aacsbr: read bs_rel_bord directly into t_env.
[libav.git] / libavcodec / aacsbr.c
1 /*
2 * AAC Spectral Band Replication decoding functions
3 * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
4 * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
5 *
6 * This file is part of FFmpeg.
7 *
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23 /**
24 * @file libavcodec/aacsbr.c
25 * AAC Spectral Band Replication decoding functions
26 * @author Robert Swain ( rob opendot cl )
27 */
28
29 #include "aac.h"
30 #include "sbr.h"
31 #include "aacsbr.h"
32 #include "aacsbrdata.h"
33 #include "fft.h"
34
35 #include <stdint.h>
36 #include <float.h>
37
38 #define ENVELOPE_ADJUSTMENT_OFFSET 2
39 #define NOISE_FLOOR_OFFSET 6.0f
40
41 /**
42 * SBR VLC tables
43 */
44 enum {
45 T_HUFFMAN_ENV_1_5DB,
46 F_HUFFMAN_ENV_1_5DB,
47 T_HUFFMAN_ENV_BAL_1_5DB,
48 F_HUFFMAN_ENV_BAL_1_5DB,
49 T_HUFFMAN_ENV_3_0DB,
50 F_HUFFMAN_ENV_3_0DB,
51 T_HUFFMAN_ENV_BAL_3_0DB,
52 F_HUFFMAN_ENV_BAL_3_0DB,
53 T_HUFFMAN_NOISE_3_0DB,
54 T_HUFFMAN_NOISE_BAL_3_0DB,
55 };
56
57 /**
58 * bs_frame_class - frame class of current SBR frame (14496-3 sp04 p98)
59 */
60 enum {
61 FIXFIX,
62 FIXVAR,
63 VARFIX,
64 VARVAR,
65 };
66
67 enum {
68 EXTENSION_ID_PS = 2,
69 };
70
71 static VLC vlc_sbr[10];
72 static const int8_t vlc_sbr_lav[10] =
73 { 60, 60, 24, 24, 31, 31, 12, 12, 31, 12 };
74 static DECLARE_ALIGNED(16, float, analysis_cos_pre)[64];
75 static DECLARE_ALIGNED(16, float, analysis_sin_pre)[64];
76 static DECLARE_ALIGNED(16, float, analysis_cossin_post)[32][2];
77 static const DECLARE_ALIGNED(16, float, zero64)[64];
78
79 #define SBR_INIT_VLC_STATIC(num, size) \
80 INIT_VLC_STATIC(&vlc_sbr[num], 9, sbr_tmp[num].table_size / sbr_tmp[num].elem_size, \
81 sbr_tmp[num].sbr_bits , 1, 1, \
82 sbr_tmp[num].sbr_codes, sbr_tmp[num].elem_size, sbr_tmp[num].elem_size, \
83 size)
84
85 #define SBR_VLC_ROW(name) \
86 { name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) }
87
88 av_cold void ff_aac_sbr_init(void)
89 {
90 int n, k;
91 static const struct {
92 const void *sbr_codes, *sbr_bits;
93 const unsigned int table_size, elem_size;
94 } sbr_tmp[] = {
95 SBR_VLC_ROW(t_huffman_env_1_5dB),
96 SBR_VLC_ROW(f_huffman_env_1_5dB),
97 SBR_VLC_ROW(t_huffman_env_bal_1_5dB),
98 SBR_VLC_ROW(f_huffman_env_bal_1_5dB),
99 SBR_VLC_ROW(t_huffman_env_3_0dB),
100 SBR_VLC_ROW(f_huffman_env_3_0dB),
101 SBR_VLC_ROW(t_huffman_env_bal_3_0dB),
102 SBR_VLC_ROW(f_huffman_env_bal_3_0dB),
103 SBR_VLC_ROW(t_huffman_noise_3_0dB),
104 SBR_VLC_ROW(t_huffman_noise_bal_3_0dB),
105 };
106
107 // SBR VLC table initialization
108 SBR_INIT_VLC_STATIC(0, 1098);
109 SBR_INIT_VLC_STATIC(1, 1092);
110 SBR_INIT_VLC_STATIC(2, 768);
111 SBR_INIT_VLC_STATIC(3, 1026);
112 SBR_INIT_VLC_STATIC(4, 1058);
113 SBR_INIT_VLC_STATIC(5, 1052);
114 SBR_INIT_VLC_STATIC(6, 544);
115 SBR_INIT_VLC_STATIC(7, 544);
116 SBR_INIT_VLC_STATIC(8, 592);
117 SBR_INIT_VLC_STATIC(9, 512);
118
119 for (n = 0; n < 64; n++) {
120 float pre = M_PI * n / 64;
121 analysis_cos_pre[n] = cosf(pre);
122 analysis_sin_pre[n] = sinf(pre);
123 }
124 for (k = 0; k < 32; k++) {
125 float post = M_PI * (k + 0.5) / 128;
126 analysis_cossin_post[k][0] = 4.0 * cosf(post);
127 analysis_cossin_post[k][1] = -4.0 * sinf(post);
128 }
129 for (n = 1; n < 320; n++)
130 sbr_qmf_window_us[320 + n] = sbr_qmf_window_us[320 - n];
131 sbr_qmf_window_us[384] = -sbr_qmf_window_us[384];
132 sbr_qmf_window_us[512] = -sbr_qmf_window_us[512];
133
134 for (n = 0; n < 320; n++)
135 sbr_qmf_window_ds[n] = sbr_qmf_window_us[2*n];
136 }
137
138 av_cold void ff_aac_sbr_ctx_init(SpectralBandReplication *sbr)
139 {
140 sbr->kx[0] = sbr->kx[1] = 32; //Typo in spec, kx' inits to 32
141 sbr->data[0].e_a[1] = sbr->data[1].e_a[1] = -1;
142 sbr->data[0].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
143 sbr->data[1].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
144 ff_mdct_init(&sbr->mdct, 7, 1, 1.0/64);
145 ff_rdft_init(&sbr->rdft, 6, IDFT_R2C);
146 }
147
148 av_cold void ff_aac_sbr_ctx_close(SpectralBandReplication *sbr)
149 {
150 ff_mdct_end(&sbr->mdct);
151 ff_rdft_end(&sbr->rdft);
152 }
153
154 static int qsort_comparison_function_int16(const void *a, const void *b)
155 {
156 return *(const int16_t *)a - *(const int16_t *)b;
157 }
158
159 static inline int in_table_int16(const int16_t *table, int last_el, int16_t needle)
160 {
161 int i;
162 for (i = 0; i <= last_el; i++)
163 if (table[i] == needle)
164 return 1;
165 return 0;
166 }
167
168 /// Limiter Frequency Band Table (14496-3 sp04 p198)
169 static void sbr_make_f_tablelim(SpectralBandReplication *sbr)
170 {
171 int k;
172 if (sbr->bs_limiter_bands > 0) {
173 static const float bands_warped[3] = { 1.32715174233856803909f, //2^(0.49/1.2)
174 1.18509277094158210129f, //2^(0.49/2)
175 1.11987160404675912501f }; //2^(0.49/3)
176 const float lim_bands_per_octave_warped = bands_warped[sbr->bs_limiter_bands - 1];
177 int16_t patch_borders[5];
178 uint16_t *in = sbr->f_tablelim + 1, *out = sbr->f_tablelim;
179
180 patch_borders[0] = sbr->kx[1];
181 for (k = 1; k <= sbr->num_patches; k++)
182 patch_borders[k] = patch_borders[k-1] + sbr->patch_num_subbands[k-1];
183
184 memcpy(sbr->f_tablelim, sbr->f_tablelow,
185 (sbr->n[0] + 1) * sizeof(sbr->f_tablelow[0]));
186 if (sbr->num_patches > 1)
187 memcpy(sbr->f_tablelim + sbr->n[0] + 1, patch_borders + 1,
188 (sbr->num_patches - 1) * sizeof(patch_borders[0]));
189
190 qsort(sbr->f_tablelim, sbr->num_patches + sbr->n[0],
191 sizeof(sbr->f_tablelim[0]),
192 qsort_comparison_function_int16);
193
194 sbr->n_lim = sbr->n[0] + sbr->num_patches - 1;
195 while (out < sbr->f_tablelim + sbr->n_lim) {
196 if (*in >= *out * lim_bands_per_octave_warped) {
197 *++out = *in++;
198 } else if (*in == *out ||
199 !in_table_int16(patch_borders, sbr->num_patches, *in)) {
200 in++;
201 sbr->n_lim--;
202 } else if (!in_table_int16(patch_borders, sbr->num_patches, *out)) {
203 *out = *in++;
204 sbr->n_lim--;
205 } else {
206 *++out = *in++;
207 }
208 }
209 } else {
210 sbr->f_tablelim[0] = sbr->f_tablelow[0];
211 sbr->f_tablelim[1] = sbr->f_tablelow[sbr->n[0]];
212 sbr->n_lim = 1;
213 }
214 }
215
216 static unsigned int read_sbr_header(SpectralBandReplication *sbr, GetBitContext *gb)
217 {
218 unsigned int cnt = get_bits_count(gb);
219 uint8_t bs_header_extra_1;
220 uint8_t bs_header_extra_2;
221 int old_bs_limiter_bands = sbr->bs_limiter_bands;
222 SpectrumParameters old_spectrum_params;
223
224 sbr->start = 1;
225
226 // Save last spectrum parameters variables to compare to new ones
227 memcpy(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters));
228
229 sbr->bs_amp_res_header = get_bits1(gb);
230 sbr->spectrum_params.bs_start_freq = get_bits(gb, 4);
231 sbr->spectrum_params.bs_stop_freq = get_bits(gb, 4);
232 sbr->spectrum_params.bs_xover_band = get_bits(gb, 3);
233 skip_bits(gb, 2); // bs_reserved
234
235 bs_header_extra_1 = get_bits1(gb);
236 bs_header_extra_2 = get_bits1(gb);
237
238 if (bs_header_extra_1) {
239 sbr->spectrum_params.bs_freq_scale = get_bits(gb, 2);
240 sbr->spectrum_params.bs_alter_scale = get_bits1(gb);
241 sbr->spectrum_params.bs_noise_bands = get_bits(gb, 2);
242 } else {
243 sbr->spectrum_params.bs_freq_scale = 2;
244 sbr->spectrum_params.bs_alter_scale = 1;
245 sbr->spectrum_params.bs_noise_bands = 2;
246 }
247
248 // Check if spectrum parameters changed
249 if (memcmp(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters)))
