->tag_che_map
[TYPE_SCE
][elem_id
] = ac
->che
[TYPE_SCE
][1];
585 if (ac
->tags_mapped
== (ac
->oc
[1].m4ac
.chan_config
!= 2) &&
588 return ac
->tag_che_map
[TYPE_CPE
][elem_id
] = ac
->che
[TYPE_CPE
][0];
589 } else if (ac
->oc
[1].m4ac
.chan_config
== 2) {
593 if (!ac
->tags_mapped
&& type
== TYPE_SCE
) {
595 return ac
->tag_che_map
[TYPE_SCE
][elem_id
] = ac
->che
[TYPE_SCE
][0];
603 * Decode an array of 4 bit element IDs, optionally interleaved with a
604 * stereo/mono switching bit.
606 * @param type speaker type/position for these channels
608 static void decode_channel_map(uint8_t layout_map
[][3],
609 enum ChannelPosition type
,
610 GetBitContext
*gb
, int n
)
613 enum RawDataBlockType syn_ele
;
615 case AAC_CHANNEL_FRONT
:
616 case AAC_CHANNEL_BACK
:
617 case AAC_CHANNEL_SIDE
:
618 syn_ele
= get_bits1(gb
);
624 case AAC_CHANNEL_LFE
:
628 // AAC_CHANNEL_OFF has no channel map
631 layout_map
[0][0] = syn_ele
;
632 layout_map
[0][1] = get_bits(gb
, 4);
633 layout_map
[0][2] = type
;
639 * Decode program configuration element; reference: table 4.2.
641 * @return Returns error status. 0 - OK, !0 - error
643 static int decode_pce(AVCodecContext
*avctx
, MPEG4AudioConfig
*m4ac
,
644 uint8_t (*layout_map
)[3],
647 int num_front
, num_side
, num_back
, num_lfe
, num_assoc_data
, num_cc
;
652 skip_bits(gb
, 2); // object_type
654 sampling_index
= get_bits(gb
, 4);
655 if (m4ac
->sampling_index
!= sampling_index
)
656 av_log(avctx
, AV_LOG_WARNING
,
657 "Sample rate index in program config element does not "
658 "match the sample rate index configured by the container.\n");
660 num_front
= get_bits(gb
, 4);
661 num_side
= get_bits(gb
, 4);
662 num_back
= get_bits(gb
, 4);
663 num_lfe
= get_bits(gb
, 2);
664 num_assoc_data
= get_bits(gb
, 3);
665 num_cc
= get_bits(gb
, 4);
668 skip_bits(gb
, 4); // mono_mixdown_tag
670 skip_bits(gb
, 4); // stereo_mixdown_tag
673 skip_bits(gb
, 3); // mixdown_coeff_index and pseudo_surround
675 decode_channel_map(layout_map
, AAC_CHANNEL_FRONT
, gb
, num_front
);
677 decode_channel_map(layout_map
+ tags
, AAC_CHANNEL_SIDE
, gb
, num_side
);
679 decode_channel_map(layout_map
+ tags
, AAC_CHANNEL_BACK
, gb
, num_back
);
681 decode_channel_map(layout_map
+ tags
, AAC_CHANNEL_LFE
, gb
, num_lfe
);
684 skip_bits_long(gb
, 4 * num_assoc_data
);
686 decode_channel_map(layout_map
+ tags
, AAC_CHANNEL_CC
, gb
, num_cc
);
691 /* comment field, first byte is length */
692 comment_len
= get_bits(gb
, 8) * 8;
693 if (get_bits_left(gb
) < comment_len
) {
694 av_log(avctx
, AV_LOG_ERROR
, overread_err
);
695 return AVERROR_INVALIDDATA
;
697 skip_bits_long(gb
, comment_len
);
702 * Decode GA "General Audio" specific configuration; reference: table 4.1.
704 * @param ac pointer to AACContext, may be null
705 * @param avctx pointer to AVCCodecContext, used for logging
707 * @return Returns error status. 0 - OK, !0 - error
709 static int decode_ga_specific_config(AACContext
*ac
, AVCodecContext
*avctx
,
711 MPEG4AudioConfig
*m4ac
,
714 int extension_flag
, ret
, ep_config
, res_flags
;
715 uint8_t layout_map
[MAX_ELEM_ID
*4][3];
718 if (get_bits1(gb
)) { // frameLengthFlag
719 avpriv_request_sample(avctx
, "960/120 MDCT window");
720 return AVERROR_PATCHWELCOME
;
722 m4ac
->frame_length_short
= 0;
724 if (get_bits1(gb
)) // dependsOnCoreCoder
725 skip_bits(gb
, 14); // coreCoderDelay
726 extension_flag
= get_bits1(gb
);
728 if (m4ac
->object_type
== AOT_AAC_SCALABLE
||
729 m4ac
->object_type
== AOT_ER_AAC_SCALABLE
)
730 skip_bits(gb
, 3); // layerNr
732 if (channel_config
== 0) {
733 skip_bits(gb
, 4); // element_instance_tag
734 tags
= decode_pce(avctx
, m4ac
, layout_map
, gb
);
738 if ((ret
= set_default_channel_config(avctx
, layout_map
,
739 &tags
, channel_config
)))
743 if (count_channels(layout_map
, tags
) > 1) {
745 } else if (m4ac
->sbr
== 1 && m4ac
->ps
== -1)
748 if (ac
&& (ret
= output_configure(ac
, layout_map
, tags
, OC_GLOBAL_HDR
, 0)))
751 if (extension_flag
) {
752 switch (m4ac
->object_type
) {
754 skip_bits(gb
, 5); // numOfSubFrame
755 skip_bits(gb
, 11); // layer_length
759 case AOT_ER_AAC_SCALABLE
:
761 res_flags
= get_bits(gb
, 3);
763 avpriv_report_missing_feature(avctx
,
764 "AAC data resilience (flags %x)",
766 return AVERROR_PATCHWELCOME
;
770 skip_bits1(gb
); // extensionFlag3 (TBD in version 3)
772 switch (m4ac
->object_type
) {
775 case AOT_ER_AAC_SCALABLE
:
777 ep_config
= get_bits(gb
, 2);
779 avpriv_report_missing_feature(avctx
,
780 "epConfig %d", ep_config
);
781 return AVERROR_PATCHWELCOME
;
787 static int decode_eld_specific_config(AACContext
*ac
, AVCodecContext
*avctx
,
789 MPEG4AudioConfig
*m4ac
,
792 int ret
, ep_config
, res_flags
;
793 uint8_t layout_map
[MAX_ELEM_ID
*4][3];
795 const int ELDEXT_TERM
= 0;
800 m4ac
->frame_length_short
= get_bits1(gb
);
801 res_flags
= get_bits(gb
, 3);
803 avpriv_report_missing_feature(avctx
,
804 "AAC data resilience (flags %x)",
806 return AVERROR_PATCHWELCOME
;
809 if (get_bits1(gb
)) { // ldSbrPresentFlag
810 avpriv_report_missing_feature(avctx
,
812 return AVERROR_PATCHWELCOME
;
815 while (get_bits(gb
, 4) != ELDEXT_TERM
) {
816 int len
= get_bits(gb
, 4);
818 len
+= get_bits(gb
, 8);
820 len
+= get_bits(gb
, 16);
821 if (get_bits_left(gb
) < len
* 8 + 4) {
822 av_log(ac
->avctx
, AV_LOG_ERROR
, overread_err
);
823 return AVERROR_INVALIDDATA
;
825 skip_bits_long(gb
, 8 * len
);
828 if ((ret
= set_default_channel_config(avctx
, layout_map
,
829 &tags
, channel_config
)))
832 if (ac
&& (ret
= output_configure(ac
, layout_map
, tags
, OC_GLOBAL_HDR
, 0)))
835 ep_config
= get_bits(gb
, 2);
837 avpriv_report_missing_feature(avctx
,
838 "epConfig %d", ep_config
);
839 return AVERROR_PATCHWELCOME
;
845 * Decode audio specific configuration; reference: table 1.13.
847 * @param ac pointer to AACContext, may be null
848 * @param avctx pointer to AVCCodecContext, used for logging
849 * @param m4ac pointer to MPEG4AudioConfig, used for parsing
850 * @param data pointer to buffer holding an audio specific config
851 * @param bit_size size of audio specific config or data in bits
852 * @param sync_extension look for an appended sync extension
854 * @return Returns error status or number of consumed bits. <0 - error
856 static int decode_audio_specific_config(AACContext
*ac
,
857 AVCodecContext
*avctx
,
858 MPEG4AudioConfig
*m4ac
,
859 const uint8_t *data
, int bit_size
,
865 av_dlog(avctx
, "extradata size %d\n", avctx
->extradata_size
);
866 for (i
= 0; i
< avctx
->extradata_size
; i
++)
867 av_dlog(avctx
, "%02x ", avctx
->extradata
[i
]);
868 av_dlog(avctx
, "\n");
870 if ((ret
= init_get_bits(&gb
, data
, bit_size
)) < 0)
873 if ((i
= avpriv_mpeg4audio_get_config(m4ac
, data
, bit_size
,
874 sync_extension
)) < 0)
875 return AVERROR_INVALIDDATA
;
876 if (m4ac
->sampling_index
> 12) {
877 av_log(avctx
, AV_LOG_ERROR
,
878 "invalid sampling rate index %d\n",
879 m4ac
->sampling_index
);
880 return AVERROR_INVALIDDATA
;
882 if (m4ac
->object_type
== AOT_ER_AAC_LD
&&
883 (m4ac
->sampling_index
< 3 || m4ac
->sampling_index
> 7)) {
884 av_log(avctx
, AV_LOG_ERROR
,
885 "invalid low delay sampling rate index %d\n",
886 m4ac
->sampling_index
);
887 return AVERROR_INVALIDDATA
;
890 skip_bits_long(&gb
, i
);
892 switch (m4ac
->object_type
) {
898 if ((ret
= decode_ga_specific_config(ac
, avctx
, &gb
,
899 m4ac
, m4ac
->chan_config
)) < 0)
903 if ((ret
= decode_eld_specific_config(ac
, avctx
, &gb
,
904 m4ac
, m4ac
->chan_config
)) < 0)
908 avpriv_report_missing_feature(avctx
,
909 "Audio object type %s%d",
910 m4ac
->sbr
== 1 ?
