aacsbr: Move the e_a calculation from sbr_mapping() to read_sbr_grid().
[libav.git] / libavcodec / aacsbr.c
1 /*
2 * AAC Spectral Band Replication decoding functions
3 * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
4 * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
5 *
6 * This file is part of FFmpeg.
7 *
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23 /**
24 * @file libavcodec/aacsbr.c
25 * AAC Spectral Band Replication decoding functions
26 * @author Robert Swain ( rob opendot cl )
27 */
28
29 #include "aac.h"
30 #include "sbr.h"
31 #include "aacsbr.h"
32 #include "aacsbrdata.h"
33 #include "fft.h"
34
35 #include <stdint.h>
36 #include <float.h>
37
38 #define ENVELOPE_ADJUSTMENT_OFFSET 2
39 #define NOISE_FLOOR_OFFSET 6.0f
40
41 /**
42 * SBR VLC tables
43 */
44 enum {
45 T_HUFFMAN_ENV_1_5DB,
46 F_HUFFMAN_ENV_1_5DB,
47 T_HUFFMAN_ENV_BAL_1_5DB,
48 F_HUFFMAN_ENV_BAL_1_5DB,
49 T_HUFFMAN_ENV_3_0DB,
50 F_HUFFMAN_ENV_3_0DB,
51 T_HUFFMAN_ENV_BAL_3_0DB,
52 F_HUFFMAN_ENV_BAL_3_0DB,
53 T_HUFFMAN_NOISE_3_0DB,
54 T_HUFFMAN_NOISE_BAL_3_0DB,
55 };
56
57 /**
58 * bs_frame_class - frame class of current SBR frame (14496-3 sp04 p98)
59 */
60 enum {
61 FIXFIX,
62 FIXVAR,
63 VARFIX,
64 VARVAR,
65 };
66
67 enum {
68 EXTENSION_ID_PS = 2,
69 };
70
71 static VLC vlc_sbr[10];
72 static const int8_t vlc_sbr_lav[10] =
73 { 60, 60, 24, 24, 31, 31, 12, 12, 31, 12 };
74 static DECLARE_ALIGNED(16, float, analysis_cos_pre)[64];
75 static DECLARE_ALIGNED(16, float, analysis_sin_pre)[64];
76 static DECLARE_ALIGNED(16, float, analysis_cossin_post)[32][2];
77 static const DECLARE_ALIGNED(16, float, zero64)[64];
78
79 #define SBR_INIT_VLC_STATIC(num, size) \
80 INIT_VLC_STATIC(&vlc_sbr[num], 9, sbr_tmp[num].table_size / sbr_tmp[num].elem_size, \
81 sbr_tmp[num].sbr_bits , 1, 1, \
82 sbr_tmp[num].sbr_codes, sbr_tmp[num].elem_size, sbr_tmp[num].elem_size, \
83 size)
84
85 #define SBR_VLC_ROW(name) \
86 { name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) }
87
88 av_cold void ff_aac_sbr_init(void)
89 {
90 int n, k;
91 static const struct {
92 const void *sbr_codes, *sbr_bits;
93 const unsigned int table_size, elem_size;
94 } sbr_tmp[] = {
95 SBR_VLC_ROW(t_huffman_env_1_5dB),
96 SBR_VLC_ROW(f_huffman_env_1_5dB),
97 SBR_VLC_ROW(t_huffman_env_bal_1_5dB),
98 SBR_VLC_ROW(f_huffman_env_bal_1_5dB),
99 SBR_VLC_ROW(t_huffman_env_3_0dB),
100 SBR_VLC_ROW(f_huffman_env_3_0dB),
101 SBR_VLC_ROW(t_huffman_env_bal_3_0dB),
102 SBR_VLC_ROW(f_huffman_env_bal_3_0dB),
103 SBR_VLC_ROW(t_huffman_noise_3_0dB),
104 SBR_VLC_ROW(t_huffman_noise_bal_3_0dB),
105 };
106
107 // SBR VLC table initialization
108 SBR_INIT_VLC_STATIC(0, 1098);
109 SBR_INIT_VLC_STATIC(1, 1092);
110 SBR_INIT_VLC_STATIC(2, 768);
111 SBR_INIT_VLC_STATIC(3, 1026);
112 SBR_INIT_VLC_STATIC(4, 1058);
113 SBR_INIT_VLC_STATIC(5, 1052);
114 SBR_INIT_VLC_STATIC(6, 544);
115 SBR_INIT_VLC_STATIC(7, 544);
116 SBR_INIT_VLC_STATIC(8, 592);
117 SBR_INIT_VLC_STATIC(9, 512);
118
119 for (n = 0; n < 64; n++) {
120 float pre = M_PI * n / 64;
121 analysis_cos_pre[n] = cosf(pre);
122 analysis_sin_pre[n] = sinf(pre);
123 }
124 for (k = 0; k < 32; k++) {
125 float post = M_PI * (k + 0.5) / 128;
126 analysis_cossin_post[k][0] = 4.0 * cosf(post);
127 analysis_cossin_post[k][1] = -4.0 * sinf(post);
128 }
129 for (n = 1; n < 320; n++)
130 sbr_qmf_window_us[320 + n] = sbr_qmf_window_us[320 - n];
131 sbr_qmf_window_us[384] = -sbr_qmf_window_us[384];
132 sbr_qmf_window_us[512] = -sbr_qmf_window_us[512];
133
134 for (n = 0; n < 320; n++)
135 sbr_qmf_window_ds[n] = sbr_qmf_window_us[2*n];
136 }
137
138 av_cold void ff_aac_sbr_ctx_init(SpectralBandReplication *sbr)
139 {
140 sbr->kx[0] = sbr->kx[1] = 32; //Typo in spec, kx' inits to 32
141 sbr->data[0].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
142 sbr->data[1].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
143 ff_mdct_init(&sbr->mdct, 7, 1, 1.0/64);
144 ff_rdft_init(&sbr->rdft, 6, IDFT_R2C);
145 }
146
147 av_cold void ff_aac_sbr_ctx_close(SpectralBandReplication *sbr)
148 {
149 ff_mdct_end(&sbr->mdct);
150 ff_rdft_end(&sbr->rdft);
151 }
152
153 static int qsort_comparison_function_int16(const void *a, const void *b)
154 {
155 return *(const int16_t *)a - *(const int16_t *)b;
156 }
157
158 static inline int in_table_int16(const int16_t *table, int last_el, int16_t needle)
159 {
160 int i;
161 for (i = 0; i <= last_el; i++)
162 if (table[i] == needle)
163 return 1;
164 return 0;
165 }
166
167 /// Limiter Frequency Band Table (14496-3 sp04 p198)
168 static void sbr_make_f_tablelim(SpectralBandReplication *sbr)
169 {
170 int k;
171 if (sbr->bs_limiter_bands > 0) {
172 static const float bands_warped[3] = { 1.32715174233856803909f, //2^(0.49/1.2)
173 1.18509277094158210129f, //2^(0.49/2)
174 1.11987160404675912501f }; //2^(0.49/3)
175 const float lim_bands_per_octave_warped = bands_warped[sbr->bs_limiter_bands - 1];
176 int16_t patch_borders[5];
177 uint16_t *in = sbr->f_tablelim + 1, *out = sbr->f_tablelim;
178
179 patch_borders[0] = sbr->kx[1];
180 for (k = 1; k <= sbr->num_patches; k++)
181 patch_borders[k] = patch_borders[k-1] + sbr->patch_num_subbands[k-1];
182
183 memcpy(sbr->f_tablelim, sbr->f_tablelow,
184 (sbr->n[0] + 1) * sizeof(sbr->f_tablelow[0]));
185 if (sbr->num_patches > 1)
186 memcpy(sbr->f_tablelim + sbr->n[0] + 1, patch_borders + 1,
187 (sbr->num_patches - 1) * sizeof(patch_borders[0]));
188
189 qsort(sbr->f_tablelim, sbr->num_patches + sbr->n[0],
190 sizeof(sbr->f_tablelim[0]),
191 qsort_comparison_function_int16);
192
193 sbr->n_lim = sbr->n[0] + sbr->num_patches - 1;
194 while (out < sbr->f_tablelim + sbr->n_lim) {
195 if (*in >= *out * lim_bands_per_octave_warped) {
196 *++out = *in++;
197 } else if (*in == *out ||
198 !in_table_int16(patch_borders, sbr->num_patches, *in)) {
199 in++;
200 sbr->n_lim--;
201 } else if (!in_table_int16(patch_borders, sbr->num_patches, *out)) {
202 *out = *in++;
203 sbr->n_lim--;
204 } else {
205 *++out = *in++;
206 }
207 }
208 } else {
209 sbr->f_tablelim[0] = sbr->f_tablelow[0];
210 sbr->f_tablelim[1] = sbr->f_tablelow[sbr->n[0]];
211 sbr->n_lim = 1;
212 }
213 }
214
215 static unsigned int read_sbr_header(SpectralBandReplication *sbr, GetBitContext *gb)
216 {
217 unsigned int cnt = get_bits_count(gb);
218 uint8_t bs_header_extra_1;
219 uint8_t bs_header_extra_2;
220 int old_bs_limiter_bands = sbr->bs_limiter_bands;
221 SpectrumParameters old_spectrum_params;
222
223 sbr->start = 1;
224
225 // Save last spectrum parameters variables to compare to new ones
226 memcpy(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters));
227
228 sbr->bs_amp_res_header = get_bits1(gb);
229 sbr->spectrum_params.bs_start_freq = get_bits(gb, 4);
230 sbr->spectrum_params.bs_stop_freq = get_bits(gb, 4);
231 sbr->spectrum_params.bs_xover_band = get_bits(gb, 3);
232 skip_bits(gb, 2); // bs_reserved
233
234 bs_header_extra_1 = get_bits1(gb);
235 bs_header_extra_2 = get_bits1(gb);
236
237 if (bs_header_extra_1) {
238 sbr->spectrum_params.bs_freq_scale = get_bits(gb, 2);
239 sbr->spectrum_params.bs_alter_scale = get_bits1(gb);
240 sbr->spectrum_params.bs_noise_bands = get_bits(gb, 2);
241 } else {
242 sbr->spectrum_params.bs_freq_scale = 2;
243 sbr->spectrum_params.bs_alter_scale = 1;
244 sbr->spectrum_params.bs_noise_bands = 2;
245 }
246
247 // Check if spectrum parameters changed
248 if (memcmp(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters)))
249 sbr->reset = 1;
250
251 if (bs_header_extra_2) {
252 sbr->bs_limiter_bands = get_bits(gb, 2);
253 sbr->bs_limiter_gains = get_bits(gb, 2);
254 sbr->bs_interpol_freq = get_bits1(gb);
255 sbr->bs_smoothing_mode = get_bits1(gb);
256 } else {
257 sbr->bs_limiter_bands = 2;
258 sbr->bs_limiter_gains = 2;
259 sbr->bs_interpol_freq = 1;
260 sbr->bs_smoothing_mode = 1;