250 sbr->reset = 1;
251
252 if (bs_header_extra_2) {
253 sbr->bs_limiter_bands = get_bits(gb, 2);
254 sbr->bs_limiter_gains = get_bits(gb, 2);
255 sbr->bs_interpol_freq = get_bits1(gb);
256 sbr->bs_smoothing_mode = get_bits1(gb);
257 } else {
258 sbr->bs_limiter_bands = 2;
259 sbr->bs_limiter_gains = 2;
260 sbr->bs_interpol_freq = 1;
261 sbr->bs_smoothing_mode = 1;
262 }
263
264 if (sbr->bs_limiter_bands != old_bs_limiter_bands && !sbr->reset)
265 sbr_make_f_tablelim(sbr);
266
267 return get_bits_count(gb) - cnt;
268 }
269
270 static int array_min_int16(const int16_t *array, int nel)
271 {
272 int i, min = array[0];
273 for (i = 1; i < nel; i++)
274 min = FFMIN(array[i], min);
275 return min;
276 }
277
278 static void make_bands(int16_t* bands, int start, int stop, int num_bands)
279 {
280 int k, previous, present;
281 float base, prod;
282
283 base = powf((float)stop / start, 1.0f / num_bands);
284 prod = start;
285 previous = start;
286
287 for (k = 0; k < num_bands-1; k++) {
288 prod *= base;
289 present = lrintf(prod);
290 bands[k] = present - previous;
291 previous = present;
292 }
293 bands[num_bands-1] = stop - previous;
294 }
295
296 static int check_n_master(AVCodecContext *avccontext, int n_master, int bs_xover_band)
297 {
298 // Requirements (14496-3 sp04 p205)
299 if (n_master <= 0) {
300 av_log(avccontext, AV_LOG_ERROR, "Invalid n_master: %d\n", n_master);
301 return -1;
302 }
303 if (bs_xover_band >= n_master) {
304 av_log(avccontext, AV_LOG_ERROR,
305 "Invalid bitstream, crossover band index beyond array bounds: %d\n",
306 bs_xover_band);
307 return -1;
308 }
309 return 0;
310 }
311
312 /// Master Frequency Band Table (14496-3 sp04 p194)
313 static int sbr_make_f_master(AACContext *ac, SpectralBandReplication *sbr,
314 SpectrumParameters *spectrum)
315 {
316 unsigned int temp, max_qmf_subbands;
317 unsigned int start_min, stop_min;
318 int k;
319 const int8_t *sbr_offset_ptr;
320 int16_t stop_dk[13];
321
322 if (sbr->sample_rate < 32000) {
323 temp = 3000;
324 } else if (sbr->sample_rate < 64000) {
325 temp = 4000;
326 } else
327 temp = 5000;
328
329 start_min = ((temp << 7) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
330 stop_min = ((temp << 8) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
331
332 switch (sbr->sample_rate) {
333 case 16000:
334 sbr_offset_ptr = sbr_offset[0];
335 break;
336 case 22050:
337 sbr_offset_ptr = sbr_offset[1];
338 break;
339 case 24000:
340 sbr_offset_ptr = sbr_offset[2];
341 break;
342 case 32000:
343 sbr_offset_ptr = sbr_offset[3];
344 break;
345 case 44100: case 48000: case 64000:
346 sbr_offset_ptr = sbr_offset[4];
347 break;
348 case 88200: case 96000: case 128000: case 176400: case 192000:
349 sbr_offset_ptr = sbr_offset[5];
350 break;
351 default:
352 av_log(ac->avccontext, AV_LOG_ERROR,
353 "Unsupported sample rate for SBR: %d\n", sbr->sample_rate);
354 return -1;
355 }
356
357 sbr->k[0] = start_min + sbr_offset_ptr[spectrum->bs_start_freq];
358
359 if (spectrum->bs_stop_freq < 14) {
360 sbr->k[2] = stop_min;
361 make_bands(stop_dk, stop_min, 64, 13);
362 qsort(stop_dk, 13, sizeof(stop_dk[0]), qsort_comparison_function_int16);
363 for (k = 0; k < spectrum->bs_stop_freq; k++)
364 sbr->k[2] += stop_dk[k];
365 } else if (spectrum->bs_stop_freq == 14) {
366 sbr->k[2] = 2*sbr->k[0];
367 } else if (spectrum->bs_stop_freq == 15) {
368 sbr->k[2] = 3*sbr->k[0];
369 } else {
370 av_log(ac->avccontext, AV_LOG_ERROR,
371 "Invalid bs_stop_freq: %d\n", spectrum->bs_stop_freq);
372 return -1;
373 }
374 sbr->k[2] = FFMIN(64, sbr->k[2]);
375
376 // Requirements (14496-3 sp04 p205)
377 if (sbr->sample_rate <= 32000) {
378 max_qmf_subbands = 48;
379 } else if (sbr->sample_rate == 44100) {
380 max_qmf_subbands = 35;
381 } else if (sbr->sample_rate >= 48000)
382 max_qmf_subbands = 32;
383
384 if (sbr->k[2] - sbr->k[0] > max_qmf_subbands) {
385 av_log(ac->avccontext, AV_LOG_ERROR,
386 "Invalid bitstream, too many QMF subbands: %d\n", sbr->k[2] - sbr->k[0]);
387 return -1;
388 }
389
390 if (!spectrum->bs_freq_scale) {
391 unsigned int dk;
392 int k2diff;
393
394 dk = spectrum->bs_alter_scale + 1;
395 sbr->n_master = ((sbr->k[2] - sbr->k[0] + (dk&2)) >> dk) << 1;
396 if (check_n_master(ac->avccontext, sbr->n_master, sbr->spectrum_params.bs_xover_band))
397 return -1;
398
399 for (k = 1; k <= sbr->n_master; k++)
400 sbr->f_master[k] = dk;
401
402 k2diff = sbr->k[2] - sbr->k[0] - sbr->n_master * dk;
403 if (k2diff < 0) {
404 sbr->f_master[1]--;
405 sbr->f_master[2]-= (k2diff < 1);
406 } else if (k2diff) {
407 sbr->f_master[sbr->n_master]++;
408 }
409
410 sbr->f_master[0] = sbr->k[0];
411 for (k = 1; k <= sbr->n_master; k++)
412 sbr->f_master[k] += sbr->f_master[k - 1];
413
414 } else {
415 int half_bands = 7 - spectrum->bs_freq_scale; // bs_freq_scale = {1,2,3}
416 int two_regions, num_bands_0;
417 int vdk0_max, vdk1_min;
418 int16_t vk0[49];
419
420 if (49 * sbr->k[2] > 110 * sbr->k[0]) {
421 two_regions = 1;
422 sbr->k[1] = 2 * sbr->k[0];
423 } else {
424 two_regions = 0;
425 sbr->k[1] = sbr->k[2];
426 }
427
428 num_bands_0 = lrintf(half_bands * log2f(sbr->k[1] / (float)sbr->k[0])) * 2;
429
430 if (num_bands_0 <= 0) { // Requirements (14496-3 sp04 p205)
431 av_log(ac->avccontext, AV_LOG_ERROR, "Invalid num_bands_0: %d\n", num_bands_0);
432 return -1;
433 }
434
435 vk0[0] = 0;
436
437 make_bands(vk0+1, sbr->k[0], sbr->k[1], num_bands_0);
438
439 qsort(vk0 + 1, num_bands_0, sizeof(vk0[1]), qsort_comparison_function_int16);
440 vdk0_max = vk0[num_bands_0];
441
442 vk0[0] = sbr->k[0];
443 for (k = 1; k <= num_bands_0; k++) {
444 if (vk0[k] <= 0) { // Requirements (14496-3 sp04 p205)
445 av_log(ac->avccontext, AV_LOG_ERROR, "Invalid vDk0[%d]: %d\n", k, vk0[k]);
446 return -1;
447 }
448 vk0[k] += vk0[k-1];
449 }
450
451 if (two_regions) {
452 int16_t vk1[49];
453 float invwarp = spectrum->bs_alter_scale ? 0.76923076923076923077f
454 : 1.0f; // bs_alter_scale = {0,1}
455 int num_bands_1 = lrintf(half_bands * invwarp *
456 log2f(sbr->k[2] / (float)sbr->k[1])) * 2;
457
458 make_bands(vk1+1, sbr->k[1], sbr->k[2], num_bands_1);
459
460 vdk1_min = array_min_int16(vk1 + 1, num_bands_1);
461
462 if (vdk1_min < vdk0_max) {
463 int change;
464 qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
465 change = FFMIN(vdk0_max - vk1[1], (vk1[num_bands_1] - vk1[1]) >> 1);
466 vk1[1] += change;
467 vk1[num_bands_1] -= change;
468 }
469
470 qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
471
472 vk1[0] = sbr->k[1];
473 for (k = 1; k <= num_bands_1; k++) {
474 if (vk1[k] <= 0) { // Requirements (14496-3 sp04 p205)
475 av_log(ac->avccontext, AV_LOG_ERROR, "Invalid vDk1[%d]: %d\n", k, vk1[k]);
476 return -1;
477 }
478 vk1[k] += vk1[k-1];
479 }
480
481 sbr->n_master = num_bands_0 + num_bands_1;
482 if (check_n_master(ac->avccontext, sbr->n_master, sbr->spectrum_params.bs_xover_band))
483 return -1;
484 memcpy(&sbr->f_master[0], vk0,
485 (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
486 memcpy(&sbr->f_master[num_bands_0 + 1], vk1 + 1,
487 num_bands_1 * sizeof(sbr->f_master[0]));
488
489 } else {
490 sbr->n_master = num_bands_0;
491 if (check_n_master(ac->avccontext, sbr->n_master, sbr->spectrum_params.bs_xover_band))
492 return -1;
493 memcpy(sbr->f_master, vk0, (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
494 }
495 }
496
497 return 0;
498 }
499
