aacsbr: Fail early on illegal envelope counts.
[libav.git] / libavcodec / aacsbr.c
1 /*
2 * AAC Spectral Band Replication decoding functions
3 * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
4 * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
5 *
6 * This file is part of FFmpeg.
7 *
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23 /**
24 * @file libavcodec/aacsbr.c
25 * AAC Spectral Band Replication decoding functions
26 * @author Robert Swain ( rob opendot cl )
27 */
28
29 #include "aac.h"
30 #include "sbr.h"
31 #include "aacsbr.h"
32 #include "aacsbrdata.h"
33 #include "fft.h"
34
35 #include <stdint.h>
36 #include <float.h>
37
38 #define ENVELOPE_ADJUSTMENT_OFFSET 2
39 #define NOISE_FLOOR_OFFSET 6.0f
40
41 /**
42 * SBR VLC tables
43 */
44 enum {
45 T_HUFFMAN_ENV_1_5DB,
46 F_HUFFMAN_ENV_1_5DB,
47 T_HUFFMAN_ENV_BAL_1_5DB,
48 F_HUFFMAN_ENV_BAL_1_5DB,
49 T_HUFFMAN_ENV_3_0DB,
50 F_HUFFMAN_ENV_3_0DB,
51 T_HUFFMAN_ENV_BAL_3_0DB,
52 F_HUFFMAN_ENV_BAL_3_0DB,
53 T_HUFFMAN_NOISE_3_0DB,
54 T_HUFFMAN_NOISE_BAL_3_0DB,
55 };
56
57 /**
58 * bs_frame_class - frame class of current SBR frame (14496-3 sp04 p98)
59 */
60 enum {
61 FIXFIX,
62 FIXVAR,
63 VARFIX,
64 VARVAR,
65 };
66
67 enum {
68 EXTENSION_ID_PS = 2,
69 };
70
71 static VLC vlc_sbr[10];
72 static const int8_t vlc_sbr_lav[10] =
73 { 60, 60, 24, 24, 31, 31, 12, 12, 31, 12 };
74 static DECLARE_ALIGNED(16, float, analysis_cos_pre)[64];
75 static DECLARE_ALIGNED(16, float, analysis_sin_pre)[64];
76 static DECLARE_ALIGNED(16, float, analysis_cossin_post)[32][2];
77 static const DECLARE_ALIGNED(16, float, zero64)[64];
78
79 #define SBR_INIT_VLC_STATIC(num, size) \
80 INIT_VLC_STATIC(&vlc_sbr[num], 9, sbr_tmp[num].table_size / sbr_tmp[num].elem_size, \
81 sbr_tmp[num].sbr_bits , 1, 1, \
82 sbr_tmp[num].sbr_codes, sbr_tmp[num].elem_size, sbr_tmp[num].elem_size, \
83 size)
84
85 #define SBR_VLC_ROW(name) \
86 { name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) }
87
88 av_cold void ff_aac_sbr_init(void)
89 {
90 int n, k;
91 static const struct {
92 const void *sbr_codes, *sbr_bits;
93 const unsigned int table_size, elem_size;
94 } sbr_tmp[] = {
95 SBR_VLC_ROW(t_huffman_env_1_5dB),
96 SBR_VLC_ROW(f_huffman_env_1_5dB),
97 SBR_VLC_ROW(t_huffman_env_bal_1_5dB),
98 SBR_VLC_ROW(f_huffman_env_bal_1_5dB),
99 SBR_VLC_ROW(t_huffman_env_3_0dB),
100 SBR_VLC_ROW(f_huffman_env_3_0dB),
101 SBR_VLC_ROW(t_huffman_env_bal_3_0dB),
102 SBR_VLC_ROW(f_huffman_env_bal_3_0dB),
103 SBR_VLC_ROW(t_huffman_noise_3_0dB),
104 SBR_VLC_ROW(t_huffman_noise_bal_3_0dB),
105 };
106
107 // SBR VLC table initialization
108 SBR_INIT_VLC_STATIC(0, 1098);
109 SBR_INIT_VLC_STATIC(1, 1092);
110 SBR_INIT_VLC_STATIC(2, 768);
111 SBR_INIT_VLC_STATIC(3, 1026);
112 SBR_INIT_VLC_STATIC(4, 1058);
113 SBR_INIT_VLC_STATIC(5, 1052);
114 SBR_INIT_VLC_STATIC(6, 544);
115 SBR_INIT_VLC_STATIC(7, 544);
116 SBR_INIT_VLC_STATIC(8, 592);
117 SBR_INIT_VLC_STATIC(9, 512);
118
119 for (n = 0; n < 64; n++) {
120 float pre = M_PI * n / 64;
121 analysis_cos_pre[n] = cosf(pre);
122 analysis_sin_pre[n] = sinf(pre);
123 }
124 for (k = 0; k < 32; k++) {
125 float post = M_PI * (k + 0.5) / 128;
126 analysis_cossin_post[k][0] = 4.0 * cosf(post);
127 analysis_cossin_post[k][1] = -4.0 * sinf(post);
128 }
129 for (n = 1; n < 320; n++)
130 sbr_qmf_window_us[320 + n] = sbr_qmf_window_us[320 - n];
131 sbr_qmf_window_us[384] = -sbr_qmf_window_us[384];
132 sbr_qmf_window_us[512] = -sbr_qmf_window_us[512];
133
134 for (n = 0; n < 320; n++)
135 sbr_qmf_window_ds[n] = sbr_qmf_window_us[2*n];
136 }
137
138 av_cold void ff_aac_sbr_ctx_init(SpectralBandReplication *sbr)
139 {
140 sbr->kx[0] = sbr->kx[1] = 32; //Typo in spec, kx' inits to 32