261 }
262
263 if (sbr->bs_limiter_bands != old_bs_limiter_bands && !sbr->reset)
264 sbr_make_f_tablelim(sbr);
265
266 return get_bits_count(gb) - cnt;
267 }
268
269 static int array_min_int16(const int16_t *array, int nel)
270 {
271 int i, min = array[0];
272 for (i = 1; i < nel; i++)
273 min = FFMIN(array[i], min);
274 return min;
275 }
276
277 static void make_bands(int16_t* bands, int start, int stop, int num_bands)
278 {
279 int k, previous, present;
280 float base, prod;
281
282 base = powf((float)stop / start, 1.0f / num_bands);
283 prod = start;
284 previous = start;
285
286 for (k = 0; k < num_bands-1; k++) {
287 prod *= base;
288 present = lrintf(prod);
289 bands[k] = present - previous;
290 previous = present;
291 }
292 bands[num_bands-1] = stop - previous;
293 }
294
295 static int check_n_master(AVCodecContext *avccontext, int n_master, int bs_xover_band)
296 {
297 // Requirements (14496-3 sp04 p205)
298 if (n_master <= 0) {
299 av_log(avccontext, AV_LOG_ERROR, "Invalid n_master: %d\n", n_master);
300 return -1;
301 }
302 if (bs_xover_band >= n_master) {
303 av_log(avccontext, AV_LOG_ERROR,
304 "Invalid bitstream, crossover band index beyond array bounds: %d\n",
305 bs_xover_band);
306 return -1;
307 }
308 return 0;
309 }
310
311 /// Master Frequency Band Table (14496-3 sp04 p194)
312 static int sbr_make_f_master(AACContext *ac, SpectralBandReplication *sbr,
313 SpectrumParameters *spectrum)
314 {
315 unsigned int temp, max_qmf_subbands;
316 unsigned int start_min, stop_min;
317 int k;
318 const int8_t *sbr_offset_ptr;
319 int16_t stop_dk[13];
320
321 if (sbr->sample_rate < 32000) {
322 temp = 3000;
323 } else if (sbr->sample_rate < 64000) {
324 temp = 4000;
325 } else
326 temp = 5000;
327
328 start_min = ((temp << 7) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
329 stop_min = ((temp << 8) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
330
331 switch (sbr->sample_rate) {
332 case 16000:
333 sbr_offset_ptr = sbr_offset[0];
334 break;
335 case 22050:
336 sbr_offset_ptr = sbr_offset[1];
337 break;
338 case 24000:
339 sbr_offset_ptr = sbr_offset[2];
340 break;
341 case 32000:
342 sbr_offset_ptr = sbr_offset[3];
343 break;
344 case 44100: case 48000: case 64000:
345 sbr_offset_ptr = sbr_offset[4];
346 break;
347 case 88200: case 96000: case 128000: case 176400: case 192000:
348 sbr_offset_ptr = sbr_offset[5];
349 break;
350 default:
351 av_log(ac->avccontext, AV_LOG_ERROR,
352 "Unsupported sample rate for SBR: %d\n", sbr->sample_rate);
353 return -1;
354 }
355
356 sbr->k[0] = start_min + sbr_offset_ptr[spectrum->bs_start_freq];
357
358 if (spectrum->bs_stop_freq < 14) {
359 sbr->k[2] = stop_min;
360 make_bands(stop_dk, stop_min, 64, 13);
361 qsort(stop_dk, 13, sizeof(stop_dk[0]), qsort_comparison_function_int16);
362 for (k = 0; k < spectrum->bs_stop_freq; k++)
363 sbr->k[2] += stop_dk[k];
364 } else if (spectrum->bs_stop_freq == 14) {
365 sbr->k[2] = 2*sbr->k[0];
366 } else if (spectrum->bs_stop_freq == 15) {
367 sbr->k[2] = 3*sbr->k[0];
368 } else {
369 av_log(ac->avccontext, AV_LOG_ERROR,
370 "Invalid bs_stop_freq: %d\n", spectrum->bs_stop_freq);
371 return -1;
372 }
373 sbr->k[2] = FFMIN(64, sbr->k[2]);
374
375 // Requirements (14496-3 sp04 p205)
376 if (sbr->sample_rate <= 32000) {
377 max_qmf_subbands = 48;
378 } else if (sbr->sample_rate == 44100) {
379 max_qmf_subbands = 35;
380 } else if (sbr->sample_rate >= 48000)
381 max_qmf_subbands = 32;
382
383 if (sbr->k[2] - sbr->k[0] > max_qmf_subbands) {
384 av_log(ac->avccontext, AV_LOG_ERROR,
385 "Invalid bitstream, too many QMF subbands: %d\n", sbr->k[2] - sbr->k[0]);
386 return -1;
387 }
388
389 if (!spectrum->bs_freq_scale) {
390 unsigned int dk;
391 int k2diff;
392
393 dk = spectrum->bs_alter_scale + 1;
394 sbr->n_master = ((sbr->k[2] - sbr->k[0] + (dk&2)) >> dk) << 1;
395 if (check_n_master(ac->avccontext, sbr->n_master, sbr->spectrum_params.bs_xover_band))
396 return -1;
397
398 for (k = 1; k <= sbr->n_master; k++)
399 sbr->f_master[k] = dk;
400
401 k2diff = sbr->k[2] - sbr->k[0] - sbr->n_master * dk;
402 if (k2diff < 0) {
403 sbr->f_master[1]--;
404 sbr->f_master[2]-= (k2diff < 1);
405 } else if (k2diff) {
406 sbr->f_master[sbr->n_master]++;
407 }
408
409 sbr->f_master[0] = sbr->k[0];
410 for (k = 1; k <= sbr->n_master; k++)
411 sbr->f_master[k] += sbr->f_master[k - 1];
412
413 } else {
414 int half_bands = 7 - spectrum->bs_freq_scale; // bs_freq_scale = {1,2,3}
415 int two_regions, num_bands_0;
416 int vdk0_max, vdk1_min;
417 int16_t vk0[49];
418
419 if (49 * sbr->k[2] > 110 * sbr->k[0]) {
420 two_regions = 1;
421 sbr->k[1] = 2 * sbr->k[0];
422 } else {
423 two_regions = 0;
424 sbr->k[1] = sbr->k[2];
425 }
426
427 num_bands_0 = lrintf(half_bands * log2f(sbr->k[1] / (float)sbr->k[0])) * 2;
428
429 if (num_bands_0 <= 0) { // Requirements (14496-3 sp04 p205)
430 av_log(ac->avccontext, AV_LOG_ERROR, "Invalid num_bands_0: %d\n", num_bands_0);
431 return -1;
432 }
433
434 vk0[0] = 0;
435
436 make_bands(vk0+1, sbr->k[0], sbr->k[1], num_bands_0);
437
438 qsort(vk0 + 1, num_bands_0, sizeof(vk0[1]), qsort_comparison_function_int16);
439 vdk0_max = vk0[num_bands_0];
440
441 vk0[0] = sbr->k[0];
442 for (k = 1; k <= num_bands_0; k++) {
443 if (vk0[k] <= 0) { // Requirements (14496-3 sp04 p205)
444 av_log(ac->avccontext, AV_LOG_ERROR, "Invalid vDk0[%d]: %d\n", k, vk0[k]);
445 return -1;
446 }
447 vk0[k] += vk0[k-1];
448 }
449
450 if (two_regions) {
451 int16_t vk1[49];
452 float invwarp = spectrum->bs_alter_scale ? 0.76923076923076923077f
453 : 1.0f; // bs_alter_scale = {0,1}
454 int num_bands_1 = lrintf(half_bands * invwarp *
455 log2f(sbr->k[2] / (float)sbr->k[1])) * 2;
456
457 make_bands(vk1+1, sbr->k[1], sbr->k[2], num_bands_1);
458
459 vdk1_min = array_min_int16(vk1 + 1, num_bands_1);
460
461 if (vdk1_min < vdk0_max) {
462 int change;
463 qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
464 change = FFMIN(vdk0_max - vk1[1], (vk1[num_bands_1] - vk1[1]) >> 1);
465 vk1[1] += change;
466 vk1[num_bands_1] -= change;
467 }
468
469 qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
470
471 vk1[0] = sbr->k[1];
472 for (k = 1; k <= num_bands_1; k++) {
473 if (vk1[k] <= 0) { // Requirements (14496-3 sp04 p205)
474 av_log(ac->avccontext, AV_LOG_ERROR, "Invalid vDk1[%d]: %d\n", k, vk1[k]);
475 return -1;
476 }
477 vk1[k] += vk1[k-1];
478 }
479
480 sbr->n_master = num_bands_0 + num_bands_1;
481 if (check_n_master(ac->avccontext, sbr->n_master, sbr->spectrum_params.bs_xover_band))
482 return -1;
483 memcpy(&sbr->f_master[0], vk0,
484 (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
485 memcpy(&sbr->f_master[num_bands_0 + 1], vk1 + 1,
486 num_bands_1 * sizeof(sbr->f_master[0]));
487
488 } else {
489 sbr->n_master = num_bands_0;
490 if (check_n_master(ac->avccontext, sbr->n_master, sbr->spectrum_params.bs_xover_band))
491 return -1;
492 memcpy(sbr->f_master, vk0, (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
493 }
494 }
495
496 return 0;
497 }
498
499 /// High Frequency Generation - Patch Construction (14496-3 sp04 p216 fig. 4.46)
500 static int sbr_hf_calc_npatches(AACContext *ac, SpectralBandReplication *sbr)
501 {
502 int i, k, sb = 0;
503 int msb = sbr->k[0];
504 int usb = sbr->kx[1];
505 int goal_sb = ((1000 << 11) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
506
507 sbr->num_patches = 0;
508
509 if (goal_sb < sbr->kx[1] + sbr->m[1]) {
510 for (k = 0; sbr->f_master[k] < goal_sb; k++) ;
511 } else
512 k = sbr->n_master;
513
514 do {
515 int odd = 0;
516 for (i = k; i == k || sb > (sbr->k[0] - 1 + msb - odd); i--) {
517 sb = sbr->f_master[i];
518 odd = (sb + sbr->k[0]) & 1;
519 }
520
521 sbr->patch_num_subbands[sbr->num_patches] = FFMAX(sb - usb, 0);
522 sbr->patch_start_subband[sbr->num_patches] = sbr->k[0] - odd - sbr->patch_num_subbands[sbr->num_patches];