500 /// High Frequency Generation - Patch Construction (14496-3 sp04 p216 fig. 4.46)
501 static int sbr_hf_calc_npatches(AACContext *ac, SpectralBandReplication *sbr)
502 {
503 int i, k, sb = 0;
504 int msb = sbr->k[0];
505 int usb = sbr->kx[1];
506 int goal_sb = ((1000 << 11) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
507
508 sbr->num_patches = 0;
509
510 if (goal_sb < sbr->kx[1] + sbr->m[1]) {
511 for (k = 0; sbr->f_master[k] < goal_sb; k++) ;
512 } else
513 k = sbr->n_master;
514
515 do {
516 int odd = 0;
517 for (i = k; i == k || sb > (sbr->k[0] - 1 + msb - odd); i--) {
518 sb = sbr->f_master[i];
519 odd = (sb + sbr->k[0]) & 1;
520 }
521
522 sbr->patch_num_subbands[sbr->num_patches] = FFMAX(sb - usb, 0);
523 sbr->patch_start_subband[sbr->num_patches] = sbr->k[0] - odd - sbr->patch_num_subbands[sbr->num_patches];
524
525 if (sbr->patch_num_subbands[sbr->num_patches] > 0) {
526 usb = sb;
527 msb = sb;
528 sbr->num_patches++;
529 } else
530 msb = sbr->kx[1];
531
532 if (sbr->f_master[k] - sb < 3)
533 k = sbr->n_master;
534 } while (sb != sbr->kx[1] + sbr->m[1]);
535
536 if (sbr->patch_num_subbands[sbr->num_patches-1] < 3 && sbr->num_patches > 1)
537 sbr->num_patches--;
538
539 // Requirements (14496-3 sp04 p205) sets the maximum number of patches to 5
540 // However the Coding Technologies decoder check uses 6 patches
541 if (sbr->num_patches > 6) {
542 av_log(ac->avccontext, AV_LOG_ERROR, "Too many patches: %d\n", sbr->num_patches);
543 return -1;
544 }
545
546 return 0;
547 }
548
549 /// Derived Frequency Band Tables (14496-3 sp04 p197)
550 static int sbr_make_f_derived(AACContext *ac, SpectralBandReplication *sbr)
551 {
552 int k, temp;
553
554 sbr->n[1] = sbr->n_master - sbr->spectrum_params.bs_xover_band;
555 sbr->n[0] = (sbr->n[1] + 1) >> 1;
556
557 memcpy(sbr->f_tablehigh, &sbr->f_master[sbr->spectrum_params.bs_xover_band],
558 (sbr->n[1] + 1) * sizeof(sbr->f_master[0]));
559 sbr->m[1] = sbr->f_tablehigh[sbr->n[1]] - sbr->f_tablehigh[0];
560 sbr->kx[1] = sbr->f_tablehigh[0];
561
562 // Requirements (14496-3 sp04 p205)
563 if (sbr->kx[1] + sbr->m[1] > 64) {
564 av_log(ac->avccontext, AV_LOG_ERROR,
565 "Stop frequency border too high: %d\n", sbr->kx[1] + sbr->m[1]);
566 return -1;
567 }
568 if (sbr->kx[1] > 32) {
569 av_log(ac->avccontext, AV_LOG_ERROR, "Start frequency border too high: %d\n", sbr->kx[1]);
570 return -1;
571 }
572
573 sbr->f_tablelow[0] = sbr->f_tablehigh[0];
574 temp = sbr->n[1] & 1;
575 for (k = 1; k <= sbr->n[0]; k++)
576 sbr->f_tablelow[k] = sbr->f_tablehigh[2 * k - temp];
577
578 sbr->n_q = FFMAX(1, lrintf(sbr->spectrum_params.bs_noise_bands *
579 log2f(sbr->k[2] / (float)sbr->kx[1]))); // 0 <= bs_noise_bands <= 3
580 if (sbr->n_q > 5) {
581 av_log(ac->avccontext, AV_LOG_ERROR, "Too many noise floor scale factors: %d\n", sbr->n_q);
582 return -1;
583 }
584
585 sbr->f_tablenoise[0] = sbr->f_tablelow[0];
586 temp = 0;
587 for (k = 1; k <= sbr->n_q; k++) {
588 temp += (sbr->n[0] - temp) / (sbr->n_q + 1 - k);
589 sbr->f_tablenoise[k] = sbr->f_tablelow[temp];
590 }
591
592 if (sbr_hf_calc_npatches(ac, sbr) < 0)
593 return -1;
594
595 sbr_make_f_tablelim(sbr);
596
597 sbr->data[0].f_indexnoise = 0;
598 sbr->data[1].f_indexnoise = 0;
599
600 return 0;
601 }
602
603 static av_always_inline void get_bits1_vector(GetBitContext *gb, uint8_t *vec,
604 int elements)
605 {
606 int i;
607 for (i = 0; i < elements; i++) {
608 vec[i] = get_bits1(gb);
609 }
610 }
611
612 /** ceil(log2(index+1)) */
613 static const int8_t ceil_log2[] = {
614 0, 1, 2, 2, 3, 3,
615 };
616
617 static int read_sbr_grid(AACContext *ac, SpectralBandReplication *sbr,
618 GetBitContext *gb, SBRData *ch_data)
619 {
620 int i;
621 unsigned bs_pointer;
622 // frameLengthFlag ? 15 : 16; 960 sample length frames unsupported; this value is numTimeSlots
623 int abs_bord_trail = 16;
624 int num_rel_lead, num_rel_trail;
625 unsigned bs_num_env_old = ch_data->bs_num_env;
626
627 ch_data->bs_freq_res[0] = ch_data->bs_freq_res[ch_data->bs_num_env];
628 ch_data->bs_amp_res = sbr->bs_amp_res_header;
629 ch_data->t_env_num_env_old = ch_data->t_env[bs_num_env_old];
630
631 switch (ch_data->bs_frame_class = get_bits(gb, 2)) {
632 case FIXFIX:
633 ch_data->bs_num_env = 1 << get_bits(gb, 2);
634 num_rel_lead = ch_data->bs_num_env - 1;
635 if (ch_data->bs_num_env == 1)
636 ch_data->bs_amp_res = 0;
637
638 if (ch_data->bs_num_env > 4) {
639 av_log(ac->avccontext, AV_LOG_ERROR,
640 "Invalid bitstream, too many SBR envelopes in FIXFIX type SBR frame: %d\n",
641 ch_data->bs_num_env);
642 return -1;
643 }
644
645 ch_data->t_env[0] = 0;
646 ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
647
648 abs_bord_trail = (abs_bord_trail + (ch_data->bs_num_env >> 1)) /
649 ch_data->bs_num_env;
650 for (i = 0; i < num_rel_lead; i++)
651 ch_data->t_env[i + 1] = ch_data->t_env[i] + abs_bord_trail;
652
653 bs_pointer = 0;
654
655 ch_data->bs_freq_res[1] = get_bits1(gb);
656 for (i = 1; i < ch_data->bs_num_env; i++)
657 ch_data->bs_freq_res[i + 1] = ch_data->bs_freq_res[1];
658 break;
659 case FIXVAR:
660 abs_bord_trail += get_bits(gb, 2);
661 num_rel_trail = get_bits(gb, 2);
662 num_rel_lead = 0;
663 ch_data->bs_num_env = num_rel_trail + 1;
664 ch_data->t_env[0] = 0;
665 ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
666
667 for (i = 0; i < num_rel_trail; i++)
668 ch_data->t_env[ch_data->bs_num_env - 1 - i] = ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
669
670 bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
671
672 for (i = 0; i < ch_data->bs_num_env; i++)
673 ch_data->bs_freq_res[ch_data->bs_num_env - i] = get_bits1(gb);
674 break;
675 case VARFIX:
676 ch_data->t_env[0] = get_bits(gb, 2);
677 num_rel_lead = get_bits(gb, 2);
678 ch_data->bs_num_env = num_rel_lead + 1;
679 ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
680
681 for (i = 0; i < num_rel_lead; i++)
682 ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
683
684 bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
685
686 get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
687 break;
688 case VARVAR:
689 ch_data->t_env[0] = get_bits(gb, 2);
690 abs_bord_trail += get_bits(gb, 2);
691 num_rel_lead = get_bits(gb, 2);
692 num_rel_trail = get_bits(gb, 2);
693 ch_data->bs_num_env = num_rel_lead + num_rel_trail + 1;
694 ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
695
696 if (ch_data->bs_num_env > 5) {
697 av_log(ac->avccontext, AV_LOG_ERROR,
698 "Invalid bitstream, too many SBR envelopes in VARVAR type SBR frame: %d\n",
699 ch_data->bs_num_env);
700 return -1;
701 }
702
703 for (i = 0; i < num_rel_lead; i++)
704 ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
705 for (i = 0; i < num_rel_trail; i++)
706 ch_data->t_env[ch_data->bs_num_env - 1 - i] = ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
707
708 bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
709
710 get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
711 break;
712 }
713
714 if (bs_pointer > ch_data->bs_num_env + 1) {
715 av_log(ac->avccontext, AV_LOG_ERROR,
716 "Invalid bitstream, bs_pointer points to a middle noise border outside the time borders table: %d\n",
717 bs_pointer);
718 return -1;
719 }
720
721 ch_data->bs_num_noise = (ch_data->bs_num_env > 1) + 1;
722
723 ch_data->t_q[0] = ch_data->t_env[0];
724 if (ch_data->bs_num_noise > 1) {
725 unsigned int idx;
726 if (ch_data->bs_frame_class == FIXFIX) {
727 idx = ch_data->bs_num_env >> 1;