"SBR+" : "",
912 return AVERROR(ENOSYS
);
916 "AOT %d chan config %d sampling index %d (%d) SBR %d PS %d\n",
917 m4ac
->object_type
, m4ac
->chan_config
, m4ac
->sampling_index
,
918 m4ac
->sample_rate
, m4ac
->sbr
,
921 return get_bits_count(&gb
);
925 * linear congruential pseudorandom number generator
927 * @param previous_val pointer to the current state of the generator
929 * @return Returns a 32-bit pseudorandom integer
931 static av_always_inline
int lcg_random(int previous_val
)
933 union { unsigned u
; int s
; } v
= { previous_val
* 1664525u + 1013904223 };
937 static av_always_inline
void reset_predict_state(PredictorState
*ps
)
947 static void reset_all_predictors(PredictorState
*ps
)
950 for (i
= 0; i
< MAX_PREDICTORS
; i
++)
951 reset_predict_state(&ps
[i
]);
954 static int sample_rate_idx (int rate
)
956 if (92017 <= rate
) return 0;
957 else if (75132 <= rate
) return 1;
958 else if (55426 <= rate
) return 2;
959 else if (46009 <= rate
) return 3;
960 else if (37566 <= rate
) return 4;
961 else if (27713 <= rate
) return 5;
962 else if (23004 <= rate
) return 6;
963 else if (18783 <= rate
) return 7;
964 else if (13856 <= rate
) return 8;
965 else if (11502 <= rate
) return 9;
966 else if (9391 <= rate
) return 10;
970 static void reset_predictor_group(PredictorState
*ps
, int group_num
)
973 for (i
= group_num
- 1; i
< MAX_PREDICTORS
; i
+= 30)
974 reset_predict_state(&ps
[i
]);
977 #define AAC_INIT_VLC_STATIC(num, size) \
978 INIT_VLC_STATIC(&vlc_spectral[num], 8, ff_aac_spectral_sizes[num], \
979 ff_aac_spectral_bits[num], sizeof(ff_aac_spectral_bits[num][0]), \
980 sizeof(ff_aac_spectral_bits[num][0]), \
981 ff_aac_spectral_codes[num], sizeof(ff_aac_spectral_codes[num][0]), \
982 sizeof(ff_aac_spectral_codes[num][0]), \
985 static av_cold
int aac_decode_init(AVCodecContext
*avctx
)
987 AACContext
*ac
= avctx
->priv_data
;
991 ac
->oc
[1].m4ac
.sample_rate
= avctx
->sample_rate
;
993 avctx
->sample_fmt
= AV_SAMPLE_FMT_FLTP
;
995 if (avctx
->extradata_size
> 0) {
996 if ((ret
= decode_audio_specific_config(ac
, ac
->avctx
, &ac
->oc
[1].m4ac
,
998 avctx
->extradata_size
* 8,
1003 uint8_t layout_map
[MAX_ELEM_ID
*4][3];
1004 int layout_map_tags
;
1006 sr
= sample_rate_idx(avctx
->sample_rate
);
1007 ac
->oc
[1].m4ac
.sampling_index
= sr
;
1008 ac
->oc
[1].m4ac
.channels
= avctx
->channels
;
1009 ac
->oc
[1].m4ac
.sbr
= -1;
1010 ac
->oc
[1].m4ac
.ps
= -1;
1012 for (i
= 0; i
< FF_ARRAY_ELEMS(ff_mpeg4audio_channels
); i
++)
1013 if (ff_mpeg4audio_channels
[i
] == avctx
->channels
)
1015 if (i
== FF_ARRAY_ELEMS(ff_mpeg4audio_channels
)) {
1018 ac
->oc
[1].m4ac
.chan_config
= i
;
1020 if (ac
->oc
[1].m4ac
.chan_config
) {
1021 int ret
= set_default_channel_config(avctx
, layout_map
,
1022 &layout_map_tags
, ac
->oc
[1].m4ac
.chan_config
);
1024 output_configure(ac
, layout_map
, layout_map_tags
,
1026 else if (avctx
->err_recognition
& AV_EF_EXPLODE
)
1027 return AVERROR_INVALIDDATA
;
1031 AAC_INIT_VLC_STATIC( 0, 304);
1032 AAC_INIT_VLC_STATIC( 1, 270);
1033 AAC_INIT_VLC_STATIC( 2, 550);
1034 AAC_INIT_VLC_STATIC( 3, 300);
1035 AAC_INIT_VLC_STATIC( 4, 328);
1036 AAC_INIT_VLC_STATIC( 5, 294);
1037 AAC_INIT_VLC_STATIC( 6, 306);
1038 AAC_INIT_VLC_STATIC( 7, 268);
1039 AAC_INIT_VLC_STATIC( 8, 510);
1040 AAC_INIT_VLC_STATIC( 9, 366);
1041 AAC_INIT_VLC_STATIC(10, 462);
1045 avpriv_float_dsp_init(&ac
->fdsp
, avctx
->flags
& CODEC_FLAG_BITEXACT
);
1047 ac
->random_state
= 0x1f2e3d4c;
1051 INIT_VLC_STATIC(&vlc_scalefactors
, 7,
1052 FF_ARRAY_ELEMS(ff_aac_scalefactor_code
),
1053 ff_aac_scalefactor_bits
,
1054 sizeof(ff_aac_scalefactor_bits
[0]),
1055 sizeof(ff_aac_scalefactor_bits
[0]),
1056 ff_aac_scalefactor_code
,
1057 sizeof(ff_aac_scalefactor_code
[0]),
1058 sizeof(ff_aac_scalefactor_code
[0]),
1061 ff_mdct_init(&ac
->mdct
, 11, 1, 1.0 / (32768.0 * 1024.0));
1062 ff_mdct_init(&ac
->mdct_ld
, 10, 1, 1.0 / (32768.0 * 512.0));
1063 ff_mdct_init(&ac
->mdct_small
, 8, 1, 1.0 / (32768.0 * 128.0));
1064 ff_mdct_init(&ac
->mdct_ltp
, 11, 0, -2.0 * 32768.0);
1065 ret
= ff_imdct15_init(&ac
->mdct480
, 5);
1069 // window initialization
1070 ff_kbd_window_init(ff_aac_kbd_long_1024
, 4.0, 1024);
1071 ff_kbd_window_init(ff_aac_kbd_short_128
, 6.0, 128);
1072 ff_init_ff_sine_windows(10);
1073 ff_init_ff_sine_windows( 9);
1074 ff_init_ff_sine_windows( 7);
1082 * Skip data_stream_element; reference: table 4.10.
1084 static int skip_data_stream_element(AACContext
*ac
, GetBitContext
*gb
)
1086 int byte_align
= get_bits1(gb
);
1087 int count
= get_bits(gb
, 8);
1089 count
+= get_bits(gb
, 8);
1093 if (get_bits_left(gb
) < 8 * count
) {
1094 av_log(ac
->avctx
, AV_LOG_ERROR
, overread_err
);
1095 return AVERROR_INVALIDDATA
;
1097 skip_bits_long(gb
, 8 * count
);
1101 static int decode_prediction(AACContext
*ac
, IndividualChannelStream
*ics
,
1105 if (get_bits1(gb
)) {
1106 ics
->predictor_reset_group
= get_bits(gb
, 5);
1107 if (ics
->predictor_reset_group
== 0 ||
1108 ics
->predictor_reset_group
> 30) {
1109 av_log(ac
->avctx
, AV_LOG_ERROR
,
1110 "Invalid Predictor Reset Group.\n");
1111 return AVERROR_INVALIDDATA
;
1114 for (sfb
= 0; sfb
< FFMIN(ics
->max_sfb
, ff_aac_pred_sfb_max
[ac
->oc
[1].m4ac
.sampling_index
]); sfb
++) {
1115 ics
->prediction_used
[sfb
] = get_bits1(gb
);
1121 * Decode Long Term Prediction data; reference: table 4.xx.
1123 static void decode_ltp(LongTermPrediction
*ltp
,
1124 GetBitContext
*gb
, uint8_t max_sfb
)
1128 ltp
->lag
= get_bits(gb
, 11);
1129 ltp
->coef
= ltp_coef
[get_bits(gb
, 3)];
1130 for (sfb
= 0; sfb
< FFMIN(max_sfb
, MAX_LTP_LONG_SFB
); sfb
++)
1131 ltp
->used
[sfb
] = get_bits1(gb
);
1135 * Decode Individual Channel Stream info; reference: table 4.6.
1137 static int decode_ics_info(AACContext
*ac
, IndividualChannelStream
*ics
,
1140 const MPEG4AudioConfig
*const m4ac
= &ac
->oc
[1].m4ac
;
1141 const int aot
= m4ac
->object_type
;
1142 const int sampling_index
= m4ac
->sampling_index
;
1143 if (aot
!= AOT_ER_AAC_ELD
) {
1144 if (get_bits1(gb
)) {
1145 av_log(ac
->avctx
, AV_LOG_ERROR
, "Reserved bit set.\n");
1146 if (ac
->avctx
->err_recognition
& AV_EF_BITSTREAM
)
1147 return AVERROR_INVALIDDATA
;
1149 ics
->window_sequence
[1] = ics
->window_sequence
[0];
1150 ics
->window_sequence
[0] = get_bits(gb
, 2);
1151 if (aot
== AOT_ER_AAC_LD
&&
1152 ics
->window_sequence
[0] != ONLY_LONG_SEQUENCE
) {
1153 av_log(ac
->avctx
, AV_LOG_ERROR
,
1154 "AAC LD is only defined for ONLY_LONG_SEQUENCE but "
1155 "window sequence %d found.\n", ics
->window_sequence
[0]);
1156 ics
->window_sequence
[0] = ONLY_LONG_SEQUENCE
;
1157 return AVERROR_INVALIDDATA
;
1159 ics
->use_kb_window
[1] = ics
->use_kb_window
[0];
1160 ics
->use_kb_window
[0] = get_bits1(gb
);
1162 ics
->num_window_groups
= 1;
1163 ics
->group_len
[0] = 1;
1164 if (ics
->window_sequence
[0] == EIGHT_SHORT_SEQUENCE
) {
1166 ics
->max_sfb
= get_bits(gb
, 4);
1167 for (i
= 0; i
< 7; i
++) {
1168 if (get_bits1(gb
)) {
1169 ics
->group_len
[ics
->num_window_groups
- 1]++;
1171 ics
->num_window_groups
++;
1172 ics
->group_len
[ics
->num_window_groups
- 1] = 1;
1175 ics
->num_windows
= 8;
1176 ics
->swb_offset
= ff_swb_offset_128
[sampling_index
];
1177 ics
->num_swb
= ff_aac_num_swb_128
[sampling_index
];
1178 ics
->tns_max_bands
= ff_tns_max_bands_128
[sampling_index
];
1179 ics
->predictor_present
= 0;
1181 ics
->max_sfb
= get_bits(gb
, 6);
1182 ics
->num_windows
= 1;
1183 if (aot
== AOT_ER_AAC_LD
|| aot
== AOT_ER_AAC_ELD
) {
1184 if (m4ac
->frame_length_short
) {
1185 ics
->swb_offset
= ff_swb_offset_480
[sampling_index
];
1186 ics
->num_swb
= ff_aac_num_swb_480
[sampling_index
];
1187 ics
->tns_max_bands
= ff_tns_max_bands_480
[sampling_index
];
1189 ics
->swb_offset
= ff_swb_offset_512
[sampling_index
];
1190 ics
->num_swb
= ff_aac_num_swb_512
[sampling_index
];
1191 ics
->tns_max_bands
= ff_tns_max_bands_512
[sampling_index
];
1193 if (!ics
->num_swb
|| !ics
->swb_offset
)
1196 ics
->swb_offset
= ff_swb_offset_1024
[sampling_index
];
1197 ics
->num_swb
= ff_aac_num_swb_1024
[sampling_index
];
1198 ics
->tns_max_bands
= ff_tns_max_bands_1024
[sampling_index
];
1200 if (aot
!= AOT_ER_AAC_ELD
) {
1201 ics
->predictor_present
= get_bits1(gb
);
1202 ics
->predictor_reset_group
= 0;
1204 if (ics
->predictor_present
) {
1205 if (aot
== AOT_AAC_MAIN
) {
1206 if (decode_prediction(ac
, ics
, gb
)) {
1207 return AVERROR_INVALIDDATA
;
1209 } else if (aot
== AOT_AAC_LC
||
1210 aot
== AOT_ER_AAC_LC
) {
1211 av_log(ac
->avctx
, AV_LOG_ERROR
,
1212 "Prediction is not allowed in AAC-LC.\n");
1213 return AVERROR_INVALIDDATA
;
1215 if (aot
== AOT_ER_AAC_LD
) {
1216 av_log(ac
->avctx
, AV_LOG_ERROR
,
1217 "LTP in ER AAC LD not yet implemented.\n");
1218 return AVERROR_PATCHWELCOME
;
1220 if ((ics
->ltp
.present
= get_bits(gb
, 1)))
1221 decode_ltp(&ics
->ltp
, gb
, ics
->max_sfb
);
1226 if (ics
->max_sfb
> ics
->num_swb
) {
1227 av_log(ac
->avctx
, AV_LOG_ERROR
,
1228 "Number of scalefactor bands in group (%d) "
1229 "exceeds limit (%d).\n",
1230 ics
->max_sfb
, ics
->num_swb
);
1231 return AVERROR_INVALIDDATA
;
1238 * Decode band types (section_data payload); reference: table 4.46.
1240 * @param band_type array of the used band type
1241 * @param band_type_run_end array of the last scalefactor band of a band type run
1243 * @return Returns error status. 0 - OK, !0 - error
1245 static int decode_band_types(AACContext
*ac
, enum BandType band_type
[120],
1246 int band_type_run_end
[120], GetBitContext
*gb
,
1247 IndividualChannelStream
*ics
)
1250 const int bits
= (ics
->window_sequence
[0] == EIGHT_SHORT_SEQUENCE
) ?