141 sbr->data[0].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
142 sbr->data[1].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
143 ff_mdct_init(&sbr->mdct, 7, 1, 1.0/64);
144 ff_rdft_init(&sbr->rdft, 6, IDFT_R2C);
145 }
146
147 av_cold void ff_aac_sbr_ctx_close(SpectralBandReplication *sbr)
148 {
149 ff_mdct_end(&sbr->mdct);
150 ff_rdft_end(&sbr->rdft);
151 }
152
153 static int qsort_comparison_function_int16(const void *a, const void *b)
154 {
155 return *(const int16_t *)a - *(const int16_t *)b;
156 }
157
158 static inline int in_table_int16(const int16_t *table, int last_el, int16_t needle)
159 {
160 int i;
161 for (i = 0; i <= last_el; i++)
162 if (table[i] == needle)
163 return 1;
164 return 0;
165 }
166
167 /// Limiter Frequency Band Table (14496-3 sp04 p198)
168 static void sbr_make_f_tablelim(SpectralBandReplication *sbr)
169 {
170 int k;
171 if (sbr->bs_limiter_bands > 0) {
172 static const float bands_warped[3] = { 1.32715174233856803909f, //2^(0.49/1.2)
173 1.18509277094158210129f, //2^(0.49/2)
174 1.11987160404675912501f }; //2^(0.49/3)
175 const float lim_bands_per_octave_warped = bands_warped[sbr->bs_limiter_bands - 1];
176 int16_t patch_borders[5];
177 uint16_t *in = sbr->f_tablelim + 1, *out = sbr->f_tablelim;
178
179 patch_borders[0] = sbr->kx[1];
180 for (k = 1; k <= sbr->num_patches; k++)
181 patch_borders[k] = patch_borders[k-1] + sbr->patch_num_subbands[k-1];
182
183 memcpy(sbr->f_tablelim, sbr->f_tablelow,
184 (sbr->n[0] + 1) * sizeof(sbr->f_tablelow[0]));
185 if (sbr->num_patches > 1)
186 memcpy(sbr->f_tablelim + sbr->n[0] + 1, patch_borders + 1,
187 (sbr->num_patches - 1) * sizeof(patch_borders[0]));
188
189 qsort(sbr->f_tablelim, sbr->num_patches + sbr->n[0],
190 sizeof(sbr->f_tablelim[0]),
191 qsort_comparison_function_int16);
192
193 sbr->n_lim = sbr->n[0] + sbr->num_patches - 1;
194 while (out < sbr->f_tablelim + sbr->n_lim) {
195 if (*in >= *out * lim_bands_per_octave_warped) {
196 *++out = *in++;
197 } else if (*in == *out ||
198 !in_table_int16(patch_borders, sbr->num_patches, *in)) {
199 in++;
200 sbr->n_lim--;
201 } else if (!in_table_int16(patch_borders, sbr->num_patches, *out)) {
202 *out = *in++;
203 sbr->n_lim--;
204 } else {
205 *++out = *in++;
206 }
207 }
208 } else {
209 sbr->f_tablelim[0] = sbr->f_tablelow[0];
210 sbr->f_tablelim[1] = sbr->f_tablelow[sbr->n[0]];
211 sbr->n_lim = 1;
212 }
213 }
214
215 static unsigned int read_sbr_header(SpectralBandReplication *sbr, GetBitContext *gb)
216 {
217 unsigned int cnt = get_bits_count(gb);
218 uint8_t bs_header_extra_1;
219 uint8_t bs_header_extra_2;
220 int old_bs_limiter_bands = sbr->bs_limiter_bands;
221 SpectrumParameters old_spectrum_params;
222
223 sbr->start = 1;
224
225 // Save last spectrum parameters variables to compare to new ones
226 memcpy(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters));
227
228 sbr->bs_amp_res_header = get_bits1(gb);
229 sbr->spectrum_params.bs_start_freq = get_bits(gb, 4);
230 sbr->spectrum_params.bs_stop_freq = get_bits(gb, 4);
231 sbr->spectrum_params.bs_xover_band = get_bits(gb, 3);
232 skip_bits(gb, 2); // bs_reserved
233
234 bs_header_extra_1 = get_bits1(gb);
235 bs_header_extra_2 = get_bits1(gb);
236
237 if (bs_header_extra_1) {
238 sbr->spectrum_params.bs_freq_scale = get_bits(gb, 2);
239 sbr->spectrum_params.bs_alter_scale = get_bits1(gb);
240 sbr->spectrum_params.bs_noise_bands = get_bits(gb, 2);
241 } else {
242 sbr->spectrum_params.bs_freq_scale = 2;
243 sbr->spectrum_params.bs_alter_scale = 1;
244 sbr->spectrum_params.bs_noise_bands = 2;
245 }
246
247 // Check if spectrum parameters changed
248 if (memcmp(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters)))
249 sbr->reset = 1;
250
251 if (bs_header_extra_2) {