728 } else if (ch_data->bs_frame_class & 1) { // FIXVAR or VARVAR
729 idx = ch_data->bs_num_env - FFMAX(bs_pointer - 1, 1);
730 } else { // VARFIX
731 if (!bs_pointer)
732 idx = 1;
733 else if (bs_pointer == 1)
734 idx = ch_data->bs_num_env - 1;
735 else // bs_pointer > 1
736 idx = bs_pointer - 1;
737 }
738 ch_data->t_q[1] = ch_data->t_env[idx];
739 ch_data->t_q[2] = ch_data->t_env[ch_data->bs_num_env];
740 } else
741 ch_data->t_q[1] = ch_data->t_env[ch_data->bs_num_env];
742
743 ch_data->e_a[0] = -(ch_data->e_a[1] != bs_num_env_old); // l_APrev
744 ch_data->e_a[1] = -1;
745 if ((ch_data->bs_frame_class & 1) && bs_pointer) { // FIXVAR or VARVAR and bs_pointer != 0
746 ch_data->e_a[1] = ch_data->bs_num_env + 1 - bs_pointer;
747 } else if ((ch_data->bs_frame_class == 2) && (bs_pointer > 1)) // VARFIX and bs_pointer > 1
748 ch_data->e_a[1] = bs_pointer - 1;
749
750 return 0;
751 }
752
753 static void copy_sbr_grid(SBRData *dst, const SBRData *src) {
754 //These variables are saved from the previous frame rather than copied
755 dst->bs_freq_res[0] = dst->bs_freq_res[dst->bs_num_env];
756 dst->t_env_num_env_old = dst->t_env[dst->bs_num_env];
757 dst->e_a[0] = -(dst->e_a[1] != dst->bs_num_env);
758
759 //These variables are read from the bitstream and therefore copied
760 memcpy(dst->bs_freq_res+1, src->bs_freq_res+1, sizeof(dst->bs_freq_res)-sizeof(*dst->bs_freq_res));
761 memcpy(dst->t_env, src->t_env, sizeof(dst->t_env));
762 memcpy(dst->t_q, src->t_q, sizeof(dst->t_q));
763 dst->bs_num_env = src->bs_num_env;
764 dst->bs_amp_res = src->bs_amp_res;
765 dst->bs_num_noise = src->bs_num_noise;
766 dst->bs_frame_class = src->bs_frame_class;
767 dst->e_a[1] = src->e_a[1];
768 }
769
770 /// Read how the envelope and noise floor data is delta coded
771 static void read_sbr_dtdf(SpectralBandReplication *sbr, GetBitContext *gb,
772 SBRData *ch_data)
773 {
774 get_bits1_vector(gb, ch_data->bs_df_env, ch_data->bs_num_env);
775 get_bits1_vector(gb, ch_data->bs_df_noise, ch_data->bs_num_noise);
776 }
777
778 /// Read inverse filtering data
779 static void read_sbr_invf(SpectralBandReplication *sbr, GetBitContext *gb,
780 SBRData *ch_data)
781 {
782 int i;
783
784 memcpy(ch_data->bs_invf_mode[1], ch_data->bs_invf_mode[0], 5 * sizeof(uint8_t));
785 for (i = 0; i < sbr->n_q; i++)
786 ch_data->bs_invf_mode[0][i] = get_bits(gb, 2);
787 }
788
789 static void read_sbr_envelope(SpectralBandReplication *sbr, GetBitContext *gb,
790 SBRData *ch_data, int ch)
791 {
792 int bits;
793 int i, j, k;
794 VLC_TYPE (*t_huff)[2], (*f_huff)[2];
795 int t_lav, f_lav;
796 const int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
797 const int odd = sbr->n[1] & 1;
798
799 if (sbr->bs_coupling && ch) {
800 if (ch_data->bs_amp_res) {
801 bits = 5;
802 t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_3_0DB].table;
803 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_3_0DB];
804 f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
805 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
806 } else {
807 bits = 6;
808 t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_1_5DB].table;
809 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_1_5DB];
810 f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_1_5DB].table;
811 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_1_5DB];
812 }
813 } else {
814 if (ch_data->bs_amp_res) {
815 bits = 6;
816 t_huff = vlc_sbr[T_HUFFMAN_ENV_3_0DB].table;
817 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_3_0DB];
818 f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
819 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
820 } else {
821 bits = 7;
822 t_huff = vlc_sbr[T_HUFFMAN_ENV_1_5DB].table;
823 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_1_5DB];
824 f_huff = vlc_sbr[F_HUFFMAN_ENV_1_5DB].table;
825 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_1_5DB];
826 }
827 }
828
829 for (i = 0; i < ch_data->bs_num_env; i++) {
830 if (ch_data->bs_df_env[i]) {
831 // bs_freq_res[0] == bs_freq_res[bs_num_env] from prev frame
832 if (ch_data->bs_freq_res[i + 1] == ch_data->bs_freq_res[i]) {
833 for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
834 ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
835 } else if (ch_data->bs_freq_res[i + 1]) {
836 for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
837 k = (j + odd) >> 1; // find k such that f_tablelow[k] <= f_tablehigh[j] < f_tablelow[k + 1]
838 ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
839 }
840 } else {
841 for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
842 k = j ? 2*j - odd : 0; // find k such that f_tablehigh[k] == f_tablelow[j]
843 ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
844 }
845 }
846 } else {
847 ch_data->env_facs[i + 1][0] = delta * get_bits(gb, bits); // bs_env_start_value_balance
848 for (j = 1; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
849 ch_data->env_facs[i + 1][j] = ch_data->env_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
850 }
851 }
852
853 //assign 0th elements of env_facs from last elements
854 memcpy(ch_data->env_facs[0], ch_data->env_facs[ch_data->bs_num_env],
855 sizeof(ch_data->env_facs[0]));
856 }
857
858 static void read_sbr_noise(SpectralBandReplication *sbr, GetBitContext *gb,
859 SBRData *ch_data, int ch)
860 {
861 int i, j;
862 VLC_TYPE (*t_huff)[2], (*f_huff)[2];
863 int t_lav, f_lav;
864 int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
865
866 if (sbr->bs_coupling && ch) {
867 t_huff = vlc_sbr[T_HUFFMAN_NOISE_BAL_3_0DB].table;
868 t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_BAL_3_0DB];
869 f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
870 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
871 } else {
872 t_huff = vlc_sbr[T_HUFFMAN_NOISE_3_0DB].table;
873 t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_3_0DB];
874 f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
875 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
876 }
877
878 for (i = 0; i < ch_data->bs_num_noise; i++) {
879 if (ch_data->bs_df_noise[i]) {
880 for (j = 0; j < sbr->n_q; j++)
881 ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 2) - t_lav);
882 } else {
883 ch_data->noise_facs[i + 1][0] = delta * get_bits(gb, 5); // bs_noise_start_value_balance or bs_noise_start_value_level
884 for (j = 1; j < sbr->n_q; j++)
885 ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
886 }
887 }
888
889 //assign 0th elements of noise_facs from last elements
890 memcpy(ch_data->noise_facs[0], ch_data->noise_facs[ch_data->bs_num_noise],
891 sizeof(ch_data->noise_facs[0]));
892 }
893
894 static void read_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
895 GetBitContext *gb,
896 int bs_extension_id, int *num_bits_left)
897 {
898 //TODO - implement ps_data for parametric stereo parsing
899 switch (bs_extension_id) {
900 case EXTENSION_ID_PS:
901 #if 0
902 *num_bits_left -= ff_ps_data(gb, ps);
903 #else
904 av_log_missing_feature(ac->avccontext, "Parametric Stereo is", 0);
905 skip_bits_long(gb, *num_bits_left); // bs_fill_bits
906 *num_bits_left = 0;
907 #endif
908 break;
909 default:
910 av_log_missing_feature(ac->avccontext, "Reserved SBR extensions are", 1);
911 skip_bits_long(gb, *num_bits_left); // bs_fill_bits
912 *num_bits_left = 0;
913 break;
914 }
915 }
916
917 static int read_sbr_single_channel_element(AACContext *ac,
918 SpectralBandReplication *sbr,
