Native VP8 decoder.
[libav.git] / libavcodec / aacps.c
1 /*
2 * MPEG-4 Parametric Stereo decoding functions
3 * Copyright (c) 2010 Alex Converse <alex.converse@gmail.com>
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22 #include <stdint.h>
23 #include "libavutil/common.h"
24 #include "libavutil/mathematics.h"
25 #include "avcodec.h"
26 #include "get_bits.h"
27 #include "aacps.h"
28 #include "aacps_tablegen.h"
29 #include "aacpsdata.c"
30
31 #define PS_BASELINE 0 //< Operate in Baseline PS mode
32 //< Baseline implies 10 or 20 stereo bands,
33 //< mixing mode A, and no ipd/opd
34
35 #define numQMFSlots 32 //numTimeSlots * RATE
36
37 static const int8_t num_env_tab[2][4] = {
38 { 0, 1, 2, 4, },
39 { 1, 2, 3, 4, },
40 };
41
42 static const int8_t nr_iidicc_par_tab[] = {
43 10, 20, 34, 10, 20, 34,
44 };
45
46 static const int8_t nr_iidopd_par_tab[] = {
47 5, 11, 17, 5, 11, 17,
48 };
49
50 enum {
51 huff_iid_df1,
52 huff_iid_dt1,
53 huff_iid_df0,
54 huff_iid_dt0,
55 huff_icc_df,
56 huff_icc_dt,
57 huff_ipd_df,
58 huff_ipd_dt,
59 huff_opd_df,
60 huff_opd_dt,
61 };
62
63 static const int huff_iid[] = {
64 huff_iid_df0,
65 huff_iid_df1,
66 huff_iid_dt0,
67 huff_iid_dt1,
68 };
69
70 static VLC vlc_ps[10];
71
72 /**
73 * Read Inter-channel Intensity Difference/Inter-Channel Coherence/
74 * Inter-channel Phase Difference/Overall Phase Difference parameters from the
75 * bitstream.
76 *
77 * @param avctx contains the current codec context
78 * @param gb pointer to the input bitstream
79 * @param ps pointer to the Parametric Stereo context
80 * @param par pointer to the parameter to be read
81 * @param e envelope to decode
82 * @param dt 1: time delta-coded, 0: frequency delta-coded
83 */
84 #define READ_PAR_DATA(PAR, OFFSET, MASK, ERR_CONDITION) \
85 static int read_ ## PAR ## _data(AVCodecContext *avctx, GetBitContext *gb, PSContext *ps, \
86 int8_t (*PAR)[PS_MAX_NR_IIDICC], int table_idx, int e, int dt) \
87 { \
88 int b, num = ps->nr_ ## PAR ## _par; \
89 VLC_TYPE (*vlc_table)[2] = vlc_ps[table_idx].table; \
90 if (dt) { \
91 int e_prev = e ? e - 1 : ps->num_env_old - 1; \
92 e_prev = FFMAX(e_prev, 0); \
93 for (b = 0; b < num; b++) { \
94 int val = PAR[e_prev][b] + get_vlc2(gb, vlc_table, 9, 3) - OFFSET; \
95 if (MASK) val &= MASK; \
96 PAR[e][b] = val; \
97 if (ERR_CONDITION) \
98 goto err; \
99 } \
100 } else { \
101 int val = 0; \
102 for (b = 0; b < num; b++) { \
103 val += get_vlc2(gb, vlc_table, 9, 3) - OFFSET; \
104 if (MASK) val &= MASK; \
105 PAR[e][b] = val; \
106 if (ERR_CONDITION) \
107 goto err; \
108 } \
109 } \
110 return 0; \
111 err: \
112 av_log(avctx, AV_LOG_ERROR, "illegal "#PAR"\n"); \
113 return -1; \
114 }
115
116 READ_PAR_DATA(iid, huff_offset[table_idx], 0, FFABS(ps->iid_par[e][b]) > 7 + 8 * ps->iid_quant)
117 READ_PAR_DATA(icc, huff_offset[table_idx], 0, ps->icc_par[e][b] > 7U)
118 READ_PAR_DATA(ipdopd, 0, 0x07, 0)
119
120 static int ps_read_extension_data(GetBitContext *gb, PSContext *ps, int ps_extension_id)
121 {
122 int e;
123 int count = get_bits_count(gb);
124
125 if (ps_extension_id)
126 return 0;
127
128 ps->enable_ipdopd = get_bits1(gb);
129 if (ps->enable_ipdopd) {
130 for (e = 0; e < ps->num_env; e++) {
131 int dt = get_bits1(gb);
132 read_ipdopd_data(NULL, gb, ps, ps->ipd_par, dt ? huff_ipd_dt : huff_ipd_df, e, dt);
133 dt = get_bits1(gb);
134 read_ipdopd_data(NULL, gb, ps, ps->opd_par, dt ? huff_opd_dt : huff_opd_df, e, dt);
135 }
136 }
137 skip_bits1(gb); //reserved_ps
138 return get_bits_count(gb) - count;
139 }
140
141 static void ipdopd_reset(int8_t *opd_hist, int8_t *ipd_hist)
142 {
143 int i;
144 for (i = 0; i < PS_MAX_NR_IPDOPD; i++) {
145 opd_hist[i] = 0;
146 ipd_hist[i] = 0;
147 }
148 }
149
150 int ff_ps_read_data(AVCodecContext *avctx, GetBitContext *gb_host, PSContext *ps, int bits_left)
151 {
152 int e;
153 int bit_count_start = get_bits_count(gb_host);
