aacsbr: Dead code removal.
[libav.git] / libavcodec / aacsbr.c
1 /*
2 * AAC Spectral Band Replication decoding functions
3 * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
4 * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
5 *
6 * This file is part of FFmpeg.
7 *
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23 /**
24 * @file libavcodec/aacsbr.c
25 * AAC Spectral Band Replication decoding functions
26 * @author Robert Swain ( rob opendot cl )
27 */
28
29 #include "aac.h"
30 #include "sbr.h"
31 #include "aacsbr.h"
32 #include "aacsbrdata.h"
33 #include "fft.h"
34
35 #include <stdint.h>
36 #include <float.h>
37
38 #define ENVELOPE_ADJUSTMENT_OFFSET 2
39 #define NOISE_FLOOR_OFFSET 6.0f
40
41 /**
42 * SBR VLC tables
43 */
44 enum {
45 T_HUFFMAN_ENV_1_5DB,
46 F_HUFFMAN_ENV_1_5DB,
47 T_HUFFMAN_ENV_BAL_1_5DB,
48 F_HUFFMAN_ENV_BAL_1_5DB,
49 T_HUFFMAN_ENV_3_0DB,
50 F_HUFFMAN_ENV_3_0DB,
51 T_HUFFMAN_ENV_BAL_3_0DB,
52 F_HUFFMAN_ENV_BAL_3_0DB,
53 T_HUFFMAN_NOISE_3_0DB,
54 T_HUFFMAN_NOISE_BAL_3_0DB,
55 };
56
57 /**
58 * bs_frame_class - frame class of current SBR frame (14496-3 sp04 p98)
59 */
60 enum {
61 FIXFIX,
62 FIXVAR,
63 VARFIX,
64 VARVAR,
65 };
66
67 enum {
68 EXTENSION_ID_PS = 2,
69 };
70
71 static VLC vlc_sbr[10];
72 static const int8_t vlc_sbr_lav[10] =
73 { 60, 60, 24, 24, 31, 31, 12, 12, 31, 12 };
74 static DECLARE_ALIGNED(16, float, analysis_cos_pre)[64];
75 static DECLARE_ALIGNED(16, float, analysis_sin_pre)[64];
76 static DECLARE_ALIGNED(16, float, analysis_cossin_post)[32][2];
77 static const DECLARE_ALIGNED(16, float, zero64)[64];
78
79 #define SBR_INIT_VLC_STATIC(num, size) \
80 INIT_VLC_STATIC(&vlc_sbr[num], 9, sbr_tmp[num].table_size / sbr_tmp[num].elem_size, \
81 sbr_tmp[num].sbr_bits , 1, 1, \
82 sbr_tmp[num].sbr_codes, sbr_tmp[num].elem_size, sbr_tmp[num].elem_size, \
83 size)
84
85 #define SBR_VLC_ROW(name) \
86 { name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) }
87
88 av_cold void ff_aac_sbr_init(void)
89 {
90 int n, k;
91 static const struct {
92 const void *sbr_codes, *sbr_bits;
93 const unsigned int table_size, elem_size;
94 } sbr_tmp[] = {
95 SBR_VLC_ROW(t_huffman_env_1_5dB),
96 SBR_VLC_ROW(f_huffman_env_1_5dB),
97 SBR_VLC_ROW(t_huffman_env_bal_1_5dB),
98 SBR_VLC_ROW(f_huffman_env_bal_1_5dB),
99 SBR_VLC_ROW(t_huffman_env_3_0dB),
100 SBR_VLC_ROW(f_huffman_env_3_0dB),
101 SBR_VLC_ROW(t_huffman_env_bal_3_0dB),
102 SBR_VLC_ROW(f_huffman_env_bal_3_0dB),
103 SBR_VLC_ROW(t_huffman_noise_3_0dB),
104 SBR_VLC_ROW(t_huffman_noise_bal_3_0dB),
105 };
106
107 // SBR VLC table initialization
108 SBR_INIT_VLC_STATIC(0, 1098);
109 SBR_INIT_VLC_STATIC(1, 1092);
110 SBR_INIT_VLC_STATIC(2, 768);
111 SBR_INIT_VLC_STATIC(3, 1026);
112 SBR_INIT_VLC_STATIC(4, 1058);
113 SBR_INIT_VLC_STATIC(5, 1052);
114 SBR_INIT_VLC_STATIC(6, 544);
115 SBR_INIT_VLC_STATIC(7, 544);
116 SBR_INIT_VLC_STATIC(8, 592);
117 SBR_INIT_VLC_STATIC(9, 512);
118
119 for (n = 0; n < 64; n++) {
120 float pre = M_PI * n / 64;
121 analysis_cos_pre[n] = cosf(pre);
122 analysis_sin_pre[n] = sinf(pre);
123 }
124 for (k = 0; k < 32; k++) {
125 float post = M_PI * (k + 0.5) / 128;
126 analysis_cossin_post[k][0] = 4.0 * cosf(post);
127 analysis_cossin_post[k][1] = -4.0 * sinf(post);
128 }
129 for (n = 1; n < 320; n++)
130 sbr_qmf_window_us[320 + n] = sbr_qmf_window_us[320 - n];
131 sbr_qmf_window_us[384] = -sbr_qmf_window_us[384];
132 sbr_qmf_window_us[512] = -sbr_qmf_window_us[512];
133
134 for (n = 0; n < 320; n++)
135 sbr_qmf_window_ds[n] = sbr_qmf_window_us[2*n];
136 }
137
138 av_cold void ff_aac_sbr_ctx_init(SpectralBandReplication *sbr)
139 {
140 sbr->kx[0] = sbr->kx[1] = 32; //Typo in spec, kx' inits to 32
141 sbr->data[0].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
142 sbr->data[1].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
143 ff_mdct_init(&sbr->mdct, 7, 1, 1.0/64);
144 ff_rdft_init(&sbr->rdft, 6, IDFT_R2C);
145 }
146
147 av_cold void ff_aac_sbr_ctx_close(SpectralBandReplication *sbr)
148 {
149 ff_mdct_end(&sbr->mdct);
150 ff_rdft_end(&sbr->rdft);
151 }
152
153 static int qsort_comparison_function_int16(const void *a, const void *b)
154 {
155 return *(const int16_t *)a - *(const int16_t *)b;
156 }
157
158 static inline int in_table_int16(const int16_t *table, int last_el, int16_t needle)
159 {
160 int i;
161 for (i = 0; i <= last_el; i++)
162 if (table[i] == needle)
163 return 1;
164 return 0;
165 }
166
167 /// Limiter Frequency Band Table (14496-3 sp04 p198)
168 static void sbr_make_f_tablelim(SpectralBandReplication *sbr)
169 {
170 int k;
171 if (sbr->bs_limiter_bands > 0) {
172 static const float bands_warped[3] = { 1.32715174233856803909f, //2^(0.49/1.2)
173 1.18509277094158210129f, //2^(0.49/2)
174 1.11987160404675912501f }; //2^(0.49/3)
175 const float lim_bands_per_octave_warped = bands_warped[sbr->bs_limiter_bands - 1];
176 int16_t patch_borders[5];
177 uint16_t *in = sbr->f_tablelim + 1, *out = sbr->f_tablelim;
178
179 patch_borders[0] = sbr->kx[1];
180 for (k = 1; k <= sbr->num_patches; k++)
181 patch_borders[k] = patch_borders[k-1] + sbr->patch_num_subbands[k-1];
182
183 memcpy(sbr->f_tablelim, sbr->f_tablelow,
184 (sbr->n[0] + 1) * sizeof(sbr->f_tablelow[0]));
185 if (sbr->num_patches > 1)
186 memcpy(sbr->f_tablelim + sbr->n[0] + 1, patch_borders + 1,
187 (sbr->num_patches - 1) * sizeof(patch_borders[0]));
188
189 qsort(sbr->f_tablelim, sbr->num_patches + sbr->n[0],
190 sizeof(sbr->f_tablelim[0]),
191 qsort_comparison_function_int16);
192
193 sbr->n_lim = sbr->n[0] + sbr->num_patches - 1;
194 while (out < sbr->f_tablelim + sbr->n_lim) {
195 if (*in >= *out * lim_bands_per_octave_warped) {
196 *++out = *in++;
197 } else if (*in == *out ||
198 !in_table_int16(patch_borders, sbr->num_patches, *in)) {
199 in++;
200 sbr->n_lim--;
201 } else if (!in_table_int16(patch_borders, sbr->num_patches, *out)) {
202 *out = *in++;
203 sbr->n_lim--;
204 } else {
205 *++out = *in++;
206 }
207 }
208 } else {
209 sbr->f_tablelim[0] = sbr->f_tablelow[0];
210 sbr->f_tablelim[1] = sbr->f_tablelow[sbr->n[0]];
211 sbr->n_lim = 1;
212 }
213 }
214
215 static unsigned int read_sbr_header(SpectralBandReplication *sbr, GetBitContext *gb)
216 {
217 unsigned int cnt = get_bits_count(gb);
218 uint8_t bs_header_extra_1;
219 uint8_t bs_header_extra_2;
220 int old_bs_limiter_bands = sbr->bs_limiter_bands;
221 SpectrumParameters old_spectrum_params;
222
223 sbr->start = 1;
224
225 // Save last spectrum parameters variables to compare to new ones
226 memcpy(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters));
227
228 sbr->bs_amp_res_header = get_bits1(gb);
229 sbr->spectrum_params.bs_start_freq = get_bits(gb, 4);
230 sbr->spectrum_params.bs_stop_freq = get_bits(gb, 4);
231 sbr->spectrum_params.bs_xover_band = get_bits(gb, 3);
232 skip_bits(gb, 2); // bs_reserved
233
234 bs_header_extra_1 = get_bits1(gb);
235 bs_header_extra_2 = get_bits1(gb);
236
237 if (bs_header_extra_1) {
238 sbr->spectrum_params.bs_freq_scale = get_bits(gb, 2);
239 sbr->spectrum_params.bs_alter_scale = get_bits1(gb);
240 sbr->spectrum_params.bs_noise_bands = get_bits(gb, 2);
241 } else {
242 sbr->spectrum_params.bs_freq_scale = 2;
243 sbr->spectrum_params.bs_alter_scale = 1;
244 sbr->spectrum_params.bs_noise_bands = 2;
245 }
246
247 // Check if spectrum parameters changed
248 if (memcmp(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters)))
249 sbr->reset = 1;
250
251 if (bs_header_extra_2) {
252 sbr->bs_limiter_bands = get_bits(gb, 2);