919 GetBitContext *gb)
920 {
921 if (get_bits1(gb)) // bs_data_extra
922 skip_bits(gb, 4); // bs_reserved
923
924 if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
925 return -1;
926 read_sbr_dtdf(sbr, gb, &sbr->data[0]);
927 read_sbr_invf(sbr, gb, &sbr->data[0]);
928 read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
929 read_sbr_noise(sbr, gb, &sbr->data[0], 0);
930
931 if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
932 get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
933
934 return 0;
935 }
936
937 static int read_sbr_channel_pair_element(AACContext *ac,
938 SpectralBandReplication *sbr,
939 GetBitContext *gb)
940 {
941 if (get_bits1(gb)) // bs_data_extra
942 skip_bits(gb, 8); // bs_reserved
943
944 if ((sbr->bs_coupling = get_bits1(gb))) {
945 if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
946 return -1;
947 copy_sbr_grid(&sbr->data[1], &sbr->data[0]);
948 read_sbr_dtdf(sbr, gb, &sbr->data[0]);
949 read_sbr_dtdf(sbr, gb, &sbr->data[1]);
950 read_sbr_invf(sbr, gb, &sbr->data[0]);
951 memcpy(sbr->data[1].bs_invf_mode[1], sbr->data[1].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
952 memcpy(sbr->data[1].bs_invf_mode[0], sbr->data[0].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
953 read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
954 read_sbr_noise(sbr, gb, &sbr->data[0], 0);
955 read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
956 read_sbr_noise(sbr, gb, &sbr->data[1], 1);
957 } else {
958 if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]) ||
959 read_sbr_grid(ac, sbr, gb, &sbr->data[1]))
960 return -1;
961 read_sbr_dtdf(sbr, gb, &sbr->data[0]);
962 read_sbr_dtdf(sbr, gb, &sbr->data[1]);
963 read_sbr_invf(sbr, gb, &sbr->data[0]);
964 read_sbr_invf(sbr, gb, &sbr->data[1]);
965 read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
966 read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
967 read_sbr_noise(sbr, gb, &sbr->data[0], 0);
968 read_sbr_noise(sbr, gb, &sbr->data[1], 1);
969 }
970
971 if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
972 get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
973 if ((sbr->data[1].bs_add_harmonic_flag = get_bits1(gb)))
974 get_bits1_vector(gb, sbr->data[1].bs_add_harmonic, sbr->n[1]);
975
976 return 0;
977 }
978
979 static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr,
980 GetBitContext *gb, int id_aac)
981 {
982 unsigned int cnt = get_bits_count(gb);
983
984 if (id_aac == TYPE_SCE || id_aac == TYPE_CCE) {
985 if (read_sbr_single_channel_element(ac, sbr, gb)) {
986 sbr->start = 0;
987 return get_bits_count(gb) - cnt;
988 }
989 } else if (id_aac == TYPE_CPE) {
990 if (read_sbr_channel_pair_element(ac, sbr, gb)) {
991 sbr->start = 0;
992 return get_bits_count(gb) - cnt;
993 }
994 } else {
995 av_log(ac->avccontext, AV_LOG_ERROR,
996 "Invalid bitstream - cannot apply SBR to element type %d\n", id_aac);
997 sbr->start = 0;
998 return get_bits_count(gb) - cnt;
999 }
1000 if (get_bits1(gb)) { // bs_extended_data
1001 int num_bits_left = get_bits(gb, 4); // bs_extension_size
1002 if (num_bits_left == 15)
1003 num_bits_left += get_bits(gb, 8); // bs_esc_count
1004
1005 num_bits_left <<= 3;
1006 while (num_bits_left > 7) {
1007 num_bits_left -= 2;
1008 read_sbr_extension(ac, sbr, gb, get_bits(gb, 2), &num_bits_left); // bs_extension_id
1009 }
1010 }
1011
1012 return get_bits_count(gb) - cnt;
1013 }
1014
1015 static void sbr_reset(AACContext *ac, SpectralBandReplication *sbr)
1016 {
1017 int err;
1018 err = sbr_make_f_master(ac, sbr, &sbr->spectrum_params);
1019 if (err >= 0)
1020 err = sbr_make_f_derived(ac, sbr);
1021 if (err < 0) {
1022 av_log(ac->avccontext, AV_LOG_ERROR,
1023 "SBR reset failed. Switching SBR to pure upsampling mode.\n");
1024 sbr->start = 0;
1025 }
1026 }
1027
1028 /**
1029 * Decode Spectral Band Replication extension data; reference: table 4.55.
1030 *
1031 * @param crc flag indicating the presence of CRC checksum
1032 * @param cnt length of TYPE_FIL syntactic element in bytes
1033 *
1034 * @return Returns number of bytes consumed from the TYPE_FIL element.
1035 */
1036 int ff_decode_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
1037 GetBitContext *gb_host, int crc, int cnt, int id_aac)
1038 {
1039 unsigned int num_sbr_bits = 0, num_align_bits;
1040 unsigned bytes_read;
1041 GetBitContext gbc = *gb_host, *gb = &gbc;
1042 skip_bits_long(gb_host, cnt*8 - 4);
1043
1044 sbr->reset = 0;
1045
1046 if (!sbr->sample_rate)
1047 sbr->sample_rate = 2 * ac->m4ac.sample_rate; //TODO use the nominal sample rate for arbitrary sample rate support
1048 if (!ac->m4ac.ext_sample_rate)
1049 ac->m4ac.ext_sample_rate = 2 * ac->m4ac.sample_rate;
1050
1051 if (crc) {
1052 skip_bits(gb, 10); // bs_sbr_crc_bits; TODO - implement CRC check
1053 num_sbr_bits += 10;
1054 }
1055
1056 //Save some state from the previous frame.
1057 sbr->kx[0] = sbr->kx[1];
1058 sbr->m[0] = sbr->m[1];
1059
1060 num_sbr_bits++;
1061 if (get_bits1(gb)) // bs_header_flag
1062 num_sbr_bits += read_sbr_header(sbr, gb);
1063
1064 if (sbr->reset)
1065 sbr_reset(ac, sbr);
1066
1067 if (sbr->start)
1068 num_sbr_bits += read_sbr_data(ac, sbr, gb, id_aac);
1069
1070 num_align_bits = ((cnt << 3) - 4 - num_sbr_bits) & 7;
1071 bytes_read = ((num_sbr_bits + num_align_bits + 4) >> 3);
1072
1073 if (bytes_read > cnt) {
1074 av_log(ac->avccontext, AV_LOG_ERROR,
1075 "Expected to read %d SBR bytes actually read %d.\n", cnt, bytes_read);
1076 }
1077 return cnt;
1078 }
1079
1080 /// Dequantization and stereo decoding (14496-3 sp04 p203)
1081 static void sbr_dequant(SpectralBandReplication *sbr, int id_aac)
1082 {
1083 int k, e;
1084 int ch;
1085
1086 if (id_aac == TYPE_CPE && sbr->bs_coupling) {
1087 float alpha = sbr->data[0].bs_amp_res ? 1.0f : 0.5f;
1088 float pan_offset = sbr->data[0].bs_amp_res ? 12.0f : 24.0f;
1089 for (e = 1; e <= sbr->data[0].bs_num_env; e++) {
1090 for (k = 0; k < sbr->n[sbr->data[0].bs_freq_res[e]]; k++) {
1091 float temp1 = exp2f(sbr->data[0].env_facs[e][k] * alpha + 7.0f);
1092 float temp2 = exp2f((pan_offset - sbr->data[1].env_facs[e][k]) * alpha);
1093 float fac = temp1 / (1.0f + temp2);
1094 sbr->data[0].env_facs[e][k] = fac;
1095 sbr->data[1].env_facs[e][k] = fac * temp2;
1096 }
1097 }
1098 for (e = 1; e <= sbr->data[0].bs_num_noise; e++) {
1099 for (k = 0; k < sbr->n_q; k++) {
1100 float temp1 = exp2f(NOISE_FLOOR_OFFSET - sbr->data[0].noise_facs[e][k] + 1);
1101 float temp2 = exp2f(12 - sbr->data[1].noise_facs[e][k]);
1102 float fac = temp1 / (1.0f + temp2);
1103 sbr->data[0].noise_facs[e][k] = fac;
1104 sbr->data[1].noise_facs[e][k] = fac * temp2;
1105 }
1106 }
1107 } else { // SCE or one non-coupled CPE
1108 for (ch = 0; ch < (id_aac == TYPE_CPE) + 1; ch++) {
1109 float alpha = sbr->data[ch].bs_amp_res ? 1.0f : 0.5f;
1110 for (e = 1; e <= sbr->data[ch].bs_num_env; e++)
1111 for (k = 0; k < sbr->n[sbr->data[ch].bs_freq_res[e]]; k++)
1112 sbr->data[ch].env_facs[e][k] =
1113 exp2f(alpha * sbr->data[ch].env_facs[e][k] + 6.0f);
1114 for (e = 1; e <= sbr->data[ch].bs_num_noise; e++)
1115 for (k = 0; k < sbr->n_q; k++)
1116 sbr->data[ch].noise_facs[e][k] =
1117 exp2f(NOISE_FLOOR_OFFSET - sbr->data[ch].noise_facs[e][k]);
1118 }
1119 }
1120 }
1121
1122 /**
1123 * Analysis QMF Bank (14496-3 sp04 p206)
1124 *
1125 * @param x pointer to the beginning of the first sample window
1126 * @param W array of complex-valued samples split into subbands