3 : 5;
1251 for (g
= 0; g
< ics
->num_window_groups
; g
++) {
1253 while (k
< ics
->max_sfb
) {
1254 uint8_t sect_end
= k
;
1256 int sect_band_type
= get_bits(gb
, 4);
1257 if (sect_band_type
== 12) {
1258 av_log(ac
->avctx
, AV_LOG_ERROR
, "invalid band type\n");
1259 return AVERROR_INVALIDDATA
;
1262 sect_len_incr
= get_bits(gb
, bits
);
1263 sect_end
+= sect_len_incr
;
1264 if (get_bits_left(gb
) < 0) {
1265 av_log(ac
->avctx
, AV_LOG_ERROR
, overread_err
);
1266 return AVERROR_INVALIDDATA
;
1268 if (sect_end
> ics
->max_sfb
) {
1269 av_log(ac
->avctx
, AV_LOG_ERROR
,
1270 "Number of bands (%d) exceeds limit (%d).\n",
1271 sect_end
, ics
->max_sfb
);
1272 return AVERROR_INVALIDDATA
;
1274 } while (sect_len_incr
== (1 << bits
) - 1);
1275 for (; k
< sect_end
; k
++) {
1276 band_type
[idx
] = sect_band_type
;
1277 band_type_run_end
[idx
++] = sect_end
;
1285 * Decode scalefactors; reference: table 4.47.
1287 * @param global_gain first scalefactor value as scalefactors are differentially coded
1288 * @param band_type array of the used band type
1289 * @param band_type_run_end array of the last scalefactor band of a band type run
1290 * @param sf array of scalefactors or intensity stereo positions
1292 * @return Returns error status. 0 - OK, !0 - error
1294 static int decode_scalefactors(AACContext
*ac
, float sf
[120], GetBitContext
*gb
,
1295 unsigned int global_gain
,
1296 IndividualChannelStream
*ics
,
1297 enum BandType band_type
[120],
1298 int band_type_run_end
[120])
1301 int offset
[3] = { global_gain
, global_gain
- 90, 0 };
1304 for (g
= 0; g
< ics
->num_window_groups
; g
++) {
1305 for (i
= 0; i
< ics
->max_sfb
;) {
1306 int run_end
= band_type_run_end
[idx
];
1307 if (band_type
[idx
] == ZERO_BT
) {
1308 for (; i
< run_end
; i
++, idx
++)
1310 } else if ((band_type
[idx
] == INTENSITY_BT
) ||
1311 (band_type
[idx
] == INTENSITY_BT2
)) {
1312 for (; i
< run_end
; i
++, idx
++) {
1313 offset
[2] += get_vlc2(gb
, vlc_scalefactors
.table
, 7, 3) - 60;
1314 clipped_offset
= av_clip(offset
[2], -155, 100);
1315 if (offset
[2] != clipped_offset
) {
1316 avpriv_request_sample(ac
->avctx
,
1317 "If you heard an audible artifact, there may be a bug in the decoder. "
1318 "Clipped intensity stereo position (%d -> %d)",
1319 offset
[2], clipped_offset
);
1321 sf
[idx
] = ff_aac_pow2sf_tab
[-clipped_offset
+ POW_SF2_ZERO
];
1323 } else if (band_type
[idx
] == NOISE_BT
) {
1324 for (; i
< run_end
; i
++, idx
++) {
1325 if (noise_flag
-- > 0)
1326 offset
[1] += get_bits(gb
, 9) - 256;
1328 offset
[1] += get_vlc2(gb
, vlc_scalefactors
.table
, 7, 3) - 60;
1329 clipped_offset
= av_clip(offset
[1], -100, 155);
1330 if (offset
[1] != clipped_offset
) {
1331 avpriv_request_sample(ac
->avctx
,
1332 "If you heard an audible artifact, there may be a bug in the decoder. "
1333 "Clipped noise gain (%d -> %d)",
1334 offset
[1], clipped_offset
);
1336 sf
[idx
] = -ff_aac_pow2sf_tab
[clipped_offset
+ POW_SF2_ZERO
];
1339 for (; i
< run_end
; i
++, idx
++) {
1340 offset
[0] += get_vlc2(gb
, vlc_scalefactors
.table
, 7, 3) - 60;
1341 if (offset
[0] > 255U) {
1342 av_log(ac
->avctx
, AV_LOG_ERROR
,
1343 "Scalefactor (%d) out of range.\n", offset
[0]);
1344 return AVERROR_INVALIDDATA
;
1346 sf
[idx
] = -ff_aac_pow2sf_tab
[offset
[0] - 100 + POW_SF2_ZERO
];
1355 * Decode pulse data; reference: table 4.7.
1357 static int decode_pulses(Pulse
*pulse
, GetBitContext
*gb
,
1358 const uint16_t *swb_offset
, int num_swb
)
1361 pulse
->num_pulse
= get_bits(gb
, 2) + 1;
1362 pulse_swb
= get_bits(gb
, 6);
1363 if (pulse_swb
>= num_swb
)
1365 pulse
->pos
[0] = swb_offset
[pulse_swb
];
1366 pulse
->pos
[0] += get_bits(gb
, 5);
1367 if (pulse
->pos
[0] > 1023)
1369 pulse
->amp
[0] = get_bits(gb
, 4);
1370 for (i
= 1; i
< pulse
->num_pulse
; i
++) {
1371 pulse
->pos
[i
] = get_bits(gb
, 5) + pulse
->pos
[i
- 1];
1372 if (pulse
->pos
[i
] > 1023)
1374 pulse
->amp
[i
] = get_bits(gb
, 4);
1380 * Decode Temporal Noise Shaping data; reference: table 4.48.
1382 * @return Returns error status. 0 - OK, !0 - error
1384 static int decode_tns(AACContext
*ac
, TemporalNoiseShaping
*tns
,
1385 GetBitContext
*gb
, const IndividualChannelStream
*ics
)
1387 int w
, filt
, i
, coef_len
, coef_res
, coef_compress
;
1388 const int is8
= ics
->window_sequence
[0] == EIGHT_SHORT_SEQUENCE
;
1389 const int tns_max_order
= is8 ?
7 : ac
->oc
[1].m4ac
.object_type
== AOT_AAC_MAIN ?
20 : 12;
1390 for (w
= 0; w
< ics
->num_windows
; w
++) {
1391 if ((tns
->n_filt
[w
] = get_bits(gb
, 2 - is8
))) {
1392 coef_res
= get_bits1(gb
);
1394 for (filt
= 0; filt
< tns
->n_filt
[w
]; filt
++) {
1396 tns
->length
[w
][filt
] = get_bits(gb
, 6 - 2 * is8
);
1398 if ((tns
->order
[w
][filt
] = get_bits(gb
, 5 - 2 * is8
)) > tns_max_order
) {
1399 av_log(ac
->avctx
, AV_LOG_ERROR
,
1400 "TNS filter order %d is greater than maximum %d.\n",
1401 tns
->order
[w
][filt
], tns_max_order
);
1402 tns
->order
[w
][filt
] = 0;
1403 return AVERROR_INVALIDDATA
;
1405 if (tns
->order
[w
][filt
]) {
1406 tns
->direction
[w
][filt
] = get_bits1(gb
);
1407 coef_compress
= get_bits1(gb
);
1408 coef_len
= coef_res
+ 3 - coef_compress
;
1409 tmp2_idx
= 2 * coef_compress
+ coef_res
;
1411 for (i
= 0; i
< tns
->order
[w
][filt
]; i
++)
1412 tns
->coef
[w
][filt
][i
] = tns_tmp2_map
[tmp2_idx
][get_bits(gb
, coef_len
)];
1421 * Decode Mid/Side data; reference: table 4.54.
1423 * @param ms_present Indicates mid/side stereo presence. [0] mask is all 0s;
1424 * [1] mask is decoded from bitstream; [2] mask is all 1s;
1425 * [3] reserved for scalable AAC
1427 static void decode_mid_side_stereo(ChannelElement
*cpe
, GetBitContext
*gb
,
1431 int max_idx
= cpe
->ch
[0].ics
.num_window_groups
* cpe
->ch
[0].ics
.max_sfb
;
1432 if (ms_present
== 1) {
1433 for (idx
= 0; idx
< max_idx
; idx
++)
1434 cpe
->ms_mask
[idx
] = get_bits1(gb
);
1435 } else if (ms_present
== 2) {
1436 memset(cpe
->ms_mask
, 1, max_idx
* sizeof(cpe
->ms_mask
[0]));
1441 static inline float *VMUL2(float *dst
, const float *v
, unsigned idx
,
1445 *dst
++ = v
[idx
& 15] * s
;
1446 *dst
++ = v
[idx
>>4 & 15] * s
;
1452 static inline float *VMUL4(float *dst
, const float *v
, unsigned idx
,
1456 *dst
++ = v
[idx
& 3] * s
;
1457 *dst
++ = v
[idx
>>2 & 3] * s
;
1458 *dst
++ = v
[idx
>>4 & 3] * s
;
1459 *dst
++ = v
[idx
>>6 & 3] * s
;
1465 static inline float *VMUL2S(float *dst
, const float *v
, unsigned idx
,
1466 unsigned sign
, const float *scale
)
1468 union av_intfloat32 s0
, s1
;
1470 s0
.f
= s1
.f
= *scale
;
1471 s0
.i
^= sign
>> 1 << 31;
1474 *dst
++ = v
[idx
& 15] * s0
.f
;
1475 *dst
++ = v
[idx
>>4 & 15] * s1
.f
;
1482 static inline float *VMUL4S(float *dst
, const float *v
, unsigned idx
,
1483 unsigned sign
, const float *scale
)
1485 unsigned nz
= idx
>> 12;
1486 union av_intfloat32 s
= { .f
= *scale
};
1487 union av_intfloat32 t
;
1489 t
.i
= s
.i
^ (sign
& 1U<<31);
1490 *dst
++ = v
[idx
& 3] * t
.f
;
1492 sign
<<= nz
& 1; nz
>>= 1;
1493 t
.i
= s
.i
^ (sign
& 1U<<31);
1494 *dst
++ = v
[idx
>>2 & 3] * t
.f
;
1496 sign
<<= nz
& 1; nz
>>= 1;
1497 t
.i
= s
.i
^ (sign
& 1U<<31);
1498 *dst
++ = v
[idx
>>4 & 3] * t
.f
;
1501 t
.i
= s
.i
^ (sign
& 1U<<31);
1502 *dst
++ = v
[idx
>>6 & 3] * t
.f
;
1509 * Decode spectral data; reference: table 4.50.
1510 * Dequantize and scale spectral data; reference: 4.6.3.3.