154 int header;
155 int bits_consumed;
156 GetBitContext gbc = *gb_host, *gb = &gbc;
157
158 header = get_bits1(gb);
159 if (header) { //enable_ps_header
160 ps->enable_iid = get_bits1(gb);
161 if (ps->enable_iid) {
162 int iid_mode = get_bits(gb, 3);
163 if (iid_mode > 5) {
164 av_log(avctx, AV_LOG_ERROR, "iid_mode %d is reserved.\n",
165 iid_mode);
166 goto err;
167 }
168 ps->nr_iid_par = nr_iidicc_par_tab[iid_mode];
169 ps->iid_quant = iid_mode > 2;
170 ps->nr_ipdopd_par = nr_iidopd_par_tab[iid_mode];
171 }
172 ps->enable_icc = get_bits1(gb);
173 if (ps->enable_icc) {
174 ps->icc_mode = get_bits(gb, 3);
175 if (ps->icc_mode > 5) {
176 av_log(avctx, AV_LOG_ERROR, "icc_mode %d is reserved.\n",
177 ps->icc_mode);
178 goto err;
179 }
180 ps->nr_icc_par = nr_iidicc_par_tab[ps->icc_mode];
181 }
182 ps->enable_ext = get_bits1(gb);
183 }
184
185 ps->frame_class = get_bits1(gb);
186 ps->num_env_old = ps->num_env;
187 ps->num_env = num_env_tab[ps->frame_class][get_bits(gb, 2)];
188
189 ps->border_position[0] = -1;
190 if (ps->frame_class) {
191 for (e = 1; e <= ps->num_env; e++)
192 ps->border_position[e] = get_bits(gb, 5);
193 } else
194 for (e = 1; e <= ps->num_env; e++)
195 ps->border_position[e] = (e * numQMFSlots >> ff_log2_tab[ps->num_env]) - 1;
196
197 if (ps->enable_iid) {
198 for (e = 0; e < ps->num_env; e++) {
199 int dt = get_bits1(gb);
200 if (read_iid_data(avctx, gb, ps, ps->iid_par, huff_iid[2*dt+ps->iid_quant], e, dt))
201 goto err;
202 }
203 } else
204 memset(ps->iid_par, 0, sizeof(ps->iid_par));
205
206 if (ps->enable_icc)
207 for (e = 0; e < ps->num_env; e++) {
208 int dt = get_bits1(gb);
209 if (read_icc_data(avctx, gb, ps, ps->icc_par, dt ? huff_icc_dt : huff_icc_df, e, dt))
210 goto err;
211 }
212 else
213 memset(ps->icc_par, 0, sizeof(ps->icc_par));
214
215 if (ps->enable_ext) {
216 int cnt = get_bits(gb, 4);
217 if (cnt == 15) {
218 cnt += get_bits(gb, 8);
219 }
220 cnt *= 8;
221 while (cnt > 7) {
222 int ps_extension_id = get_bits(gb, 2);
223 cnt -= 2 + ps_read_extension_data(gb, ps, ps_extension_id);
224 }
225 if (cnt < 0) {
226 av_log(avctx, AV_LOG_ERROR, "ps extension overflow %d", cnt);
227 goto err;
228 }
229 skip_bits(gb, cnt);
230 }
231
232 ps->enable_ipdopd &= !PS_BASELINE;
233
234 //Fix up envelopes
235 if (!ps->num_env || ps->border_position[ps->num_env] < numQMFSlots - 1) {
236 //Create a fake envelope
237 int source = ps->num_env ? ps->num_env - 1 : ps->num_env_old - 1;
238 if (source >= 0 && source != ps->num_env) {
239 if (ps->enable_iid) {
240 memcpy(ps->iid_par+ps->num_env, ps->iid_par+source, sizeof(ps->iid_par[0]));
241 }
242 if (ps->enable_icc) {
243 memcpy(ps->icc_par+ps->num_env, ps->icc_par+source, sizeof(ps->icc_par[0]));
244 }
245 if (ps->enable_ipdopd) {
246 memcpy(ps->ipd_par+ps->num_env, ps->ipd_par+source, sizeof(ps->ipd_par[0]));
247 memcpy(ps->opd_par+ps->num_env, ps->opd_par+source, sizeof(ps->opd_par[0]));
248 }
249 }
250 ps->num_env++;
251 ps->border_position[ps->num_env] = numQMFSlots - 1;
252 }
253
254
255 ps->is34bands_old = ps->is34bands;
256 if (!PS_BASELINE && (ps->enable_iid || ps->enable_icc))
257 ps->is34bands = (ps->enable_iid && ps->nr_iid_par == 34) ||
258 (ps->enable_icc && ps->nr_icc_par == 34);
259
260 //Baseline
261 if (!ps->enable_ipdopd) {
262 memset(ps->ipd_par, 0, sizeof(ps->ipd_par));
263 memset(ps->opd_par, 0, sizeof(ps->opd_par));
264 }
265
266 if (header)
267 ps->start = 1;
268
269 bits_consumed = get_bits_count(gb) - bit_count_start;
270 if (bits_consumed <= bits_left) {
271 skip_bits_long(gb_host, bits_consumed);
272 return bits_consumed;
273 }
274 av_log(avctx, AV_LOG_ERROR, "Expected to read %d PS bits actually read %d.\n", bits_left, bits_consumed);
275 err:
276 ps->start = 0;
277 skip_bits_long(gb_host, bits_left);
278 return bits_left;
279 }
280
281 /** Split one subband into 2 subsubbands with a symmetric real filter.