252 sbr->bs_limiter_bands = get_bits(gb, 2);
253 sbr->bs_limiter_gains = get_bits(gb, 2);
254 sbr->bs_interpol_freq = get_bits1(gb);
255 sbr->bs_smoothing_mode = get_bits1(gb);
256 } else {
257 sbr->bs_limiter_bands = 2;
258 sbr->bs_limiter_gains = 2;
259 sbr->bs_interpol_freq = 1;
260 sbr->bs_smoothing_mode = 1;
261 }
262
263 if (sbr->bs_limiter_bands != old_bs_limiter_bands && !sbr->reset)
264 sbr_make_f_tablelim(sbr);
265
266 return get_bits_count(gb) - cnt;
267 }
268
269 static int array_min_int16(const int16_t *array, int nel)
270 {
271 int i, min = array[0];
272 for (i = 1; i < nel; i++)
273 min = FFMIN(array[i], min);
274 return min;
275 }
276
277 static void make_bands(int16_t* bands, int start, int stop, int num_bands)
278 {
279 int k, previous, present;
280 float base, prod;
281
282 base = powf((float)stop / start, 1.0f / num_bands);
283 prod = start;
284 previous = start;
285
286 for (k = 0; k < num_bands-1; k++) {
287 prod *= base;
288 present = lrintf(prod);
289 bands[k] = present - previous;
290 previous = present;
291 }
292 bands[num_bands-1] = stop - previous;
293 }
294
295 static int check_n_master(AVCodecContext *avccontext, int n_master, int bs_xover_band)
296 {
297 // Requirements (14496-3 sp04 p205)
298 if (n_master <= 0) {
299 av_log(avccontext, AV_LOG_ERROR, "Invalid n_master: %d\n", n_master);
300 return -1;
301 }
302 if (bs_xover_band >= n_master) {
303 av_log(avccontext, AV_LOG_ERROR,
304 "Invalid bitstream, crossover band index beyond array bounds: %d\n",
305 bs_xover_band);
306 return -1;
307 }
308 return 0;
309 }
310
311 /// Master Frequency Band Table (14496-3 sp04 p194)
312 static int sbr_make_f_master(AACContext *ac, SpectralBandReplication *sbr,
313 SpectrumParameters *spectrum)
314 {
315 unsigned int temp, max_qmf_subbands;
316 unsigned int start_min, stop_min;
317 int k;
318 const int8_t *sbr_offset_ptr;
319 int16_t stop_dk[13];
320
321 if (sbr->sample_rate < 32000) {
322 temp = 3000;
323 } else if (sbr->sample_rate < 64000) {
324 temp = 4000;
325 } else
326 temp = 5000;
327
328 start_min = ((temp << 7) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
329 stop_min = ((temp << 8) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
330
331 switch (sbr->sample_rate) {
332 case 16000:
333 sbr_offset_ptr = sbr_offset[0];
334 break;
335 case 22050:
336 sbr_offset_ptr = sbr_offset[1];
337 break;
338 case 24000:
339 sbr_offset_ptr = sbr_offset[2];
340 break;
341 case 32000:
342 sbr_offset_ptr = sbr_offset[3];
343 break;
344 case 44100: case 48000: case 64000:
345 sbr_offset_ptr = sbr_offset[4];
346 break;
347 case 88200: case 96000: case 128000: case 176400: case 192000:
348 sbr_offset_ptr = sbr_offset[5];
349 break;
350 default:
351 av_log(ac->avccontext, AV_LOG_ERROR,
352 "Unsupported sample rate for SBR: %d\n", sbr->sample_rate);
353 return -1;
354 }
355
356 sbr->k[0] = start_min + sbr_offset_ptr[spectrum->bs_start_freq];
357
358 if (spectrum->bs_stop_freq < 14) {
359 sbr->k[2] = stop_min;
360 make_bands(stop_dk, stop_min, 64, 13);
361 qsort(stop_dk, 13, sizeof(stop_dk[0]), qsort_comparison_function_int16);
362 for (k = 0; k < spectrum->bs_stop_freq; k++)
363 sbr->k[2] += stop_dk[k];
364 } else if (spectrum->bs_stop_freq == 14) {
365 sbr->k[2] = 2*sbr->k[0];
366 } else if (spectrum->bs_stop_freq == 15) {
367 sbr->k[2] = 3*sbr->k[0];
368 } else {
369 av_log(ac->avccontext, AV_LOG_ERROR,
370 "Invalid bs_stop_freq: %d\n", spectrum->bs_stop_freq);
371 return -1;
372 }
373 sbr->k[2] = FFMIN(64, sbr->k[2]);
374
375 // Requirements (14496-3 sp04 p205)
376 if (sbr->sample_rate <= 32000) {
377 max_qmf_subbands = 48;
378 } else if (sbr->sample_rate == 44100) {
379 max_qmf_subbands = 35;
380 } else if (sbr->sample_rate >= 48000)