1512 * @param coef array of dequantized, scaled spectral data
1513 * @param sf array of scalefactors or intensity stereo positions
1514 * @param pulse_present set if pulses are present
1515 * @param pulse pointer to pulse data struct
1516 * @param band_type array of the used band type
1518 * @return Returns error status. 0 - OK, !0 - error
1520 static int decode_spectrum_and_dequant(AACContext
*ac
, float coef
[1024],
1521 GetBitContext
*gb
, const float sf
[120],
1522 int pulse_present
, const Pulse
*pulse
,
1523 const IndividualChannelStream
*ics
,
1524 enum BandType band_type
[120])
1526 int i
, k
, g
, idx
= 0;
1527 const int c
= 1024 / ics
->num_windows
;
1528 const uint16_t *offsets
= ics
->swb_offset
;
1529 float *coef_base
= coef
;
1531 for (g
= 0; g
< ics
->num_windows
; g
++)
1532 memset(coef
+ g
* 128 + offsets
[ics
->max_sfb
], 0,
1533 sizeof(float) * (c
- offsets
[ics
->max_sfb
]));
1535 for (g
= 0; g
< ics
->num_window_groups
; g
++) {
1536 unsigned g_len
= ics
->group_len
[g
];
1538 for (i
= 0; i
< ics
->max_sfb
; i
++, idx
++) {
1539 const unsigned cbt_m1
= band_type
[idx
] - 1;
1540 float *cfo
= coef
+ offsets
[i
];
1541 int off_len
= offsets
[i
+ 1] - offsets
[i
];
1544 if (cbt_m1
>= INTENSITY_BT2
- 1) {
1545 for (group
= 0; group
< g_len
; group
++, cfo
+=128) {
1546 memset(cfo
, 0, off_len
* sizeof(float));
1548 } else if (cbt_m1
== NOISE_BT
- 1) {
1549 for (group
= 0; group
< g_len
; group
++, cfo
+=128) {
1553 for (k
= 0; k
< off_len
; k
++) {
1554 ac
->random_state
= lcg_random(ac
->random_state
);
1555 cfo
[k
] = ac
->random_state
;
1558 band_energy
= ac
->fdsp
.scalarproduct_float(cfo
, cfo
, off_len
);
1559 scale
= sf
[idx
] / sqrtf(band_energy
);
1560 ac
->fdsp
.vector_fmul_scalar(cfo
, cfo
, scale
, off_len
);
1563 const float *vq
= ff_aac_codebook_vector_vals
[cbt_m1
];
1564 const uint16_t *cb_vector_idx
= ff_aac_codebook_vector_idx
[cbt_m1
];
1565 VLC_TYPE (*vlc_tab
)[2] = vlc_spectral
[cbt_m1
].table
;
1566 OPEN_READER(re
, gb
);
1568 switch (cbt_m1
>> 1) {
1570 for (group
= 0; group
< g_len
; group
++, cfo
+=128) {
1578 UPDATE_CACHE(re
, gb
);
1579 GET_VLC(code
, re
, gb
, vlc_tab
, 8, 2);
1580 cb_idx
= cb_vector_idx
[code
];
1581 cf
= VMUL4(cf
, vq
, cb_idx
, sf
+ idx
);
1587 for (group
= 0; group
< g_len
; group
++, cfo
+=128) {
1597 UPDATE_CACHE(re
, gb
);
1598 GET_VLC(code
, re
, gb
, vlc_tab
, 8, 2);
1599 cb_idx
= cb_vector_idx
[code
];
1600 nnz
= cb_idx
>> 8 & 15;
1601 bits
= nnz ?
GET_CACHE(re
, gb
) : 0;
1602 LAST_SKIP_BITS(re
, gb
, nnz
);
1603 cf
= VMUL4S(cf
, vq
, cb_idx
, bits
, sf
+ idx
);
1609 for (group
= 0; group
< g_len
; group
++, cfo
+=128) {
1617 UPDATE_CACHE(re
, gb
);
1618 GET_VLC(code
, re
, gb
, vlc_tab
, 8, 2);
1619 cb_idx
= cb_vector_idx
[code
];
1620 cf
= VMUL2(cf
, vq
, cb_idx
, sf
+ idx
);
1627 for (group
= 0; group
< g_len
; group
++, cfo
+=128) {
1637 UPDATE_CACHE(re
, gb
);
1638 GET_VLC(code
, re
, gb
, vlc_tab
, 8, 2);
1639 cb_idx
= cb_vector_idx
[code
];
1640 nnz
= cb_idx
>> 8 & 15;
1641 sign
= nnz ?
SHOW_UBITS(re
, gb
, nnz
) << (cb_idx
>> 12) : 0;
1642 LAST_SKIP_BITS(re
, gb
, nnz
);
1643 cf
= VMUL2S(cf
, vq
, cb_idx
, sign
, sf
+ idx
);
1649 for (group
= 0; group
< g_len
; group
++, cfo
+=128) {
1651 uint32_t *icf
= (uint32_t *) cf
;
1661 UPDATE_CACHE(re
, gb
);
1662 GET_VLC(code
, re
, gb
, vlc_tab
, 8, 2);
1670 cb_idx
= cb_vector_idx
[code
];
1673 bits
= SHOW_UBITS(re
, gb
, nnz
) << (32-nnz
);
1674 LAST_SKIP_BITS(re
, gb
, nnz
);
1676 for (j
= 0; j
< 2; j
++) {
1680 /* The total length of escape_sequence must be < 22 bits according
1681 to the specification (i.e. max is 111111110xxxxxxxxxxxx). */
1682 UPDATE_CACHE(re
, gb
);
1683 b
= GET_CACHE(re
, gb
);
1684 b
= 31 - av_log2(~b
);
1687 av_log(ac
->avctx
, AV_LOG_ERROR
, "error in spectral data, ESC overflow\n");
1688 return AVERROR_INVALIDDATA
;
1691 SKIP_BITS(re
, gb
, b
+ 1);
1693 n
= (1 << b
) + SHOW_UBITS(re
, gb
, b
);
1694 LAST_SKIP_BITS(re
, gb
, b
);
1695 *icf
++ = cbrt_tab
[n
] | (bits
& 1U<<31);
1698 unsigned v
= ((const uint32_t*)vq
)[cb_idx
& 15];
1699 *icf
++ = (bits
& 1U<<31) | v
;
1706 ac
->fdsp
.vector_fmul_scalar(cfo
, cfo
, sf
[idx
], off_len
);
1710 CLOSE_READER(re
, gb
);
1716 if (pulse_present
) {
1718 for (i
= 0; i
< pulse
->num_pulse
; i
++) {
1719 float co
= coef_base
[ pulse
->pos
[i
] ];
1720 while (offsets
[idx
+ 1] <= pulse
->pos
[i
])
1722 if (band_type
[idx
] != NOISE_BT
&& sf
[idx
]) {
1723 float ico
= -pulse
->amp
[i
];
1726 ico
= co
/ sqrtf(sqrtf(fabsf(co
))) + (co
> 0 ?
-ico
: ico
);
1728 coef_base
[ pulse
->pos
[i
] ] = cbrtf(fabsf(ico
)) * ico
* sf
[idx
];
1735 static av_always_inline
float flt16_round(float pf
)
1737 union av_intfloat32 tmp
;
1739 tmp
.i
= (tmp
.i
+ 0x00008000U
) & 0xFFFF0000U
;
1743 static av_always_inline
float flt16_even(float pf
)
1745 union av_intfloat32 tmp
;
1747 tmp
.i
= (tmp
.i
+ 0x00007FFFU
+ (tmp
.i
& 0x00010000U
>> 16)) & 0xFFFF0000U
;
1751 static av_always_inline
float flt16_trunc(float pf
)
1753 union av_intfloat32 pun
;
1755 pun
.i
&= 0xFFFF0000U
;
1759 static av_always_inline
void predict(PredictorState
*ps
, float *coef
,
1762 const float a
= 0.953125; // 61.0 / 64
1763 const float alpha
= 0.90625; // 29.0 / 32
1767 float r0
= ps
->r0
, r1
= ps
->r1
;
1768 float cor0
= ps
->cor0
, cor1
= ps
->cor1
;
1769 float var0
= ps
->var0
, var1
= ps
->var1
;
1771 k1
= var0
> 1 ? cor0
* flt16_even(a
/ var0
) : 0;
1772 k2
= var1
> 1 ? cor1
* flt16_even(a
/ var1
) : 0;
1774 pv
= flt16_round(k1
* r0
+ k2
* r1
);
1781 ps
->cor1
= flt16_trunc(alpha
* cor1
+ r1
* e1
);
1782 ps
->var1
= flt16_trunc(alpha
* var1
+ 0.5f
* (r1
* r1
+ e1
* e1
));
1783 ps
->cor0
= flt16_trunc(alpha
* cor0
+ r0
* e0
);
1784 ps
->var0
= flt16_trunc(alpha
* var0
+ 0.5f
* (r0
* r0
+ e0
* e0
));
1786 ps
->r1
= flt16_trunc(a
* (r0
- k1
* e0
));
1787 ps
->r0
= flt16_trunc(a
* e0
);
1791 * Apply AAC-Main style frequency domain prediction.
1793 static void apply_prediction(AACContext
*ac
, SingleChannelElement
*sce
)
1797 if (!sce
->ics
.predictor_initialized
) {
1798 reset_all_predictors(sce
->predictor_state
);
1799 sce
->ics
.predictor_initialized
= 1;
1802 if (sce
->ics
.window_sequence
[0] != EIGHT_SHORT_SEQUENCE
) {
1804 sfb
< ff_aac_pred_sfb_max
[ac
->oc
[1].m4ac
.sampling_index
];
1806 for (k
= sce
->ics
.swb_offset
[sfb
];
1807 k
< sce
->ics
.swb_offset
[sfb
+ 1];
1809 predict(&sce
->predictor_state
[k
], &sce
->coeffs
[k
],
1810 sce
->ics
.predictor_present
&&
1811 sce
->ics
.prediction_used
[sfb
]);
1814 if (sce
->ics
.predictor_reset_group
)
1815 reset_predictor_group(sce
->predictor_state
,
1816 sce
->ics
.predictor_reset_group
);
1818 reset_all_predictors(sce
->predictor_state
);
1822 * Decode an individual_channel_stream payload; reference: table 4.44.
1824 * @param common_window Channels have independent [0], or shared [1], Individual Channel Stream information.
1825 * @param scale_flag scalable [1] or non-scalable [0] AAC (Unused until scalable AAC is implemented.)
1827 * @return Returns error status. 0 - OK, !0 - error
1829 static int decode_ics(AACContext
*ac
, SingleChannelElement
*sce
,
1830 GetBitContext
*gb
, int common_window
, int scale_flag
)
1833 TemporalNoiseShaping
*tns
= &sce
->tns
;
1834 IndividualChannelStream
*ics
= &sce
->ics
;
1835 float *out
= sce
->coeffs
;
1836 int global_gain
, eld_syntax
, er_syntax
, pulse_present
= 0;
1839 eld_syntax
= ac
->oc
[1].m4ac
.object_type
== AOT_ER_AAC_ELD
;
1840 er_syntax
= ac
->oc
[1].m4ac
.object_type
== AOT_ER_AAC_LC
||
1841 ac
->oc
[1].m4ac
.object_type
== AOT_ER_AAC_LTP
||
1842 ac
->oc
[1].m4ac
.object_type
== AOT_ER_AAC_LD
||
1843 ac
->oc
[1].m4ac
.object_type
== AOT_ER_AAC_ELD
;
1845 /* This assignment is to silence a GCC warning about the variable being used
1846 * uninitialized when in fact it always is.
1848 pulse
.num_pulse
= 0;
1850 global_gain
= get_bits(gb
, 8);
1852 if (!common_window
&& !scale_flag
) {
1853 if (decode_ics_info(ac
, ics
, gb
) < 0)
1854 return AVERROR_INVALIDDATA
;
1857 if ((ret
= decode_band_types(ac
, sce
->band_type
,
1858 sce
->band_type_run_end
, gb
, ics
)) < 0)
1860 if ((ret
= decode_scalefactors(ac
, sce
->sf
, gb
, global_gain
, ics
,
1861 sce
->band_type
, sce
->band_type_run_end
)) < 0)
1866 if (!eld_syntax
&& (pulse_present
= get_bits1(gb
))) {
1867 if (ics
->window_sequence
[0] == EIGHT_SHORT_SEQUENCE
) {
1868 av_log(ac
->avctx
, AV_LOG_ERROR
,
1869 "Pulse tool not allowed in eight short sequence.\n");
1870 return AVERROR_INVALIDDATA
;
1872 if (decode_pulses(&pulse
, gb
, ics
->swb_offset
, ics
->num_swb
)) {
1873 av_log(ac
->avctx
, AV_LOG_ERROR
,
1874 "Pulse data corrupt or invalid.\n");
1875 return AVERROR_INVALIDDATA
;
1878 tns
->present
= get_bits1(gb
);
1879 if (tns
->present
&& !er_syntax
)
1880 if (decode_tns(ac
, tns
, gb
, ics
) < 0)
1881 return AVERROR_INVALIDDATA
;
1882 if (!eld_syntax
&& get_bits1(gb
)) {
1883 avpriv_request_sample(ac
->avctx
, "SSR");
1884 return AVERROR_PATCHWELCOME
;
1886 // I see no textual basis in the spec for this occuring after SSR gain
1887 // control, but this is what both reference and real implmentations do
1888 if (tns
->present
&& er_syntax
)
1889 if (decode_tns(ac
, tns
, gb
, ics
) < 0)
1890 return AVERROR_INVALIDDATA
;
1893 if (decode_spectrum_and_dequant(ac
, out
, gb
, sce
->sf
, pulse_present
,
1894 &pulse
, ics
, sce
->band_type
) < 0)
1895 return AVERROR_INVALIDDATA
;
1897 if (ac
->oc
[1].m4ac
.object_type
== AOT_AAC_MAIN
&& !common_window
)
1898 apply_prediction(ac
, sce
);
1904 * Mid/Side stereo decoding; reference: 4.6.8.1.3.