282 * The filter must have its non-center even coefficients equal to zero. */
283 static void hybrid2_re(float (*in)[2], float (*out)[32][2], const float filter[7], int len, int reverse)
284 {
285 int i, j;
286 for (i = 0; i < len; i++, in++) {
287 float re_in = filter[6] * in[6][0]; //real inphase
288 float re_op = 0.0f; //real out of phase
289 float im_in = filter[6] * in[6][1]; //imag inphase
290 float im_op = 0.0f; //imag out of phase
291 for (j = 0; j < 6; j += 2) {
292 re_op += filter[j+1] * (in[j+1][0] + in[12-j-1][0]);
293 im_op += filter[j+1] * (in[j+1][1] + in[12-j-1][1]);
294 }
295 out[ reverse][i][0] = re_in + re_op;
296 out[ reverse][i][1] = im_in + im_op;
297 out[!reverse][i][0] = re_in - re_op;
298 out[!reverse][i][1] = im_in - im_op;
299 }
300 }
301
302 /** Split one subband into 6 subsubbands with a complex filter */
303 static void hybrid6_cx(float (*in)[2], float (*out)[32][2], const float (*filter)[7][2], int len)
304 {
305 int i, j, ssb;
306 int N = 8;
307 float temp[8][2];
308
309 for (i = 0; i < len; i++, in++) {
310 for (ssb = 0; ssb < N; ssb++) {
311 float sum_re = filter[ssb][6][0] * in[6][0], sum_im = filter[ssb][6][0] * in[6][1];
312 for (j = 0; j < 6; j++) {
313 float in0_re = in[j][0];
314 float in0_im = in[j][1];
315 float in1_re = in[12-j][0];
316 float in1_im = in[12-j][1];
317 sum_re += filter[ssb][j][0] * (in0_re + in1_re) - filter[ssb][j][1] * (in0_im - in1_im);
318 sum_im += filter[ssb][j][0] * (in0_im + in1_im) + filter[ssb][j][1] * (in0_re - in1_re);
319 }
320 temp[ssb][0] = sum_re;
321 temp[ssb][1] = sum_im;
322 }
323 out[0][i][0] = temp[6][0];
324 out[0][i][1] = temp[6][1];
325 out[1][i][0] = temp[7][0];
326 out[1][i][1] = temp[7][1];
327 out[2][i][0] = temp[0][0];
328 out[2][i][1] = temp[0][1];
329 out[3][i][0] = temp[1][0];
330 out[3][i][1] = temp[1][1];
331 out[4][i][0] = temp[2][0] + temp[5][0];
332 out[4][i][1] = temp[2][1] + temp[5][1];
333 out[5][i][0] = temp[3][0] + temp[4][0];
334 out[5][i][1] = temp[3][1] + temp[4][1];
335 }
336 }
337
338 static void hybrid4_8_12_cx(float (*in)[2], float (*out)[32][2], const float (*filter)[7][2], int N, int len)
339 {
340 int i, j, ssb;
341
342 for (i = 0; i < len; i++, in++) {
343 for (ssb = 0; ssb < N; ssb++) {
344 float sum_re = filter[ssb][6][0] * in[6][0], sum_im = filter[ssb][6][0] * in[6][1];
345 for (j = 0; j < 6; j++) {
346 float in0_re = in[j][0];
347 float in0_im = in[j][1];
348 float in1_re = in[12-j][0];
349 float in1_im = in[12-j][1];
350 sum_re += filter[ssb][j][0] * (in0_re + in1_re) - filter[ssb][j][1] * (in0_im - in1_im);
351 sum_im += filter[ssb][j][0] * (in0_im + in1_im) + filter[ssb][j][1] * (in0_re - in1_re);
352 }
353 out[ssb][i][0] = sum_re;
354 out[ssb][i][1] = sum_im;
355 }
356 }
357 }
358
359 static void hybrid_analysis(float out[91][32][2], float in[5][44][2], float L[2][38][64], int is34, int len)
360 {
361 int i, j;
362 for (i = 0; i < 5; i++) {
363 for (j = 0; j < 38; j++) {
364 in[i][j+6][0] = L[0][j][i];
365 in[i][j+6][1] = L[1][j][i];
366 }
367 }
368 if (is34) {
369 hybrid4_8_12_cx(in[0], out, f34_0_12, 12, len);
370 hybrid4_8_12_cx(in[1], out+12, f34_1_8, 8, len);
371 hybrid4_8_12_cx(in[2], out+20, f34_2_4, 4, len);
372 hybrid4_8_12_cx(in[3], out+24, f34_2_4, 4, len);
373 hybrid4_8_12_cx(in[4], out+28, f34_2_4, 4, len);
374 for (i = 0; i < 59; i++) {
375 for (j = 0; j < len; j++) {
376 out[i+32][j][0] = L[0][j][i+5];
377 out[i+32][j][1] = L[1][j][i+5];
378 }
379 }
380 } else {
381 hybrid6_cx(in[0], out, f20_0_8, len);
382 hybrid2_re(in[1], out+6, g1_Q2, len, 1);
383 hybrid2_re(in[2], out+8, g1_Q2, len, 0);
384 for (i = 0; i < 61; i++) {
385 for (j = 0; j < len; j++) {
386 out[i+10][j][0] = L[0][j][i+3];
387 out[i+10][j][1] = L[1][j][i+3];
388 }
389 }
390 }
391 //update in_buf
392 for (i = 0; i < 5; i++) {
393 memcpy(in[i], in[i]+32, 6 * sizeof(in[i][0]));
394 }
395 }
396
397 static void hybrid_synthesis(float out[2][38][64], float in[91][32][2], int is34, int len)
398 {
399 int i, n;
400 if (is34) {
401 for (n = 0; n < len; n++) {
402 memset(out[0][n], 0, 5*sizeof(out[0][n][0]));
403 memset(out[1][n], 0, 5*sizeof(out[1][n][0]));
404 for (i = 0; i < 12; i++) {
405 out[0][n][0] += in[ i][n][0];
406 out[1][n][0] += in[ i][n][1];
407 }
408 for (i = 0; i < 8; i++) {
409 out[0][n][1] += in[12+i][n][0];
410 out[1][n][1] += in[12+i][n][1];
411 }
412 for (i = 0; i < 4; i++) {
413 out[0][n][2] += in[20+i][n][0];
414 out[1][n][2] += in[20+i][n][1];