253 sbr->bs_limiter_gains = get_bits(gb, 2);
254 sbr->bs_interpol_freq = get_bits1(gb);
255 sbr->bs_smoothing_mode = get_bits1(gb);
256 } else {
257 sbr->bs_limiter_bands = 2;
258 sbr->bs_limiter_gains = 2;
259 sbr->bs_interpol_freq = 1;
260 sbr->bs_smoothing_mode = 1;
261 }
262
263 if (sbr->bs_limiter_bands != old_bs_limiter_bands && !sbr->reset)
264 sbr_make_f_tablelim(sbr);
265
266 return get_bits_count(gb) - cnt;
267 }
268
269 static int array_min_int16(const int16_t *array, int nel)
270 {
271 int i, min = array[0];
272 for (i = 1; i < nel; i++)
273 min = FFMIN(array[i], min);
274 return min;
275 }
276
277 static void make_bands(int16_t* bands, int start, int stop, int num_bands)
278 {
279 int k, previous, present;
280 float base, prod;
281
282 base = powf((float)stop / start, 1.0f / num_bands);
283 prod = start;
284 previous = start;
285
286 for (k = 0; k < num_bands-1; k++) {
287 prod *= base;
288 present = lrintf(prod);
289 bands[k] = present - previous;
290 previous = present;
291 }
292 bands[num_bands-1] = stop - previous;
293 }
294
295 static int check_n_master(AVCodecContext *avccontext, int n_master, int bs_xover_band)
296 {
297 // Requirements (14496-3 sp04 p205)
298 if (n_master <= 0) {
299 av_log(avccontext, AV_LOG_ERROR, "Invalid n_master: %d\n", n_master);
300 return -1;
301 }
302 if (bs_xover_band >= n_master) {
303 av_log(avccontext, AV_LOG_ERROR,
304 "Invalid bitstream, crossover band index beyond array bounds: %d\n",
305 bs_xover_band);
306 return -1;
307 }
308 return 0;
309 }
310
311 /// Master Frequency Band Table (14496-3 sp04 p194)
312 static int sbr_make_f_master(AACContext *ac, SpectralBandReplication *sbr,
313 SpectrumParameters *spectrum)
314 {
315 unsigned int temp, max_qmf_subbands;
316 unsigned int start_min, stop_min;
317 int k;
318 const int8_t *sbr_offset_ptr;
319 int16_t stop_dk[13];
320
321 if (sbr->sample_rate < 32000) {
322 temp = 3000;
323 } else if (sbr->sample_rate < 64000) {
324 temp = 4000;
325 } else
326 temp = 5000;
327
328 start_min = ((temp << 7) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
329 stop_min = ((temp << 8) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
330
331 switch (sbr->sample_rate) {
332 case 16000:
333 sbr_offset_ptr = sbr_offset[0];
334 break;
335 case 22050:
336 sbr_offset_ptr = sbr_offset[1];
337 break;
338 case 24000:
339 sbr_offset_ptr = sbr_offset[2];
340 break;
341 case 32000:
342 sbr_offset_ptr = sbr_offset[3];
343 break;
344 case 44100: case 48000: case 64000:
345 sbr_offset_ptr = sbr_offset[4];
346 break;
347 case 88200: case 96000: case 128000: case 176400: case 192000:
348 sbr_offset_ptr = sbr_offset[5];
349 break;
350 default:
351 av_log(ac->avccontext, AV_LOG_ERROR,
352 "Unsupported sample rate for SBR: %d\n", sbr->sample_rate);
353 return -1;
354 }
355
356 sbr->k[0] = start_min + sbr_offset_ptr[spectrum->bs_start_freq];
357
358 if (spectrum->bs_stop_freq < 14) {
359 sbr->k[2] = stop_min;
360 make_bands(stop_dk, stop_min, 64, 13);
361 qsort(stop_dk, 13, sizeof(stop_dk[0]), qsort_comparison_function_int16);
362 for (k = 0; k < spectrum->bs_stop_freq; k++)
363 sbr->k[2] += stop_dk[k];
364 } else if (spectrum->bs_stop_freq == 14) {
365 sbr->k[2] = 2*sbr->k[0];
366 } else if (spectrum->bs_stop_freq == 15) {
367 sbr->k[2] = 3*sbr->k[0];
368 } else {
369 av_log(ac->avccontext, AV_LOG_ERROR,
370 "Invalid bs_stop_freq: %d\n", spectrum->bs_stop_freq);
371 return -1;
372 }
373 sbr->k[2] = FFMIN(64, sbr->k[2]);
374
375 // Requirements (14496-3 sp04 p205)
376 if (sbr->sample_rate <= 32000) {
377 max_qmf_subbands = 48;
378 } else if (sbr->sample_rate == 44100) {
379 max_qmf_subbands = 35;
380 } else if (sbr->sample_rate >= 48000)
381 max_qmf_subbands = 32;
382
383 if (sbr->k[2] - sbr->k[0] > max_qmf_subbands) {
384 av_log(ac->avccontext, AV_LOG_ERROR,
385 "Invalid bitstream, too many QMF subbands: %d\n", sbr->k[2] - sbr->k[0]);
386 return -1;
387 }
388
389 if (!spectrum->bs_freq_scale) {
390 unsigned int dk;
391 int k2diff;
392
393 dk = spectrum->bs_alter_scale + 1;
394 sbr->n_master = ((sbr->k[2] - sbr->k[0] + (dk&2)) >> dk) << 1;
395 if (check_n_master(ac->avccontext, sbr->n_master, sbr->spectrum_params.bs_xover_band))
396 return -1;
397
398 for (k = 1; k <= sbr->n_master; k++)
399 sbr->f_master[k] = dk;
400
401 k2diff = sbr->k[2] - sbr->k[0] - sbr->n_master * dk;
402 if (k2diff < 0) {
403 sbr->f_master[1]--;
404 sbr->f_master[2]-= (k2diff < 1);
405 } else if (k2diff) {
406 sbr->f_master[sbr->n_master]++;
407 }
408
409 sbr->f_master[0] = sbr->k[0];
410 for (k = 1; k <= sbr->n_master; k++)
411 sbr->f_master[k] += sbr->f_master[k - 1];
412
413 } else {
414 int half_bands = 7 - spectrum->bs_freq_scale; // bs_freq_scale = {1,2,3}
415 int two_regions, num_bands_0;
416 int vdk0_max, vdk1_min;
417 int16_t vk0[49];
418
419 if (49 * sbr->k[2] > 110 * sbr->k[0]) {
420 two_regions = 1;
421 sbr->k[1] = 2 * sbr->k[0];
422 } else {
423 two_regions = 0;
424 sbr->k[1] = sbr->k[2];
425 }
426
427 num_bands_0 = lrintf(half_bands * log2f(sbr->k[1] / (float)sbr->k[0])) * 2;
428
429 if (num_bands_0 <= 0) { // Requirements (14496-3 sp04 p205)
430 av_log(ac->avccontext, AV_LOG_ERROR, "Invalid num_bands_0: %d\n", num_bands_0);
431 return -1;
432 }
433
434 vk0[0] = 0;
435
436 make_bands(vk0+1, sbr->k[0], sbr->k[1], num_bands_0);
437
438 qsort(vk0 + 1, num_bands_0, sizeof(vk0[1]), qsort_comparison_function_int16);
439 vdk0_max = vk0[num_bands_0];
440
441 vk0[0] = sbr->k[0];
442 for (k = 1; k <= num_bands_0; k++) {
443 if (vk0[k] <= 0) { // Requirements (14496-3 sp04 p205)
444 av_log(ac->avccontext, AV_LOG_ERROR, "Invalid vDk0[%d]: %d\n", k, vk0[k]);
445 return -1;
446 }
447 vk0[k] += vk0[k-1];
448 }
449
450 if (two_regions) {
451 int16_t vk1[49];
452 float invwarp = spectrum->bs_alter_scale ? 0.76923076923076923077f
453 : 1.0f; // bs_alter_scale = {0,1}
454 int num_bands_1 = lrintf(half_bands * invwarp *
455 log2f(sbr->k[2] / (float)sbr->k[1])) * 2;
456
457 make_bands(vk1+1, sbr->k[1], sbr->k[2], num_bands_1);
458
459 vdk1_min = array_min_int16(vk1 + 1, num_bands_1);
460
461 if (vdk1_min < vdk0_max) {
462 int change;
463 qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
464 change = FFMIN(vdk0_max - vk1[1], (vk1[num_bands_1] - vk1[1]) >> 1);
465 vk1[1] += change;
466 vk1[num_bands_1] -= change;
467 }
468
469 qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
470
471 vk1[0] = sbr->k[1];
472 for (k = 1; k <= num_bands_1; k++) {
473 if (vk1[k] <= 0) { // Requirements (14496-3 sp04 p205)
474 av_log(ac->avccontext, AV_LOG_ERROR, "Invalid vDk1[%d]: %d\n", k, vk1[k]);
475 return -1;
476 }
477 vk1[k] += vk1[k-1];
478 }
479
480 sbr->n_master = num_bands_0 + num_bands_1;
481 if (check_n_master(ac->avccontext, sbr->n_master, sbr->spectrum_params.bs_xover_band))
482 return -1;
483 memcpy(&sbr->f_master[0], vk0,
484 (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
485 memcpy(&sbr->f_master[num_bands_0 + 1], vk1 + 1,
486 num_bands_1 * sizeof(sbr->f_master[0]));
487
488 } else {
489 sbr->n_master = num_bands_0;
490 if (check_n_master(ac->avccontext, sbr->n_master, sbr->spectrum_params.bs_xover_band))
491 return -1;
492 memcpy(sbr->f_master, vk0, (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
493 }
494 }
495
496 return 0;
497 }
498
499 /// High Frequency Generation - Patch Construction (14496-3 sp04 p216 fig. 4.46)
500 static int sbr_hf_calc_npatches(AACContext *ac, SpectralBandReplication *sbr)
501 {
502 int i, k, sb = 0;