1906 static void apply_mid_side_stereo(AACContext
*ac
, ChannelElement
*cpe
)
1908 const IndividualChannelStream
*ics
= &cpe
->ch
[0].ics
;
1909 float *ch0
= cpe
->ch
[0].coeffs
;
1910 float *ch1
= cpe
->ch
[1].coeffs
;
1911 int g
, i
, group
, idx
= 0;
1912 const uint16_t *offsets
= ics
->swb_offset
;
1913 for (g
= 0; g
< ics
->num_window_groups
; g
++) {
1914 for (i
= 0; i
< ics
->max_sfb
; i
++, idx
++) {
1915 if (cpe
->ms_mask
[idx
] &&
1916 cpe
->ch
[0].band_type
[idx
] < NOISE_BT
&&
1917 cpe
->ch
[1].band_type
[idx
] < NOISE_BT
) {
1918 for (group
= 0; group
< ics
->group_len
[g
]; group
++) {
1919 ac
->fdsp
.butterflies_float(ch0
+ group
* 128 + offsets
[i
],
1920 ch1
+ group
* 128 + offsets
[i
],
1921 offsets
[i
+1] - offsets
[i
]);
1925 ch0
+= ics
->group_len
[g
] * 128;
1926 ch1
+= ics
->group_len
[g
] * 128;
1931 * intensity stereo decoding; reference: 4.6.8.2.3
1933 * @param ms_present Indicates mid/side stereo presence. [0] mask is all 0s;
1934 * [1] mask is decoded from bitstream; [2] mask is all 1s;
1935 * [3] reserved for scalable AAC
1937 static void apply_intensity_stereo(AACContext
*ac
,
1938 ChannelElement
*cpe
, int ms_present
)
1940 const IndividualChannelStream
*ics
= &cpe
->ch
[1].ics
;
1941 SingleChannelElement
*sce1
= &cpe
->ch
[1];
1942 float *coef0
= cpe
->ch
[0].coeffs
, *coef1
= cpe
->ch
[1].coeffs
;
1943 const uint16_t *offsets
= ics
->swb_offset
;
1944 int g
, group
, i
, idx
= 0;
1947 for (g
= 0; g
< ics
->num_window_groups
; g
++) {
1948 for (i
= 0; i
< ics
->max_sfb
;) {
1949 if (sce1
->band_type
[idx
] == INTENSITY_BT
||
1950 sce1
->band_type
[idx
] == INTENSITY_BT2
) {
1951 const int bt_run_end
= sce1
->band_type_run_end
[idx
];
1952 for (; i
< bt_run_end
; i
++, idx
++) {
1953 c
= -1 + 2 * (sce1
->band_type
[idx
] - 14);
1955 c
*= 1 - 2 * cpe
->ms_mask
[idx
];
1956 scale
= c
* sce1
->sf
[idx
];
1957 for (group
= 0; group
< ics
->group_len
[g
]; group
++)
1958 ac
->fdsp
.vector_fmul_scalar(coef1
+ group
* 128 + offsets
[i
],
1959 coef0
+ group
* 128 + offsets
[i
],
1961 offsets
[i
+ 1] - offsets
[i
]);
1964 int bt_run_end
= sce1
->band_type_run_end
[idx
];
1965 idx
+= bt_run_end
- i
;
1969 coef0
+= ics
->group_len
[g
] * 128;
1970 coef1
+= ics
->group_len
[g
] * 128;
1975 * Decode a channel_pair_element; reference: table 4.4.
1977 * @return Returns error status. 0 - OK, !0 - error
1979 static int decode_cpe(AACContext
*ac
, GetBitContext
*gb
, ChannelElement
*cpe
)
1981 int i
, ret
, common_window
, ms_present
= 0;
1982 int eld_syntax
= ac
->oc
[1].m4ac
.object_type
== AOT_ER_AAC_ELD
;
1984 common_window
= eld_syntax
|| get_bits1(gb
);
1985 if (common_window
) {
1986 if (decode_ics_info(ac
, &cpe
->ch
[0].ics
, gb
))
1987 return AVERROR_INVALIDDATA
;
1988 i
= cpe
->ch
[1].ics
.use_kb_window
[0];
1989 cpe
->ch
[1].ics
= cpe
->ch
[0].ics
;
1990 cpe
->ch
[1].ics
.use_kb_window
[1] = i
;
1991 if (cpe
->ch
[1].ics
.predictor_present
&&
1992 (ac
->oc
[1].m4ac
.object_type
!= AOT_AAC_MAIN
))
1993 if ((cpe
->ch
[1].ics
.ltp
.present
= get_bits(gb
, 1)))
1994 decode_ltp(&cpe
->ch
[1].ics
.ltp
, gb
, cpe
->ch
[1].ics
.max_sfb
);
1995 ms_present
= get_bits(gb
, 2);
1996 if (ms_present
== 3) {
1997 av_log(ac
->avctx
, AV_LOG_ERROR
, "ms_present = 3 is reserved.\n");
1998 return AVERROR_INVALIDDATA
;
1999 } else if (ms_present
)
2000 decode_mid_side_stereo(cpe
, gb
, ms_present
);
2002 if ((ret
= decode_ics(ac
, &cpe
->ch
[0], gb
, common_window
, 0)))
2004 if ((ret
= decode_ics(ac
, &cpe
->ch
[1], gb
, common_window
, 0)))
2007 if (common_window
) {
2009 apply_mid_side_stereo(ac
, cpe
);
2010 if (ac
->oc
[1].m4ac
.object_type
== AOT_AAC_MAIN
) {
2011 apply_prediction(ac
, &cpe
->ch
[0]);
2012 apply_prediction(ac
, &cpe
->ch
[1]);
2016 apply_intensity_stereo(ac
, cpe
, ms_present
);
2020 static const float cce_scale
[] = {
2021 1.09050773266525765921, //2^(1/8)
2022 1.18920711500272106672, //2^(1/4)
2028 * Decode coupling_channel_element; reference: table 4.8.
2030 * @return Returns error status. 0 - OK, !0 - error
2032 static int decode_cce(AACContext
*ac
, GetBitContext
*gb
, ChannelElement
*che
)
2038 SingleChannelElement
*sce
= &che
->ch
[0];
2039 ChannelCoupling
*coup
= &che
->coup
;
2041 coup
->coupling_point
= 2 * get_bits1(gb
);
2042 coup
->num_coupled
= get_bits(gb
, 3);
2043 for (c
= 0; c
<= coup
->num_coupled
; c
++) {
2045 coup
->type
[c
] = get_bits1(gb
) ? TYPE_CPE
: TYPE_SCE
;
2046 coup
->id_select
[c
] = get_bits(gb
, 4);
2047 if (coup
->type
[c
] == TYPE_CPE
) {
2048 coup
->ch_select
[c
] = get_bits(gb
, 2);
2049 if (coup
->ch_select
[c
] == 3)
2052 coup
->ch_select
[c
] = 2;
2054 coup
->coupling_point
+= get_bits1(gb
) || (coup
->coupling_point
>> 1);
2056 sign
= get_bits(gb
, 1);
2057 scale
= cce_scale
[get_bits(gb
, 2)];
2059 if ((ret
= decode_ics(ac
, sce
, gb
, 0, 0)))
2062 for (c
= 0; c
< num_gain
; c
++) {
2066 float gain_cache
= 1.0;
2068 cge
= coup
->coupling_point
== AFTER_IMDCT ?
1 : get_bits1(gb
);
2069 gain
= cge ?
get_vlc2(gb
, vlc_scalefactors
.table
, 7, 3) - 60: 0;
2070 gain_cache
= powf(scale
, -gain
);
2072 if (coup
->coupling_point
== AFTER_IMDCT
) {
2073 coup
->gain
[c
][0] = gain_cache
;
2075 for (g
= 0; g
< sce
->ics
.num_window_groups
; g
++) {
2076 for (sfb
= 0; sfb
< sce
->ics
.max_sfb
; sfb
++, idx
++) {
2077 if (sce
->band_type
[idx
] != ZERO_BT
) {
2079 int t
= get_vlc2(gb
, vlc_scalefactors
.table
, 7, 3) - 60;
2087 gain_cache
= powf(scale
, -t
) * s
;
2090 coup
->gain
[c
][idx
] = gain_cache
;
2100 * Parse whether channels are to be excluded from Dynamic Range Compression; reference: table 4.53.
2102 * @return Returns number of bytes consumed.
2104 static int decode_drc_channel_exclusions(DynamicRangeControl
*che_drc
,
2108 int num_excl_chan
= 0;
2111 for (i
= 0; i
< 7; i
++)
2112 che_drc
->exclude_mask
[num_excl_chan
++] = get_bits1(gb
);
2113 } while (num_excl_chan
< MAX_CHANNELS
- 7 && get_bits1(gb
));
2115 return num_excl_chan
/ 7;
2119 * Decode dynamic range information; reference: table 4.52.
2121 * @return Returns number of bytes consumed.
2123 static int decode_dynamic_range(DynamicRangeControl
*che_drc
,
2127 int drc_num_bands
= 1;
2130 /* pce_tag_present? */
2131 if (get_bits1(gb
)) {
2132 che_drc
->pce_instance_tag
= get_bits(gb
, 4);
2133 skip_bits(gb
, 4); // tag_reserved_bits
2137 /* excluded_chns_present? */
2138 if (get_bits1(gb
)) {
2139 n
+= decode_drc_channel_exclusions(che_drc
, gb
);
2142 /* drc_bands_present? */
2143 if (get_bits1(gb
)) {
2144 che_drc
->band_incr
= get_bits(gb
, 4);
2145 che_drc
->interpolation_scheme
= get_bits(gb
, 4);
2147 drc_num_bands
+= che_drc
->band_incr
;
2148 for (i
= 0; i
< drc_num_bands
; i
++) {
2149 che_drc
->band_top
[i
] = get_bits(gb
, 8);
2154 /* prog_ref_level_present? */
2155 if (get_bits1(gb
)) {
2156 che_drc
->prog_ref_level
= get_bits(gb
, 7);
2157 skip_bits1(gb
); // prog_ref_level_reserved_bits
2161 for (i
= 0; i
< drc_num_bands
; i
++) {
2162 che_drc
->dyn_rng_sgn
[i
] = get_bits1(gb
);
2163 che_drc
->dyn_rng_ctl
[i
] = get_bits(gb
, 7);
2171 * Decode extension data (incomplete); reference: table 4.51.