381 max_qmf_subbands = 32;
382
383 if (sbr->k[2] - sbr->k[0] > max_qmf_subbands) {
384 av_log(ac->avccontext, AV_LOG_ERROR,
385 "Invalid bitstream, too many QMF subbands: %d\n", sbr->k[2] - sbr->k[0]);
386 return -1;
387 }
388
389 if (!spectrum->bs_freq_scale) {
390 unsigned int dk;
391 int k2diff;
392
393 dk = spectrum->bs_alter_scale + 1;
394 sbr->n_master = ((sbr->k[2] - sbr->k[0] + (dk&2)) >> dk) << 1;
395 if (check_n_master(ac->avccontext, sbr->n_master, sbr->spectrum_params.bs_xover_band))
396 return -1;
397
398 for (k = 1; k <= sbr->n_master; k++)
399 sbr->f_master[k] = dk;
400
401 k2diff = sbr->k[2] - sbr->k[0] - sbr->n_master * dk;
402 if (k2diff < 0) {
403 sbr->f_master[1]--;
404 sbr->f_master[2]-= (k2diff < 1);
405 } else if (k2diff) {
406 sbr->f_master[sbr->n_master]++;
407 }
408
409 sbr->f_master[0] = sbr->k[0];
410 for (k = 1; k <= sbr->n_master; k++)
411 sbr->f_master[k] += sbr->f_master[k - 1];
412
413 } else {
414 int half_bands = 7 - spectrum->bs_freq_scale; // bs_freq_scale = {1,2,3}
415 int two_regions, num_bands_0;
416 int vdk0_max, vdk1_min;
417 int16_t vk0[49];
418
419 if (49 * sbr->k[2] > 110 * sbr->k[0]) {
420 two_regions = 1;
421 sbr->k[1] = 2 * sbr->k[0];
422 } else {
423 two_regions = 0;
424 sbr->k[1] = sbr->k[2];
425 }
426
427 num_bands_0 = lrintf(half_bands * log2f(sbr->k[1] / (float)sbr->k[0])) * 2;
428
429 if (num_bands_0 <= 0) { // Requirements (14496-3 sp04 p205)
430 av_log(ac->avccontext, AV_LOG_ERROR, "Invalid num_bands_0: %d\n", num_bands_0);
431 return -1;
432 }
433
434 vk0[0] = 0;
435
436 make_bands(vk0+1, sbr->k[0], sbr->k[1], num_bands_0);
437
438 qsort(vk0 + 1, num_bands_0, sizeof(vk0[1]), qsort_comparison_function_int16);
439 vdk0_max = vk0[num_bands_0];
440
441 vk0[0] = sbr->k[0];
442 for (k = 1; k <= num_bands_0; k++) {
443 if (vk0[k] <= 0) { // Requirements (14496-3 sp04 p205)
444 av_log(ac->avccontext, AV_LOG_ERROR, "Invalid vDk0[%d]: %d\n", k, vk0[k]);
445 return -1;
446 }
447 vk0[k] += vk0[k-1];
448 }
449
450 if (two_regions) {
451 int16_t vk1[49];
452 float invwarp = spectrum->bs_alter_scale ? 0.76923076923076923077f
453 : 1.0f; // bs_alter_scale = {0,1}
454 int num_bands_1 = lrintf(half_bands * invwarp *
455 log2f(sbr->k[2] / (float)sbr->k[1])) * 2;
456
457 make_bands(vk1+1, sbr->k[1], sbr->k[2], num_bands_1);
458
459 vdk1_min = array_min_int16(vk1 + 1, num_bands_1);
460
461 if (vdk1_min < vdk0_max) {
462 int change;
463 qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
464 change = FFMIN(vdk0_max - vk1[1], (vk1[num_bands_1] - vk1[1]) >> 1);
465 vk1[1] += change;
466 vk1[num_bands_1] -= change;
467 }
468
469 qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
470
471 vk1[0] = sbr->k[1];
472 for (k = 1; k <= num_bands_1; k++) {
473 if (vk1[k] <= 0) { // Requirements (14496-3 sp04 p205)
474 av_log(ac->avccontext, AV_LOG_ERROR, "Invalid vDk1[%d]: %d\n", k, vk1[k]);
475 return -1;
476 }
477 vk1[k] += vk1[k-1];
478 }
479
480 sbr->n_master = num_bands_0 + num_bands_1;
481 if (check_n_master(ac->avccontext, sbr->n_master, sbr->spectrum_params.bs_xover_band))
482 return -1;
483 memcpy(&sbr->f_master[0], vk0,
484 (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
485 memcpy(&sbr->f_master[num_bands_0 + 1], vk1 + 1,
486 num_bands_1 * sizeof(sbr->f_master[0]));
487
488 } else {
489 sbr->n_master = num_bands_0;
490 if (check_n_master(ac->avccontext, sbr->n_master, sbr->spectrum_params.bs_xover_band))
491 return -1;
492 memcpy(sbr->f_master, vk0, (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
493 }
494 }
495
496 return 0;
497 }
498
499 /// High Frequency Generation - Patch Construction (14496-3 sp04 p216 fig. 4.46)
500 static int sbr_hf_calc_npatches(AACContext *ac, SpectralBandReplication *sbr)
501 {