523
524 if (sbr->patch_num_subbands[sbr->num_patches] > 0) {
525 usb = sb;
526 msb = sb;
527 sbr->num_patches++;
528 } else
529 msb = sbr->kx[1];
530
531 if (sbr->f_master[k] - sb < 3)
532 k = sbr->n_master;
533 } while (sb != sbr->kx[1] + sbr->m[1]);
534
535 if (sbr->patch_num_subbands[sbr->num_patches-1] < 3 && sbr->num_patches > 1)
536 sbr->num_patches--;
537
538 // Requirements (14496-3 sp04 p205) sets the maximum number of patches to 5
539 // However the Coding Technologies decoder check uses 6 patches
540 if (sbr->num_patches > 6) {
541 av_log(ac->avccontext, AV_LOG_ERROR, "Too many patches: %d\n", sbr->num_patches);
542 return -1;
543 }
544
545 return 0;
546 }
547
548 /// Derived Frequency Band Tables (14496-3 sp04 p197)
549 static int sbr_make_f_derived(AACContext *ac, SpectralBandReplication *sbr)
550 {
551 int k, temp;
552
553 sbr->n[1] = sbr->n_master - sbr->spectrum_params.bs_xover_band;
554 sbr->n[0] = (sbr->n[1] + 1) >> 1;
555
556 memcpy(sbr->f_tablehigh, &sbr->f_master[sbr->spectrum_params.bs_xover_band],
557 (sbr->n[1] + 1) * sizeof(sbr->f_master[0]));
558 sbr->m[1] = sbr->f_tablehigh[sbr->n[1]] - sbr->f_tablehigh[0];
559 sbr->kx[1] = sbr->f_tablehigh[0];
560
561 // Requirements (14496-3 sp04 p205)
562 if (sbr->kx[1] + sbr->m[1] > 64) {
563 av_log(ac->avccontext, AV_LOG_ERROR,
564 "Stop frequency border too high: %d\n", sbr->kx[1] + sbr->m[1]);
565 return -1;
566 }
567 if (sbr->kx[1] > 32) {
568 av_log(ac->avccontext, AV_LOG_ERROR, "Start frequency border too high: %d\n", sbr->kx[1]);
569 return -1;
570 }
571
572 sbr->f_tablelow[0] = sbr->f_tablehigh[0];
573 temp = sbr->n[1] & 1;
574 for (k = 1; k <= sbr->n[0]; k++)
575 sbr->f_tablelow[k] = sbr->f_tablehigh[2 * k - temp];
576
577 sbr->n_q = FFMAX(1, lrintf(sbr->spectrum_params.bs_noise_bands *
578 log2f(sbr->k[2] / (float)sbr->kx[1]))); // 0 <= bs_noise_bands <= 3
579 if (sbr->n_q > 5) {
580 av_log(ac->avccontext, AV_LOG_ERROR, "Too many noise floor scale factors: %d\n", sbr->n_q);
581 return -1;
582 }
583
584 sbr->f_tablenoise[0] = sbr->f_tablelow[0];
585 temp = 0;
586 for (k = 1; k <= sbr->n_q; k++) {
587 temp += (sbr->n[0] - temp) / (sbr->n_q + 1 - k);
588 sbr->f_tablenoise[k] = sbr->f_tablelow[temp];
589 }
590
591 if (sbr_hf_calc_npatches(ac, sbr) < 0)
592 return -1;
593
594 sbr_make_f_tablelim(sbr);
595
596 sbr->data[0].f_indexnoise = 0;
597 sbr->data[1].f_indexnoise = 0;
598
599 return 0;
600 }
601
602 static av_always_inline void get_bits1_vector(GetBitContext *gb, uint8_t *vec,
603 int elements)
604 {
605 int i;
606 for (i = 0; i < elements; i++) {
607 vec[i] = get_bits1(gb);
608 }
609 }
610
611 /** ceil(log2(index+1)) */
612 static const int8_t ceil_log2[] = {
613 0, 1, 2, 2, 3, 3,
614 };
615
616 static int read_sbr_grid(AACContext *ac, SpectralBandReplication *sbr,
617 GetBitContext *gb, SBRData *ch_data)
618 {
619 int i;
620
621 ch_data->bs_freq_res[0] = ch_data->bs_freq_res[ch_data->bs_num_env[1]];
622 ch_data->bs_num_env[0] = ch_data->bs_num_env[1];
623 ch_data->bs_amp_res = sbr->bs_amp_res_header;
624
625 switch (ch_data->bs_frame_class = get_bits(gb, 2)) {
626 case FIXFIX:
627 ch_data->bs_num_env[1] = 1 << get_bits(gb, 2);
628 if (ch_data->bs_num_env[1] == 1)
629 ch_data->bs_amp_res = 0;
630
631 if (ch_data->bs_num_env[1] > 4) {
632 av_log(ac->avccontext, AV_LOG_ERROR,
633 "Invalid bitstream, too many SBR envelopes in FIXFIX type SBR frame: %d\n",
634 ch_data->bs_num_env[1]);
635 return -1;
636 }
637
638 ch_data->bs_pointer = 0;
639
640 ch_data->bs_freq_res[1] = get_bits1(gb);
641 for (i = 1; i < ch_data->bs_num_env[1]; i++)
642 ch_data->bs_freq_res[i + 1] = ch_data->bs_freq_res[1];
643 break;
644 case FIXVAR:
645 ch_data->bs_var_bord[1] = get_bits(gb, 2);
646 ch_data->bs_num_rel[1] = get_bits(gb, 2);
647 ch_data->bs_num_env[1] = ch_data->bs_num_rel[1] + 1;
648
649 for (i = 0; i < ch_data->bs_num_rel[1]; i++)
650 ch_data->bs_rel_bord[1][i] = 2 * get_bits(gb, 2) + 2;
651
652 ch_data->bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env[1]]);
653
654 for (i = 0; i < ch_data->bs_num_env[1]; i++)
655 ch_data->bs_freq_res[ch_data->bs_num_env[1] - i] = get_bits1(gb);
656 break;
657 case VARFIX:
658 ch_data->bs_var_bord[0] = get_bits(gb, 2);
659 ch_data->bs_num_rel[0] = get_bits(gb, 2);
660 ch_data->bs_num_env[1] = ch_data->bs_num_rel[0] + 1;
661
662 for (i = 0; i < ch_data->bs_num_rel[0]; i++)
663 ch_data->bs_rel_bord[0][i] = 2 * get_bits(gb, 2) + 2;
664
665 ch_data->bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env[1]]);
666
667 get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env[1]);
668 break;
669 case VARVAR:
670 ch_data->bs_var_bord[0] = get_bits(gb, 2);
671 ch_data->bs_var_bord[1] = get_bits(gb, 2);
672 ch_data->bs_num_rel[0] = get_bits(gb, 2);
673 ch_data->bs_num_rel[1] = get_bits(gb, 2);
674 ch_data->bs_num_env[1] = ch_data->bs_num_rel[0] + ch_data->bs_num_rel[1] + 1;
675
676 if (ch_data->bs_num_env[1] > 5) {
677 av_log(ac->avccontext, AV_LOG_ERROR,
678 "Invalid bitstream, too many SBR envelopes in VARVAR type SBR frame: %d\n",
679 ch_data->bs_num_env[1]);
680 return -1;
681 }
682
683 for (i = 0; i < ch_data->bs_num_rel[0]; i++)
684 ch_data->bs_rel_bord[0][i] = 2 * get_bits(gb, 2) + 2;
685 for (i = 0; i < ch_data->bs_num_rel[1]; i++)
686 ch_data->bs_rel_bord[1][i] = 2 * get_bits(gb, 2) + 2;
687
688 ch_data->bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env[1]]);
689
690 get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env[1]);
691 break;
692 }
693
694 if (ch_data->bs_pointer > ch_data->bs_num_env[1] + 1) {
695 av_log(ac->avccontext, AV_LOG_ERROR,
696 "Invalid bitstream, bs_pointer points to a middle noise border outside the time borders table: %d\n",
697 ch_data->bs_pointer);
698 return -1;
699 }
700
701 int abs_bord_lead = ch_data->bs_frame_class >= 2 ? ch_data->bs_var_bord[0] : 0;
702 // frameLengthFlag ? 15 : 16; 960 sample length frames unsupported; this value is numTimeSlots
703 int abs_bord_trail = (ch_data->bs_frame_class & 1 ? ch_data->bs_var_bord[1] : 0) + 16;
704 int n_rel_lead;
705
706 if (ch_data->bs_frame_class == FIXFIX) {
707 n_rel_lead = ch_data->bs_num_env[1] - 1;
708 } else if (ch_data->bs_frame_class == FIXVAR) {
709 n_rel_lead = 0;
710 } else if (ch_data->bs_frame_class < 4) { // VARFIX or VARVAR
711 n_rel_lead = ch_data->bs_num_rel[0];
712 } else {
713 av_log(ac->avccontext, AV_LOG_ERROR,
714 "Invalid bs_frame_class for SBR: %d\n", ch_data->bs_frame_class);
715 return -1;
716 }
717
718 ch_data->t_env_num_env_old = ch_data->t_env[ch_data->bs_num_env[0]];
719 ch_data->t_env[0] = abs_bord_lead;
720 ch_data->t_env[ch_data->bs_num_env[1]] = abs_bord_trail;
721
722 if (ch_data->bs_frame_class == FIXFIX) {
723 int temp = (abs_bord_trail + (ch_data->bs_num_env[1] >> 1)) /
724 ch_data->bs_num_env[1];
725 for (i = 0; i < n_rel_lead; i++)
726 ch_data->t_env[i + 1] = ch_data->t_env[i] + temp;
727 } else if (ch_data->bs_frame_class > 1) { // VARFIX or VARVAR
728 for (i = 0; i < n_rel_lead; i++)
729 ch_data->t_env[i + 1] = ch_data->t_env[i] + ch_data->bs_rel_bord[0][i];
730 } else { // FIXVAR
731 for (i = 0; i < n_rel_lead; i++)
732 ch_data->t_env[i + 1] = abs_bord_lead;
733 }
734
735 if (ch_data->bs_frame_class & 1) { // FIXVAR or VARVAR
736 for (i = ch_data->bs_num_env[1] - 1; i > n_rel_lead; i--)
737 ch_data->t_env[i] = ch_data->t_env[i + 1] -
738 ch_data->bs_rel_bord[1][ch_data->bs_num_env[1] - 1 - i];
739 } else { // FIXFIX or VARFIX
740 for (i = n_rel_lead; i < ch_data->bs_num_env[1]; i++)
741 ch_data->t_env[i + 1] = abs_bord_trail;
742 }
743
744 ch_data->bs_num_noise = (ch_data->bs_num_env[1] > 1) + 1;
745
746 ch_data->t_q[0] = ch_data->t_env[0];
747 if (ch_data->bs_num_noise > 1) { // typo in spec bases this on bs_num_env...