2173 * @param cnt length of TYPE_FIL syntactic element in bytes
2175 * @return Returns number of bytes consumed
2177 static int decode_extension_payload(AACContext
*ac
, GetBitContext
*gb
, int cnt
,
2178 ChannelElement
*che
, enum RawDataBlockType elem_type
)
2182 switch (get_bits(gb
, 4)) { // extension type
2183 case EXT_SBR_DATA_CRC
:
2187 av_log(ac
->avctx
, AV_LOG_ERROR
, "SBR was found before the first channel element.\n");
2189 } else if (!ac
->oc
[1].m4ac
.sbr
) {
2190 av_log(ac
->avctx
, AV_LOG_ERROR
, "SBR signaled to be not-present but was found in the bitstream.\n");
2191 skip_bits_long(gb
, 8 * cnt
- 4);
2193 } else if (ac
->oc
[1].m4ac
.sbr
== -1 && ac
->oc
[1].status
== OC_LOCKED
) {
2194 av_log(ac
->avctx
, AV_LOG_ERROR
, "Implicit SBR was found with a first occurrence after the first frame.\n");
2195 skip_bits_long(gb
, 8 * cnt
- 4);
2197 } else if (ac
->oc
[1].m4ac
.ps
== -1 && ac
->oc
[1].status
< OC_LOCKED
&& ac
->avctx
->channels
== 1) {
2198 ac
->oc
[1].m4ac
.sbr
= 1;
2199 ac
->oc
[1].m4ac
.ps
= 1;
2200 ac
->avctx
->profile
= FF_PROFILE_AAC_HE_V2
;
2201 output_configure(ac
, ac
->oc
[1].layout_map
, ac
->oc
[1].layout_map_tags
,
2202 ac
->oc
[1].status
, 1);
2204 ac
->oc
[1].m4ac
.sbr
= 1;
2205 ac
->avctx
->profile
= FF_PROFILE_AAC_HE
;
2207 res
= ff_decode_sbr_extension(ac
, &che
->sbr
, gb
, crc_flag
, cnt
, elem_type
);
2209 case EXT_DYNAMIC_RANGE
:
2210 res
= decode_dynamic_range(&ac
->che_drc
, gb
);
2214 case EXT_DATA_ELEMENT
:
2216 skip_bits_long(gb
, 8 * cnt
- 4);
2223 * Decode Temporal Noise Shaping filter coefficients and apply all-pole filters; reference: 4.6.9.3.
2225 * @param decode 1 if tool is used normally, 0 if tool is used in LTP.
2226 * @param coef spectral coefficients
2228 static void apply_tns(float coef
[1024], TemporalNoiseShaping
*tns
,
2229 IndividualChannelStream
*ics
, int decode
)
2231 const int mmm
= FFMIN(ics
->tns_max_bands
, ics
->max_sfb
);
2233 int bottom
, top
, order
, start
, end
, size
, inc
;
2234 float lpc
[TNS_MAX_ORDER
];
2235 float tmp
[TNS_MAX_ORDER
+ 1];
2237 for (w
= 0; w
< ics
->num_windows
; w
++) {
2238 bottom
= ics
->num_swb
;
2239 for (filt
= 0; filt
< tns
->n_filt
[w
]; filt
++) {
2241 bottom
= FFMAX(0, top
- tns
->length
[w
][filt
]);
2242 order
= tns
->order
[w
][filt
];
2247 compute_lpc_coefs(tns
->coef
[w
][filt
], order
, lpc
, 0, 0, 0);
2249 start
= ics
->swb_offset
[FFMIN(bottom
, mmm
)];
2250 end
= ics
->swb_offset
[FFMIN( top
, mmm
)];
2251 if ((size
= end
- start
) <= 0)
2253 if (tns
->direction
[w
][filt
]) {
2263 for (m
= 0; m
< size
; m
++, start
+= inc
)
2264 for (i
= 1; i
<= FFMIN(m
, order
); i
++)
2265 coef
[start
] -= coef
[start
- i
* inc
] * lpc
[i
- 1];
2268 for (m
= 0; m
< size
; m
++, start
+= inc
) {
2269 tmp
[0] = coef
[start
];
2270 for (i
= 1; i
<= FFMIN(m
, order
); i
++)
2271 coef
[start
] += tmp
[i
] * lpc
[i
- 1];
2272 for (i
= order
; i
> 0; i
--)
2273 tmp
[i
] = tmp
[i
- 1];
2281 * Apply windowing and MDCT to obtain the spectral
2282 * coefficient from the predicted sample by LTP.
2284 static void windowing_and_mdct_ltp(AACContext
*ac
, float *out
,
2285 float *in
, IndividualChannelStream
*ics
)
2287 const float *lwindow
= ics
->use_kb_window
[0] ? ff_aac_kbd_long_1024
: ff_sine_1024
;
2288 const float *swindow
= ics
->use_kb_window
[0] ? ff_aac_kbd_short_128
: ff_sine_128
;
2289 const float *lwindow_prev
= ics
->use_kb_window
[1] ? ff_aac_kbd_long_1024
: ff_sine_1024
;
2290 const float *swindow_prev
= ics
->use_kb_window
[1] ? ff_aac_kbd_short_128
: ff_sine_128
;
2292 if (ics
->window_sequence
[0] != LONG_STOP_SEQUENCE
) {
2293 ac
->fdsp
.vector_fmul(in
, in
, lwindow_prev
, 1024);
2295 memset(in
, 0, 448 * sizeof(float));
2296 ac
->fdsp
.vector_fmul(in
+ 448, in
+ 448, swindow_prev
, 128);
2298 if (ics
->window_sequence
[0] != LONG_START_SEQUENCE
) {
2299 ac
->fdsp
.vector_fmul_reverse(in
+ 1024, in
+ 1024, lwindow
, 1024);
2301 ac
->fdsp
.vector_fmul_reverse(in
+ 1024 + 448, in
+ 1024 + 448, swindow
, 128);
2302 memset(in
+ 1024 + 576, 0, 448 * sizeof(float));
2304 ac
->mdct_ltp
.mdct_calc(&ac
->mdct_ltp
, out
, in
);
2308 * Apply the long term prediction
2310 static void apply_ltp(AACContext
*ac
, SingleChannelElement
*sce
)
2312 const LongTermPrediction
*ltp
= &sce
->ics
.ltp
;
2313 const uint16_t *offsets
= sce
->ics
.swb_offset
;
2316 if (sce
->ics
.window_sequence
[0] != EIGHT_SHORT_SEQUENCE
) {
2317 float *predTime
= sce
->ret
;
2318 float *predFreq
= ac
->buf_mdct
;
2319 int16_t num_samples
= 2048;
2321 if (ltp
->lag
< 1024)
2322 num_samples
= ltp
->lag
+ 1024;
2323 for (i
= 0; i
< num_samples
; i
++)
2324 predTime
[i
] = sce
->ltp_state
[i
+ 2048 - ltp
->lag
] * ltp
->coef
;
2325 memset(&predTime
[i
], 0, (2048 - i
) * sizeof(float));
2327 windowing_and_mdct_ltp(ac
, predFreq
, predTime
, &sce
->ics
);
2329 if (sce
->tns
.present
)
2330 apply_tns(predFreq
, &sce
->tns
, &sce
->ics
, 0);
2332 for (sfb
= 0; sfb
< FFMIN(sce
->ics
.max_sfb
, MAX_LTP_LONG_SFB
); sfb
++)
2334 for (i
= offsets
[sfb
]; i
< offsets
[sfb
+ 1]; i
++)
2335 sce
->coeffs
[i
] += predFreq
[i
];
2340 * Update the LTP buffer for next frame
2342 static void update_ltp(AACContext
*ac
, SingleChannelElement
*sce
)
2344 IndividualChannelStream
*ics
= &sce
->ics
;
2345 float *saved
= sce
->saved
;
2346 float *saved_ltp
= sce
->coeffs
;
2347 const float *lwindow
= ics
->use_kb_window
[0] ? ff_aac_kbd_long_1024
: ff_sine_1024
;
2348 const float *swindow
= ics
->use_kb_window
[0] ? ff_aac_kbd_short_128
: ff_sine_128
;
2351 if (ics
->window_sequence
[0] == EIGHT_SHORT_SEQUENCE
) {
2352 memcpy(saved_ltp
, saved
, 512 * sizeof(float));
2353 memset(saved_ltp
+ 576, 0, 448 * sizeof(float));
2354 ac
->fdsp
.vector_fmul_reverse(saved_ltp
+ 448, ac
->buf_mdct
+ 960, &swindow
[64], 64);
2355 for (i
= 0; i
< 64; i
++)
2356 saved_ltp
[i
+ 512] = ac
->buf_mdct
[1023 - i
] * swindow
[63 - i
];
2357 } else if (ics
->window_sequence
[0] == LONG_START_SEQUENCE
) {
2358 memcpy(saved_ltp
, ac
->buf_mdct
+ 512, 448 * sizeof(float));
2359 memset(saved_ltp
+ 576, 0, 448 * sizeof(float));
2360 ac
->fdsp
.vector_fmul_reverse(saved_ltp
+ 448, ac
->buf_mdct
+ 960, &swindow
[64], 64);
2361 for (i
= 0; i
< 64; i
++)
2362 saved_ltp
[i
+ 512] = ac
->buf_mdct
[1023 - i
] * swindow
[63 - i
];
2363 } else { // LONG_STOP or ONLY_LONG
2364 ac
->fdsp
.vector_fmul_reverse(saved_ltp
, ac
->buf_mdct
+ 512, &lwindow
[512], 512);
2365 for (i
= 0; i
< 512; i
++)
2366 saved_ltp
[i
+ 512] = ac
->buf_mdct
[1023 - i
] * lwindow
[511 - i
];
2369 memcpy(sce
->ltp_state
, sce
->ltp_state
+1024, 1024 * sizeof(*sce
->ltp_state
));
2370 memcpy(sce
->ltp_state
+1024, sce
->ret
, 1024 * sizeof(*sce
->ltp_state
));
2371 memcpy(sce
->ltp_state
+2048, saved_ltp
, 1024 * sizeof(*sce
->ltp_state
));
2375 * Conduct IMDCT and windowing.
2377 static void imdct_and_windowing(AACContext
*ac
, SingleChannelElement
*sce
)
2379 IndividualChannelStream
*ics
= &sce
->ics
;
2380 float *in
= sce
->coeffs
;
2381 float *out
= sce
->ret
;
2382 float *saved
= sce
->saved
;
2383 const float *swindow
= ics
->use_kb_window
[0] ? ff_aac_kbd_short_128
: ff_sine_128
;
2384 const float *lwindow_prev
= ics
->use_kb_window
[1] ? ff_aac_kbd_long_1024
: ff_sine_1024
;
2385 const float *swindow_prev
= ics
->use_kb_window
[1] ? ff_aac_kbd_short_128
: ff_sine_128
;
2386 float *buf
= ac
->buf_mdct
;
2387 float *temp
= ac
->temp
;
2391 if (ics
->window_sequence
[0] == EIGHT_SHORT_SEQUENCE
) {
2392 for (i
= 0; i
< 1024; i
+= 128)
2393 ac
->mdct_small
.imdct_half(&ac
->mdct_small
, buf
+ i
, in
+ i
);
2395 ac
->mdct
.imdct_half(&ac
->mdct
, buf
, in
);
2397 /* window overlapping
2398 * NOTE: To simplify the overlapping code, all 'meaningless' short to long
2399 * and long to short transitions are considered to be short to short
2400 * transitions. This leaves just two cases (long to long and short to short)
2401 * with a little special sauce for EIGHT_SHORT_SEQUENCE.