415 out[0][n][3] += in[24+i][n][0];
416 out[1][n][3] += in[24+i][n][1];
417 out[0][n][4] += in[28+i][n][0];
418 out[1][n][4] += in[28+i][n][1];
419 }
420 }
421 for (i = 0; i < 59; i++) {
422 for (n = 0; n < len; n++) {
423 out[0][n][i+5] = in[i+32][n][0];
424 out[1][n][i+5] = in[i+32][n][1];
425 }
426 }
427 } else {
428 for (n = 0; n < len; n++) {
429 out[0][n][0] = in[0][n][0] + in[1][n][0] + in[2][n][0] +
430 in[3][n][0] + in[4][n][0] + in[5][n][0];
431 out[1][n][0] = in[0][n][1] + in[1][n][1] + in[2][n][1] +
432 in[3][n][1] + in[4][n][1] + in[5][n][1];
433 out[0][n][1] = in[6][n][0] + in[7][n][0];
434 out[1][n][1] = in[6][n][1] + in[7][n][1];
435 out[0][n][2] = in[8][n][0] + in[9][n][0];
436 out[1][n][2] = in[8][n][1] + in[9][n][1];
437 }
438 for (i = 0; i < 61; i++) {
439 for (n = 0; n < len; n++) {
440 out[0][n][i+3] = in[i+10][n][0];
441 out[1][n][i+3] = in[i+10][n][1];
442 }
443 }
444 }
445 }
446
447 /// All-pass filter decay slope
448 #define DECAY_SLOPE 0.05f
449 /// Number of frequency bands that can be addressed by the parameter index, b(k)
450 static const int NR_PAR_BANDS[] = { 20, 34 };
451 /// Number of frequency bands that can be addressed by the sub subband index, k
452 static const int NR_BANDS[] = { 71, 91 };
453 /// Start frequency band for the all-pass filter decay slope
454 static const int DECAY_CUTOFF[] = { 10, 32 };
455 /// Number of all-pass filer bands
456 static const int NR_ALLPASS_BANDS[] = { 30, 50 };
457 /// First stereo band using the short one sample delay
458 static const int SHORT_DELAY_BAND[] = { 42, 62 };
459
460 /** Table 8.46 */
461 static void map_idx_10_to_20(int8_t *par_mapped, const int8_t *par, int full)
462 {
463 int b;
464 if (full)
465 b = 9;
466 else {
467 b = 4;
468 par_mapped[10] = 0;
469 }
470 for (; b >= 0; b--) {
471 par_mapped[2*b+1] = par_mapped[2*b] = par[b];
472 }
473 }
474
475 static void map_idx_34_to_20(int8_t *par_mapped, const int8_t *par, int full)
476 {
477 par_mapped[ 0] = (2*par[ 0] + par[ 1]) / 3;
478 par_mapped[ 1] = ( par[ 1] + 2*par[ 2]) / 3;
479 par_mapped[ 2] = (2*par[ 3] + par[ 4]) / 3;
480 par_mapped[ 3] = ( par[ 4] + 2*par[ 5]) / 3;
481 par_mapped[ 4] = ( par[ 6] + par[ 7]) / 2;
482 par_mapped[ 5] = ( par[ 8] + par[ 9]) / 2;
483 par_mapped[ 6] = par[10];
484 par_mapped[ 7] = par[11];
485 par_mapped[ 8] = ( par[12] + par[13]) / 2;
486 par_mapped[ 9] = ( par[14] + par[15]) / 2;
487 par_mapped[10] = par[16];
488 if (full) {
489 par_mapped[11] = par[17];
490 par_mapped[12] = par[18];
491 par_mapped[13] = par[19];
492 par_mapped[14] = ( par[20] + par[21]) / 2;
493 par_mapped[15] = ( par[22] + par[23]) / 2;
494 par_mapped[16] = ( par[24] + par[25]) / 2;
495 par_mapped[17] = ( par[26] + par[27]) / 2;
496 par_mapped[18] = ( par[28] + par[29] + par[30] + par[31]) / 4;
497 par_mapped[19] = ( par[32] + par[33]) / 2;
498 }
499 }
500
501 static void map_val_34_to_20(float par[PS_MAX_NR_IIDICC])
502 {
503 par[ 0] = (2*par[ 0] + par[ 1]) * 0.33333333f;
504 par[ 1] = ( par[ 1] + 2*par[ 2]) * 0.33333333f;
505 par[ 2] = (2*par[ 3] + par[ 4]) * 0.33333333f;
506 par[ 3] = ( par[ 4] + 2*par[ 5]) * 0.33333333f;
507 par[ 4] = ( par[ 6] + par[ 7]) * 0.5f;
508 par[ 5] = ( par[ 8] + par[ 9]) * 0.5f;
509 par[ 6] = par[10];
510 par[ 7] = par[11];
511 par[ 8] = ( par[12] + par[13]) * 0.5f;
512 par[ 9] = ( par[14] + par[15]) * 0.5f;
513 par[10] = par[16];
514 par[11] = par[17];
515 par[12] = par[18];
516 par[13] = par[19];
517 par[14] = ( par[20] + par[21]) * 0.5f;
518 par[15] = ( par[22] + par[23]) * 0.5f;
519 par[16] = ( par[24] + par[25]) * 0.5f;
520 par[17] = ( par[26] + par[27]) * 0.5f;
521 par[18] = ( par[28] + par[29] + par[30] + par[31]) * 0.25f;
522 par[19] = ( par[32] + par[33]) * 0.5f;
523 }
524
525 static void map_idx_10_to_34(int8_t *par_mapped, const int8_t *par, int full)
526 {
527 if (full) {
528 par_mapped[33] = par[9];
529 par_mapped[32] = par[9];
530 par_mapped[31] = par[9];
531 par_mapped[30] = par[9];
532 par_mapped[29] = par[9];
533 par_mapped[28] = par[9];
534 par_mapped[27] = par[8];
535 par_mapped[26] = par[8];
536 par_mapped[25] = par[8];
537 par_mapped[24] = par[8];
538 par_mapped[23] = par[7];
539 par_mapped[22] = par[7];
540 par_mapped[21] = par[7];
541 par_mapped[20] = par[7];
542 par_mapped[19] = par[6];
543 par_mapped[18] = par[6];
544 par_mapped[17] = par[5];
545 par_mapped[16] = par[5];
546 } else {
547 par_mapped[16] = 0;
548 }
549 par_mapped[15] = par[4];
550 par_mapped[14] = par[4];
551 par_mapped[13] = par[4];