748 unsigned int idx;
749 if (ch_data->bs_frame_class == FIXFIX) {
750 idx = ch_data->bs_num_env[1] >> 1;
751 } else if (ch_data->bs_frame_class & 1) { // FIXVAR or VARVAR
752 idx = ch_data->bs_num_env[1] - FFMAX(ch_data->bs_pointer - 1, 1);
753 } else { // VARFIX
754 if (!ch_data->bs_pointer)
755 idx = 1;
756 else if (ch_data->bs_pointer == 1)
757 idx = ch_data->bs_num_env[1] - 1;
758 else // bs_pointer > 1
759 idx = ch_data->bs_pointer - 1;
760 }
761 ch_data->t_q[1] = ch_data->t_env[idx];
762 ch_data->t_q[2] = ch_data->t_env[ch_data->bs_num_env[1]];
763 } else
764 ch_data->t_q[1] = ch_data->t_env[ch_data->bs_num_env[1]];
765
766 ch_data->e_a[0] = -(ch_data->e_a[1] != ch_data->bs_num_env[0]); // l_APrev
767 ch_data->e_a[1] = -1;
768 if ((ch_data->bs_frame_class & 1) && ch_data->bs_pointer) { // FIXVAR or VARVAR and bs_pointer != 0
769 ch_data->e_a[1] = ch_data->bs_num_env[1] + 1 - ch_data->bs_pointer;
770 } else if ((ch_data->bs_frame_class == 2) && (ch_data->bs_pointer > 1)) // VARFIX and bs_pointer > 1
771 ch_data->e_a[1] = ch_data->bs_pointer - 1;
772
773 return 0;
774 }
775
776 static void copy_sbr_grid(SBRData *dst, const SBRData *src) {
777 //These variables are saved from the previous frame rather than copied
778 dst->bs_freq_res[0] = dst->bs_freq_res[dst->bs_num_env[1]];
779 dst->bs_num_env[0] = dst->bs_num_env[1];
780 dst->t_env_num_env_old = dst->t_env[dst->bs_num_env[0]];
781 dst->e_a[0] = -(dst->e_a[1] != dst->bs_num_env[0]);
782
783 //These variables are read from the bitstream and therefore copied
784 memcpy(dst->bs_freq_res+1, src->bs_freq_res+1, sizeof(dst->bs_freq_res)-sizeof(*dst->bs_freq_res));
785 memcpy(dst->bs_num_env+1, src->bs_num_env+1, sizeof(dst->bs_num_env)- sizeof(*dst->bs_num_env));
786 memcpy(dst->bs_var_bord, src->bs_var_bord, sizeof(dst->bs_var_bord));
787 memcpy(dst->bs_rel_bord, src->bs_rel_bord, sizeof(dst->bs_rel_bord));
788 memcpy(dst->bs_num_rel, src->bs_num_rel, sizeof(dst->bs_rel_bord));
789 memcpy(dst->t_env, src->t_env, sizeof(dst->t_env));
790 memcpy(dst->t_q, src->t_q, sizeof(dst->t_q));
791 dst->bs_amp_res = src->bs_amp_res;
792 dst->bs_num_noise = src->bs_num_noise;
793 dst->bs_pointer = src->bs_pointer;
794 dst->bs_frame_class = src->bs_frame_class;
795 dst->e_a[1] = src->e_a[1];
796 }
797
798 /// Read how the envelope and noise floor data is delta coded
799 static void read_sbr_dtdf(SpectralBandReplication *sbr, GetBitContext *gb,
800 SBRData *ch_data)
801 {
802 get_bits1_vector(gb, ch_data->bs_df_env, ch_data->bs_num_env[1]);
803 get_bits1_vector(gb, ch_data->bs_df_noise, ch_data->bs_num_noise);
804 }
805
806 /// Read inverse filtering data
807 static void read_sbr_invf(SpectralBandReplication *sbr, GetBitContext *gb,
808 SBRData *ch_data)
809 {
810 int i;
811
812 memcpy(ch_data->bs_invf_mode[1], ch_data->bs_invf_mode[0], 5 * sizeof(uint8_t));
813 for (i = 0; i < sbr->n_q; i++)
814 ch_data->bs_invf_mode[0][i] = get_bits(gb, 2);
815 }
816
817 static void read_sbr_envelope(SpectralBandReplication *sbr, GetBitContext *gb,
818 SBRData *ch_data, int ch)
819 {
820 int bits;
821 int i, j, k;
822 VLC_TYPE (*t_huff)[2], (*f_huff)[2];
823 int t_lav, f_lav;
824 const int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
825 const int odd = sbr->n[1] & 1;
826
827 if (sbr->bs_coupling && ch) {
828 if (ch_data->bs_amp_res) {
829 bits = 5;
830 t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_3_0DB].table;
831 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_3_0DB];
832 f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
833 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
834 } else {
835 bits = 6;
836 t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_1_5DB].table;
837 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_1_5DB];
838 f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_1_5DB].table;
839 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_1_5DB];
840 }
841 } else {
842 if (ch_data->bs_amp_res) {
843 bits = 6;
844 t_huff = vlc_sbr[T_HUFFMAN_ENV_3_0DB].table;
845 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_3_0DB];
846 f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
847 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
848 } else {
849 bits = 7;
850 t_huff = vlc_sbr[T_HUFFMAN_ENV_1_5DB].table;
851 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_1_5DB];
852 f_huff = vlc_sbr[F_HUFFMAN_ENV_1_5DB].table;
853 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_1_5DB];
854 }
855 }
856
857 for (i = 0; i < ch_data->bs_num_env[1]; i++) {
858 if (ch_data->bs_df_env[i]) {
859 // bs_freq_res[0] == bs_freq_res[bs_num_env[1]] from prev frame
860 if (ch_data->bs_freq_res[i + 1] == ch_data->bs_freq_res[i]) {
861 for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
862 ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
863 } else if (ch_data->bs_freq_res[i + 1]) {
864 for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
865 k = (j + odd) >> 1; // find k such that f_tablelow[k] <= f_tablehigh[j] < f_tablelow[k + 1]
866 ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
867 }
868 } else {
869 for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
870 k = j ? 2*j - odd : 0; // find k such that f_tablehigh[k] == f_tablelow[j]
871 ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
872 }
873 }
874 } else {
875 ch_data->env_facs[i + 1][0] = delta * get_bits(gb, bits); // bs_env_start_value_balance
876 for (j = 1; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
877 ch_data->env_facs[i + 1][j] = ch_data->env_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
878 }
879 }
880
881 //assign 0th elements of env_facs from last elements
882 memcpy(ch_data->env_facs[0], ch_data->env_facs[ch_data->bs_num_env[1]],
883 sizeof(ch_data->env_facs[0]));
884 }
885
886 static void read_sbr_noise(SpectralBandReplication *sbr, GetBitContext *gb,
887 SBRData *ch_data, int ch)
888 {
889 int i, j;
890 VLC_TYPE (*t_huff)[2], (*f_huff)[2];
891 int t_lav, f_lav;
892 int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
893
894 if (sbr->bs_coupling && ch) {
895 t_huff = vlc_sbr[T_HUFFMAN_NOISE_BAL_3_0DB].table;
896 t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_BAL_3_0DB];
897 f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
898 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
899 } else {
900 t_huff = vlc_sbr[T_HUFFMAN_NOISE_3_0DB].table;
901 t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_3_0DB];
902 f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
903 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
904 }
905
906 for (i = 0; i < ch_data->bs_num_noise; i++) {
907 if (ch_data->bs_df_noise[i]) {
908 for (j = 0; j < sbr->n_q; j++)
909 ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 2) - t_lav);
910 } else {
911 ch_data->noise_facs[i + 1][0] = delta * get_bits(gb, 5); // bs_noise_start_value_balance or bs_noise_start_value_level
912 for (j = 1; j < sbr->n_q; j++)
913 ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
914 }
915 }
916
917 //assign 0th elements of noise_facs from last elements
918 memcpy(ch_data->noise_facs[0], ch_data->noise_facs[ch_data->bs_num_noise],
919 sizeof(ch_data->noise_facs[0]));
920 }
921
922 static void read_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
923 GetBitContext *gb,
924 int bs_extension_id, int *num_bits_left)
925 {
926 //TODO - implement ps_data for parametric stereo parsing
927 switch (bs_extension_id) {
928 case EXTENSION_ID_PS:
929 #if 0
930 *num_bits_left -= ff_ps_data(gb, ps);
931 #else