502 int i, k, sb = 0;
503 int msb = sbr->k[0];
504 int usb = sbr->kx[1];
505 int goal_sb = ((1000 << 11) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
506
507 sbr->num_patches = 0;
508
509 if (goal_sb < sbr->kx[1] + sbr->m[1]) {
510 for (k = 0; sbr->f_master[k] < goal_sb; k++) ;
511 } else
512 k = sbr->n_master;
513
514 do {
515 int odd = 0;
516 for (i = k; i == k || sb > (sbr->k[0] - 1 + msb - odd); i--) {
517 sb = sbr->f_master[i];
518 odd = (sb + sbr->k[0]) & 1;
519 }
520
521 sbr->patch_num_subbands[sbr->num_patches] = FFMAX(sb - usb, 0);
522 sbr->patch_start_subband[sbr->num_patches] = sbr->k[0] - odd - sbr->patch_num_subbands[sbr->num_patches];
523
524 if (sbr->patch_num_subbands[sbr->num_patches] > 0) {
525 usb = sb;
526 msb = sb;
527 sbr->num_patches++;
528 } else
529 msb = sbr->kx[1];
530
531 if (sbr->f_master[k] - sb < 3)
532 k = sbr->n_master;
533 } while (sb != sbr->kx[1] + sbr->m[1]);
534
535 if (sbr->patch_num_subbands[sbr->num_patches-1] < 3 && sbr->num_patches > 1)
536 sbr->num_patches--;
537
538 // Requirements (14496-3 sp04 p205) sets the maximum number of patches to 5
539 // However the Coding Technologies decoder check uses 6 patches
540 if (sbr->num_patches > 6) {
541 av_log(ac->avccontext, AV_LOG_ERROR, "Too many patches: %d\n", sbr->num_patches);
542 return -1;
543 }
544
545 return 0;
546 }
547
548 /// Derived Frequency Band Tables (14496-3 sp04 p197)
549 static int sbr_make_f_derived(AACContext *ac, SpectralBandReplication *sbr)
550 {
551 int k, temp;
552
553 sbr->n[1] = sbr->n_master - sbr->spectrum_params.bs_xover_band;
554 sbr->n[0] = (sbr->n[1] + 1) >> 1;
555
556 memcpy(sbr->f_tablehigh, &sbr->f_master[sbr->spectrum_params.bs_xover_band],
557 (sbr->n[1] + 1) * sizeof(sbr->f_master[0]));
558 sbr->m[1] = sbr->f_tablehigh[sbr->n[1]] - sbr->f_tablehigh[0];
559 sbr->kx[1] = sbr->f_tablehigh[0];
560
561 // Requirements (14496-3 sp04 p205)
562 if (sbr->kx[1] + sbr->m[1] > 64) {
563 av_log(ac->avccontext, AV_LOG_ERROR,
564 "Stop frequency border too high: %d\n", sbr->kx[1] + sbr->m[1]);
565 return -1;
566 }
567 if (sbr->kx[1] > 32) {
568 av_log(ac->avccontext, AV_LOG_ERROR, "Start frequency border too high: %d\n", sbr->kx[1]);
569 return -1;
570 }
571
572 sbr->f_tablelow[0] = sbr->f_tablehigh[0];
573 temp = sbr->n[1] & 1;
574 for (k = 1; k <= sbr->n[0]; k++)
575 sbr->f_tablelow[k] = sbr->f_tablehigh[2 * k - temp];
576
577 sbr->n_q = FFMAX(1, lrintf(sbr->spectrum_params.bs_noise_bands *
578 log2f(sbr->k[2] / (float)sbr->kx[1]))); // 0 <= bs_noise_bands <= 3
579 if (sbr->n_q > 5) {
580 av_log(ac->avccontext, AV_LOG_ERROR, "Too many noise floor scale factors: %d\n", sbr->n_q);
581 return -1;
582 }
583
584 sbr->f_tablenoise[0] = sbr->f_tablelow[0];
585 temp = 0;
586 for (k = 1; k <= sbr->n_q; k++) {
587 temp += (sbr->n[0] - temp) / (sbr->n_q + 1 - k);
588 sbr->f_tablenoise[k] = sbr->f_tablelow[temp];
589 }
590
591 if (sbr_hf_calc_npatches(ac, sbr) < 0)
592 return -1;
593
594 sbr_make_f_tablelim(sbr);
595
596 sbr->data[0].f_indexnoise = 0;
597 sbr->data[1].f_indexnoise = 0;
598
599 return 0;
600 }
601
602 static av_always_inline void get_bits1_vector(GetBitContext *gb, uint8_t *vec,
603 int elements)
604 {
605 int i;
606 for (i = 0; i < elements; i++) {
607 vec[i] = get_bits1(gb);
608 }
609 }
610
611 /** ceil(log2(index+1)) */
612 static const int8_t ceil_log2[] = {
613 0, 1, 2, 2, 3, 3,
614 };
615
616 static int read_sbr_grid(AACContext *ac, SpectralBandReplication *sbr,
617 GetBitContext *gb, SBRData *ch_data)
618 {
619 int i;
620
621 ch_data->bs_freq_res[0] = ch_data->bs_freq_res[ch_data->bs_num_env[1]];
622 ch_data->bs_num_env[0] = ch_data->bs_num_env[1];
623 ch_data->bs_amp_res = sbr->bs_amp_res_header;
624