503 int msb = sbr->k[0];
504 int usb = sbr->kx[1];
505 int goal_sb = ((1000 << 11) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
506
507 sbr->num_patches = 0;
508
509 if (goal_sb < sbr->kx[1] + sbr->m[1]) {
510 for (k = 0; sbr->f_master[k] < goal_sb; k++) ;
511 } else
512 k = sbr->n_master;
513
514 do {
515 int odd = 0;
516 for (i = k; i == k || sb > (sbr->k[0] - 1 + msb - odd); i--) {
517 sb = sbr->f_master[i];
518 odd = (sb + sbr->k[0]) & 1;
519 }
520
521 sbr->patch_num_subbands[sbr->num_patches] = FFMAX(sb - usb, 0);
522 sbr->patch_start_subband[sbr->num_patches] = sbr->k[0] - odd - sbr->patch_num_subbands[sbr->num_patches];
523
524 if (sbr->patch_num_subbands[sbr->num_patches] > 0) {
525 usb = sb;
526 msb = sb;
527 sbr->num_patches++;
528 } else
529 msb = sbr->kx[1];
530
531 if (sbr->f_master[k] - sb < 3)
532 k = sbr->n_master;
533 } while (sb != sbr->kx[1] + sbr->m[1]);
534
535 if (sbr->patch_num_subbands[sbr->num_patches-1] < 3 && sbr->num_patches > 1)
536 sbr->num_patches--;
537
538 // Requirements (14496-3 sp04 p205) sets the maximum number of patches to 5
539 // However the Coding Technologies decoder check uses 6 patches
540 if (sbr->num_patches > 6) {
541 av_log(ac->avccontext, AV_LOG_ERROR, "Too many patches: %d\n", sbr->num_patches);
542 return -1;
543 }
544
545 return 0;
546 }
547
548 /// Derived Frequency Band Tables (14496-3 sp04 p197)
549 static int sbr_make_f_derived(AACContext *ac, SpectralBandReplication *sbr)
550 {
551 int k, temp;
552
553 sbr->n[1] = sbr->n_master - sbr->spectrum_params.bs_xover_band;
554 sbr->n[0] = (sbr->n[1] + 1) >> 1;
555
556 memcpy(sbr->f_tablehigh, &sbr->f_master[sbr->spectrum_params.bs_xover_band],
557 (sbr->n[1] + 1) * sizeof(sbr->f_master[0]));
558 sbr->m[1] = sbr->f_tablehigh[sbr->n[1]] - sbr->f_tablehigh[0];
559 sbr->kx[1] = sbr->f_tablehigh[0];
560
561 // Requirements (14496-3 sp04 p205)
562 if (sbr->kx[1] + sbr->m[1] > 64) {
563 av_log(ac->avccontext, AV_LOG_ERROR,
564 "Stop frequency border too high: %d\n", sbr->kx[1] + sbr->m[1]);
565 return -1;
566 }
567 if (sbr->kx[1] > 32) {
568 av_log(ac->avccontext, AV_LOG_ERROR, "Start frequency border too high: %d\n", sbr->kx[1]);
569 return -1;
570 }
571
572 sbr->f_tablelow[0] = sbr->f_tablehigh[0];
573 temp = sbr->n[1] & 1;
574 for (k = 1; k <= sbr->n[0]; k++)
575 sbr->f_tablelow[k] = sbr->f_tablehigh[2 * k - temp];
576
577 sbr->n_q = FFMAX(1, lrintf(sbr->spectrum_params.bs_noise_bands *
578 log2f(sbr->k[2] / (float)sbr->kx[1]))); // 0 <= bs_noise_bands <= 3
579 if (sbr->n_q > 5) {
580 av_log(ac->avccontext, AV_LOG_ERROR, "Too many noise floor scale factors: %d\n", sbr->n_q);
581 return -1;
582 }
583
584 sbr->f_tablenoise[0] = sbr->f_tablelow[0];
585 temp = 0;
586 for (k = 1; k <= sbr->n_q; k++) {
587 temp += (sbr->n[0] - temp) / (sbr->n_q + 1 - k);
588 sbr->f_tablenoise[k] = sbr->f_tablelow[temp];
589 }
590
591 if (sbr_hf_calc_npatches(ac, sbr) < 0)
592 return -1;
593
594 sbr_make_f_tablelim(sbr);
595
596 sbr->data[0].f_indexnoise = 0;
597 sbr->data[1].f_indexnoise = 0;
598
599 return 0;
600 }
601
602 static av_always_inline void get_bits1_vector(GetBitContext *gb, uint8_t *vec,
603 int elements)
604 {
605 int i;
606 for (i = 0; i < elements; i++) {
607 vec[i] = get_bits1(gb);
608 }
609 }
610
611 /** ceil(log2(index+1)) */
612 static const int8_t ceil_log2[] = {
613 0, 1, 2, 2, 3, 3,
614 };
615
616 static int read_sbr_grid(AACContext *ac, SpectralBandReplication *sbr,
617 GetBitContext *gb, SBRData *ch_data)
618 {
619 int i;
620 unsigned bs_pointer;
621 int abs_bord_lead = 0;
622 // frameLengthFlag ? 15 : 16; 960 sample length frames unsupported; this value is numTimeSlots
623 int abs_bord_trail = 16;
624 int num_rel_lead, num_rel_trail;
625 uint8_t bs_rel_bord[2][3];
626
627 ch_data->bs_freq_res[0] = ch_data->bs_freq_res[ch_data->bs_num_env[1]];
628 ch_data->bs_num_env[0] = ch_data->bs_num_env[1];
629 ch_data->bs_amp_res = sbr->bs_amp_res_header;
630
631 switch (ch_data->bs_frame_class = get_bits(gb, 2)) {
632 case FIXFIX:
633 ch_data->bs_num_env[1] = 1 << get_bits(gb, 2);
634 num_rel_lead = ch_data->bs_num_env[1] - 1;
635 if (ch_data->bs_num_env[1] == 1)
636 ch_data->bs_amp_res = 0;
637
638 if (ch_data->bs_num_env[1] > 4) {
639 av_log(ac->avccontext, AV_LOG_ERROR,
640 "Invalid bitstream, too many SBR envelopes in FIXFIX type SBR frame: %d\n",
641 ch_data->bs_num_env[1]);
642 return -1;
643 }
644
645 bs_pointer = 0;
646
647 ch_data->bs_freq_res[1] = get_bits1(gb);
648 for (i = 1; i < ch_data->bs_num_env[1]; i++)
649 ch_data->bs_freq_res[i + 1] = ch_data->bs_freq_res[1];
650 break;
651 case FIXVAR:
652 abs_bord_trail += get_bits(gb, 2);
653 num_rel_trail = get_bits(gb, 2);
654 num_rel_lead = 0;
655 ch_data->bs_num_env[1] = num_rel_trail + 1;
656
657 for (i = 0; i < num_rel_trail; i++)
658 bs_rel_bord[1][i] = 2 * get_bits(gb, 2) + 2;
659
660 bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env[1]]);
661
662 for (i = 0; i < ch_data->bs_num_env[1]; i++)
663 ch_data->bs_freq_res[ch_data->bs_num_env[1] - i] = get_bits1(gb);
664 break;
665 case VARFIX:
666 abs_bord_lead = get_bits(gb, 2);
667 num_rel_lead = get_bits(gb, 2);
668 ch_data->bs_num_env[1] = num_rel_lead + 1;
669
670 for (i = 0; i < num_rel_lead; i++)
671 bs_rel_bord[0][i] = 2 * get_bits(gb, 2) + 2;
672
673 bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env[1]]);
674
675 get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env[1]);
676 break;
677 case VARVAR:
678 abs_bord_lead = get_bits(gb, 2);
679 abs_bord_trail += get_bits(gb, 2);
680 num_rel_lead = get_bits(gb, 2);
681 num_rel_trail = get_bits(gb, 2);
682 ch_data->bs_num_env[1] = num_rel_lead + num_rel_trail + 1;
683
684 if (ch_data->bs_num_env[1] > 5) {
685 av_log(ac->avccontext, AV_LOG_ERROR,
686 "Invalid bitstream, too many SBR envelopes in VARVAR type SBR frame: %d\n",
687 ch_data->bs_num_env[1]);
688 return -1;
689 }
690
691 for (i = 0; i < num_rel_lead; i++)
692 bs_rel_bord[0][i] = 2 * get_bits(gb, 2) + 2;
693 for (i = 0; i < num_rel_trail; i++)
694 bs_rel_bord[1][i] = 2 * get_bits(gb, 2) + 2;
695
696 bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env[1]]);
697
698 get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env[1]);
699 break;
700 }
701
702 if (bs_pointer > ch_data->bs_num_env[1] + 1) {
703 av_log(ac->avccontext, AV_LOG_ERROR,
704 "Invalid bitstream, bs_pointer points to a middle noise border outside the time borders table: %d\n",
705 bs_pointer);
706 return -1;
707 }
708
709 ch_data->t_env_num_env_old = ch_data->t_env[ch_data->bs_num_env[0]];
710 ch_data->t_env[0] = abs_bord_lead;
711 ch_data->t_env[ch_data->bs_num_env[1]] = abs_bord_trail;
712
713 if (ch_data->bs_frame_class == FIXFIX) {
714 int temp = (abs_bord_trail + (ch_data->bs_num_env[1] >> 1)) /
715 ch_data->bs_num_env[1];
716 for (i = 0; i < num_rel_lead; i++)
717 ch_data->t_env[i + 1] = ch_data->t_env[i] + temp;
718 } else if (ch_data->bs_frame_class > 1) { // VARFIX or VARVAR
719 for (i = 0; i < num_rel_lead; i++)
720 ch_data->t_env[i + 1] = ch_data->t_env[i] + bs_rel_bord[0][i];
721 }
722
723 if (ch_data->bs_frame_class & 1) { // FIXVAR or VARVAR
724 for (i = ch_data->bs_num_env[1] - 1; i > num_rel_lead; i--)
725 ch_data->t_env[i] = ch_data->t_env[i + 1] -
726 bs_rel_bord[1][ch_data->bs_num_env[1] - 1 - i];
727 }
728
729 ch_data->bs_num_noise = (ch_data->bs_num_env[1] > 1) + 1;
730
731 ch_data->t_q[0] = ch_data->t_env[0];
732 if (ch_data->bs_num_noise > 1) {
733 unsigned int idx;