552 par_mapped[12] = par[4];
553 par_mapped[11] = par[3];
554 par_mapped[10] = par[3];
555 par_mapped[ 9] = par[2];
556 par_mapped[ 8] = par[2];
557 par_mapped[ 7] = par[2];
558 par_mapped[ 6] = par[2];
559 par_mapped[ 5] = par[1];
560 par_mapped[ 4] = par[1];
561 par_mapped[ 3] = par[1];
562 par_mapped[ 2] = par[0];
563 par_mapped[ 1] = par[0];
564 par_mapped[ 0] = par[0];
565 }
566
567 static void map_idx_20_to_34(int8_t *par_mapped, const int8_t *par, int full)
568 {
569 if (full) {
570 par_mapped[33] = par[19];
571 par_mapped[32] = par[19];
572 par_mapped[31] = par[18];
573 par_mapped[30] = par[18];
574 par_mapped[29] = par[18];
575 par_mapped[28] = par[18];
576 par_mapped[27] = par[17];
577 par_mapped[26] = par[17];
578 par_mapped[25] = par[16];
579 par_mapped[24] = par[16];
580 par_mapped[23] = par[15];
581 par_mapped[22] = par[15];
582 par_mapped[21] = par[14];
583 par_mapped[20] = par[14];
584 par_mapped[19] = par[13];
585 par_mapped[18] = par[12];
586 par_mapped[17] = par[11];
587 }
588 par_mapped[16] = par[10];
589 par_mapped[15] = par[ 9];
590 par_mapped[14] = par[ 9];
591 par_mapped[13] = par[ 8];
592 par_mapped[12] = par[ 8];
593 par_mapped[11] = par[ 7];
594 par_mapped[10] = par[ 6];
595 par_mapped[ 9] = par[ 5];
596 par_mapped[ 8] = par[ 5];
597 par_mapped[ 7] = par[ 4];
598 par_mapped[ 6] = par[ 4];
599 par_mapped[ 5] = par[ 3];
600 par_mapped[ 4] = (par[ 2] + par[ 3]) / 2;
601 par_mapped[ 3] = par[ 2];
602 par_mapped[ 2] = par[ 1];
603 par_mapped[ 1] = (par[ 0] + par[ 1]) / 2;
604 par_mapped[ 0] = par[ 0];
605 }
606
607 static void map_val_20_to_34(float par[PS_MAX_NR_IIDICC])
608 {
609 par[33] = par[19];
610 par[32] = par[19];
611 par[31] = par[18];
612 par[30] = par[18];
613 par[29] = par[18];
614 par[28] = par[18];
615 par[27] = par[17];
616 par[26] = par[17];
617 par[25] = par[16];
618 par[24] = par[16];
619 par[23] = par[15];
620 par[22] = par[15];
621 par[21] = par[14];
622 par[20] = par[14];
623 par[19] = par[13];
624 par[18] = par[12];
625 par[17] = par[11];
626 par[16] = par[10];
627 par[15] = par[ 9];
628 par[14] = par[ 9];
629 par[13] = par[ 8];
630 par[12] = par[ 8];
631 par[11] = par[ 7];
632 par[10] = par[ 6];
633 par[ 9] = par[ 5];
634 par[ 8] = par[ 5];
635 par[ 7] = par[ 4];
636 par[ 6] = par[ 4];
637 par[ 5] = par[ 3];
638 par[ 4] = (par[ 2] + par[ 3]) * 0.5f;
639 par[ 3] = par[ 2];
640 par[ 2] = par[ 1];
641 par[ 1] = (par[ 0] + par[ 1]) * 0.5f;
642 par[ 0] = par[ 0];
643 }
644
645 static void decorrelation(PSContext *ps, float (*out)[32][2], const float (*s)[32][2], int is34)
646 {
647 float power[34][PS_QMF_TIME_SLOTS] = {{0}};
648 float transient_gain[34][PS_QMF_TIME_SLOTS];
649 float *peak_decay_nrg = ps->peak_decay_nrg;
650 float *power_smooth = ps->power_smooth;
651 float *peak_decay_diff_smooth = ps->peak_decay_diff_smooth;
652 float (*delay)[PS_QMF_TIME_SLOTS + PS_MAX_DELAY][2] = ps->delay;
653 float (*ap_delay)[PS_AP_LINKS][PS_QMF_TIME_SLOTS + PS_MAX_AP_DELAY][2] = ps->ap_delay;
654 const int8_t *k_to_i = is34 ? k_to_i_34 : k_to_i_20;
655 const float peak_decay_factor = 0.76592833836465f;
656 const float transient_impact = 1.5f;
657 const float a_smooth = 0.25f; //< Smoothing coefficient
658 int i, k, m, n;
659 int n0 = 0, nL = 32;
660 static const int link_delay[] = { 3, 4, 5 };
661 static const float a[] = { 0.65143905753106f,
662 0.56471812200776f,
663 0.48954165955695f };
664
665 if (is34 != ps->is34bands_old) {
666 memset(ps->peak_decay_nrg, 0, sizeof(ps->peak_decay_nrg));
667 memset(ps->power_smooth, 0, sizeof(ps->power_smooth));
668 memset(ps->peak_decay_diff_smooth, 0, sizeof(ps->peak_decay_diff_smooth));
669 memset(ps->delay, 0, sizeof(ps->delay));
670 memset(ps->ap_delay, 0, sizeof(ps->ap_delay));
671 }
672
673 for (n = n0; n < nL; n++) {
674 for (k = 0; k < NR_BANDS[is34]; k++) {
675 int i = k_to_i[k];
676 power[i][n] += s[k][n][0] * s[k][n][0] + s[k][n][1] * s[k][n][1];
677 }
678 }
679
680 //Transient detection
681 for (i = 0; i < NR_PAR_BANDS[is34]; i++) {
682 for (n = n0; n < nL; n++) {
683 float decayed_peak = peak_decay_factor * peak_decay_nrg[i];
684 float denom;
685 peak_decay_nrg[i] = FFMAX(decayed_peak, power[i][n]);
686 power_smooth[i] += a_smooth * (power[i][n] - power_smooth[i]);
687 peak_decay_diff_smooth[i] += a_smooth * (peak_decay_nrg[i] - power[i][n] - peak_decay_diff_smooth[i]);
688 denom = transient_impact * peak_decay_diff_smooth[i];
689 transient_gain[i][n] = (denom > power_smooth[i]) ?