625 switch (ch_data->bs_frame_class = get_bits(gb, 2)) {
626 case FIXFIX:
627 ch_data->bs_num_env[1] = 1 << get_bits(gb, 2);
628 if (ch_data->bs_num_env[1] == 1)
629 ch_data->bs_amp_res = 0;
630
631 if (ch_data->bs_num_env[1] > 4) {
632 av_log(ac->avccontext, AV_LOG_ERROR,
633 "Invalid bitstream, too many SBR envelopes in FIXFIX type SBR frame: %d\n",
634 ch_data->bs_num_env[1]);
635 return -1;
636 }
637
638 ch_data->bs_pointer = 0;
639
640 ch_data->bs_freq_res[1] = get_bits1(gb);
641 for (i = 1; i < ch_data->bs_num_env[1]; i++)
642 ch_data->bs_freq_res[i + 1] = ch_data->bs_freq_res[1];
643 break;
644 case FIXVAR:
645 ch_data->bs_var_bord[1] = get_bits(gb, 2);
646 ch_data->bs_num_rel[1] = get_bits(gb, 2);
647 ch_data->bs_num_env[1] = ch_data->bs_num_rel[1] + 1;
648
649 for (i = 0; i < ch_data->bs_num_rel[1]; i++)
650 ch_data->bs_rel_bord[1][i] = 2 * get_bits(gb, 2) + 2;
651
652 ch_data->bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env[1]]);
653
654 for (i = 0; i < ch_data->bs_num_env[1]; i++)
655 ch_data->bs_freq_res[ch_data->bs_num_env[1] - i] = get_bits1(gb);
656 break;
657 case VARFIX:
658 ch_data->bs_var_bord[0] = get_bits(gb, 2);
659 ch_data->bs_num_rel[0] = get_bits(gb, 2);
660 ch_data->bs_num_env[1] = ch_data->bs_num_rel[0] + 1;
661
662 for (i = 0; i < ch_data->bs_num_rel[0]; i++)
663 ch_data->bs_rel_bord[0][i] = 2 * get_bits(gb, 2) + 2;
664
665 ch_data->bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env[1]]);
666
667 get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env[1]);
668 break;
669 case VARVAR:
670 ch_data->bs_var_bord[0] = get_bits(gb, 2);
671 ch_data->bs_var_bord[1] = get_bits(gb, 2);
672 ch_data->bs_num_rel[0] = get_bits(gb, 2);
673 ch_data->bs_num_rel[1] = get_bits(gb, 2);
674 ch_data->bs_num_env[1] = ch_data->bs_num_rel[0] + ch_data->bs_num_rel[1] + 1;
675
676 if (ch_data->bs_num_env[1] > 5) {
677 av_log(ac->avccontext, AV_LOG_ERROR,
678 "Invalid bitstream, too many SBR envelopes in VARVAR type SBR frame: %d\n",
679 ch_data->bs_num_env[1]);
680 return -1;
681 }
682
683 for (i = 0; i < ch_data->bs_num_rel[0]; i++)
684 ch_data->bs_rel_bord[0][i] = 2 * get_bits(gb, 2) + 2;
685 for (i = 0; i < ch_data->bs_num_rel[1]; i++)
686 ch_data->bs_rel_bord[1][i] = 2 * get_bits(gb, 2) + 2;
687
688 ch_data->bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env[1]]);
689
690 get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env[1]);
691 break;
692 }
693
694 if (ch_data->bs_pointer > ch_data->bs_num_env[1] + 1) {
695 av_log(ac->avccontext, AV_LOG_ERROR,
696 "Invalid bitstream, bs_pointer points to a middle noise border outside the time borders table: %d\n",
697 ch_data->bs_pointer);
698 return -1;
699 }
700
701 ch_data->bs_num_noise = (ch_data->bs_num_env[1] > 1) + 1;
702
703 return 0;
704 }
705
706 static void copy_sbr_grid(SBRData *dst, const SBRData *src) {
707 //These variables are saved from the previous frame rather than copied
708 dst->bs_freq_res[0] = dst->bs_freq_res[dst->bs_num_env[1]];
709 dst->bs_num_env[0] = dst->bs_num_env[1];
710
711 //These variables are read from the bitstream and therefore copied
712 memcpy(dst->bs_freq_res+1, src->bs_freq_res+1, sizeof(dst->bs_freq_res)-sizeof(*dst->bs_freq_res));
713 memcpy(dst->bs_num_env+1, src->bs_num_env+1, sizeof(dst->bs_num_env)- sizeof(*dst->bs_num_env));
714 memcpy(dst->bs_var_bord, src->bs_var_bord, sizeof(dst->bs_var_bord));
715 memcpy(dst->bs_rel_bord, src->bs_rel_bord, sizeof(dst->bs_rel_bord));
716 memcpy(dst->bs_num_rel, src->bs_num_rel, sizeof(dst->bs_rel_bord));
717 dst->bs_amp_res = src->bs_amp_res;
718 dst->bs_num_noise = src->bs_num_noise;
719 dst->bs_pointer = src->bs_pointer;
720 dst->bs_frame_class = src->bs_frame_class;
721 }
722