1127 */
1128 static void sbr_qmf_analysis(DSPContext *dsp, RDFTContext *rdft, const float *in, float *x,
1129 float z[320], float W[2][32][32][2],
1130 float bias, float scale)
1131 {
1132 int i, k;
1133 memcpy(W[0], W[1], sizeof(W[0]));
1134 memcpy(x , x+1024, (320-32)*sizeof(x[0]));
1135 if (scale != 1.0f || bias != 0.0f)
1136 for (i = 0; i < 1024; i++)
1137 x[288 + i] = (in[i] - bias) * scale;
1138 else
1139 memcpy(x+288, in, 1024*sizeof(*x));
1140 for (i = 0; i < 32; i++) { // numTimeSlots*RATE = 16*2 as 960 sample frames
1141 // are not supported
1142 float re, im;
1143 dsp->vector_fmul_reverse(z, sbr_qmf_window_ds, x, 320);
1144 for (k = 0; k < 64; k++) {
1145 float f = z[k] + z[k + 64] + z[k + 128] + z[k + 192] + z[k + 256];
1146 z[k] = f * analysis_cos_pre[k];
1147 z[k+64] = f;
1148 }
1149 ff_rdft_calc(rdft, z);
1150 re = z[0] * 0.5f;
1151 im = 0.5f * dsp->scalarproduct_float(z+64, analysis_sin_pre, 64);
1152 W[1][i][0][0] = re * analysis_cossin_post[0][0] - im * analysis_cossin_post[0][1];
1153 W[1][i][0][1] = re * analysis_cossin_post[0][1] + im * analysis_cossin_post[0][0];
1154 for (k = 1; k < 32; k++) {
1155 re = z[2*k ] - re;
1156 im = z[2*k+1] - im;
1157 W[1][i][k][0] = re * analysis_cossin_post[k][0] - im * analysis_cossin_post[k][1];
1158 W[1][i][k][1] = re * analysis_cossin_post[k][1] + im * analysis_cossin_post[k][0];
1159 }
1160 x += 32;
1161 }
1162 }
1163
1164 /**
1165 * Synthesis QMF Bank (14496-3 sp04 p206) and Downsampled Synthesis QMF Bank
1166 * (14496-3 sp04 p206)
1167 */
1168 static void sbr_qmf_synthesis(DSPContext *dsp, FFTContext *mdct,
1169 float *out, float X[2][32][64],
1170 float mdct_buf[2][64],
1171 float *v0, int *v_off, const unsigned int div,
1172 float bias, float scale)
1173 {
1174 int i, n;
1175 const float *sbr_qmf_window = div ? sbr_qmf_window_ds : sbr_qmf_window_us;
1176 int scale_and_bias = scale != 1.0f || bias != 0.0f;
1177 float *v;
1178 for (i = 0; i < 32; i++) {
1179 if (*v_off == 0) {
1180 int saved_samples = (1280 - 128) >> div;
1181 memcpy(&v0[SBR_SYNTHESIS_BUF_SIZE - saved_samples], v0, saved_samples * sizeof(float));
1182 *v_off = SBR_SYNTHESIS_BUF_SIZE - saved_samples - (128 >> div);
1183 } else {
1184 *v_off -= 128 >> div;
1185 }
1186 v = v0 + *v_off;
1187 for (n = 1; n < 64 >> div; n+=2) {
1188 X[1][i][n] = -X[1][i][n];
1189 }
1190 if (div) {
1191 memset(X[0][i]+32, 0, 32*sizeof(float));
1192 memset(X[1][i]+32, 0, 32*sizeof(float));
1193 }
1194 ff_imdct_half(mdct, mdct_buf[0], X[0][i]);
1195 ff_imdct_half(mdct, mdct_buf[1], X[1][i]);
1196 if (div) {
1197 for (n = 0; n < 32; n++) {
1198 v[ n] = -mdct_buf[0][63 - 2*n] + mdct_buf[1][2*n ];
1199 v[ 63 - n] = mdct_buf[0][62 - 2*n] + mdct_buf[1][2*n + 1];
1200 }
1201 } else {
1202 for (n = 0; n < 64; n++) {
1203 v[ n] = -mdct_buf[0][63 - n] + mdct_buf[1][ n ];
1204 v[127 - n] = mdct_buf[0][63 - n] + mdct_buf[1][ n ];
1205 }
1206 }
1207 dsp->vector_fmul_add(out, v , sbr_qmf_window , zero64, 64 >> div);
1208 dsp->vector_fmul_add(out, v + ( 192 >> div), sbr_qmf_window + ( 64 >> div), out , 64 >> div);
1209 dsp->vector_fmul_add(out, v + ( 256 >> div), sbr_qmf_window + (128 >> div), out , 64 >> div);
1210 dsp->vector_fmul_add(out, v + ( 448 >> div), sbr_qmf_window + (192 >> div), out , 64 >> div);
1211 dsp->vector_fmul_add(out, v + ( 512 >> div), sbr_qmf_window + (256 >> div), out , 64 >> div);
1212 dsp->vector_fmul_add(out, v + ( 704 >> div), sbr_qmf_window + (320 >> div), out , 64 >> div);
1213 dsp->vector_fmul_add(out, v + ( 768 >> div), sbr_qmf_window + (384 >> div), out , 64 >> div);
1214 dsp->vector_fmul_add(out, v + ( 960 >> div), sbr_qmf_window + (448 >> div), out , 64 >> div);
1215 dsp->vector_fmul_add(out, v + (1024 >> div), sbr_qmf_window + (512 >> div), out , 64 >> div);
1216 dsp->vector_fmul_add(out, v + (1216 >> div), sbr_qmf_window + (576 >> div), out , 64 >> div);
1217 if (scale_and_bias)
1218 for (n = 0; n < 64 >> div; n++)
1219 out[n] = out[n] * scale + bias;
1220 out += 64 >> div;
1221 }
1222 }
1223
1224 static void autocorrelate(const float x[40][2], float phi[3][2][2], int lag)
1225 {
1226 int i;
1227 float real_sum = 0.0f;
1228 float imag_sum = 0.0f;
1229 if (lag) {
1230 for (i = 1; i < 38; i++) {
1231 real_sum += x[i][0] * x[i+lag][0] + x[i][1] * x[i+lag][1];
1232 imag_sum += x[i][0] * x[i+lag][1] - x[i][1] * x[i+lag][0];
1233 }
1234 phi[2-lag][1][0] = real_sum + x[ 0][0] * x[lag][0] + x[ 0][1] * x[lag][1];
1235 phi[2-lag][1][1] = imag_sum + x[ 0][0] * x[lag][1] - x[ 0][1] * x[lag][0];
1236 if (lag == 1) {
1237 phi[0][0][0] = real_sum + x[38][0] * x[39][0] + x[38][1] * x[39][1];
1238 phi[0][0][1] = imag_sum + x[38][0] * x[39][1] - x[38][1] * x[39][0];
1239 }
1240 } else {
1241 for (i = 1; i < 38; i++) {
1242 real_sum += x[i][0] * x[i][0] + x[i][1] * x[i][1];
1243 }
1244 phi[2][1][0] = real_sum + x[ 0][0] * x[ 0][0] + x[ 0][1] * x[ 0][1];
1245 phi[1][0][0] = real_sum + x[38][0] * x[38][0] + x[38][1] * x[38][1];
1246 }
1247 }
1248
1249 /** High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering
1250 * (14496-3 sp04 p214)
1251 * Warning: This routine does not seem numerically stable.
1252 */
1253 static void sbr_hf_inverse_filter(float (*alpha0)[2], float (*alpha1)[2],
1254 const float X_low[32][40][2], int k0)
1255 {
1256 int k;
1257 for (k = 0; k < k0; k++) {
1258 float phi[3][2][2], dk;
1259
1260 autocorrelate(X_low[k], phi, 0);
1261 autocorrelate(X_low[k], phi, 1);
1262 autocorrelate(X_low[k], phi, 2);
1263
1264 dk = phi[2][1][0] * phi[1][0][0] -
1265 (phi[1][1][0] * phi[1][1][0] + phi[1][1][1] * phi[1][1][1]) / 1.000001f;
1266
1267 if (!dk) {
1268 alpha1[k][0] = 0;
1269 alpha1[k][1] = 0;
1270 } else {
1271 float temp_real, temp_im;
1272 temp_real = phi[0][0][0] * phi[1][1][0] -
1273 phi[0][0][1] * phi[1][1][1] -
1274 phi[0][1][0] * phi[1][0][0];
1275 temp_im = phi[0][0][0] * phi[1][1][1] +
1276 phi[0][0][1] * phi[1][1][0] -
1277 phi[0][1][1] * phi[1][0][0];
1278
1279 alpha1[k][0] = temp_real / dk;
1280 alpha1[k][1] = temp_im / dk;
1281 }
1282
1283 if (!phi[1][0][0]) {
1284 alpha0[k][0] = 0;
1285 alpha0[k][1] = 0;
1286 } else {
1287 float temp_real, temp_im;
1288 temp_real = phi[0][0][0] + alpha1[k][0] * phi[1][1][0] +
1289 alpha1[k][1] * phi[1][1][1];
1290 temp_im = phi[0][0][1] + alpha1[k][1] * phi[1][1][0] -
1291 alpha1[k][0] * phi[1][1][1];
1292
1293 alpha0[k][0] = -temp_real / phi[1][0][0];
1294 alpha0[k][1] = -temp_im / phi[1][0][0];
1295 }
1296
1297 if (alpha1[k][0] * alpha1[k][0] + alpha1[k][1] * alpha1[k][1] >= 16.0f ||
1298 alpha0[k][0] * alpha0[k][0] + alpha0[k][1] * alpha0[k][1] >= 16.0f) {
1299 alpha1[k][0] = 0;
1300 alpha1[k][1] = 0;
1301 alpha0[k][0] = 0;
1302 alpha0[k][1] = 0;
1303 }
1304 }
1305 }
1306
1307 /// Chirp Factors (14496-3 sp04 p214)
1308 static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data)
1309 {
1310 int i;
1311 float new_bw;
1312 static const float bw_tab[] = { 0.0f, 0.75f, 0.9f, 0.98f };
1313
1314 for (i = 0; i < sbr->n_q; i++) {
1315 if (ch_data->bs_invf_mode[0][i] + ch_data->bs_invf_mode[1][i] == 1) {
1316 new_bw = 0.6f;
1317 } else
1318 new_bw = bw_tab[ch_data->bs_invf_mode[0][i]];
1319
1320 if (new_bw < ch_data->bw_array[i]) {
1321 new_bw = 0.75f * new_bw + 0.25f * ch_data->bw_array[i];
1322 } else
1323 new_bw = 0.90625f * new_bw + 0.09375f * ch_data->bw_array[i];
1324 ch_data->bw_array[i] = new_bw < 0.015625f ? 0.0f : new_bw;
1325 }
1326 }
1327