734 if (ch_data->bs_frame_class == FIXFIX) {
735 idx = ch_data->bs_num_env[1] >> 1;
736 } else if (ch_data->bs_frame_class & 1) { // FIXVAR or VARVAR
737 idx = ch_data->bs_num_env[1] - FFMAX(bs_pointer - 1, 1);
738 } else { // VARFIX
739 if (!bs_pointer)
740 idx = 1;
741 else if (bs_pointer == 1)
742 idx = ch_data->bs_num_env[1] - 1;
743 else // bs_pointer > 1
744 idx = bs_pointer - 1;
745 }
746 ch_data->t_q[1] = ch_data->t_env[idx];
747 ch_data->t_q[2] = ch_data->t_env[ch_data->bs_num_env[1]];
748 } else
749 ch_data->t_q[1] = ch_data->t_env[ch_data->bs_num_env[1]];
750
751 ch_data->e_a[0] = -(ch_data->e_a[1] != ch_data->bs_num_env[0]); // l_APrev
752 ch_data->e_a[1] = -1;
753 if ((ch_data->bs_frame_class & 1) && bs_pointer) { // FIXVAR or VARVAR and bs_pointer != 0
754 ch_data->e_a[1] = ch_data->bs_num_env[1] + 1 - bs_pointer;
755 } else if ((ch_data->bs_frame_class == 2) && (bs_pointer > 1)) // VARFIX and bs_pointer > 1
756 ch_data->e_a[1] = bs_pointer - 1;
757
758 return 0;
759 }
760
761 static void copy_sbr_grid(SBRData *dst, const SBRData *src) {
762 //These variables are saved from the previous frame rather than copied
763 dst->bs_freq_res[0] = dst->bs_freq_res[dst->bs_num_env[1]];
764 dst->bs_num_env[0] = dst->bs_num_env[1];
765 dst->t_env_num_env_old = dst->t_env[dst->bs_num_env[0]];
766 dst->e_a[0] = -(dst->e_a[1] != dst->bs_num_env[0]);
767
768 //These variables are read from the bitstream and therefore copied
769 memcpy(dst->bs_freq_res+1, src->bs_freq_res+1, sizeof(dst->bs_freq_res)-sizeof(*dst->bs_freq_res));
770 memcpy(dst->bs_num_env+1, src->bs_num_env+1, sizeof(dst->bs_num_env)- sizeof(*dst->bs_num_env));
771 memcpy(dst->t_env, src->t_env, sizeof(dst->t_env));
772 memcpy(dst->t_q, src->t_q, sizeof(dst->t_q));
773 dst->bs_amp_res = src->bs_amp_res;
774 dst->bs_num_noise = src->bs_num_noise;
775 dst->bs_frame_class = src->bs_frame_class;
776 dst->e_a[1] = src->e_a[1];
777 }
778
779 /// Read how the envelope and noise floor data is delta coded
780 static void read_sbr_dtdf(SpectralBandReplication *sbr, GetBitContext *gb,
781 SBRData *ch_data)
782 {
783 get_bits1_vector(gb, ch_data->bs_df_env, ch_data->bs_num_env[1]);
784 get_bits1_vector(gb, ch_data->bs_df_noise, ch_data->bs_num_noise);
785 }
786
787 /// Read inverse filtering data
788 static void read_sbr_invf(SpectralBandReplication *sbr, GetBitContext *gb,
789 SBRData *ch_data)
790 {
791 int i;
792
793 memcpy(ch_data->bs_invf_mode[1], ch_data->bs_invf_mode[0], 5 * sizeof(uint8_t));
794 for (i = 0; i < sbr->n_q; i++)
795 ch_data->bs_invf_mode[0][i] = get_bits(gb, 2);
796 }
797
798 static void read_sbr_envelope(SpectralBandReplication *sbr, GetBitContext *gb,
799 SBRData *ch_data, int ch)
800 {
801 int bits;
802 int i, j, k;
803 VLC_TYPE (*t_huff)[2], (*f_huff)[2];
804 int t_lav, f_lav;
805 const int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
806 const int odd = sbr->n[1] & 1;
807
808 if (sbr->bs_coupling && ch) {
809 if (ch_data->bs_amp_res) {
810 bits = 5;
811 t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_3_0DB].table;
812 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_3_0DB];
813 f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
814 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
815 } else {
816 bits = 6;
817 t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_1_5DB].table;
818 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_1_5DB];
819 f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_1_5DB].table;
820 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_1_5DB];
821 }
822 } else {
823 if (ch_data->bs_amp_res) {
824 bits = 6;
825 t_huff = vlc_sbr[T_HUFFMAN_ENV_3_0DB].table;
826 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_3_0DB];
827 f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
828 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
829 } else {
830 bits = 7;
831 t_huff = vlc_sbr[T_HUFFMAN_ENV_1_5DB].table;
832 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_1_5DB];
833 f_huff = vlc_sbr[F_HUFFMAN_ENV_1_5DB].table;
834 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_1_5DB];
835 }
836 }
837
838 for (i = 0; i < ch_data->bs_num_env[1]; i++) {
839 if (ch_data->bs_df_env[i]) {
840 // bs_freq_res[0] == bs_freq_res[bs_num_env[1]] from prev frame
841 if (ch_data->bs_freq_res[i + 1] == ch_data->bs_freq_res[i]) {
842 for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
843 ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
844 } else if (ch_data->bs_freq_res[i + 1]) {
845 for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
846 k = (j + odd) >> 1; // find k such that f_tablelow[k] <= f_tablehigh[j] < f_tablelow[k + 1]
847 ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
848 }
849 } else {
850 for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
851 k = j ? 2*j - odd : 0; // find k such that f_tablehigh[k] == f_tablelow[j]
852 ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
853 }
854 }
855 } else {
856 ch_data->env_facs[i + 1][0] = delta * get_bits(gb, bits); // bs_env_start_value_balance
857 for (j = 1; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
858 ch_data->env_facs[i + 1][j] = ch_data->env_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
859 }
860 }
861
862 //assign 0th elements of env_facs from last elements
863 memcpy(ch_data->env_facs[0], ch_data->env_facs[ch_data->bs_num_env[1]],
864 sizeof(ch_data->env_facs[0]));
865 }
866
867 static void read_sbr_noise(SpectralBandReplication *sbr, GetBitContext *gb,
868 SBRData *ch_data, int ch)
869 {
870 int i, j;
871 VLC_TYPE (*t_huff)[2], (*f_huff)[2];
872 int t_lav, f_lav;
873 int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
874
875 if (sbr->bs_coupling && ch) {
876 t_huff = vlc_sbr[T_HUFFMAN_NOISE_BAL_3_0DB].table;
877 t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_BAL_3_0DB];
878 f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
879 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
880 } else {
881 t_huff = vlc_sbr[T_HUFFMAN_NOISE_3_0DB].table;
882 t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_3_0DB];
883 f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
884 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
885 }
886
887 for (i = 0; i < ch_data->bs_num_noise; i++) {
888 if (ch_data->bs_df_noise[i]) {
889 for (j = 0; j < sbr->n_q; j++)
890 ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 2) - t_lav);
891 } else {
892 ch_data->noise_facs[i + 1][0] = delta * get_bits(gb, 5); // bs_noise_start_value_balance or bs_noise_start_value_level
893 for (j = 1; j < sbr->n_q; j++)
894 ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
895 }
896 }
897
898 //assign 0th elements of noise_facs from last elements
899 memcpy(ch_data->noise_facs[0], ch_data->noise_facs[ch_data->bs_num_noise],
900 sizeof(ch_data->noise_facs[0]));
901 }
902
903 static void read_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
904 GetBitContext *gb,
905 int bs_extension_id, int *num_bits_left)
906 {
907 //TODO - implement ps_data for parametric stereo parsing
908 switch (bs_extension_id) {
909 case EXTENSION_ID_PS:
910 #if 0
911 *num_bits_left -= ff_ps_data(gb, ps);
912 #else
913 av_log_missing_feature(ac->avccontext, "Parametric Stereo is", 0);
914 skip_bits_long(gb, *num_bits_left); // bs_fill_bits
915 *num_bits_left = 0;
916 #endif
917 break;
918 default:
919 av_log_missing_feature(ac->avccontext, "Reserved SBR extensions are", 1);
920 skip_bits_long(gb, *num_bits_left); // bs_fill_bits