932 av_log_missing_feature(ac->avccontext, "Parametric Stereo is", 0);
933 skip_bits_long(gb, *num_bits_left); // bs_fill_bits
934 *num_bits_left = 0;
935 #endif
936 break;
937 default:
938 av_log_missing_feature(ac->avccontext, "Reserved SBR extensions are", 1);
939 skip_bits_long(gb, *num_bits_left); // bs_fill_bits
940 *num_bits_left = 0;
941 break;
942 }
943 }
944
945 static int read_sbr_single_channel_element(AACContext *ac,
946 SpectralBandReplication *sbr,
947 GetBitContext *gb)
948 {
949 if (get_bits1(gb)) // bs_data_extra
950 skip_bits(gb, 4); // bs_reserved
951
952 if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
953 return -1;
954 read_sbr_dtdf(sbr, gb, &sbr->data[0]);
955 read_sbr_invf(sbr, gb, &sbr->data[0]);
956 read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
957 read_sbr_noise(sbr, gb, &sbr->data[0], 0);
958
959 if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
960 get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
961
962 return 0;
963 }
964
965 static int read_sbr_channel_pair_element(AACContext *ac,
966 SpectralBandReplication *sbr,
967 GetBitContext *gb)
968 {
969 if (get_bits1(gb)) // bs_data_extra
970 skip_bits(gb, 8); // bs_reserved
971
972 if ((sbr->bs_coupling = get_bits1(gb))) {
973 if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
974 return -1;
975 copy_sbr_grid(&sbr->data[1], &sbr->data[0]);
976 read_sbr_dtdf(sbr, gb, &sbr->data[0]);
977 read_sbr_dtdf(sbr, gb, &sbr->data[1]);
978 read_sbr_invf(sbr, gb, &sbr->data[0]);
979 memcpy(sbr->data[1].bs_invf_mode[1], sbr->data[1].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
980 memcpy(sbr->data[1].bs_invf_mode[0], sbr->data[0].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
981 read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
982 read_sbr_noise(sbr, gb, &sbr->data[0], 0);
983 read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
984 read_sbr_noise(sbr, gb, &sbr->data[1], 1);
985 } else {
986 if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]) ||
987 read_sbr_grid(ac, sbr, gb, &sbr->data[1]))
988 return -1;
989 read_sbr_dtdf(sbr, gb, &sbr->data[0]);
990 read_sbr_dtdf(sbr, gb, &sbr->data[1]);
991 read_sbr_invf(sbr, gb, &sbr->data[0]);
992 read_sbr_invf(sbr, gb, &sbr->data[1]);
993 read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
994 read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
995 read_sbr_noise(sbr, gb, &sbr->data[0], 0);
996 read_sbr_noise(sbr, gb, &sbr->data[1], 1);
997 }
998
999 if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
1000 get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
1001 if ((sbr->data[1].bs_add_harmonic_flag = get_bits1(gb)))
1002 get_bits1_vector(gb, sbr->data[1].bs_add_harmonic, sbr->n[1]);
1003
1004 return 0;
1005 }
1006
1007 static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr,
1008 GetBitContext *gb, int id_aac)
1009 {
1010 unsigned int cnt = get_bits_count(gb);
1011
1012 if (id_aac == TYPE_SCE || id_aac == TYPE_CCE) {
1013 if (read_sbr_single_channel_element(ac, sbr, gb)) {
1014 sbr->start = 0;
1015 return get_bits_count(gb) - cnt;
1016 }
1017 } else if (id_aac == TYPE_CPE) {
1018 if (read_sbr_channel_pair_element(ac, sbr, gb)) {
1019 sbr->start = 0;
1020 return get_bits_count(gb) - cnt;
1021 }
1022 } else {
1023 av_log(ac->avccontext, AV_LOG_ERROR,
1024 "Invalid bitstream - cannot apply SBR to element type %d\n", id_aac);
1025 sbr->start = 0;
1026 return get_bits_count(gb) - cnt;
1027 }
1028 if (get_bits1(gb)) { // bs_extended_data
1029 int num_bits_left = get_bits(gb, 4); // bs_extension_size
1030 if (num_bits_left == 15)
1031 num_bits_left += get_bits(gb, 8); // bs_esc_count
1032
1033 num_bits_left <<= 3;
1034 while (num_bits_left > 7) {
1035 num_bits_left -= 2;
1036 read_sbr_extension(ac, sbr, gb, get_bits(gb, 2), &num_bits_left); // bs_extension_id
1037 }
1038 }
1039
1040 return get_bits_count(gb) - cnt;
1041 }
1042
1043 static void sbr_reset(AACContext *ac, SpectralBandReplication *sbr)
1044 {
1045 int err;
1046 err = sbr_make_f_master(ac, sbr, &sbr->spectrum_params);
1047 if (err >= 0)
1048 err = sbr_make_f_derived(ac, sbr);
1049 if (err < 0) {
1050 av_log(ac->avccontext, AV_LOG_ERROR,
1051 "SBR reset failed. Switching SBR to pure upsampling mode.\n");
1052 sbr->start = 0;
1053 }
1054 }
1055
1056 /**
1057 * Decode Spectral Band Replication extension data; reference: table 4.55.
1058 *
1059 * @param crc flag indicating the presence of CRC checksum
1060 * @param cnt length of TYPE_FIL syntactic element in bytes
1061 *
1062 * @return Returns number of bytes consumed from the TYPE_FIL element.
1063 */
1064 int ff_decode_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
1065 GetBitContext *gb_host, int crc, int cnt, int id_aac)
1066 {
1067 unsigned int num_sbr_bits = 0, num_align_bits;
1068 unsigned bytes_read;
1069 GetBitContext gbc = *gb_host, *gb = &gbc;
1070 skip_bits_long(gb_host, cnt*8 - 4);
1071
1072 sbr->reset = 0;
1073
1074 if (!sbr->sample_rate)
1075 sbr->sample_rate = 2 * ac->m4ac.sample_rate; //TODO use the nominal sample rate for arbitrary sample rate support
1076 if (!ac->m4ac.ext_sample_rate)
1077 ac->m4ac.ext_sample_rate = 2 * ac->m4ac.sample_rate;
1078
1079 if (crc) {
1080 skip_bits(gb, 10); // bs_sbr_crc_bits; TODO - implement CRC check
1081 num_sbr_bits += 10;
1082 }
1083
1084 //Save some state from the previous frame.
1085 sbr->kx[0] = sbr->kx[1];
1086 sbr->m[0] = sbr->m[1];
1087
1088 num_sbr_bits++;
1089 if (get_bits1(gb)) // bs_header_flag
1090 num_sbr_bits += read_sbr_header(sbr, gb);
1091
1092 if (sbr->reset)
1093 sbr_reset(ac, sbr);
1094
1095 if (sbr->start)
1096 num_sbr_bits += read_sbr_data(ac, sbr, gb, id_aac);
1097
1098 num_align_bits = ((cnt << 3) - 4 - num_sbr_bits) & 7;
1099 bytes_read = ((num_sbr_bits + num_align_bits + 4) >> 3);
1100
1101 if (bytes_read > cnt) {
1102 av_log(ac->avccontext, AV_LOG_ERROR,
1103 "Expected to read %d SBR bytes actually read %d.\n", cnt, bytes_read);
1104 }
1105 return cnt;
1106 }
1107
1108 /// Dequantization and stereo decoding (14496-3 sp04 p203)
1109 static void sbr_dequant(SpectralBandReplication *sbr, int id_aac)
1110 {
1111 int k, e;
1112 int ch;
1113
1114 if (id_aac == TYPE_CPE && sbr->bs_coupling) {
1115 float alpha = sbr->data[0].bs_amp_res ? 1.0f : 0.5f;
1116 float pan_offset = sbr->data[0].bs_amp_res ? 12.0f : 24.0f;
1117 for (e = 1; e <= sbr->data[0].bs_num_env[1]; e++) {
1118 for (k = 0; k < sbr->n[sbr->data[0].bs_freq_res[e]]; k++) {
1119 float temp1 = exp2f(sbr->data[0].env_facs[e][k] * alpha + 7.0f);
1120 float temp2 = exp2f((pan_offset - sbr->data[1].env_facs[e][k]) * alpha);
1121 float fac = temp1 / (1.0f + temp2);
1122 sbr->data[0].env_facs[e][k] = fac;
1123 sbr->data[1].env_facs[e][k] = fac * temp2;
1124 }
1125 }
1126 for (e = 1; e <= sbr->data[0].bs_num_noise; e++) {
1127 for (k = 0; k < sbr->n_q; k++) {
1128 float temp1 = exp2f(NOISE_FLOOR_OFFSET - sbr->data[0].noise_facs[e][k] + 1);
1129 float temp2 = exp2f(12 - sbr->data[1].noise_facs[e][k]);
1130 float fac = temp1 / (1.0f + temp2);
1131 sbr->data[0].noise_facs[e][k] = fac;
1132 sbr->data[1].noise_facs[e][k] = fac * temp2;
1133 }
1134 }
1135 } else { // SCE or one non-coupled CPE
1136 for (ch = 0; ch < (id_aac == TYPE_CPE) + 1; ch++) {
1137 float alpha = sbr->data[ch].bs_amp_res ? 1.0f : 0.5f;
1138 for (e = 1; e <= sbr->data[ch].bs_num_env[1]; e++)
1139 for (k = 0; k < sbr->n[sbr->data[ch].bs_freq_res[e]]; k++)
1140 sbr->data[ch].env_facs[e][k] =
1141 exp2f(alpha * sbr->data[ch].env_facs[e][k] + 6.0f);
1142 for (e = 1; e <= sbr->data[ch].bs_num_noise; e++)