2403 if ((ics
->window_sequence
[1] == ONLY_LONG_SEQUENCE
|| ics
->window_sequence
[1] == LONG_STOP_SEQUENCE
) &&
2404 (ics
->window_sequence
[0] == ONLY_LONG_SEQUENCE
|| ics
->window_sequence
[0] == LONG_START_SEQUENCE
)) {
2405 ac
->fdsp
.vector_fmul_window( out
, saved
, buf
, lwindow_prev
, 512);
2407 memcpy( out
, saved
, 448 * sizeof(float));
2409 if (ics
->window_sequence
[0] == EIGHT_SHORT_SEQUENCE
) {
2410 ac
->fdsp
.vector_fmul_window(out
+ 448 + 0*128, saved
+ 448, buf
+ 0*128, swindow_prev
, 64);
2411 ac
->fdsp
.vector_fmul_window(out
+ 448 + 1*128, buf
+ 0*128 + 64, buf
+ 1*128, swindow
, 64);
2412 ac
->fdsp
.vector_fmul_window(out
+ 448 + 2*128, buf
+ 1*128 + 64, buf
+ 2*128, swindow
, 64);
2413 ac
->fdsp
.vector_fmul_window(out
+ 448 + 3*128, buf
+ 2*128 + 64, buf
+ 3*128, swindow
, 64);
2414 ac
->fdsp
.vector_fmul_window(temp
, buf
+ 3*128 + 64, buf
+ 4*128, swindow
, 64);
2415 memcpy( out
+ 448 + 4*128, temp
, 64 * sizeof(float));
2417 ac
->fdsp
.vector_fmul_window(out
+ 448, saved
+ 448, buf
, swindow_prev
, 64);
2418 memcpy( out
+ 576, buf
+ 64, 448 * sizeof(float));
2423 if (ics
->window_sequence
[0] == EIGHT_SHORT_SEQUENCE
) {
2424 memcpy( saved
, temp
+ 64, 64 * sizeof(float));
2425 ac
->fdsp
.vector_fmul_window(saved
+ 64, buf
+ 4*128 + 64, buf
+ 5*128, swindow
, 64);
2426 ac
->fdsp
.vector_fmul_window(saved
+ 192, buf
+ 5*128 + 64, buf
+ 6*128, swindow
, 64);
2427 ac
->fdsp
.vector_fmul_window(saved
+ 320, buf
+ 6*128 + 64, buf
+ 7*128, swindow
, 64);
2428 memcpy( saved
+ 448, buf
+ 7*128 + 64, 64 * sizeof(float));
2429 } else if (ics
->window_sequence
[0] == LONG_START_SEQUENCE
) {
2430 memcpy( saved
, buf
+ 512, 448 * sizeof(float));
2431 memcpy( saved
+ 448, buf
+ 7*128 + 64, 64 * sizeof(float));
2432 } else { // LONG_STOP or ONLY_LONG
2433 memcpy( saved
, buf
+ 512, 512 * sizeof(float));
2437 static void imdct_and_windowing_ld(AACContext
*ac
, SingleChannelElement
*sce
)
2439 IndividualChannelStream
*ics
= &sce
->ics
;
2440 float *in
= sce
->coeffs
;
2441 float *out
= sce
->ret
;
2442 float *saved
= sce
->saved
;
2443 float *buf
= ac
->buf_mdct
;
2446 ac
->mdct
.imdct_half(&ac
->mdct_ld
, buf
, in
);
2448 // window overlapping
2449 if (ics
->use_kb_window
[1]) {
2450 // AAC LD uses a low overlap sine window instead of a KBD window
2451 memcpy(out
, saved
, 192 * sizeof(float));
2452 ac
->fdsp
.vector_fmul_window(out
+ 192, saved
+ 192, buf
, ff_sine_128
, 64);
2453 memcpy( out
+ 320, buf
+ 64, 192 * sizeof(float));
2455 ac
->fdsp
.vector_fmul_window(out
, saved
, buf
, ff_sine_512
, 256);
2459 memcpy(saved
, buf
+ 256, 256 * sizeof(float));
2462 static void imdct_and_windowing_eld(AACContext
*ac
, SingleChannelElement
*sce
)
2464 float *in
= sce
->coeffs
;
2465 float *out
= sce
->ret
;
2466 float *saved
= sce
->saved
;
2467 float *buf
= ac
->buf_mdct
;
2469 const int n
= ac
->oc
[1].m4ac
.frame_length_short ?
480 : 512;
2470 const int n2
= n
>> 1;
2471 const int n4
= n
>> 2;
2472 const float *const window
= n
== 480 ? ff_aac_eld_window_480
:
2473 ff_aac_eld_window_512
;
2475 // Inverse transform, mapped to the conventional IMDCT by
2476 // Chivukula, R.K.; Reznik, Y.A.; Devarajan, V.,
2477 // "Efficient algorithms for MPEG-4 AAC-ELD, AAC-LD and AAC-LC filterbanks,"
2478 // Audio, Language and Image Processing, 2008. ICALIP 2008. International Conference on
2479 // URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4590245&isnumber=4589950
2480 for (i
= 0; i
< n2
; i
+=2) {
2482 temp
= in
[i
]; in
[i
] = -in
[n
- 1 - i
]; in
[n
- 1 - i
] = temp
;
2483 temp
= -in
[i
+ 1]; in
[i
+ 1] = in
[n
- 2 - i
]; in
[n
- 2 - i
] = temp
;
2486 ac
->mdct480
->imdct_half(ac
->mdct480
, buf
, in
, 1, -1.f
/(16*1024*960));
2488 ac
->mdct
.imdct_half(&ac
->mdct_ld
, buf
, in
);
2489 for (i
= 0; i
< n
; i
+=2) {
2492 // Like with the regular IMDCT at this point we still have the middle half
2493 // of a transform but with even symmetry on the left and odd symmetry on
2496 // window overlapping
2497 // The spec says to use samples [0..511] but the reference decoder uses
2498 // samples [128..639].
2499 for (i
= n4
; i
< n2
; i
++) {
2500 out
[i
- n4
] = buf
[n2
- 1 - i
] * window
[i
- n4
] +
2501 saved
[ i
+ n2
] * window
[i
+ n
- n4
] +
2502 -saved
[ n
+ n2
- 1 - i
] * window
[i
+ 2*n
- n4
] +
2503 -saved
[2*n
+ n2
+ i
] * window
[i
+ 3*n
- n4
];
2505 for (i
= 0; i
< n2
; i
++) {
2506 out
[n4
+ i
] = buf
[i
] * window
[i
+ n2
- n4
] +
2507 -saved
[ n
- 1 - i
] * window
[i
+ n2
+ n
- n4
] +
2508 -saved
[ n
+ i
] * window
[i
+ n2
+ 2*n
- n4
] +
2509 saved
[2*n
+ n
- 1 - i
] * window
[i
+ n2
+ 3*n
- n4
];
2511 for (i
= 0; i
< n4
; i
++) {
2512 out
[n2
+ n4
+ i
] = buf
[ i
+ n2
] * window
[i
+ n
- n4
] +
2513 -saved
[ n2
- 1 - i
] * window
[i
+ 2*n
- n4
] +
2514 -saved
[ n
+ n2
+ i
] * window
[i
+ 3*n
- n4
];
2518 memmove(saved
+ n
, saved
, 2 * n
* sizeof(float));
2519 memcpy( saved
, buf
, n
* sizeof(float));
2523 * Apply dependent channel coupling (applied before IMDCT).
2525 * @param index index into coupling gain array
2527 static void apply_dependent_coupling(AACContext
*ac
,
2528 SingleChannelElement
*target
,
2529 ChannelElement
*cce
, int index
)
2531 IndividualChannelStream
*ics
= &cce
->ch
[0].ics
;
2532 const uint16_t *offsets
= ics
->swb_offset
;
2533 float *dest
= target
->coeffs
;
2534 const float *src
= cce
->ch
[0].coeffs
;
2535 int g
, i
, group
, k
, idx
= 0;
2536 if (ac
->oc
[1].m4ac
.object_type
== AOT_AAC_LTP
) {
2537 av_log(ac
->avctx
, AV_LOG_ERROR
,
2538 "Dependent coupling is not supported together with LTP\n");
2541 for (g
= 0; g
< ics
->num_window_groups
; g
++) {
2542 for (i
= 0; i
< ics
->max_sfb
; i
++, idx
++) {
2543 if (cce
->ch
[0].band_type
[idx
] != ZERO_BT
) {
2544 const float gain
= cce
->coup
.gain
[index
][idx
];
2545 for (group
= 0; group
< ics
->group_len
[g
]; group
++) {
2546 for (k
= offsets
[i
]; k
< offsets
[i
+ 1]; k
++) {
2548 dest
[group
* 128 + k
] += gain
* src
[group
* 128 + k
];
2553 dest
+= ics
->group_len
[g
] * 128;
2554 src
+= ics
->group_len
[g
] * 128;
2559 * Apply independent channel coupling (applied after IMDCT).
2561 * @param index index into coupling gain array
2563 static void apply_independent_coupling(AACContext
*ac
,
2564 SingleChannelElement
*target
,
2565 ChannelElement
*cce
, int index
)
2568 const float gain
= cce
->coup
.gain
[index
][0];
2569 const float *src
= cce
->ch
[0].ret
;
2570 float *dest
= target
->ret
;
2571 const int len
= 1024 << (ac
->oc
[1].m4ac
.sbr
== 1);
2573 for (i
= 0; i
< len
; i
++)
2574 dest
[i
] += gain
* src
[i
];
2578 * channel coupling transformation interface
2580 * @param apply_coupling_method pointer to (in)dependent coupling function
2582 static void apply_channel_coupling(AACContext
*ac
, ChannelElement
*cc
,
2583 enum RawDataBlockType type
, int elem_id
,
2584 enum CouplingPoint coupling_point
,
2585 void (*apply_coupling_method
)(AACContext
*ac
, SingleChannelElement
*target
, ChannelElement
*cce
, int index
))
2589 for (i
= 0; i
< MAX_ELEM_ID
; i
++) {
2590 ChannelElement
*cce
= ac
->che
[TYPE_CCE
][i
];
2593 if (cce
&& cce
->coup
.coupling_point
== coupling_point
) {
2594 ChannelCoupling
*coup
= &cce
->coup
;
2596 for (c
= 0; c
<= coup
->num_coupled
; c
++) {
2597 if (coup
->type
[c
] == type
&& coup
->id_select
[c
] == elem_id
) {
2598 if (coup
->ch_select
[c
] != 1) {
2599 apply_coupling_method(ac
, &cc
->ch
[0], cce
, index
);
2600 if (coup
->ch_select
[c
] != 0)
2603 if (coup
->ch_select
[c
] != 2)
2604 apply_coupling_method(ac
, &cc
->ch
[1], cce
, index
++);
2606 index
+= 1 + (coup
->ch_select
[c
] == 3);
2613 * Convert spectral data to float samples, applying all supported tools as appropriate.