921 *num_bits_left = 0;
922 break;
923 }
924 }
925
926 static int read_sbr_single_channel_element(AACContext *ac,
927 SpectralBandReplication *sbr,
928 GetBitContext *gb)
929 {
930 if (get_bits1(gb)) // bs_data_extra
931 skip_bits(gb, 4); // bs_reserved
932
933 if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
934 return -1;
935 read_sbr_dtdf(sbr, gb, &sbr->data[0]);
936 read_sbr_invf(sbr, gb, &sbr->data[0]);
937 read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
938 read_sbr_noise(sbr, gb, &sbr->data[0], 0);
939
940 if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
941 get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
942
943 return 0;
944 }
945
946 static int read_sbr_channel_pair_element(AACContext *ac,
947 SpectralBandReplication *sbr,
948 GetBitContext *gb)
949 {
950 if (get_bits1(gb)) // bs_data_extra
951 skip_bits(gb, 8); // bs_reserved
952
953 if ((sbr->bs_coupling = get_bits1(gb))) {
954 if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
955 return -1;
956 copy_sbr_grid(&sbr->data[1], &sbr->data[0]);
957 read_sbr_dtdf(sbr, gb, &sbr->data[0]);
958 read_sbr_dtdf(sbr, gb, &sbr->data[1]);
959 read_sbr_invf(sbr, gb, &sbr->data[0]);
960 memcpy(sbr->data[1].bs_invf_mode[1], sbr->data[1].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
961 memcpy(sbr->data[1].bs_invf_mode[0], sbr->data[0].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
962 read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
963 read_sbr_noise(sbr, gb, &sbr->data[0], 0);
964 read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
965 read_sbr_noise(sbr, gb, &sbr->data[1], 1);
966 } else {
967 if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]) ||
968 read_sbr_grid(ac, sbr, gb, &sbr->data[1]))
969 return -1;
970 read_sbr_dtdf(sbr, gb, &sbr->data[0]);
971 read_sbr_dtdf(sbr, gb, &sbr->data[1]);
972 read_sbr_invf(sbr, gb, &sbr->data[0]);
973 read_sbr_invf(sbr, gb, &sbr->data[1]);
974 read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
975 read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
976 read_sbr_noise(sbr, gb, &sbr->data[0], 0);
977 read_sbr_noise(sbr, gb, &sbr->data[1], 1);
978 }
979
980 if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
981 get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
982 if ((sbr->data[1].bs_add_harmonic_flag = get_bits1(gb)))
983 get_bits1_vector(gb, sbr->data[1].bs_add_harmonic, sbr->n[1]);
984
985 return 0;
986 }
987
988 static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr,
989 GetBitContext *gb, int id_aac)
990 {
991 unsigned int cnt = get_bits_count(gb);
992
993 if (id_aac == TYPE_SCE || id_aac == TYPE_CCE) {
994 if (read_sbr_single_channel_element(ac, sbr, gb)) {
995 sbr->start = 0;
996 return get_bits_count(gb) - cnt;
997 }
998 } else if (id_aac == TYPE_CPE) {
999 if (read_sbr_channel_pair_element(ac, sbr, gb)) {
1000 sbr->start = 0;
1001 return get_bits_count(gb) - cnt;
1002 }
1003 } else {
1004 av_log(ac->avccontext, AV_LOG_ERROR,
1005 "Invalid bitstream - cannot apply SBR to element type %d\n", id_aac);
1006 sbr->start = 0;
1007 return get_bits_count(gb) - cnt;
1008 }
1009 if (get_bits1(gb)) { // bs_extended_data
1010 int num_bits_left = get_bits(gb, 4); // bs_extension_size
1011 if (num_bits_left == 15)
1012 num_bits_left += get_bits(gb, 8); // bs_esc_count
1013
1014 num_bits_left <<= 3;
1015 while (num_bits_left > 7) {
1016 num_bits_left -= 2;
1017 read_sbr_extension(ac, sbr, gb, get_bits(gb, 2), &num_bits_left); // bs_extension_id
1018 }
1019 }
1020
1021 return get_bits_count(gb) - cnt;
1022 }
1023
1024 static void sbr_reset(AACContext *ac, SpectralBandReplication *sbr)
1025 {
1026 int err;
1027 err = sbr_make_f_master(ac, sbr, &sbr->spectrum_params);
1028 if (err >= 0)
1029 err = sbr_make_f_derived(ac, sbr);
1030 if (err < 0) {
1031 av_log(ac->avccontext, AV_LOG_ERROR,
1032 "SBR reset failed. Switching SBR to pure upsampling mode.\n");
1033 sbr->start = 0;
1034 }
1035 }
1036
1037 /**
1038 * Decode Spectral Band Replication extension data; reference: table 4.55.
1039 *
1040 * @param crc flag indicating the presence of CRC checksum
1041 * @param cnt length of TYPE_FIL syntactic element in bytes
1042 *
1043 * @return Returns number of bytes consumed from the TYPE_FIL element.
1044 */
1045 int ff_decode_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
1046 GetBitContext *gb_host, int crc, int cnt, int id_aac)
1047 {
1048 unsigned int num_sbr_bits = 0, num_align_bits;
1049 unsigned bytes_read;
1050 GetBitContext gbc = *gb_host, *gb = &gbc;
1051 skip_bits_long(gb_host, cnt*8 - 4);
1052
1053 sbr->reset = 0;
1054
1055 if (!sbr->sample_rate)
1056 sbr->sample_rate = 2 * ac->m4ac.sample_rate; //TODO use the nominal sample rate for arbitrary sample rate support
1057 if (!ac->m4ac.ext_sample_rate)
1058 ac->m4ac.ext_sample_rate = 2 * ac->m4ac.sample_rate;
1059
1060 if (crc) {
1061 skip_bits(gb, 10); // bs_sbr_crc_bits; TODO - implement CRC check
1062 num_sbr_bits += 10;
1063 }
1064
1065 //Save some state from the previous frame.
1066 sbr->kx[0] = sbr->kx[1];
1067 sbr->m[0] = sbr->m[1];
1068
1069 num_sbr_bits++;
1070 if (get_bits1(gb)) // bs_header_flag
1071 num_sbr_bits += read_sbr_header(sbr, gb);
1072
1073 if (sbr->reset)
1074 sbr_reset(ac, sbr);
1075
1076 if (sbr->start)
1077 num_sbr_bits += read_sbr_data(ac, sbr, gb, id_aac);
1078
1079 num_align_bits = ((cnt << 3) - 4 - num_sbr_bits) & 7;
1080 bytes_read = ((num_sbr_bits + num_align_bits + 4) >> 3);
1081
1082 if (bytes_read > cnt) {
1083 av_log(ac->avccontext, AV_LOG_ERROR,
1084 "Expected to read %d SBR bytes actually read %d.\n", cnt, bytes_read);
1085 }
1086 return cnt;
1087 }
1088
1089 /// Dequantization and stereo decoding (14496-3 sp04 p203)
1090 static void sbr_dequant(SpectralBandReplication *sbr, int id_aac)
1091 {
1092 int k, e;
1093 int ch;
1094
1095 if (id_aac == TYPE_CPE && sbr->bs_coupling) {
1096 float alpha = sbr->data[0].bs_amp_res ? 1.0f : 0.5f;
1097 float pan_offset = sbr->data[0].bs_amp_res ? 12.0f : 24.0f;
1098 for (e = 1; e <= sbr->data[0].bs_num_env[1]; e++) {
1099 for (k = 0; k < sbr->n[sbr->data[0].bs_freq_res[e]]; k++) {
1100 float temp1 = exp2f(sbr->data[0].env_facs[e][k] * alpha + 7.0f);
1101 float temp2 = exp2f((pan_offset - sbr->data[1].env_facs[e][k]) * alpha);
1102 float fac = temp1 / (1.0f + temp2);
1103 sbr->data[0].env_facs[e][k] = fac;
1104 sbr->data[1].env_facs[e][k] = fac * temp2;
1105 }
1106 }
1107 for (e = 1; e <= sbr->data[0].bs_num_noise; e++) {
1108 for (k = 0; k < sbr->n_q; k++) {
1109 float temp1 = exp2f(NOISE_FLOOR_OFFSET - sbr->data[0].noise_facs[e][k] + 1);
1110 float temp2 = exp2f(12 - sbr->data[1].noise_facs[e][k]);
1111 float fac = temp1 / (1.0f + temp2);
1112 sbr->data[0].noise_facs[e][k] = fac;
1113 sbr->data[1].noise_facs[e][k] = fac * temp2;
1114 }
1115 }
1116 } else { // SCE or one non-coupled CPE
1117 for (ch = 0; ch < (id_aac == TYPE_CPE) + 1; ch++) {
1118 float alpha = sbr->data[ch].bs_amp_res ? 1.0f : 0.5f;
1119 for (e = 1; e <= sbr->data[ch].bs_num_env[1]; e++)
1120 for (k = 0; k < sbr->n[sbr->data[ch].bs_freq_res[e]]; k++)
1121 sbr->data[ch].env_facs[e][k] =
1122 exp2f(alpha * sbr->data[ch].env_facs[e][k] + 6.0f);
1123 for (e = 1; e <= sbr->data[ch].bs_num_noise; e++)
1124 for (k = 0; k < sbr->n_q; k++)
1125 sbr->data[ch].noise_facs[e][k] =
1126 exp2f(NOISE_FLOOR_OFFSET - sbr->data[ch].noise_facs[e][k]);
1127 }
1128 }
1129 }
1130
1131 /**
1132 * Analysis QMF Bank (14496-3 sp04 p206)