1143 for (k = 0; k < sbr->n_q; k++)
1144 sbr->data[ch].noise_facs[e][k] =
1145 exp2f(NOISE_FLOOR_OFFSET - sbr->data[ch].noise_facs[e][k]);
1146 }
1147 }
1148 }
1149
1150 /**
1151 * Analysis QMF Bank (14496-3 sp04 p206)
1152 *
1153 * @param x pointer to the beginning of the first sample window
1154 * @param W array of complex-valued samples split into subbands
1155 */
1156 static void sbr_qmf_analysis(DSPContext *dsp, RDFTContext *rdft, const float *in, float *x,
1157 float z[320], float W[2][32][32][2],
1158 float bias, float scale)
1159 {
1160 int i, k;
1161 memcpy(W[0], W[1], sizeof(W[0]));
1162 memcpy(x , x+1024, (320-32)*sizeof(x[0]));
1163 if (scale != 1.0f || bias != 0.0f)
1164 for (i = 0; i < 1024; i++)
1165 x[288 + i] = (in[i] - bias) * scale;
1166 else
1167 memcpy(x+288, in, 1024*sizeof(*x));
1168 for (i = 0; i < 32; i++) { // numTimeSlots*RATE = 16*2 as 960 sample frames
1169 // are not supported
1170 float re, im;
1171 dsp->vector_fmul_reverse(z, sbr_qmf_window_ds, x, 320);
1172 for (k = 0; k < 64; k++) {
1173 float f = z[k] + z[k + 64] + z[k + 128] + z[k + 192] + z[k + 256];
1174 z[k] = f * analysis_cos_pre[k];
1175 z[k+64] = f;
1176 }
1177 ff_rdft_calc(rdft, z);
1178 re = z[0] * 0.5f;
1179 im = 0.5f * dsp->scalarproduct_float(z+64, analysis_sin_pre, 64);
1180 W[1][i][0][0] = re * analysis_cossin_post[0][0] - im * analysis_cossin_post[0][1];
1181 W[1][i][0][1] = re * analysis_cossin_post[0][1] + im * analysis_cossin_post[0][0];
1182 for (k = 1; k < 32; k++) {
1183 re = z[2*k ] - re;
1184 im = z[2*k+1] - im;
1185 W[1][i][k][0] = re * analysis_cossin_post[k][0] - im * analysis_cossin_post[k][1];
1186 W[1][i][k][1] = re * analysis_cossin_post[k][1] + im * analysis_cossin_post[k][0];
1187 }
1188 x += 32;
1189 }
1190 }
1191
1192 /**
1193 * Synthesis QMF Bank (14496-3 sp04 p206) and Downsampled Synthesis QMF Bank
1194 * (14496-3 sp04 p206)
1195 */
1196 static void sbr_qmf_synthesis(DSPContext *dsp, FFTContext *mdct,
1197 float *out, float X[2][32][64],
1198 float mdct_buf[2][64],
1199 float *v0, int *v_off, const unsigned int div,
1200 float bias, float scale)
1201 {
1202 int i, n;
1203 const float *sbr_qmf_window = div ? sbr_qmf_window_ds : sbr_qmf_window_us;
1204 int scale_and_bias = scale != 1.0f || bias != 0.0f;
1205 float *v;
1206 for (i = 0; i < 32; i++) {
1207 if (*v_off == 0) {
1208 int saved_samples = (1280 - 128) >> div;
1209 memcpy(&v0[SBR_SYNTHESIS_BUF_SIZE - saved_samples], v0, saved_samples * sizeof(float));
1210 *v_off = SBR_SYNTHESIS_BUF_SIZE - saved_samples - (128 >> div);
1211 } else {
1212 *v_off -= 128 >> div;
1213 }
1214 v = v0 + *v_off;
1215 for (n = 1; n < 64 >> div; n+=2) {
1216 X[1][i][n] = -X[1][i][n];
1217 }
1218 if (div) {
1219 memset(X[0][i]+32, 0, 32*sizeof(float));
1220 memset(X[1][i]+32, 0, 32*sizeof(float));
1221 }
1222 ff_imdct_half(mdct, mdct_buf[0], X[0][i]);
1223 ff_imdct_half(mdct, mdct_buf[1], X[1][i]);
1224 if (div) {
1225 for (n = 0; n < 32; n++) {
1226 v[ n] = -mdct_buf[0][63 - 2*n] + mdct_buf[1][2*n ];
1227 v[ 63 - n] = mdct_buf[0][62 - 2*n] + mdct_buf[1][2*n + 1];
1228 }
1229 } else {
1230 for (n = 0; n < 64; n++) {
1231 v[ n] = -mdct_buf[0][63 - n] + mdct_buf[1][ n ];
1232 v[127 - n] = mdct_buf[0][63 - n] + mdct_buf[1][ n ];
1233 }
1234 }
1235 dsp->vector_fmul_add(out, v , sbr_qmf_window , zero64, 64 >> div);
1236 dsp->vector_fmul_add(out, v + ( 192 >> div), sbr_qmf_window + ( 64 >> div), out , 64 >> div);
1237 dsp->vector_fmul_add(out, v + ( 256 >> div), sbr_qmf_window + (128 >> div), out , 64 >> div);
1238 dsp->vector_fmul_add(out, v + ( 448 >> div), sbr_qmf_window + (192 >> div), out , 64 >> div);
1239 dsp->vector_fmul_add(out, v + ( 512 >> div), sbr_qmf_window + (256 >> div), out , 64 >> div);
1240 dsp->vector_fmul_add(out, v + ( 704 >> div), sbr_qmf_window + (320 >> div), out , 64 >> div);
1241 dsp->vector_fmul_add(out, v + ( 768 >> div), sbr_qmf_window + (384 >> div), out , 64 >> div);
1242 dsp->vector_fmul_add(out, v + ( 960 >> div), sbr_qmf_window + (448 >> div), out , 64 >> div);
1243 dsp->vector_fmul_add(out, v + (1024 >> div), sbr_qmf_window + (512 >> div), out , 64 >> div);
1244 dsp->vector_fmul_add(out, v + (1216 >> div), sbr_qmf_window + (576 >> div), out , 64 >> div);
1245 if (scale_and_bias)
1246 for (n = 0; n < 64 >> div; n++)
1247 out[n] = out[n] * scale + bias;
1248 out += 64 >> div;
1249 }
1250 }
1251
1252 static void autocorrelate(const float x[40][2], float phi[3][2][2], int lag)
1253 {
1254 int i;
1255 float real_sum = 0.0f;
1256 float imag_sum = 0.0f;
1257 if (lag) {
1258 for (i = 1; i < 38; i++) {
1259 real_sum += x[i][0] * x[i+lag][0] + x[i][1] * x[i+lag][1];
1260 imag_sum += x[i][0] * x[i+lag][1] - x[i][1] * x[i+lag][0];
1261 }
1262 phi[2-lag][1][0] = real_sum + x[ 0][0] * x[lag][0] + x[ 0][1] * x[lag][1];
1263 phi[2-lag][1][1] = imag_sum + x[ 0][0] * x[lag][1] - x[ 0][1] * x[lag][0];
1264 if (lag == 1) {
1265 phi[0][0][0] = real_sum + x[38][0] * x[39][0] + x[38][1] * x[39][1];
1266 phi[0][0][1] = imag_sum + x[38][0] * x[39][1] - x[38][1] * x[39][0];
1267 }
1268 } else {
1269 for (i = 1; i < 38; i++) {
1270 real_sum += x[i][0] * x[i][0] + x[i][1] * x[i][1];
1271 }
1272 phi[2][1][0] = real_sum + x[ 0][0] * x[ 0][0] + x[ 0][1] * x[ 0][1];
1273 phi[1][0][0] = real_sum + x[38][0] * x[38][0] + x[38][1] * x[38][1];
1274 }
1275 }
1276
1277 /** High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering
1278 * (14496-3 sp04 p214)
1279 * Warning: This routine does not seem numerically stable.
1280 */
1281 static void sbr_hf_inverse_filter(float (*alpha0)[2], float (*alpha1)[2],
1282 const float X_low[32][40][2], int k0)
1283 {
1284 int k;
1285 for (k = 0; k < k0; k++) {
1286 float phi[3][2][2], dk;
1287
1288 autocorrelate(X_low[k], phi, 0);
1289 autocorrelate(X_low[k], phi, 1);
1290 autocorrelate(X_low[k], phi, 2);
1291
1292 dk = phi[2][1][0] * phi[1][0][0] -
1293 (phi[1][1][0] * phi[1][1][0] + phi[1][1][1] * phi[1][1][1]) / 1.000001f;
1294
1295 if (!dk) {
1296 alpha1[k][0] = 0;
1297 alpha1[k][1] = 0;
1298 } else {
1299 float temp_real, temp_im;
1300 temp_real = phi[0][0][0] * phi[1][1][0] -
1301 phi[0][0][1] * phi[1][1][1] -
1302 phi[0][1][0] * phi[1][0][0];
1303 temp_im = phi[0][0][0] * phi[1][1][1] +
1304 phi[0][0][1] * phi[1][1][0] -
1305 phi[0][1][1] * phi[1][0][0];
1306
1307 alpha1[k][0] = temp_real / dk;
1308 alpha1[k][1] = temp_im / dk;
1309 }
1310
1311 if (!phi[1][0][0]) {
1312 alpha0[k][0] = 0;
1313 alpha0[k][1] = 0;
1314 } else {
1315 float temp_real, temp_im;
1316 temp_real = phi[0][0][0] + alpha1[k][0] * phi[1][1][0] +
1317 alpha1[k][1] * phi[1][1][1];
1318 temp_im = phi[0][0][1] + alpha1[k][1] * phi[1][1][0] -
1319 alpha1[k][0] * phi[1][1][1];
1320
1321 alpha0[k][0] = -temp_real / phi[1][0][0];
1322 alpha0[k][1] = -temp_im / phi[1][0][0];
1323 }
1324
1325 if (alpha1[k][0] * alpha1[k][0] + alpha1[k][1] * alpha1[k][1] >= 16.0f ||
1326 alpha0[k][0] * alpha0[k][0] + alpha0[k][1] * alpha0[k][1] >= 16.0f) {
1327 alpha1[k][0] = 0;
1328 alpha1[k][1] = 0;
1329 alpha0[k][0] = 0;
1330 alpha0[k][1] = 0;
1331 }
1332 }
1333 }
1334
1335 /// Chirp Factors (14496-3 sp04 p214)
1336 static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data)
1337 {
1338 int i;
1339 float new_bw;
1340 static const float bw_tab[] = { 0.0f, 0.75f, 0.9f, 0.98f };
1341
1342 for (i = 0; i < sbr->n_q; i++) {
1343 if (ch_data->bs_invf_mode[0][i] + ch_data->bs_invf_mode[1][i] == 1) {
1344 new_bw = 0.6f;
1345 } else
1346 new_bw = bw_tab[ch_data->bs_invf_mode[0][i]];
1347
1348 if (new_bw < ch_data->bw_array[i]) {