1328 /// Generate the subband filtered lowband
1329 static int sbr_lf_gen(AACContext *ac, SpectralBandReplication *sbr,
1330 float X_low[32][40][2], const float W[2][32][32][2])
1331 {
1332 int i, k;
1333 const int t_HFGen = 8;
1334 const int i_f = 32;
1335 memset(X_low, 0, 32*sizeof(*X_low));
1336 for (k = 0; k < sbr->kx[1]; k++) {
1337 for (i = t_HFGen; i < i_f + t_HFGen; i++) {
1338 X_low[k][i][0] = W[1][i - t_HFGen][k][0];
1339 X_low[k][i][1] = W[1][i - t_HFGen][k][1];
1340 }
1341 }
1342 for (k = 0; k < sbr->kx[0]; k++) {
1343 for (i = 0; i < t_HFGen; i++) {
1344 X_low[k][i][0] = W[0][i + i_f - t_HFGen][k][0];
1345 X_low[k][i][1] = W[0][i + i_f - t_HFGen][k][1];
1346 }
1347 }
1348 return 0;
1349 }
1350
1351 /// High Frequency Generator (14496-3 sp04 p215)
1352 static int sbr_hf_gen(AACContext *ac, SpectralBandReplication *sbr,
1353 float X_high[64][40][2], const float X_low[32][40][2],
1354 const float (*alpha0)[2], const float (*alpha1)[2],
1355 const float bw_array[5], const uint8_t *t_env,
1356 int bs_num_env)
1357 {
1358 int i, j, x;
1359 int g = 0;
1360 int k = sbr->kx[1];
1361 for (j = 0; j < sbr->num_patches; j++) {
1362 for (x = 0; x < sbr->patch_num_subbands[j]; x++, k++) {
1363 float alpha[4];
1364 const int p = sbr->patch_start_subband[j] + x;
1365 while (g <= sbr->n_q && k >= sbr->f_tablenoise[g])
1366 g++;
1367 g--;
1368
1369 if (g < 0) {
1370 av_log(ac->avccontext, AV_LOG_ERROR,
1371 "ERROR : no subband found for frequency %d\n", k);
1372 return -1;
1373 }
1374
1375 alpha[0] = alpha1[p][0] * bw_array[g] * bw_array[g];
1376 alpha[1] = alpha1[p][1] * bw_array[g] * bw_array[g];
1377 alpha[2] = alpha0[p][0] * bw_array[g];
1378 alpha[3] = alpha0[p][1] * bw_array[g];
1379
1380 for (i = 2 * t_env[0]; i < 2 * t_env[bs_num_env]; i++) {
1381 const int idx = i + ENVELOPE_ADJUSTMENT_OFFSET;
1382 X_high[k][idx][0] =
1383 X_low[p][idx - 2][0] * alpha[0] -
1384 X_low[p][idx - 2][1] * alpha[1] +
1385 X_low[p][idx - 1][0] * alpha[2] -
1386 X_low[p][idx - 1][1] * alpha[3] +
1387 X_low[p][idx][0];
1388 X_high[k][idx][1] =
1389 X_low[p][idx - 2][1] * alpha[0] +
1390 X_low[p][idx - 2][0] * alpha[1] +
1391 X_low[p][idx - 1][1] * alpha[2] +
1392 X_low[p][idx - 1][0] * alpha[3] +
1393 X_low[p][idx][1];
1394 }
1395 }
1396 }
1397 if (k < sbr->m[1] + sbr->kx[1])
1398 memset(X_high + k, 0, (sbr->m[1] + sbr->kx[1] - k) * sizeof(*X_high));
1399
1400 return 0;
1401 }
1402
1403 /// Generate the subband filtered lowband
1404 static int sbr_x_gen(SpectralBandReplication *sbr, float X[2][32][64],
1405 const float X_low[32][40][2], const float Y[2][38][64][2],
1406 int ch)
1407 {
1408 int k, i;
1409 const int i_f = 32;
1410 const int i_Temp = FFMAX(2*sbr->data[ch].t_env_num_env_old - i_f, 0);
1411 memset(X, 0, 2*sizeof(*X));
1412 for (k = 0; k < sbr->kx[0]; k++) {
1413 for (i = 0; i < i_Temp; i++) {
1414 X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
1415 X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
1416 }
1417 }
1418 for (; k < sbr->kx[0] + sbr->m[0]; k++) {
1419 for (i = 0; i < i_Temp; i++) {
1420 X[0][i][k] = Y[0][i + i_f][k][0];
1421 X[1][i][k] = Y[0][i + i_f][k][1];
1422 }
1423 }
1424
1425 for (k = 0; k < sbr->kx[1]; k++) {
1426 for (i = i_Temp; i < i_f; i++) {
1427 X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
1428 X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
1429 }
1430 }
1431 for (; k < sbr->kx[1] + sbr->m[1]; k++) {
1432 for (i = i_Temp; i < i_f; i++) {
1433 X[0][i][k] = Y[1][i][k][0];
1434 X[1][i][k] = Y[1][i][k][1];
1435 }
1436 }
1437 return 0;
1438 }
1439
1440 /** High Frequency Adjustment (14496-3 sp04 p217) and Mapping
1441 * (14496-3 sp04 p217)
1442 */
1443 static void sbr_mapping(AACContext *ac, SpectralBandReplication *sbr,
1444 SBRData *ch_data, int e_a[2])
1445 {
1446 int e, i, m;
1447
1448 memset(ch_data->s_indexmapped[1], 0, 7*sizeof(ch_data->s_indexmapped[1]));
1449 for (e = 0; e < ch_data->bs_num_env; e++) {
1450 const unsigned int ilim = sbr->n[ch_data->bs_freq_res[e + 1]];
1451 uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
1452 int k;
1453
1454 for (i = 0; i < ilim; i++)
1455 for (m = table[i]; m < table[i + 1]; m++)
1456 sbr->e_origmapped[e][m - sbr->kx[1]] = ch_data->env_facs[e+1][i];
1457
1458 // ch_data->bs_num_noise > 1 => 2 noise floors
1459 k = (ch_data->bs_num_noise > 1) && (ch_data->t_env[e] >= ch_data->t_q[1]);
1460 for (i = 0; i < sbr->n_q; i++)
1461 for (m = sbr->f_tablenoise[i]; m < sbr->f_tablenoise[i + 1]; m++)
1462 sbr->q_mapped[e][m - sbr->kx[1]] = ch_data->noise_facs[k+1][i];
1463
1464 for (i = 0; i < sbr->n[1]; i++) {
1465 if (ch_data->bs_add_harmonic_flag) {
1466 const unsigned int m_midpoint =
1467 (sbr->f_tablehigh[i] + sbr->f_tablehigh[i + 1]) >> 1;
1468
1469 ch_data->s_indexmapped[e + 1][m_midpoint - sbr->kx[1]] = ch_data->bs_add_harmonic[i] *
1470 (e >= e_a[1] || (ch_data->s_indexmapped[0][m_midpoint - sbr->kx[1]] == 1));
1471 }
1472 }
1473
1474 for (i = 0; i < ilim; i++) {
1475 int additional_sinusoid_present = 0;
1476 for (m = table[i]; m < table[i + 1]; m++) {
1477 if (ch_data->s_indexmapped[e + 1][m - sbr->kx[1]]) {
1478 additional_sinusoid_present = 1;
1479 break;
1480 }
1481 }
1482 memset(&sbr->s_mapped[e][table[i] - sbr->kx[1]], additional_sinusoid_present,
1483 (table[i + 1] - table[i]) * sizeof(sbr->s_mapped[e][0]));
1484 }
1485 }
1486
1487 memcpy(ch_data->s_indexmapped[0], ch_data->s_indexmapped[ch_data->bs_num_env], sizeof(ch_data->s_indexmapped[0]));
1488 }
1489
1490 /// Estimation of current envelope (14496-3 sp04 p218)
1491 static void sbr_env_estimate(float (*e_curr)[48], float X_high[64][40][2],
1492 SpectralBandReplication *sbr, SBRData *ch_data)
1493 {
1494 int e, i, m;
1495
1496 if (sbr->bs_interpol_freq) {
1497 for (e = 0; e < ch_data->bs_num_env; e++) {
1498 const float recip_env_size = 0.5f / (ch_data->t_env[e + 1] - ch_data->t_env[e]);
1499 int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1500 int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1501
1502 for (m = 0; m < sbr->m[1]; m++) {
1503 float sum = 0.0f;
1504
1505 for (i = ilb; i < iub; i++) {
1506 sum += X_high[m + sbr->kx[1]][i][0] * X_high[m + sbr->kx[1]][i][0] +
1507 X_high[m + sbr->kx[1]][i][1] * X_high[m + sbr->kx[1]][i][1];
1508 }
1509 e_curr[e][m] = sum * recip_env_size;
1510 }
1511 }
1512 } else {
1513 int k, p;
1514
1515 for (e = 0; e < ch_data->bs_num_env; e++) {
1516 const int env_size = 2 * (ch_data->t_env[e + 1] - ch_data->t_env[e]);
1517 int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1518 int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1519 const uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
1520
1521 for (p = 0; p < sbr->n[ch_data->bs_freq_res[e + 1]]; p++) {
1522 float sum = 0.0f;
1523 const int den = env_size * (table[p + 1] - table[p]);
1524
1525 for (k = table[p]; k < table[p + 1]; k++) {
1526 for (i = ilb; i < iub; i++) {
1527 sum += X_high[k][i][0] * X_high[k][i][0] +
1528 X_high[k][i][1] * X_high[k][i][1];
1529 }
1530 }
1531 sum /= den;
1532 for (k = table[p]; k < table[p + 1]; k++) {
1533 e_curr[e][k - sbr->kx[1]] = sum;
1534 }
1535 }
1536 }
1537 }
1538 }
1539
1540 /**
1541 * Calculation of levels of additional HF signal components (14496-3 sp04 p219)
1542 * and Calculation of gain (14496-3 sp04 p219)
1543 */
1544 static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr,
1545 SBRData *ch_data, const int e_a[2])
1546 {
1547 int e, k, m;