1133 *
1134 * @param x pointer to the beginning of the first sample window
1135 * @param W array of complex-valued samples split into subbands
1136 */
1137 static void sbr_qmf_analysis(DSPContext *dsp, RDFTContext *rdft, const float *in, float *x,
1138 float z[320], float W[2][32][32][2],
1139 float bias, float scale)
1140 {
1141 int i, k;
1142 memcpy(W[0], W[1], sizeof(W[0]));
1143 memcpy(x , x+1024, (320-32)*sizeof(x[0]));
1144 if (scale != 1.0f || bias != 0.0f)
1145 for (i = 0; i < 1024; i++)
1146 x[288 + i] = (in[i] - bias) * scale;
1147 else
1148 memcpy(x+288, in, 1024*sizeof(*x));
1149 for (i = 0; i < 32; i++) { // numTimeSlots*RATE = 16*2 as 960 sample frames
1150 // are not supported
1151 float re, im;
1152 dsp->vector_fmul_reverse(z, sbr_qmf_window_ds, x, 320);
1153 for (k = 0; k < 64; k++) {
1154 float f = z[k] + z[k + 64] + z[k + 128] + z[k + 192] + z[k + 256];
1155 z[k] = f * analysis_cos_pre[k];
1156 z[k+64] = f;
1157 }
1158 ff_rdft_calc(rdft, z);
1159 re = z[0] * 0.5f;
1160 im = 0.5f * dsp->scalarproduct_float(z+64, analysis_sin_pre, 64);
1161 W[1][i][0][0] = re * analysis_cossin_post[0][0] - im * analysis_cossin_post[0][1];
1162 W[1][i][0][1] = re * analysis_cossin_post[0][1] + im * analysis_cossin_post[0][0];
1163 for (k = 1; k < 32; k++) {
1164 re = z[2*k ] - re;
1165 im = z[2*k+1] - im;
1166 W[1][i][k][0] = re * analysis_cossin_post[k][0] - im * analysis_cossin_post[k][1];
1167 W[1][i][k][1] = re * analysis_cossin_post[k][1] + im * analysis_cossin_post[k][0];
1168 }
1169 x += 32;
1170 }
1171 }
1172
1173 /**
1174 * Synthesis QMF Bank (14496-3 sp04 p206) and Downsampled Synthesis QMF Bank
1175 * (14496-3 sp04 p206)
1176 */
1177 static void sbr_qmf_synthesis(DSPContext *dsp, FFTContext *mdct,
1178 float *out, float X[2][32][64],
1179 float mdct_buf[2][64],
1180 float *v0, int *v_off, const unsigned int div,
1181 float bias, float scale)
1182 {
1183 int i, n;
1184 const float *sbr_qmf_window = div ? sbr_qmf_window_ds : sbr_qmf_window_us;
1185 int scale_and_bias = scale != 1.0f || bias != 0.0f;
1186 float *v;
1187 for (i = 0; i < 32; i++) {
1188 if (*v_off == 0) {
1189 int saved_samples = (1280 - 128) >> div;
1190 memcpy(&v0[SBR_SYNTHESIS_BUF_SIZE - saved_samples], v0, saved_samples * sizeof(float));
1191 *v_off = SBR_SYNTHESIS_BUF_SIZE - saved_samples - (128 >> div);
1192 } else {
1193 *v_off -= 128 >> div;
1194 }
1195 v = v0 + *v_off;
1196 for (n = 1; n < 64 >> div; n+=2) {
1197 X[1][i][n] = -X[1][i][n];
1198 }
1199 if (div) {
1200 memset(X[0][i]+32, 0, 32*sizeof(float));
1201 memset(X[1][i]+32, 0, 32*sizeof(float));
1202 }
1203 ff_imdct_half(mdct, mdct_buf[0], X[0][i]);
1204 ff_imdct_half(mdct, mdct_buf[1], X[1][i]);
1205 if (div) {
1206 for (n = 0; n < 32; n++) {
1207 v[ n] = -mdct_buf[0][63 - 2*n] + mdct_buf[1][2*n ];
1208 v[ 63 - n] = mdct_buf[0][62 - 2*n] + mdct_buf[1][2*n + 1];
1209 }
1210 } else {
1211 for (n = 0; n < 64; n++) {
1212 v[ n] = -mdct_buf[0][63 - n] + mdct_buf[1][ n ];
1213 v[127 - n] = mdct_buf[0][63 - n] + mdct_buf[1][ n ];
1214 }
1215 }
1216 dsp->vector_fmul_add(out, v , sbr_qmf_window , zero64, 64 >> div);
1217 dsp->vector_fmul_add(out, v + ( 192 >> div), sbr_qmf_window + ( 64 >> div), out , 64 >> div);
1218 dsp->vector_fmul_add(out, v + ( 256 >> div), sbr_qmf_window + (128 >> div), out , 64 >> div);
1219 dsp->vector_fmul_add(out, v + ( 448 >> div), sbr_qmf_window + (192 >> div), out , 64 >> div);
1220 dsp->vector_fmul_add(out, v + ( 512 >> div), sbr_qmf_window + (256 >> div), out , 64 >> div);
1221 dsp->vector_fmul_add(out, v + ( 704 >> div), sbr_qmf_window + (320 >> div), out , 64 >> div);
1222 dsp->vector_fmul_add(out, v + ( 768 >> div), sbr_qmf_window + (384 >> div), out , 64 >> div);
1223 dsp->vector_fmul_add(out, v + ( 960 >> div), sbr_qmf_window + (448 >> div), out , 64 >> div);
1224 dsp->vector_fmul_add(out, v + (1024 >> div), sbr_qmf_window + (512 >> div), out , 64 >> div);
1225 dsp->vector_fmul_add(out, v + (1216 >> div), sbr_qmf_window + (576 >> div), out , 64 >> div);
1226 if (scale_and_bias)
1227 for (n = 0; n < 64 >> div; n++)
1228 out[n] = out[n] * scale + bias;
1229 out += 64 >> div;
1230 }
1231 }
1232
1233 static void autocorrelate(const float x[40][2], float phi[3][2][2], int lag)
1234 {
1235 int i;
1236 float real_sum = 0.0f;
1237 float imag_sum = 0.0f;
1238 if (lag) {
1239 for (i = 1; i < 38; i++) {
1240 real_sum += x[i][0] * x[i+lag][0] + x[i][1] * x[i+lag][1];
1241 imag_sum += x[i][0] * x[i+lag][1] - x[i][1] * x[i+lag][0];
1242 }
1243 phi[2-lag][1][0] = real_sum + x[ 0][0] * x[lag][0] + x[ 0][1] * x[lag][1];
1244 phi[2-lag][1][1] = imag_sum + x[ 0][0] * x[lag][1] - x[ 0][1] * x[lag][0];
1245 if (lag == 1) {
1246 phi[0][0][0] = real_sum + x[38][0] * x[39][0] + x[38][1] * x[39][1];
1247 phi[0][0][1] = imag_sum + x[38][0] * x[39][1] - x[38][1] * x[39][0];
1248 }
1249 } else {
1250 for (i = 1; i < 38; i++) {
1251 real_sum += x[i][0] * x[i][0] + x[i][1] * x[i][1];
1252 }
1253 phi[2][1][0] = real_sum + x[ 0][0] * x[ 0][0] + x[ 0][1] * x[ 0][1];
1254 phi[1][0][0] = real_sum + x[38][0] * x[38][0] + x[38][1] * x[38][1];
1255 }
1256 }
1257
1258 /** High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering
1259 * (14496-3 sp04 p214)
1260 * Warning: This routine does not seem numerically stable.
1261 */
1262 static void sbr_hf_inverse_filter(float (*alpha0)[2], float (*alpha1)[2],
1263 const float X_low[32][40][2], int k0)
1264 {
1265 int k;
1266 for (k = 0; k < k0; k++) {
1267 float phi[3][2][2], dk;
1268
1269 autocorrelate(X_low[k], phi, 0);
1270 autocorrelate(X_low[k], phi, 1);
1271 autocorrelate(X_low[k], phi, 2);
1272
1273 dk = phi[2][1][0] * phi[1][0][0] -
1274 (phi[1][1][0] * phi[1][1][0] + phi[1][1][1] * phi[1][1][1]) / 1.000001f;
1275
1276 if (!dk) {
1277 alpha1[k][0] = 0;
1278 alpha1[k][1] = 0;
1279 } else {
1280 float temp_real, temp_im;
1281 temp_real = phi[0][0][0] * phi[1][1][0] -
1282 phi[0][0][1] * phi[1][1][1] -
1283 phi[0][1][0] * phi[1][0][0];
1284 temp_im = phi[0][0][0] * phi[1][1][1] +
1285 phi[0][0][1] * phi[1][1][0] -
1286 phi[0][1][1] * phi[1][0][0];
1287
1288 alpha1[k][0] = temp_real / dk;
1289 alpha1[k][1] = temp_im / dk;
1290 }
1291
1292 if (!phi[1][0][0]) {
1293 alpha0[k][0] = 0;
1294 alpha0[k][1] = 0;
1295 } else {
1296 float temp_real, temp_im;
1297 temp_real = phi[0][0][0] + alpha1[k][0] * phi[1][1][0] +
1298 alpha1[k][1] * phi[1][1][1];
1299 temp_im = phi[0][0][1] + alpha1[k][1] * phi[1][1][0] -
1300 alpha1[k][0] * phi[1][1][1];
1301
1302 alpha0[k][0] = -temp_real / phi[1][0][0];
1303 alpha0[k][1] = -temp_im / phi[1][0][0];
1304 }
1305
1306 if (alpha1[k][0] * alpha1[k][0] + alpha1[k][1] * alpha1[k][1] >= 16.0f ||
1307 alpha0[k][0] * alpha0[k][0] + alpha0[k][1] * alpha0[k][1] >= 16.0f) {
1308 alpha1[k][0] = 0;
1309 alpha1[k][1] = 0;
1310 alpha0[k][0] = 0;
1311 alpha0[k][1] = 0;
1312 }
1313 }
1314 }
1315
1316 /// Chirp Factors (14496-3 sp04 p214)
1317 static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data)
1318 {
1319 int i;
1320 float new_bw;
1321 static const float bw_tab[] = { 0.0f, 0.75f, 0.9f, 0.98f };
1322
1323 for (i = 0; i < sbr->n_q; i++) {
1324 if (ch_data->bs_invf_mode[0][i] + ch_data->bs_invf_mode[1][i] == 1) {
1325 new_bw = 0.6f;
1326 } else
1327 new_bw = bw_tab[ch_data->bs_invf_mode[0][i]];
1328
1329 if (new_bw < ch_data->bw_array[i]) {
1330 new_bw = 0.75f * new_bw + 0.25f * ch_data->bw_array[i];
1331 } else
1332 new_bw = 0.90625f * new_bw + 0.09375f * ch_data->bw_array[i];