723 /// Read how the envelope and noise floor data is delta coded
724 static void read_sbr_dtdf(SpectralBandReplication *sbr, GetBitContext *gb,
725 SBRData *ch_data)
726 {
727 get_bits1_vector(gb, ch_data->bs_df_env, ch_data->bs_num_env[1]);
728 get_bits1_vector(gb, ch_data->bs_df_noise, ch_data->bs_num_noise);
729 }
730
731 /// Read inverse filtering data
732 static void read_sbr_invf(SpectralBandReplication *sbr, GetBitContext *gb,
733 SBRData *ch_data)
734 {
735 int i;
736
737 memcpy(ch_data->bs_invf_mode[1], ch_data->bs_invf_mode[0], 5 * sizeof(uint8_t));
738 for (i = 0; i < sbr->n_q; i++)
739 ch_data->bs_invf_mode[0][i] = get_bits(gb, 2);
740 }
741
742 static void read_sbr_envelope(SpectralBandReplication *sbr, GetBitContext *gb,
743 SBRData *ch_data, int ch)
744 {
745 int bits;
746 int i, j, k;
747 VLC_TYPE (*t_huff)[2], (*f_huff)[2];
748 int t_lav, f_lav;
749 const int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
750 const int odd = sbr->n[1] & 1;
751
752 if (sbr->bs_coupling && ch) {
753 if (ch_data->bs_amp_res) {
754 bits = 5;
755 t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_3_0DB].table;
756 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_3_0DB];
757 f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
758 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
759 } else {
760 bits = 6;
761 t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_1_5DB].table;
762 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_1_5DB];
763 f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_1_5DB].table;
764 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_1_5DB];
765 }
766 } else {
767 if (ch_data->bs_amp_res) {
768 bits = 6;
769 t_huff = vlc_sbr[T_HUFFMAN_ENV_3_0DB].table;
770 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_3_0DB];
771 f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
772 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
773 } else {
774 bits = 7;
775 t_huff = vlc_sbr[T_HUFFMAN_ENV_1_5DB].table;
776 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_1_5DB];
777 f_huff = vlc_sbr[F_HUFFMAN_ENV_1_5DB].table;
778 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_1_5DB];
779 }
780 }
781
782 for (i = 0; i < ch_data->bs_num_env[1]; i++) {
783 if (ch_data->bs_df_env[i]) {
784 // bs_freq_res[0] == bs_freq_res[bs_num_env[1]] from prev frame
785 if (ch_data->bs_freq_res[i + 1] == ch_data->bs_freq_res[i]) {
786 for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
787 ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
788 } else if (ch_data->bs_freq_res[i + 1]) {
789 for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
790 k = (j + odd) >> 1; // find k such that f_tablelow[k] <= f_tablehigh[j] < f_tablelow[k + 1]
791 ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
792 }
793 } else {
794 for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
795 k = j ? 2*j - odd : 0; // find k such that f_tablehigh[k] == f_tablelow[j]
796 ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
797 }
798 }
799 } else {
800 ch_data->env_facs[i + 1][0] = delta * get_bits(gb, bits); // bs_env_start_value_balance
801 for (j = 1; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
802 ch_data->env_facs[i + 1][j] = ch_data->env_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
803 }
804 }
805
806 //assign 0th elements of env_facs from last elements
807 memcpy(ch_data->env_facs[0], ch_data->env_facs[ch_data->bs_num_env[1]],
808 sizeof(ch_data->env_facs[0]));
809 }
810
811 static void read_sbr_noise(SpectralBandReplication *sbr, GetBitContext *gb,
812 SBRData *ch_data, int ch)
813 {
814 int i, j;
815 VLC_TYPE (*t_huff)[2], (*f_huff)[2];
816 int t_lav, f_lav;
817 int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