1349 new_bw = 0.75f * new_bw + 0.25f * ch_data->bw_array[i];
1350 } else
1351 new_bw = 0.90625f * new_bw + 0.09375f * ch_data->bw_array[i];
1352 ch_data->bw_array[i] = new_bw < 0.015625f ? 0.0f : new_bw;
1353 }
1354 }
1355
1356 /// Generate the subband filtered lowband
1357 static int sbr_lf_gen(AACContext *ac, SpectralBandReplication *sbr,
1358 float X_low[32][40][2], const float W[2][32][32][2])
1359 {
1360 int i, k;
1361 const int t_HFGen = 8;
1362 const int i_f = 32;
1363 memset(X_low, 0, 32*sizeof(*X_low));
1364 for (k = 0; k < sbr->kx[1]; k++) {
1365 for (i = t_HFGen; i < i_f + t_HFGen; i++) {
1366 X_low[k][i][0] = W[1][i - t_HFGen][k][0];
1367 X_low[k][i][1] = W[1][i - t_HFGen][k][1];
1368 }
1369 }
1370 for (k = 0; k < sbr->kx[0]; k++) {
1371 for (i = 0; i < t_HFGen; i++) {
1372 X_low[k][i][0] = W[0][i + i_f - t_HFGen][k][0];
1373 X_low[k][i][1] = W[0][i + i_f - t_HFGen][k][1];
1374 }
1375 }
1376 return 0;
1377 }
1378
1379 /// High Frequency Generator (14496-3 sp04 p215)
1380 static int sbr_hf_gen(AACContext *ac, SpectralBandReplication *sbr,
1381 float X_high[64][40][2], const float X_low[32][40][2],
1382 const float (*alpha0)[2], const float (*alpha1)[2],
1383 const float bw_array[5], const uint8_t *t_env,
1384 int bs_num_env)
1385 {
1386 int i, j, x;
1387 int g = 0;
1388 int k = sbr->kx[1];
1389 for (j = 0; j < sbr->num_patches; j++) {
1390 for (x = 0; x < sbr->patch_num_subbands[j]; x++, k++) {
1391 float alpha[4];
1392 const int p = sbr->patch_start_subband[j] + x;
1393 while (g <= sbr->n_q && k >= sbr->f_tablenoise[g])
1394 g++;
1395 g--;
1396
1397 if (g < 0) {
1398 av_log(ac->avccontext, AV_LOG_ERROR,
1399 "ERROR : no subband found for frequency %d\n", k);
1400 return -1;
1401 }
1402
1403 alpha[0] = alpha1[p][0] * bw_array[g] * bw_array[g];
1404 alpha[1] = alpha1[p][1] * bw_array[g] * bw_array[g];
1405 alpha[2] = alpha0[p][0] * bw_array[g];
1406 alpha[3] = alpha0[p][1] * bw_array[g];
1407
1408 for (i = 2 * t_env[0]; i < 2 * t_env[bs_num_env]; i++) {
1409 const int idx = i + ENVELOPE_ADJUSTMENT_OFFSET;
1410 X_high[k][idx][0] =
1411 X_low[p][idx - 2][0] * alpha[0] -
1412 X_low[p][idx - 2][1] * alpha[1] +
1413 X_low[p][idx - 1][0] * alpha[2] -
1414 X_low[p][idx - 1][1] * alpha[3] +
1415 X_low[p][idx][0];
1416 X_high[k][idx][1] =
1417 X_low[p][idx - 2][1] * alpha[0] +
1418 X_low[p][idx - 2][0] * alpha[1] +
1419 X_low[p][idx - 1][1] * alpha[2] +
1420 X_low[p][idx - 1][0] * alpha[3] +
1421 X_low[p][idx][1];
1422 }
1423 }
1424 }
1425 if (k < sbr->m[1] + sbr->kx[1])
1426 memset(X_high + k, 0, (sbr->m[1] + sbr->kx[1] - k) * sizeof(*X_high));
1427
1428 return 0;
1429 }
1430
1431 /// Generate the subband filtered lowband
1432 static int sbr_x_gen(SpectralBandReplication *sbr, float X[2][32][64],
1433 const float X_low[32][40][2], const float Y[2][38][64][2],
1434 int ch)
1435 {
1436 int k, i;
1437 const int i_f = 32;
1438 const int i_Temp = FFMAX(2*sbr->data[ch].t_env_num_env_old - i_f, 0);
1439 memset(X, 0, 2*sizeof(*X));
1440 for (k = 0; k < sbr->kx[0]; k++) {
1441 for (i = 0; i < i_Temp; i++) {
1442 X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
1443 X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
1444 }
1445 }
1446 for (; k < sbr->kx[0] + sbr->m[0]; k++) {
1447 for (i = 0; i < i_Temp; i++) {
1448 X[0][i][k] = Y[0][i + i_f][k][0];
1449 X[1][i][k] = Y[0][i + i_f][k][1];
1450 }
1451 }
1452
1453 for (k = 0; k < sbr->kx[1]; k++) {
1454 for (i = i_Temp; i < i_f; i++) {
1455 X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
1456 X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
1457 }
1458 }
1459 for (; k < sbr->kx[1] + sbr->m[1]; k++) {
1460 for (i = i_Temp; i < i_f; i++) {
1461 X[0][i][k] = Y[1][i][k][0];
1462 X[1][i][k] = Y[1][i][k][1];
1463 }
1464 }
1465 return 0;
1466 }
1467
1468 /** High Frequency Adjustment (14496-3 sp04 p217) and Mapping
1469 * (14496-3 sp04 p217)
1470 */
1471 static void sbr_mapping(AACContext *ac, SpectralBandReplication *sbr,
1472 SBRData *ch_data, int e_a[2])
1473 {
1474 int e, i, m;
1475
1476 memset(ch_data->s_indexmapped[1], 0, 7*sizeof(ch_data->s_indexmapped[1]));
1477 for (e = 0; e < ch_data->bs_num_env[1]; e++) {
1478 const unsigned int ilim = sbr->n[ch_data->bs_freq_res[e + 1]];
1479 uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
1480 int k;
1481
1482 for (i = 0; i < ilim; i++)
1483 for (m = table[i]; m < table[i + 1]; m++)
1484 sbr->e_origmapped[e][m - sbr->kx[1]] = ch_data->env_facs[e+1][i];
1485
1486 // ch_data->bs_num_noise > 1 => 2 noise floors
1487 k = (ch_data->bs_num_noise > 1) && (ch_data->t_env[e] >= ch_data->t_q[1]);
1488 for (i = 0; i < sbr->n_q; i++)
1489 for (m = sbr->f_tablenoise[i]; m < sbr->f_tablenoise[i + 1]; m++)
1490 sbr->q_mapped[e][m - sbr->kx[1]] = ch_data->noise_facs[k+1][i];
1491
1492 for (i = 0; i < sbr->n[1]; i++) {
1493 if (ch_data->bs_add_harmonic_flag) {
1494 const unsigned int m_midpoint =
1495 (sbr->f_tablehigh[i] + sbr->f_tablehigh[i + 1]) >> 1;
1496
1497 ch_data->s_indexmapped[e + 1][m_midpoint - sbr->kx[1]] = ch_data->bs_add_harmonic[i] *
1498 (e >= e_a[1] || (ch_data->s_indexmapped[0][m_midpoint - sbr->kx[1]] == 1));
1499 }
1500 }
1501
1502 for (i = 0; i < ilim; i++) {
1503 int additional_sinusoid_present = 0;
1504 for (m = table[i]; m < table[i + 1]; m++) {
1505 if (ch_data->s_indexmapped[e + 1][m - sbr->kx[1]]) {
1506 additional_sinusoid_present = 1;
1507 break;
1508 }
1509 }
1510 memset(&sbr->s_mapped[e][table[i] - sbr->kx[1]], additional_sinusoid_present,
1511 (table[i + 1] - table[i]) * sizeof(sbr->s_mapped[e][0]));
1512 }
1513 }
1514
1515 memcpy(ch_data->s_indexmapped[0], ch_data->s_indexmapped[ch_data->bs_num_env[1]], sizeof(ch_data->s_indexmapped[0]));
1516 }
1517
1518 /// Estimation of current envelope (14496-3 sp04 p218)
1519 static void sbr_env_estimate(float (*e_curr)[48], float X_high[64][40][2],
1520 SpectralBandReplication *sbr, SBRData *ch_data)
1521 {
1522 int e, i, m;
1523
1524 if (sbr->bs_interpol_freq) {
1525 for (e = 0; e < ch_data->bs_num_env[1]; e++) {
1526 const float recip_env_size = 0.5f / (ch_data->t_env[e + 1] - ch_data->t_env[e]);
1527 int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1528 int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1529
1530 for (m = 0; m < sbr->m[1]; m++) {
1531 float sum = 0.0f;
1532
1533 for (i = ilb; i < iub; i++) {
1534 sum += X_high[m + sbr->kx[1]][i][0] * X_high[m + sbr->kx[1]][i][0] +
1535 X_high[m + sbr->kx[1]][i][1] * X_high[m + sbr->kx[1]][i][1];
1536 }
1537 e_curr[e][m] = sum * recip_env_size;
1538 }
1539 }
1540 } else {
1541 int k, p;
1542
1543 for (e = 0; e < ch_data->bs_num_env[1]; e++) {
1544 const int env_size = 2 * (ch_data->t_env[e + 1] - ch_data->t_env[e]);
1545 int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1546 int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1547 const uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
1548
1549 for (p = 0; p < sbr->n[ch_data->bs_freq_res[e + 1]]; p++) {
1550 float sum = 0.0f;
1551 const int den = env_size * (table[p + 1] - table[p]);
1552
1553 for (k = table[p]; k < table[p + 1]; k++) {
1554 for (i = ilb; i < iub; i++) {
1555 sum += X_high[k][i][0] * X_high[k][i][0] +
1556 X_high[k][i][1] * X_high[k][i][1];
1557 }
1558 }
1559 sum /= den;
1560 for (k = table[p]; k < table[p + 1]; k++) {
1561 e_curr[e][k - sbr->kx[1]] = sum;
1562 }
1563 }
1564 }
1565 }
1566 }
1567
1568 /**
1569 * Calculation of levels of additional HF signal components (14496-3 sp04 p219)
1570 * and Calculation of gain (14496-3 sp04 p219)
1571 */