690 power_smooth[i] / denom : 1.0f;
691 }
692 }
693
694 //Decorrelation and transient reduction
695 // PS_AP_LINKS - 1
696 // -----
697 // | | Q_fract_allpass[k][m]*z^-link_delay[m] - a[m]*g_decay_slope[k]
698 //H[k][z] = z^-2 * phi_fract[k] * | | ----------------------------------------------------------------
699 // | | 1 - a[m]*g_decay_slope[k]*Q_fract_allpass[k][m]*z^-link_delay[m]
700 // m = 0
701 //d[k][z] (out) = transient_gain_mapped[k][z] * H[k][z] * s[k][z]
702 for (k = 0; k < NR_ALLPASS_BANDS[is34]; k++) {
703 int b = k_to_i[k];
704 float g_decay_slope = 1.f - DECAY_SLOPE * (k - DECAY_CUTOFF[is34]);
705 float ag[PS_AP_LINKS];
706 g_decay_slope = av_clipf(g_decay_slope, 0.f, 1.f);
707 memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
708 memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
709 for (m = 0; m < PS_AP_LINKS; m++) {
710 memcpy(ap_delay[k][m], ap_delay[k][m]+numQMFSlots, 5*sizeof(ap_delay[k][m][0]));
711 ag[m] = a[m] * g_decay_slope;
712 }
713 for (n = n0; n < nL; n++) {
714 float in_re = delay[k][n+PS_MAX_DELAY-2][0] * phi_fract[is34][k][0] -
715 delay[k][n+PS_MAX_DELAY-2][1] * phi_fract[is34][k][1];
716 float in_im = delay[k][n+PS_MAX_DELAY-2][0] * phi_fract[is34][k][1] +
717 delay[k][n+PS_MAX_DELAY-2][1] * phi_fract[is34][k][0];
718 for (m = 0; m < PS_AP_LINKS; m++) {
719 float a_re = ag[m] * in_re;
720 float a_im = ag[m] * in_im;
721 float link_delay_re = ap_delay[k][m][n+5-link_delay[m]][0];
722 float link_delay_im = ap_delay[k][m][n+5-link_delay[m]][1];
723 float fractional_delay_re = Q_fract_allpass[is34][k][m][0];
724 float fractional_delay_im = Q_fract_allpass[is34][k][m][1];
725 ap_delay[k][m][n+5][0] = in_re;
726 ap_delay[k][m][n+5][1] = in_im;
727 in_re = link_delay_re * fractional_delay_re - link_delay_im * fractional_delay_im - a_re;
728 in_im = link_delay_re * fractional_delay_im + link_delay_im * fractional_delay_re - a_im;
729 ap_delay[k][m][n+5][0] += ag[m] * in_re;
730 ap_delay[k][m][n+5][1] += ag[m] * in_im;
731 }
732 out[k][n][0] = transient_gain[b][n] * in_re;
733 out[k][n][1] = transient_gain[b][n] * in_im;
734 }
735 }
736 for (; k < SHORT_DELAY_BAND[is34]; k++) {
737 memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
738 memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
739 for (n = n0; n < nL; n++) {
740 //H = delay 14
741 out[k][n][0] = transient_gain[k_to_i[k]][n] * delay[k][n+PS_MAX_DELAY-14][0];
742 out[k][n][1] = transient_gain[k_to_i[k]][n] * delay[k][n+PS_MAX_DELAY-14][1];
743 }
744 }
745 for (; k < NR_BANDS[is34]; k++) {
746 memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
747 memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
748 for (n = n0; n < nL; n++) {
749 //H = delay 1
750 out[k][n][0] = transient_gain[k_to_i[k]][n] * delay[k][n+PS_MAX_DELAY-1][0];
751 out[k][n][1] = transient_gain[k_to_i[k]][n] * delay[k][n+PS_MAX_DELAY-1][1];
752 }
753 }
754 }
755
756 static void remap34(int8_t (**p_par_mapped)[PS_MAX_NR_IIDICC],
757 int8_t (*par)[PS_MAX_NR_IIDICC],
758 int num_par, int num_env, int full)
759 {
760 int8_t (*par_mapped)[PS_MAX_NR_IIDICC] = *p_par_mapped;
761 int e;
762 if (num_par == 20 || num_par == 11) {
763 for (e = 0; e < num_env; e++) {
764 map_idx_20_to_34(par_mapped[e], par[e], full);
765 }
766 } else if (num_par == 10 || num_par == 5) {
767 for (e = 0; e < num_env; e++) {
768 map_idx_10_to_34(par_mapped[e], par[e], full);
769 }
770 } else {
771 *p_par_mapped = par;
772 }
773 }
774
775 static void remap20(int8_t (**p_par_mapped)[PS_MAX_NR_IIDICC],
776 int8_t (*par)[PS_MAX_NR_IIDICC],
777 int num_par, int num_env, int full)
778 {
779 int8_t (*par_mapped)[PS_MAX_NR_IIDICC] = *p_par_mapped;
780 int e;
781 if (num_par == 34 || num_par == 17) {
782 for (e = 0; e < num_env; e++) {
783 map_idx_34_to_20(par_mapped[e], par[e], full);
784 }
785 } else if (num_par == 10 || num_par == 5) {
786 for (e = 0; e < num_env; e++) {
787 map_idx_10_to_20(par_mapped[e], par[e], full);
788 }
789 } else {
790 *p_par_mapped = par;
791 }
792 }
793
794 static void stereo_processing(PSContext *ps, float (*l)[32][2], float (*r)[32][2], int is34)
795 {
796 int e, b, k, n;
797
798 float (*H11)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H11;
799 float (*H12)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H12;
800 float (*H21)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H21;