2615 static void spectral_to_sample(AACContext
*ac
)
2618 void (*imdct_and_window
)(AACContext
*ac
, SingleChannelElement
*sce
);
2619 switch (ac
->oc
[1].m4ac
.object_type
) {
2621 imdct_and_window
= imdct_and_windowing_ld
;
2623 case AOT_ER_AAC_ELD
:
2624 imdct_and_window
= imdct_and_windowing_eld
;
2627 imdct_and_window
= imdct_and_windowing
;
2629 for (type
= 3; type
>= 0; type
--) {
2630 for (i
= 0; i
< MAX_ELEM_ID
; i
++) {
2631 ChannelElement
*che
= ac
->che
[type
][i
];
2633 if (type
<= TYPE_CPE
)
2634 apply_channel_coupling(ac
, che
, type
, i
, BEFORE_TNS
, apply_dependent_coupling
);
2635 if (ac
->oc
[1].m4ac
.object_type
== AOT_AAC_LTP
) {
2636 if (che
->ch
[0].ics
.predictor_present
) {
2637 if (che
->ch
[0].ics
.ltp
.present
)
2638 apply_ltp(ac
, &che
->ch
[0]);
2639 if (che
->ch
[1].ics
.ltp
.present
&& type
== TYPE_CPE
)
2640 apply_ltp(ac
, &che
->ch
[1]);
2643 if (che
->ch
[0].tns
.present
)
2644 apply_tns(che
->ch
[0].coeffs
, &che
->ch
[0].tns
, &che
->ch
[0].ics
, 1);
2645 if (che
->ch
[1].tns
.present
)
2646 apply_tns(che
->ch
[1].coeffs
, &che
->ch
[1].tns
, &che
->ch
[1].ics
, 1);
2647 if (type
<= TYPE_CPE
)
2648 apply_channel_coupling(ac
, che
, type
, i
, BETWEEN_TNS_AND_IMDCT
, apply_dependent_coupling
);
2649 if (type
!= TYPE_CCE
|| che
->coup
.coupling_point
== AFTER_IMDCT
) {
2650 imdct_and_window(ac
, &che
->ch
[0]);
2651 if (ac
->oc
[1].m4ac
.object_type
== AOT_AAC_LTP
)
2652 update_ltp(ac
, &che
->ch
[0]);
2653 if (type
== TYPE_CPE
) {
2654 imdct_and_window(ac
, &che
->ch
[1]);
2655 if (ac
->oc
[1].m4ac
.object_type
== AOT_AAC_LTP
)
2656 update_ltp(ac
, &che
->ch
[1]);
2658 if (ac
->oc
[1].m4ac
.sbr
> 0) {
2659 ff_sbr_apply(ac
, &che
->sbr
, type
, che
->ch
[0].ret
, che
->ch
[1].ret
);
2662 if (type
<= TYPE_CCE
)
2663 apply_channel_coupling(ac
, che
, type
, i
, AFTER_IMDCT
, apply_independent_coupling
);
2669 static int parse_adts_frame_header(AACContext
*ac
, GetBitContext
*gb
)
2672 AACADTSHeaderInfo hdr_info
;
2673 uint8_t layout_map
[MAX_ELEM_ID
*4][3];
2674 int layout_map_tags
, ret
;
2676 size
= avpriv_aac_parse_header(gb
, &hdr_info
);
2678 if (hdr_info
.num_aac_frames
!= 1) {
2679 avpriv_report_missing_feature(ac
->avctx
,
2680 "More than one AAC RDB per ADTS frame");
2681 return AVERROR_PATCHWELCOME
;
2683 push_output_configuration(ac
);
2684 if (hdr_info
.chan_config
) {
2685 ac
->oc
[1].m4ac
.chan_config
= hdr_info
.chan_config
;
2686 if ((ret
= set_default_channel_config(ac
->avctx
,
2689 hdr_info
.chan_config
)) < 0)
2691 if ((ret
= output_configure(ac
, layout_map
, layout_map_tags
,
2692 FFMAX(ac
->oc
[1].status
,
2693 OC_TRIAL_FRAME
), 0)) < 0)
2696 ac
->oc
[1].m4ac
.chan_config
= 0;
2698 ac
->oc
[1].m4ac
.sample_rate
= hdr_info
.sample_rate
;
2699 ac
->oc
[1].m4ac
.sampling_index
= hdr_info
.sampling_index
;
2700 ac
->oc
[1].m4ac
.object_type
= hdr_info
.object_type
;
2701 ac
->oc
[1].m4ac
.frame_length_short
= 0;
2702 if (ac
->oc
[0].status
!= OC_LOCKED
||
2703 ac
->oc
[0].m4ac
.chan_config
!= hdr_info
.chan_config
||
2704 ac
->oc
[0].m4ac
.sample_rate
!= hdr_info
.sample_rate
) {
2705 ac
->oc
[1].m4ac
.sbr
= -1;
2706 ac
->oc
[1].m4ac
.ps
= -1;
2708 if (!hdr_info
.crc_absent
)
2714 static int aac_decode_er_frame(AVCodecContext
*avctx
, void *data
,
2715 int *got_frame_ptr
, GetBitContext
*gb
)
2717 AACContext
*ac
= avctx
->priv_data
;
2718 const MPEG4AudioConfig
*const m4ac
= &ac
->oc
[1].m4ac
;
2719 ChannelElement
*che
;
2721 int samples
= m4ac
->frame_length_short ?
960 : 1024;
2722 int chan_config
= m4ac
->chan_config
;
2723 int aot
= m4ac
->object_type
;
2725 if (aot
== AOT_ER_AAC_LD
|| aot
== AOT_ER_AAC_ELD
)
2730 if ((err
= frame_configure_elements(avctx
)) < 0)
2733 // The FF_PROFILE_AAC_* defines are all object_type - 1
2734 // This may lead to an undefined profile being signaled
2735 ac
->avctx
->profile
= aot
- 1;
2737 ac
->tags_mapped
= 0;
2739 if (chan_config
< 0 || chan_config
>= 8) {
2740 avpriv_request_sample(avctx
, "Unknown ER channel configuration %d",
2742 return AVERROR_INVALIDDATA
;
2744 for (i
= 0; i
< tags_per_config
[chan_config
]; i
++) {
2745 const int elem_type
= aac_channel_layout_map
[chan_config
-1][i
][0];
2746 const int elem_id
= aac_channel_layout_map
[chan_config
-1][i
][1];
2747 if (!(che
=get_che(ac
, elem_type
, elem_id
))) {
2748 av_log(ac
->avctx
, AV_LOG_ERROR
,
2749 "channel element %d.%d is not allocated\n",
2750 elem_type
, elem_id
);
2751 return AVERROR_INVALIDDATA
;
2753 if (aot
!= AOT_ER_AAC_ELD
)
2755 switch (elem_type
) {
2757 err
= decode_ics(ac
, &che
->ch
[0], gb
, 0, 0);
2760 err
= decode_cpe(ac
, gb
, che
);
2763 err
= decode_ics(ac
, &che
->ch
[0], gb
, 0, 0);
2770 spectral_to_sample(ac
);
2772 ac
->frame
->nb_samples
= samples
;
2773 ac
->frame
->sample_rate
= avctx
->sample_rate
;
2776 skip_bits_long(gb
, get_bits_left(gb
));
2780 static int aac_decode_frame_int(AVCodecContext
*avctx
, void *data
,
2781 int *got_frame_ptr
, GetBitContext
*gb
)
2783 AACContext
*ac
= avctx
->priv_data
;
2784 ChannelElement
*che
= NULL
, *che_prev
= NULL
;
2785 enum RawDataBlockType elem_type
, elem_type_prev
= TYPE_END
;
2787 int samples
= 0, multiplier
, audio_found
= 0, pce_found
= 0;
2791 if (show_bits(gb
, 12) == 0xfff) {
2792 if ((err
= parse_adts_frame_header(ac
, gb
)) < 0) {
2793 av_log(avctx
, AV_LOG_ERROR
, "Error decoding AAC frame header.\n");
2796 if (ac
->oc
[1].m4ac
.sampling_index
> 12) {
2797 av_log(ac
->avctx
, AV_LOG_ERROR
, "invalid sampling rate index %d\n", ac
->oc
[1].m4ac
.sampling_index
);
2798 err
= AVERROR_INVALIDDATA
;
2803 if ((err
= frame_configure_elements(avctx
)) < 0)
2806 // The FF_PROFILE_AAC_* defines are all object_type - 1
2807 // This may lead to an undefined profile being signaled
2808 ac
->avctx
->profile
= ac
->oc
[1].m4ac
.object_type
- 1;
2810 ac
->tags_mapped
= 0;
2812 while ((elem_type
= get_bits(gb
, 3)) != TYPE_END
) {
2813 elem_id
= get_bits(gb
, 4);
2815 if (elem_type
< TYPE_DSE
) {
2816 if (!(che
=get_che(ac
, elem_type
, elem_id
))) {
2817 av_log(ac
->avctx
, AV_LOG_ERROR
, "channel element %d.%d is not allocated\n",
2818 elem_type
, elem_id
);
2819 err
= AVERROR_INVALIDDATA
;
2825 switch (elem_type
) {
2828 err
= decode_ics(ac
, &che
->ch
[0], gb
, 0, 0);
2833 err
= decode_cpe(ac
, gb
, che
);
2838 err
= decode_cce(ac
, gb
, che
);
2842 err
= decode_ics(ac
, &che
->ch
[0], gb
, 0, 0);
2847 err
= skip_data_stream_element(ac
, gb
);
2851 uint8_t layout_map
[MAX_ELEM_ID
*4][3];
2853 push_output_configuration(ac
);
2854 tags
= decode_pce(avctx
, &ac
->oc
[1].m4ac
, layout_map
, gb
);
2860 av_log(avctx
, AV_LOG_ERROR
,
2861 "Not evaluating a further program_config_element as this construct is dubious at best.\n");
2862 pop_output_configuration(ac
);
2864 err
= output_configure(ac
, layout_map
, tags
, OC_TRIAL_PCE
, 1);
2872 elem_id
+= get_bits(gb
, 8) - 1;
2873 if (get_bits_left(gb
) < 8 * elem_id
) {
2874 av_log(avctx
, AV_LOG_ERROR
, overread_err
);
2875 err
= AVERROR_INVALIDDATA
;
2879 elem_id
-= decode_extension_payload(ac
, gb
, elem_id
, che_prev
, elem_type_prev
);
2880 err
= 0; /* FIXME */
2884 err
= AVERROR_BUG
; /* should not happen, but keeps compiler happy */
2889 elem_type_prev
= elem_type
;
2894 if (get_bits_left(gb
) < 3) {
2895 av_log(avctx
, AV_LOG_ERROR
, overread_err
);
2896 err
= AVERROR_INVALIDDATA
;
2901 spectral_to_sample(ac
);
2903 multiplier
= (ac
->oc
[1].m4ac
.sbr
== 1) ? ac
->oc
[1].m4ac
.ext_sample_rate
> ac
->oc
[1].m4ac
.sample_rate
: 0;
2904 samples
<<= multiplier
;
2906 if (ac
->oc
[1].status
&& audio_found
) {
2907 avctx
->sample_rate
= ac
->oc
[1].m4ac
.sample_rate
<< multiplier
;
2908 avctx
->frame_size
= samples
;
2909 ac
->oc
[1].status
= OC_LOCKED
;
2913 ac
->frame
->nb_samples
= samples
;
2914 ac
->frame
->sample_rate
= avctx
->sample_rate
;
2916 *got_frame_ptr
= !!samples
;
2920 pop_output_configuration(ac
);
2924 static int aac_decode_frame(AVCodecContext
*avctx
, void *data
,
2925 int *got_frame_ptr
, AVPacket
*avpkt
)
2927 AACContext
*ac
= avctx
->priv_data
;
2928 const uint8_t *buf
= avpkt
->data
;
2929 int buf_size
= avpkt
->size
;
2934 int new_extradata_size
;
2935 const uint8_t *new_extradata
= av_packet_get_side_data(avpkt
,
2936 AV_PKT_DATA_NEW_EXTRADATA
,
2937 &new_extradata_size
);
2939 if (new_extradata
) {
2940 av_free(avctx
->extradata
);
2941 avctx
->extradata
= av_mallocz(new_extradata_size
+
2942 FF_INPUT_BUFFER_PADDING_SIZE
);
2943 if (!avctx
->extradata
)
2944 return AVERROR(ENOMEM
);
2945 avctx
->extradata_size
= new_extradata_size
;
2946 memcpy(avctx
->extradata
, new_extradata
, new_extradata_size
);
2947 push_output_configuration(ac
);
2948 if (decode_audio_specific_config(ac
, ac
->avctx
, &ac
->oc
[1].m4ac
,
2950 avctx
->extradata_size
*8, 1) < 0) {
2951 pop_output_configuration(ac
);
2952 return AVERROR_INVALIDDATA
;
2956 if ((err
= init_get_bits(&gb
, buf
, buf_size
* 8)) < 0)
2959 switch (ac
->oc
[1].m4ac
.object_type
) {
2961 case AOT_ER_AAC_LTP
:
2963 case AOT_ER_AAC_ELD
:
2964 err
= aac_decode_er_frame(avctx
, data
, got_frame_ptr
, &gb
);
2967 err
= aac_decode_frame_int(avctx
, data
, got_frame_ptr
, &gb
);
2972 buf_consumed
= (get_bits_count(&gb
) + 7) >> 3;
2973 for (buf_offset
= buf_consumed
; buf_offset
< buf_size
; buf_offset
++)
2974 if (buf
[buf_offset
])
2977 return buf_size
> buf_offset ? buf_consumed
: buf_size
;
2980 static av_cold
int aac_decode_close(AVCodecContext
*avctx
)
2982 AACContext
*ac
= avctx
->priv_data
;
2985 for (i
= 0; i
< MAX_ELEM_ID
; i
++) {
2986 for (type
= 0; type
< 4; type
++) {
2987 if (ac
->che
[type
][i
])
2988 ff_aac_sbr_ctx_close(&ac
->che
[type
][i
]->sbr
);
2989 av_freep(&ac
->che
[type
][i
]);
2993 ff_mdct_end(&ac
->mdct
);
2994 ff_mdct_end(&ac
->mdct_small
);