1572 static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr,
1573 SBRData *ch_data, const int e_a[2])
1574 {
1575 int e, k, m;
1576 // max gain limits : -3dB, 0dB, 3dB, inf dB (limiter off)
1577 static const float limgain[4] = { 0.70795, 1.0, 1.41254, 10000000000 };
1578
1579 for (e = 0; e < ch_data->bs_num_env[1]; e++) {
1580 int delta = !((e == e_a[1]) || (e == e_a[0]));
1581 for (k = 0; k < sbr->n_lim; k++) {
1582 float gain_boost, gain_max;
1583 float sum[2] = { 0.0f, 0.0f };
1584 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1585 const float temp = sbr->e_origmapped[e][m] / (1.0f + sbr->q_mapped[e][m]);
1586 sbr->q_m[e][m] = sqrtf(temp * sbr->q_mapped[e][m]);
1587 sbr->s_m[e][m] = sqrtf(temp * ch_data->s_indexmapped[e + 1][m]);
1588 if (!sbr->s_mapped[e][m]) {
1589 sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] /
1590 ((1.0f + sbr->e_curr[e][m]) *
1591 (1.0f + sbr->q_mapped[e][m] * delta)));
1592 } else {
1593 sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] * sbr->q_mapped[e][m] /
1594 ((1.0f + sbr->e_curr[e][m]) *
1595 (1.0f + sbr->q_mapped[e][m])));
1596 }
1597 }
1598 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1599 sum[0] += sbr->e_origmapped[e][m];
1600 sum[1] += sbr->e_curr[e][m];
1601 }
1602 gain_max = limgain[sbr->bs_limiter_gains] * sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
1603 gain_max = FFMIN(100000, gain_max);
1604 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1605 float q_m_max = sbr->q_m[e][m] * gain_max / sbr->gain[e][m];
1606 sbr->q_m[e][m] = FFMIN(sbr->q_m[e][m], q_m_max);
1607 sbr->gain[e][m] = FFMIN(sbr->gain[e][m], gain_max);
1608 }
1609 sum[0] = sum[1] = 0.0f;
1610 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1611 sum[0] += sbr->e_origmapped[e][m];
1612 sum[1] += sbr->e_curr[e][m] * sbr->gain[e][m] * sbr->gain[e][m]
1613 + sbr->s_m[e][m] * sbr->s_m[e][m]
1614 + (delta && !sbr->s_m[e][m]) * sbr->q_m[e][m] * sbr->q_m[e][m];
1615 }
1616 gain_boost = sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
1617 gain_boost = FFMIN(1.584893192, gain_boost);
1618 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1619 sbr->gain[e][m] *= gain_boost;
1620 sbr->q_m[e][m] *= gain_boost;
1621 sbr->s_m[e][m] *= gain_boost;
1622 }
1623 }
1624 }
1625 }
1626
1627 /// Assembling HF Signals (14496-3 sp04 p220)
1628 static void sbr_hf_assemble(float Y[2][38][64][2], const float X_high[64][40][2],
1629 SpectralBandReplication *sbr, SBRData *ch_data,
1630 const int e_a[2])
1631 {
1632 int e, i, j, m;
1633 const int h_SL = 4 * !sbr->bs_smoothing_mode;
1634 const int kx = sbr->kx[1];
1635 const int m_max = sbr->m[1];
1636 static const float h_smooth[5] = {
1637 0.33333333333333,
1638 0.30150283239582,
1639 0.21816949906249,
1640 0.11516383427084,
1641 0.03183050093751,
1642 };
1643 static const int8_t phi[2][4] = {
1644 { 1, 0, -1, 0}, // real
1645 { 0, 1, 0, -1}, // imaginary
1646 };
1647 float (*g_temp)[48] = ch_data->g_temp, (*q_temp)[48] = ch_data->q_temp;
1648 int indexnoise = ch_data->f_indexnoise;
1649 int indexsine = ch_data->f_indexsine;
1650 memcpy(Y[0], Y[1], sizeof(Y[0]));
1651
1652 if (sbr->reset) {
1653 for (i = 0; i < h_SL; i++) {
1654 memcpy(g_temp[i + 2*ch_data->t_env[0]], sbr->gain[0], m_max * sizeof(sbr->gain[0][0]));
1655 memcpy(q_temp[i + 2*ch_data->t_env[0]], sbr->q_m[0], m_max * sizeof(sbr->q_m[0][0]));
1656 }
1657 } else if (h_SL) {
1658 memcpy(g_temp[2*ch_data->t_env[0]], g_temp[2*ch_data->t_env_num_env_old], 4*sizeof(g_temp[0]));
1659 memcpy(q_temp[2*ch_data->t_env[0]], q_temp[2*ch_data->t_env_num_env_old], 4*sizeof(q_temp[0]));
1660 }
1661
1662 for (e = 0; e < ch_data->bs_num_env[1]; e++) {
1663 for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
1664 memcpy(g_temp[h_SL + i], sbr->gain[e], m_max * sizeof(sbr->gain[0][0]));
1665 memcpy(q_temp[h_SL + i], sbr->q_m[e], m_max * sizeof(sbr->q_m[0][0]));
1666 }
1667 }
1668
1669 for (e = 0; e < ch_data->bs_num_env[1]; e++) {
1670 for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
1671 int phi_sign = (1 - 2*(kx & 1));
1672
1673 if (h_SL && e != e_a[0] && e != e_a[1]) {
1674 for (m = 0; m < m_max; m++) {
1675 const int idx1 = i + h_SL;
1676 float g_filt = 0.0f;
1677 for (j = 0; j <= h_SL; j++)
1678 g_filt += g_temp[idx1 - j][m] * h_smooth[j];
1679 Y[1][i][m + kx][0] =
1680 X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][0] * g_filt;
1681 Y[1][i][m + kx][1] =
1682 X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][1] * g_filt;
1683 }
1684 } else {
1685 for (m = 0; m < m_max; m++) {
1686 const float g_filt = g_temp[i + h_SL][m];
1687 Y[1][i][m + kx][0] =
1688 X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][0] * g_filt;
1689 Y[1][i][m + kx][1] =
1690 X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][1] * g_filt;
1691 }
1692 }
1693
1694 if (e != e_a[0] && e != e_a[1]) {
1695 for (m = 0; m < m_max; m++) {
1696 indexnoise = (indexnoise + 1) & 0x1ff;
1697 if (sbr->s_m[e][m]) {
1698 Y[1][i][m + kx][0] +=
1699 sbr->s_m[e][m] * phi[0][indexsine];
1700 Y[1][i][m + kx][1] +=
1701 sbr->s_m[e][m] * (phi[1][indexsine] * phi_sign);
1702 } else {
1703 float q_filt;
1704 if (h_SL) {
1705 const int idx1 = i + h_SL;
1706 q_filt = 0.0f;
1707 for (j = 0; j <= h_SL; j++)
1708 q_filt += q_temp[idx1 - j][m] * h_smooth[j];
1709 } else {
1710 q_filt = q_temp[i][m];
1711 }
1712 Y[1][i][m + kx][0] +=
1713 q_filt * sbr_noise_table[indexnoise][0];
1714 Y[1][i][m + kx][1] +=
1715 q_filt * sbr_noise_table[indexnoise][1];
1716 }
1717 phi_sign = -phi_sign;
1718 }
1719 } else {
1720 indexnoise = (indexnoise + m_max) & 0x1ff;
1721 for (m = 0; m < m_max; m++) {
1722 Y[1][i][m + kx][0] +=
1723 sbr->s_m[e][m] * phi[0][indexsine];
1724 Y[1][i][m + kx][1] +=
1725 sbr->s_m[e][m] * (phi[1][indexsine] * phi_sign);
1726 phi_sign = -phi_sign;
1727 }
1728 }
1729 indexsine = (indexsine + 1) & 3;
1730 }
1731 }
1732 ch_data->f_indexnoise = indexnoise;
1733 ch_data->f_indexsine = indexsine;
1734 }
1735
1736 void ff_sbr_dequant(AACContext *ac, SpectralBandReplication *sbr, int id_aac)
1737 {
1738 if (sbr->start) {
1739 sbr_dequant(sbr, id_aac);
1740 }
1741 }
1742
1743 void ff_sbr_apply(AACContext *ac, SpectralBandReplication *sbr, int ch,
1744 const float* in, float* out)
1745 {
1746 int downsampled = ac->m4ac.ext_sample_rate < sbr->sample_rate;
1747
1748 /* decode channel */
1749 sbr_qmf_analysis(&ac->dsp, &sbr->rdft, in, sbr->data[ch].analysis_filterbank_samples,
1750 (float*)sbr->qmf_filter_scratch,
1751 sbr->data[ch].W, ac->add_bias, 1/(-1024 * ac->sf_scale));
1752 sbr_lf_gen(ac, sbr, sbr->X_low, sbr->data[ch].W);
1753 if (sbr->start) {
1754 sbr_hf_inverse_filter(sbr->alpha0, sbr->alpha1, sbr->X_low, sbr->k[0]);
1755 sbr_chirp(sbr, &sbr->data[ch]);
1756 sbr_hf_gen(ac, sbr, sbr->X_high, sbr->X_low, sbr->alpha0, sbr->alpha1,
1757 sbr->data[ch].bw_array, sbr->data[ch].t_env,
1758 sbr->data[ch].bs_num_env[1]);
1759
1760 // hf_adj
1761 sbr_mapping(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
1762 sbr_env_estimate(sbr->e_curr, sbr->X_high, sbr, &sbr->data[ch]);
1763 sbr_gain_calc(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
1764 sbr_hf_assemble(sbr->data[ch].Y, sbr->X_high, sbr, &sbr->data[ch],
1765 sbr->data[ch].e_a);
1766 }
1767
1768 /* synthesis */
1769 sbr_x_gen(sbr, sbr->X, sbr->X_low, sbr->data[ch].Y, ch);
1770 sbr_qmf_synthesis(&ac->dsp, &sbr->mdct, out, sbr->X, sbr->qmf_filter_scratch,
1771 sbr->data[ch].synthesis_filterbank_samples,
1772 &sbr->data[ch].synthesis_filterbank_samples_offset,
1773 downsampled,
1774 ac->add_bias, -1024 * ac->sf_scale);
1775 }