1548 // max gain limits : -3dB, 0dB, 3dB, inf dB (limiter off)
1549 static const float limgain[4] = { 0.70795, 1.0, 1.41254, 10000000000 };
1550
1551 for (e = 0; e < ch_data->bs_num_env; e++) {
1552 int delta = !((e == e_a[1]) || (e == e_a[0]));
1553 for (k = 0; k < sbr->n_lim; k++) {
1554 float gain_boost, gain_max;
1555 float sum[2] = { 0.0f, 0.0f };
1556 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1557 const float temp = sbr->e_origmapped[e][m] / (1.0f + sbr->q_mapped[e][m]);
1558 sbr->q_m[e][m] = sqrtf(temp * sbr->q_mapped[e][m]);
1559 sbr->s_m[e][m] = sqrtf(temp * ch_data->s_indexmapped[e + 1][m]);
1560 if (!sbr->s_mapped[e][m]) {
1561 sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] /
1562 ((1.0f + sbr->e_curr[e][m]) *
1563 (1.0f + sbr->q_mapped[e][m] * delta)));
1564 } else {
1565 sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] * sbr->q_mapped[e][m] /
1566 ((1.0f + sbr->e_curr[e][m]) *
1567 (1.0f + sbr->q_mapped[e][m])));
1568 }
1569 }
1570 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1571 sum[0] += sbr->e_origmapped[e][m];
1572 sum[1] += sbr->e_curr[e][m];
1573 }
1574 gain_max = limgain[sbr->bs_limiter_gains] * sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
1575 gain_max = FFMIN(100000, gain_max);
1576 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1577 float q_m_max = sbr->q_m[e][m] * gain_max / sbr->gain[e][m];
1578 sbr->q_m[e][m] = FFMIN(sbr->q_m[e][m], q_m_max);
1579 sbr->gain[e][m] = FFMIN(sbr->gain[e][m], gain_max);
1580 }
1581 sum[0] = sum[1] = 0.0f;
1582 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1583 sum[0] += sbr->e_origmapped[e][m];
1584 sum[1] += sbr->e_curr[e][m] * sbr->gain[e][m] * sbr->gain[e][m]
1585 + sbr->s_m[e][m] * sbr->s_m[e][m]
1586 + (delta && !sbr->s_m[e][m]) * sbr->q_m[e][m] * sbr->q_m[e][m];
1587 }
1588 gain_boost = sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
1589 gain_boost = FFMIN(1.584893192, gain_boost);
1590 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1591 sbr->gain[e][m] *= gain_boost;
1592 sbr->q_m[e][m] *= gain_boost;
1593 sbr->s_m[e][m] *= gain_boost;
1594 }
1595 }
1596 }
1597 }
1598
1599 /// Assembling HF Signals (14496-3 sp04 p220)
1600 static void sbr_hf_assemble(float Y[2][38][64][2], const float X_high[64][40][2],
1601 SpectralBandReplication *sbr, SBRData *ch_data,
1602 const int e_a[2])
1603 {
1604 int e, i, j, m;
1605 const int h_SL = 4 * !sbr->bs_smoothing_mode;
1606 const int kx = sbr->kx[1];
1607 const int m_max = sbr->m[1];
1608 static const float h_smooth[5] = {
1609 0.33333333333333,
1610 0.30150283239582,
1611 0.21816949906249,
1612 0.11516383427084,
1613 0.03183050093751,
1614 };
1615 static const int8_t phi[2][4] = {
1616 { 1, 0, -1, 0}, // real
1617 { 0, 1, 0, -1}, // imaginary
1618 };
1619 float (*g_temp)[48] = ch_data->g_temp, (*q_temp)[48] = ch_data->q_temp;
1620 int indexnoise = ch_data->f_indexnoise;
1621 int indexsine = ch_data->f_indexsine;
1622 memcpy(Y[0], Y[1], sizeof(Y[0]));
1623
1624 if (sbr->reset) {
1625 for (i = 0; i < h_SL; i++) {
1626 memcpy(g_temp[i + 2*ch_data->t_env[0]], sbr->gain[0], m_max * sizeof(sbr->gain[0][0]));
1627 memcpy(q_temp[i + 2*ch_data->t_env[0]], sbr->q_m[0], m_max * sizeof(sbr->q_m[0][0]));
1628 }
1629 } else if (h_SL) {
1630 memcpy(g_temp[2*ch_data->t_env[0]], g_temp[2*ch_data->t_env_num_env_old], 4*sizeof(g_temp[0]));
1631 memcpy(q_temp[2*ch_data->t_env[0]], q_temp[2*ch_data->t_env_num_env_old], 4*sizeof(q_temp[0]));
1632 }
1633
1634 for (e = 0; e < ch_data->bs_num_env; e++) {
1635 for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
1636 memcpy(g_temp[h_SL + i], sbr->gain[e], m_max * sizeof(sbr->gain[0][0]));
1637 memcpy(q_temp[h_SL + i], sbr->q_m[e], m_max * sizeof(sbr->q_m[0][0]));
1638 }
1639 }
1640
1641 for (e = 0; e < ch_data->bs_num_env; e++) {
1642 for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
1643 int phi_sign = (1 - 2*(kx & 1));
1644
1645 if (h_SL && e != e_a[0] && e != e_a[1]) {
1646 for (m = 0; m < m_max; m++) {
1647 const int idx1 = i + h_SL;
1648 float g_filt = 0.0f;
1649 for (j = 0; j <= h_SL; j++)
1650 g_filt += g_temp[idx1 - j][m] * h_smooth[j];
1651 Y[1][i][m + kx][0] =
1652 X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][0] * g_filt;
1653 Y[1][i][m + kx][1] =
1654 X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][1] * g_filt;
1655 }
1656 } else {
1657 for (m = 0; m < m_max; m++) {
1658 const float g_filt = g_temp[i + h_SL][m];
1659 Y[1][i][m + kx][0] =
1660 X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][0] * g_filt;
1661 Y[1][i][m + kx][1] =
1662 X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][1] * g_filt;
1663 }
1664 }
1665
1666 if (e != e_a[0] && e != e_a[1]) {
1667 for (m = 0; m < m_max; m++) {
1668 indexnoise = (indexnoise + 1) & 0x1ff;
1669 if (sbr->s_m[e][m]) {
1670 Y[1][i][m + kx][0] +=
1671 sbr->s_m[e][m] * phi[0][indexsine];
1672 Y[1][i][m + kx][1] +=
1673 sbr->s_m[e][m] * (phi[1][indexsine] * phi_sign);
1674 } else {
1675 float q_filt;
1676 if (h_SL) {
1677 const int idx1 = i + h_SL;
1678 q_filt = 0.0f;
1679 for (j = 0; j <= h_SL; j++)
1680 q_filt += q_temp[idx1 - j][m] * h_smooth[j];
1681 } else {
1682 q_filt = q_temp[i][m];
1683 }
1684 Y[1][i][m + kx][0] +=
1685 q_filt * sbr_noise_table[indexnoise][0];
1686 Y[1][i][m + kx][1] +=
1687 q_filt * sbr_noise_table[indexnoise][1];
1688 }
1689 phi_sign = -phi_sign;
1690 }
1691 } else {
1692 indexnoise = (indexnoise + m_max) & 0x1ff;
1693 for (m = 0; m < m_max; m++) {
1694 Y[1][i][m + kx][0] +=
1695 sbr->s_m[e][m] * phi[0][indexsine];
1696 Y[1][i][m + kx][1] +=
1697 sbr->s_m[e][m] * (phi[1][indexsine] * phi_sign);
1698 phi_sign = -phi_sign;
1699 }
1700 }
1701 indexsine = (indexsine + 1) & 3;
1702 }
1703 }
1704 ch_data->f_indexnoise = indexnoise;
1705 ch_data->f_indexsine = indexsine;
1706 }
1707
1708 void ff_sbr_dequant(AACContext *ac, SpectralBandReplication *sbr, int id_aac)
1709 {
1710 if (sbr->start) {
1711 sbr_dequant(sbr, id_aac);
1712 }
1713 }
1714
1715 void ff_sbr_apply(AACContext *ac, SpectralBandReplication *sbr, int ch,
1716 const float* in, float* out)
1717 {
1718 int downsampled = ac->m4ac.ext_sample_rate < sbr->sample_rate;
1719
1720 /* decode channel */
1721 sbr_qmf_analysis(&ac->dsp, &sbr->rdft, in, sbr->data[ch].analysis_filterbank_samples,
1722 (float*)sbr->qmf_filter_scratch,
1723 sbr->data[ch].W, ac->add_bias, 1/(-1024 * ac->sf_scale));
1724 sbr_lf_gen(ac, sbr, sbr->X_low, sbr->data[ch].W);
1725 if (sbr->start) {
1726 sbr_hf_inverse_filter(sbr->alpha0, sbr->alpha1, sbr->X_low, sbr->k[0]);
1727 sbr_chirp(sbr, &sbr->data[ch]);
1728 sbr_hf_gen(ac, sbr, sbr->X_high, sbr->X_low, sbr->alpha0, sbr->alpha1,
1729 sbr->data[ch].bw_array, sbr->data[ch].t_env,
1730 sbr->data[ch].bs_num_env);
1731
1732 // hf_adj
1733 sbr_mapping(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
1734 sbr_env_estimate(sbr->e_curr, sbr->X_high, sbr, &sbr->data[ch]);
1735 sbr_gain_calc(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
1736 sbr_hf_assemble(sbr->data[ch].Y, sbr->X_high, sbr, &sbr->data[ch],
1737 sbr->data[ch].e_a);
1738 }
1739
1740 /* synthesis */
1741 sbr_x_gen(sbr, sbr->X, sbr->X_low, sbr->data[ch].Y, ch);
1742 sbr_qmf_synthesis(&ac->dsp, &sbr->mdct, out, sbr->X, sbr->qmf_filter_scratch,
1743 sbr->data[ch].synthesis_filterbank_samples,
1744 &sbr->data[ch].synthesis_filterbank_samples_offset,
1745 downsampled,
1746 ac->add_bias, -1024 * ac->sf_scale);
1747 }