1333 ch_data->bw_array[i] = new_bw < 0.015625f ? 0.0f : new_bw;
1334 }
1335 }
1336
1337 /// Generate the subband filtered lowband
1338 static int sbr_lf_gen(AACContext *ac, SpectralBandReplication *sbr,
1339 float X_low[32][40][2], const float W[2][32][32][2])
1340 {
1341 int i, k;
1342 const int t_HFGen = 8;
1343 const int i_f = 32;
1344 memset(X_low, 0, 32*sizeof(*X_low));
1345 for (k = 0; k < sbr->kx[1]; k++) {
1346 for (i = t_HFGen; i < i_f + t_HFGen; i++) {
1347 X_low[k][i][0] = W[1][i - t_HFGen][k][0];
1348 X_low[k][i][1] = W[1][i - t_HFGen][k][1];
1349 }
1350 }
1351 for (k = 0; k < sbr->kx[0]; k++) {
1352 for (i = 0; i < t_HFGen; i++) {
1353 X_low[k][i][0] = W[0][i + i_f - t_HFGen][k][0];
1354 X_low[k][i][1] = W[0][i + i_f - t_HFGen][k][1];
1355 }
1356 }
1357 return 0;
1358 }
1359
1360 /// High Frequency Generator (14496-3 sp04 p215)
1361 static int sbr_hf_gen(AACContext *ac, SpectralBandReplication *sbr,
1362 float X_high[64][40][2], const float X_low[32][40][2],
1363 const float (*alpha0)[2], const float (*alpha1)[2],
1364 const float bw_array[5], const uint8_t *t_env,
1365 int bs_num_env)
1366 {
1367 int i, j, x;
1368 int g = 0;
1369 int k = sbr->kx[1];
1370 for (j = 0; j < sbr->num_patches; j++) {
1371 for (x = 0; x < sbr->patch_num_subbands[j]; x++, k++) {
1372 float alpha[4];
1373 const int p = sbr->patch_start_subband[j] + x;
1374 while (g <= sbr->n_q && k >= sbr->f_tablenoise[g])
1375 g++;
1376 g--;
1377
1378 if (g < 0) {
1379 av_log(ac->avccontext, AV_LOG_ERROR,
1380 "ERROR : no subband found for frequency %d\n", k);
1381 return -1;
1382 }
1383
1384 alpha[0] = alpha1[p][0] * bw_array[g] * bw_array[g];
1385 alpha[1] = alpha1[p][1] * bw_array[g] * bw_array[g];
1386 alpha[2] = alpha0[p][0] * bw_array[g];
1387 alpha[3] = alpha0[p][1] * bw_array[g];
1388
1389 for (i = 2 * t_env[0]; i < 2 * t_env[bs_num_env]; i++) {
1390 const int idx = i + ENVELOPE_ADJUSTMENT_OFFSET;
1391 X_high[k][idx][0] =
1392 X_low[p][idx - 2][0] * alpha[0] -
1393 X_low[p][idx - 2][1] * alpha[1] +
1394 X_low[p][idx - 1][0] * alpha[2] -
1395 X_low[p][idx - 1][1] * alpha[3] +
1396 X_low[p][idx][0];
1397 X_high[k][idx][1] =
1398 X_low[p][idx - 2][1] * alpha[0] +
1399 X_low[p][idx - 2][0] * alpha[1] +
1400 X_low[p][idx - 1][1] * alpha[2] +
1401 X_low[p][idx - 1][0] * alpha[3] +
1402 X_low[p][idx][1];
1403 }
1404 }
1405 }
1406 if (k < sbr->m[1] + sbr->kx[1])
1407 memset(X_high + k, 0, (sbr->m[1] + sbr->kx[1] - k) * sizeof(*X_high));
1408
1409 return 0;
1410 }
1411
1412 /// Generate the subband filtered lowband
1413 static int sbr_x_gen(SpectralBandReplication *sbr, float X[2][32][64],
1414 const float X_low[32][40][2], const float Y[2][38][64][2],
1415 int ch)
1416 {
1417 int k, i;
1418 const int i_f = 32;
1419 const int i_Temp = FFMAX(2*sbr->data[ch].t_env_num_env_old - i_f, 0);
1420 memset(X, 0, 2*sizeof(*X));
1421 for (k = 0; k < sbr->kx[0]; k++) {
1422 for (i = 0; i < i_Temp; i++) {
1423 X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
1424 X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
1425 }
1426 }
1427 for (; k < sbr->kx[0] + sbr->m[0]; k++) {
1428 for (i = 0; i < i_Temp; i++) {
1429 X[0][i][k] = Y[0][i + i_f][k][0];
1430 X[1][i][k] = Y[0][i + i_f][k][1];
1431 }
1432 }
1433
1434 for (k = 0; k < sbr->kx[1]; k++) {
1435 for (i = i_Temp; i < i_f; i++) {
1436 X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
1437 X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
1438 }
1439 }
1440 for (; k < sbr->kx[1] + sbr->m[1]; k++) {
1441 for (i = i_Temp; i < i_f; i++) {
1442 X[0][i][k] = Y[1][i][k][0];
1443 X[1][i][k] = Y[1][i][k][1];
1444 }
1445 }
1446 return 0;
1447 }
1448
1449 /** High Frequency Adjustment (14496-3 sp04 p217) and Mapping
1450 * (14496-3 sp04 p217)
1451 */
1452 static void sbr_mapping(AACContext *ac, SpectralBandReplication *sbr,
1453 SBRData *ch_data, int e_a[2])
1454 {
1455 int e, i, m;
1456
1457 memset(ch_data->s_indexmapped[1], 0, 7*sizeof(ch_data->s_indexmapped[1]));
1458 for (e = 0; e < ch_data->bs_num_env[1]; e++) {
1459 const unsigned int ilim = sbr->n[ch_data->bs_freq_res[e + 1]];
1460 uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
1461 int k;
1462
1463 for (i = 0; i < ilim; i++)
1464 for (m = table[i]; m < table[i + 1]; m++)
1465 sbr->e_origmapped[e][m - sbr->kx[1]] = ch_data->env_facs[e+1][i];
1466
1467 // ch_data->bs_num_noise > 1 => 2 noise floors
1468 k = (ch_data->bs_num_noise > 1) && (ch_data->t_env[e] >= ch_data->t_q[1]);
1469 for (i = 0; i < sbr->n_q; i++)
1470 for (m = sbr->f_tablenoise[i]; m < sbr->f_tablenoise[i + 1]; m++)
1471 sbr->q_mapped[e][m - sbr->kx[1]] = ch_data->noise_facs[k+1][i];
1472
1473 for (i = 0; i < sbr->n[1]; i++) {
1474 if (ch_data->bs_add_harmonic_flag) {
1475 const unsigned int m_midpoint =
1476 (sbr->f_tablehigh[i] + sbr->f_tablehigh[i + 1]) >> 1;
1477
1478 ch_data->s_indexmapped[e + 1][m_midpoint - sbr->kx[1]] = ch_data->bs_add_harmonic[i] *
1479 (e >= e_a[1] || (ch_data->s_indexmapped[0][m_midpoint - sbr->kx[1]] == 1));
1480 }
1481 }
1482
1483 for (i = 0; i < ilim; i++) {
1484 int additional_sinusoid_present = 0;
1485 for (m = table[i]; m < table[i + 1]; m++) {
1486 if (ch_data->s_indexmapped[e + 1][m - sbr->kx[1]]) {
1487 additional_sinusoid_present = 1;
1488 break;
1489 }
1490 }
1491 memset(&sbr->s_mapped[e][table[i] - sbr->kx[1]], additional_sinusoid_present,
1492 (table[i + 1] - table[i]) * sizeof(sbr->s_mapped[e][0]));
1493 }
1494 }
1495
1496 memcpy(ch_data->s_indexmapped[0], ch_data->s_indexmapped[ch_data->bs_num_env[1]], sizeof(ch_data->s_indexmapped[0]));
1497 }
1498
1499 /// Estimation of current envelope (14496-3 sp04 p218)
1500 static void sbr_env_estimate(float (*e_curr)[48], float X_high[64][40][2],
1501 SpectralBandReplication *sbr, SBRData *ch_data)
1502 {
1503 int e, i, m;
1504
1505 if (sbr->bs_interpol_freq) {
1506 for (e = 0; e < ch_data->bs_num_env[1]; e++) {
1507 const float recip_env_size = 0.5f / (ch_data->t_env[e + 1] - ch_data->t_env[e]);
1508 int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1509 int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1510
1511 for (m = 0; m < sbr->m[1]; m++) {
1512 float sum = 0.0f;
1513
1514 for (i = ilb; i < iub; i++) {
1515 sum += X_high[m + sbr->kx[1]][i][0] * X_high[m + sbr->kx[1]][i][0] +
1516 X_high[m + sbr->kx[1]][i][1] * X_high[m + sbr->kx[1]][i][1];
1517 }
1518 e_curr[e][m] = sum * recip_env_size;
1519 }
1520 }
1521 } else {
1522 int k, p;
1523
1524 for (e = 0; e < ch_data->bs_num_env[1]; e++) {
1525 const int env_size = 2 * (ch_data->t_env[e + 1] - ch_data->t_env[e]);
1526 int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1527 int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1528 const uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
1529
1530 for (p = 0; p < sbr->n[ch_data->bs_freq_res[e + 1]]; p++) {
1531 float sum = 0.0f;
1532 const int den = env_size * (table[p + 1] - table[p]);
1533
1534 for (k = table[p]; k < table[p + 1]; k++) {
1535 for (i = ilb; i < iub; i++) {
1536 sum += X_high[k][i][0] * X_high[k][i][0] +
1537 X_high[k][i][1] * X_high[k][i][1];
1538 }
1539 }
1540 sum /= den;
1541 for (k = table[p]; k < table[p + 1]; k++) {
1542 e_curr[e][k - sbr->kx[1]] = sum;
1543 }
1544 }
1545 }
1546 }
1547 }
1548
1549 /**
1550 * Calculation of levels of additional HF signal components (14496-3 sp04 p219)
1551 * and Calculation of gain (14496-3 sp04 p219)
1552 */
1553 static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr,
1554 SBRData *ch_data, const int e_a[2])