801 float (*H22)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H22;
802 int8_t *opd_hist = ps->opd_hist;
803 int8_t *ipd_hist = ps->ipd_hist;
804 int8_t iid_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
805 int8_t icc_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
806 int8_t ipd_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
807 int8_t opd_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
808 int8_t (*iid_mapped)[PS_MAX_NR_IIDICC] = iid_mapped_buf;
809 int8_t (*icc_mapped)[PS_MAX_NR_IIDICC] = icc_mapped_buf;
810 int8_t (*ipd_mapped)[PS_MAX_NR_IIDICC] = ipd_mapped_buf;
811 int8_t (*opd_mapped)[PS_MAX_NR_IIDICC] = opd_mapped_buf;
812 const int8_t *k_to_i = is34 ? k_to_i_34 : k_to_i_20;
813 const float (*H_LUT)[8][4] = (PS_BASELINE || ps->icc_mode < 3) ? HA : HB;
814
815 //Remapping
816 memcpy(H11[0][0], H11[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H11[0][0][0]));
817 memcpy(H11[1][0], H11[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H11[1][0][0]));
818 memcpy(H12[0][0], H12[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H12[0][0][0]));
819 memcpy(H12[1][0], H12[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H12[1][0][0]));
820 memcpy(H21[0][0], H21[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H21[0][0][0]));
821 memcpy(H21[1][0], H21[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H21[1][0][0]));
822 memcpy(H22[0][0], H22[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H22[0][0][0]));
823 memcpy(H22[1][0], H22[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H22[1][0][0]));
824 if (is34) {
825 remap34(&iid_mapped, ps->iid_par, ps->nr_iid_par, ps->num_env, 1);
826 remap34(&icc_mapped, ps->icc_par, ps->nr_icc_par, ps->num_env, 1);
827 if (ps->enable_ipdopd) {
828 remap34(&ipd_mapped, ps->ipd_par, ps->nr_ipdopd_par, ps->num_env, 0);
829 remap34(&opd_mapped, ps->opd_par, ps->nr_ipdopd_par, ps->num_env, 0);
830 }
831 if (!ps->is34bands_old) {
832 map_val_20_to_34(H11[0][0]);
833 map_val_20_to_34(H11[1][0]);
834 map_val_20_to_34(H12[0][0]);
835 map_val_20_to_34(H12[1][0]);
836 map_val_20_to_34(H21[0][0]);
837 map_val_20_to_34(H21[1][0]);
838 map_val_20_to_34(H22[0][0]);
839 map_val_20_to_34(H22[1][0]);
840 ipdopd_reset(ipd_hist, opd_hist);
841 }
842 } else {
843 remap20(&iid_mapped, ps->iid_par, ps->nr_iid_par, ps->num_env, 1);
844 remap20(&icc_mapped, ps->icc_par, ps->nr_icc_par, ps->num_env, 1);
845 if (ps->enable_ipdopd) {
846 remap20(&ipd_mapped, ps->ipd_par, ps->nr_ipdopd_par, ps->num_env, 0);
847 remap20(&opd_mapped, ps->opd_par, ps->nr_ipdopd_par, ps->num_env, 0);
848 }
849 if (ps->is34bands_old) {
850 map_val_34_to_20(H11[0][0]);
851 map_val_34_to_20(H11[1][0]);
852 map_val_34_to_20(H12[0][0]);
853 map_val_34_to_20(H12[1][0]);
854 map_val_34_to_20(H21[0][0]);
855 map_val_34_to_20(H21[1][0]);
856 map_val_34_to_20(H22[0][0]);
857 map_val_34_to_20(H22[1][0]);
858 ipdopd_reset(ipd_hist, opd_hist);
859 }
860 }
861
862 //Mixing
863 for (e = 0; e < ps->num_env; e++) {
864 for (b = 0; b < NR_PAR_BANDS[is34]; b++) {
865 float h11, h12, h21, h22;
866 h11 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][0];
867 h12 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][1];
868 h21 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][2];
869 h22 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][3];
870 if (!PS_BASELINE && ps->enable_ipdopd && b < ps->nr_ipdopd_par) {
871 //The spec say says to only run this smoother when enable_ipdopd
872 //is set but the reference decoder appears to run it constantly
873 float h11i, h12i, h21i, h22i;
874 float ipd_adj_re, ipd_adj_im;
875 int opd_idx = opd_hist[b] * 8 + opd_mapped[e][b];
876 int ipd_idx = ipd_hist[b] * 8 + ipd_mapped[e][b];
877 float opd_re = pd_re_smooth[opd_idx];
878 float opd_im = pd_im_smooth[opd_idx];
879 float ipd_re = pd_re_smooth[ipd_idx];
880 float ipd_im = pd_im_smooth[ipd_idx];
881 opd_hist[b] = opd_idx & 0x3F;
882 ipd_hist[b] = ipd_idx & 0x3F;
883
884 ipd_adj_re = opd_re*ipd_re + opd_im*ipd_im;
885 ipd_adj_im = opd_im*ipd_re - opd_re*ipd_im;
886 h11i = h11 * opd_im;
887 h11 = h11 * opd_re;
888 h12i = h12 * ipd_adj_im;
889 h12 = h12 * ipd_adj_re;
890 h21i = h21 * opd_im;
891 h21 = h21 * opd_re;
892 h22i = h22 * ipd_adj_im;
893 h22 = h22 * ipd_adj_re;
894 H11[1][e+1][b] = h11i;
895 H12[1][e+1][b] = h12i;
896 H21[1][e+1][b] = h21i;
897 H22[1][e+1][b] = h22i;
898 }
899 H11[0][e+1][b] = h11;
900 H12[0][e+1][b] = h12;
901 H21[0][e+1][b] = h21;
902 H22[0][e+1][b] = h22;
903 }
904 for (k = 0; k < NR_BANDS[is34]; k++) {
905 float h11r, h12r, h21r, h22r;
906 float h11i, h12i, h21i, h22i;
907 float h11r_step, h12r_step, h21r_step, h22r_step;
908 float h11i_step, h12i_step, h21i_step, h22i_step;
909 int start = ps->border_position[e];
910 int stop = ps->border_position[e+1];
911 float width = 1.f / (stop - start);
912 b = k_to_i[k];
913 h11r = H11[0][e][b];
914 h12r = H12[0][e][b];
915 h21r = H21[0][e][b];
916 h22r = H22[0][e][b];
917 if (!PS_BASELINE && ps->enable_ipdopd) {
918 //Is this necessary? ps_04_new seems unchanged
919 if ((is34 && k <= 13 && k >= 9) || (!is34 && k <= 1)) {
920 h11i = -H11[1][e][b];
921 h12i = -H12[1][e][b];
922 h21i = -H21[1][e][b];
923 h22i = -H22[1][e][b];
924 } else {
925 h11i = H11[1][e][b];
926 h12i = H12[1][e][b];
927 h21i = H21[1][e][b];
928 h22i = H22[1][e][b];
929 }
930 }
931 //Interpolation
932 h11r_step = (H11[0][e+1][b] - h11r) * width;
933 h12r_step = (H12[0][e+1][b] - h12r) * width;
934 h21r_step = (H21[0][e+1][b] - h21r) * width;
935 h22r_step = (H22[0][e+1][b] - h22r) * width;
936 if (!PS_BASELINE && ps->enable_ipdopd) {
937 h11i_step = (H11[1][e+1][b] - h11i) * width;
938 h12i_step = (H12[1][e+1][b] - h12i) * width;
939 h21i_step = (H21[1][e+1][b] - h21i) * width;
940 h22i_step = (H22[1][e+1][b] - h22i) * width;
941 }
942 for (n = start + 1; n <= stop; n++) {
943 //l is s, r is d
944 float l_re = l[k][n][0];
945 float l_im = l[k][n][1];
946 float r_re = r[k][n][0];
947 float r_im = r[k][n][1];
948 h11r += h11r_step;
949 h12r += h12r_step;
950 h21r += h21r_step;
951 h22r += h22r_step;
952 if (!PS_BASELINE && ps->enable_ipdopd) {
953 h11i += h11i_step;
954 h12i += h12i_step;
955 h21i += h21i_step;
956 h22i += h22i_step;
957
958 l[k][n][0] = h11r*l_re + h21r*r_re - h11i*l_im - h21i*r_im;
959 l[k][n][1] = h11r*l_im + h21r*r_im + h11i*l_re + h21i*r_re;
960 r[k][n][0] = h12r*l_re + h22r*r_re - h12i*l_im - h22i*r_im;
961 r[k][n][1] = h12r*l_im + h22r*r_im + h12i*l_re + h22i*r_re;
962 } else {
963 l[k][n][0] = h11r*l_re + h21r*r_re;
964 l[k][n][1] = h11r*l_im + h21r*r_im;
965 r[k][n][0] = h12r*l_re + h22r*r_re;
966 r[k][n][1] = h12r*l_im + h22r*r_im;
967 }
968 }
969 }
970 }
971 }
972
973 int ff_ps_apply(AVCodecContext *avctx, PSContext *ps, float L[2][38][64], float R[2][38][64], int top)
974 {
975 float Lbuf[91][32][2];
976 float Rbuf[91][32][2];
977 const int len = 32;
978 int is34 = ps->is34bands;
979
980 top += NR_BANDS[is34] - 64;
981 memset(ps->delay+top, 0, (NR_BANDS[is34] - top)*sizeof(ps->delay[0]));
982 if (top < NR_ALLPASS_BANDS[is34])
983 memset(ps->ap_delay + top, 0, (NR_ALLPASS_BANDS[is34] - top)*sizeof(ps->ap_delay[0]));
984
985 hybrid_analysis(Lbuf, ps->in_buf, L, is34, len);
986 decorrelation(ps, Rbuf, Lbuf, is34);
987 stereo_processing(ps, Lbuf, Rbuf, is34);
988 hybrid_synthesis(L, Lbuf, is34, len);
989 hybrid_synthesis(R, Rbuf, is34, len);
990
991 return 0;
992 }
993
994 #define PS_INIT_VLC_STATIC(num, size) \
995 INIT_VLC_STATIC(&vlc_ps[num], 9, ps_tmp[num].table_size / ps_tmp[num].elem_size, \
996 ps_tmp[num].ps_bits, 1, 1, \
997 ps_tmp[num].ps_codes, ps_tmp[num].elem_size, ps_tmp[num].elem_size, \
998 size);
999
1000 #define PS_VLC_ROW(name) \
1001 { name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) }
1002
1003 av_cold void ff_ps_init(void) {
1004 // Syntax initialization
1005 static const struct {
1006 const void *ps_codes, *ps_bits;
1007 const unsigned int table_size, elem_size;
1008 } ps_tmp[] = {
1009 PS_VLC_ROW(huff_iid_df1),
1010 PS_VLC_ROW(huff_iid_dt1),
1011 PS_VLC_ROW(huff_iid_df0),
1012 PS_VLC_ROW(huff_iid_dt0),
1013 PS_VLC_ROW(huff_icc_df),
1014 PS_VLC_ROW(huff_icc_dt),
1015 PS_VLC_ROW(huff_ipd_df),
1016 PS_VLC_ROW(huff_ipd_dt),
1017 PS_VLC_ROW(huff_opd_df),
1018 PS_VLC_ROW(huff_opd_dt),
1019 };
1020
1021 PS_INIT_VLC_STATIC(0, 1544);
1022 PS_INIT_VLC_STATIC(1, 832);
1023 PS_INIT_VLC_STATIC(2, 1024);
1024 PS_INIT_VLC_STATIC(3, 1036);
1025 PS_INIT_VLC_STATIC(4, 544);
1026 PS_INIT_VLC_STATIC(5, 544);
1027 PS_INIT_VLC_STATIC(6, 512);
1028 PS_INIT_VLC_STATIC(7, 512);
1029 PS_INIT_VLC_STATIC(8, 512);
1030 PS_INIT_VLC_STATIC(9, 512);
1031
1032 ps_tableinit();
1033 }
1034
1035 av_cold void ff_ps_ctx_init(PSContext *ps)
1036 {
1037 }