1555 {
1556 int e, k, m;
1557 // max gain limits : -3dB, 0dB, 3dB, inf dB (limiter off)
1558 static const float limgain[4] = { 0.70795, 1.0, 1.41254, 10000000000 };
1559
1560 for (e = 0; e < ch_data->bs_num_env[1]; e++) {
1561 int delta = !((e == e_a[1]) || (e == e_a[0]));
1562 for (k = 0; k < sbr->n_lim; k++) {
1563 float gain_boost, gain_max;
1564 float sum[2] = { 0.0f, 0.0f };
1565 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1566 const float temp = sbr->e_origmapped[e][m] / (1.0f + sbr->q_mapped[e][m]);
1567 sbr->q_m[e][m] = sqrtf(temp * sbr->q_mapped[e][m]);
1568 sbr->s_m[e][m] = sqrtf(temp * ch_data->s_indexmapped[e + 1][m]);
1569 if (!sbr->s_mapped[e][m]) {
1570 sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] /
1571 ((1.0f + sbr->e_curr[e][m]) *
1572 (1.0f + sbr->q_mapped[e][m] * delta)));
1573 } else {
1574 sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] * sbr->q_mapped[e][m] /
1575 ((1.0f + sbr->e_curr[e][m]) *
1576 (1.0f + sbr->q_mapped[e][m])));
1577 }
1578 }
1579 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1580 sum[0] += sbr->e_origmapped[e][m];
1581 sum[1] += sbr->e_curr[e][m];
1582 }
1583 gain_max = limgain[sbr->bs_limiter_gains] * sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
1584 gain_max = FFMIN(100000, gain_max);
1585 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1586 float q_m_max = sbr->q_m[e][m] * gain_max / sbr->gain[e][m];
1587 sbr->q_m[e][m] = FFMIN(sbr->q_m[e][m], q_m_max);
1588 sbr->gain[e][m] = FFMIN(sbr->gain[e][m], gain_max);
1589 }
1590 sum[0] = sum[1] = 0.0f;
1591 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1592 sum[0] += sbr->e_origmapped[e][m];
1593 sum[1] += sbr->e_curr[e][m] * sbr->gain[e][m] * sbr->gain[e][m]
1594 + sbr->s_m[e][m] * sbr->s_m[e][m]
1595 + (delta && !sbr->s_m[e][m]) * sbr->q_m[e][m] * sbr->q_m[e][m];
1596 }
1597 gain_boost = sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
1598 gain_boost = FFMIN(1.584893192, gain_boost);
1599 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1600 sbr->gain[e][m] *= gain_boost;
1601 sbr->q_m[e][m] *= gain_boost;
1602 sbr->s_m[e][m] *= gain_boost;
1603 }
1604 }
1605 }
1606 }
1607
1608 /// Assembling HF Signals (14496-3 sp04 p220)
1609 static void sbr_hf_assemble(float Y[2][38][64][2], const float X_high[64][40][2],
1610 SpectralBandReplication *sbr, SBRData *ch_data,
1611 const int e_a[2])
1612 {
1613 int e, i, j, m;
1614 const int h_SL = 4 * !sbr->bs_smoothing_mode;
1615 const int kx = sbr->kx[1];
1616 const int m_max = sbr->m[1];
1617 static const float h_smooth[5] = {
1618 0.33333333333333,
1619 0.30150283239582,
1620 0.21816949906249,
1621 0.11516383427084,
1622 0.03183050093751,
1623 };
1624 static const int8_t phi[2][4] = {
1625 { 1, 0, -1, 0}, // real
1626 { 0, 1, 0, -1}, // imaginary
1627 };
1628 float (*g_temp)[48] = ch_data->g_temp, (*q_temp)[48] = ch_data->q_temp;
1629 int indexnoise = ch_data->f_indexnoise;
1630 int indexsine = ch_data->f_indexsine;
1631 memcpy(Y[0], Y[1], sizeof(Y[0]));
1632
1633 if (sbr->reset) {
1634 for (i = 0; i < h_SL; i++) {
1635 memcpy(g_temp[i + 2*ch_data->t_env[0]], sbr->gain[0], m_max * sizeof(sbr->gain[0][0]));
1636 memcpy(q_temp[i + 2*ch_data->t_env[0]], sbr->q_m[0], m_max * sizeof(sbr->q_m[0][0]));
1637 }
1638 } else if (h_SL) {
1639 memcpy(g_temp[2*ch_data->t_env[0]], g_temp[2*ch_data->t_env_num_env_old], 4*sizeof(g_temp[0]));
1640 memcpy(q_temp[2*ch_data->t_env[0]], q_temp[2*ch_data->t_env_num_env_old], 4*sizeof(q_temp[0]));
1641 }
1642
1643 for (e = 0; e < ch_data->bs_num_env[1]; e++) {
1644 for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
1645 memcpy(g_temp[h_SL + i], sbr->gain[e], m_max * sizeof(sbr->gain[0][0]));
1646 memcpy(q_temp[h_SL + i], sbr->q_m[e], m_max * sizeof(sbr->q_m[0][0]));
1647 }
1648 }
1649
1650 for (e = 0; e < ch_data->bs_num_env[1]; e++) {
1651 for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
1652 int phi_sign = (1 - 2*(kx & 1));
1653
1654 if (h_SL && e != e_a[0] && e != e_a[1]) {
1655 for (m = 0; m < m_max; m++) {
1656 const int idx1 = i + h_SL;
1657 float g_filt = 0.0f;
1658 for (j = 0; j <= h_SL; j++)
1659 g_filt += g_temp[idx1 - j][m] * h_smooth[j];
1660 Y[1][i][m + kx][0] =
1661 X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][0] * g_filt;
1662 Y[1][i][m + kx][1] =
1663 X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][1] * g_filt;
1664 }
1665 } else {
1666 for (m = 0; m < m_max; m++) {
1667 const float g_filt = g_temp[i + h_SL][m];
1668 Y[1][i][m + kx][0] =
1669 X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][0] * g_filt;
1670 Y[1][i][m + kx][1] =
1671 X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][1] * g_filt;
1672 }
1673 }
1674
1675 if (e != e_a[0] && e != e_a[1]) {
1676 for (m = 0; m < m_max; m++) {
1677 indexnoise = (indexnoise + 1) & 0x1ff;
1678 if (sbr->s_m[e][m]) {
1679 Y[1][i][m + kx][0] +=
1680 sbr->s_m[e][m] * phi[0][indexsine];
1681 Y[1][i][m + kx][1] +=
1682 sbr->s_m[e][m] * (phi[1][indexsine] * phi_sign);
1683 } else {
1684 float q_filt;
1685 if (h_SL) {
1686 const int idx1 = i + h_SL;
1687 q_filt = 0.0f;
1688 for (j = 0; j <= h_SL; j++)
1689 q_filt += q_temp[idx1 - j][m] * h_smooth[j];
1690 } else {
1691 q_filt = q_temp[i][m];
1692 }
1693 Y[1][i][m + kx][0] +=
1694 q_filt * sbr_noise_table[indexnoise][0];
1695 Y[1][i][m + kx][1] +=
1696 q_filt * sbr_noise_table[indexnoise][1];
1697 }
1698 phi_sign = -phi_sign;
1699 }
1700 } else {
1701 indexnoise = (indexnoise + m_max) & 0x1ff;
1702 for (m = 0; m < m_max; m++) {
1703 Y[1][i][m + kx][0] +=
1704 sbr->s_m[e][m] * phi[0][indexsine];
1705 Y[1][i][m + kx][1] +=
1706 sbr->s_m[e][m] * (phi[1][indexsine] * phi_sign);
1707 phi_sign = -phi_sign;
1708 }
1709 }
1710 indexsine = (indexsine + 1) & 3;
1711 }
1712 }
1713 ch_data->f_indexnoise = indexnoise;
1714 ch_data->f_indexsine = indexsine;
1715 }
1716
1717 void ff_sbr_dequant(AACContext *ac, SpectralBandReplication *sbr, int id_aac)
1718 {
1719 if (sbr->start) {
1720 sbr_dequant(sbr, id_aac);
1721 }
1722 }
1723
1724 void ff_sbr_apply(AACContext *ac, SpectralBandReplication *sbr, int ch,
1725 const float* in, float* out)
1726 {
1727 int downsampled = ac->m4ac.ext_sample_rate < sbr->sample_rate;
1728
1729 /* decode channel */
1730 sbr_qmf_analysis(&ac->dsp, &sbr->rdft, in, sbr->data[ch].analysis_filterbank_samples,
1731 (float*)sbr->qmf_filter_scratch,
1732 sbr->data[ch].W, ac->add_bias, 1/(-1024 * ac->sf_scale));
1733 sbr_lf_gen(ac, sbr, sbr->X_low, sbr->data[ch].W);
1734 if (sbr->start) {
1735 sbr_hf_inverse_filter(sbr->alpha0, sbr->alpha1, sbr->X_low, sbr->k[0]);
1736 sbr_chirp(sbr, &sbr->data[ch]);
1737 sbr_hf_gen(ac, sbr, sbr->X_high, sbr->X_low, sbr->alpha0, sbr->alpha1,
1738 sbr->data[ch].bw_array, sbr->data[ch].t_env,
1739 sbr->data[ch].bs_num_env[1]);
1740
1741 // hf_adj
1742 sbr_mapping(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
1743 sbr_env_estimate(sbr->e_curr, sbr->X_high, sbr, &sbr->data[ch]);
1744 sbr_gain_calc(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
1745 sbr_hf_assemble(sbr->data[ch].Y, sbr->X_high, sbr, &sbr->data[ch],
1746 sbr->data[ch].e_a);
1747 }
1748
1749 /* synthesis */
1750 sbr_x_gen(sbr, sbr->X, sbr->X_low, sbr->data[ch].Y, ch);
1751 sbr_qmf_synthesis(&ac->dsp, &sbr->mdct, out, sbr->X, sbr->qmf_filter_scratch,
1752 sbr->data[ch].synthesis_filterbank_samples,
1753 &sbr->data[ch].synthesis_filterbank_samples_offset,
1754 downsampled,
1755 ac->add_bias, -1024 * ac->sf_scale);
1756 }