818
819 if (sbr->bs_coupling && ch) {
820 t_huff = vlc_sbr[T_HUFFMAN_NOISE_BAL_3_0DB].table;
821 t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_BAL_3_0DB];
822 f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
823 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
824 } else {
825 t_huff = vlc_sbr[T_HUFFMAN_NOISE_3_0DB].table;
826 t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_3_0DB];
827 f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
828 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
829 }
830
831 for (i = 0; i < ch_data->bs_num_noise; i++) {
832 if (ch_data->bs_df_noise[i]) {
833 for (j = 0; j < sbr->n_q; j++)
834 ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 2) - t_lav);
835 } else {
836 ch_data->noise_facs[i + 1][0] = delta * get_bits(gb, 5); // bs_noise_start_value_balance or bs_noise_start_value_level
837 for (j = 1; j < sbr->n_q; j++)
838 ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
839 }
840 }
841
842 //assign 0th elements of noise_facs from last elements
843 memcpy(ch_data->noise_facs[0], ch_data->noise_facs[ch_data->bs_num_noise],
844 sizeof(ch_data->noise_facs[0]));
845 }
846
847 static void read_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
848 GetBitContext *gb,
849 int bs_extension_id, int *num_bits_left)
850 {
851 //TODO - implement ps_data for parametric stereo parsing
852 switch (bs_extension_id) {
853 case EXTENSION_ID_PS:
854 #if 0
855 *num_bits_left -= ff_ps_data(gb, ps);
856 #else
857 av_log_missing_feature(ac->avccontext, "Parametric Stereo is", 0);
858 skip_bits_long(gb, *num_bits_left); // bs_fill_bits
859 *num_bits_left = 0;
860 #endif
861 break;
862 default:
863 av_log_missing_feature(ac->avccontext, "Reserved SBR extensions are", 1);
864 skip_bits_long(gb, *num_bits_left); // bs_fill_bits
865 *num_bits_left = 0;
866 break;
867 }
868 }
869
870 static int read_sbr_single_channel_element(AACContext *ac,
871 SpectralBandReplication *sbr,
872 GetBitContext *gb)
873 {
874 if (get_bits1(gb)) // bs_data_extra
875 skip_bits(gb, 4); // bs_reserved
876
877 if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
878 return -1;
879 read_sbr_dtdf(sbr, gb, &sbr->data[0]);
880 read_sbr_invf(sbr, gb, &sbr->data[0]);
881 read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
882 read_sbr_noise(sbr, gb, &sbr->data[0], 0);
883
884 if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
885 get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
886
887 return 0;
888 }
889
890 static int read_sbr_channel_pair_element(AACContext *ac,
891 SpectralBandReplication *sbr,
892 GetBitContext *gb)
893 {
894 if (get_bits1(gb)) // bs_data_extra
895 skip_bits(gb, 8); // bs_reserved
896
897 if ((sbr->bs_coupling = get_bits1(gb))) {
898 if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
899 return -1;
900 copy_sbr_grid(&sbr->data[1], &sbr->data[0]);
901 read_sbr_dtdf(sbr, gb, &sbr->data[0]);
902 read_sbr_dtdf(sbr, gb, &sbr->data[1]);
903 read_sbr_invf(sbr, gb, &sbr->data[0]);
904 memcpy(sbr->data[1].bs_invf_mode[1], sbr->data[1].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
905 memcpy(sbr->data[1].bs_invf_mode[0], sbr->data[0].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
906 read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
907 read_sbr_noise(sbr, gb, &sbr->data[0], 0);
908 read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
909 read_sbr_noise(sbr, gb, &sbr->data[1], 1);
910 } else {
911 if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]) ||
912 read_sbr_grid(ac, sbr, gb, &sbr->data[1]))
913 return -1;
914 read_sbr_dtdf(sbr, gb, &sbr->data[0]);
915 read_sbr_dtdf(sbr, gb, &sbr->data[1]);
916 read_sbr_invf(sbr, gb, &sbr->data[0]);
917 read_sbr_invf(sbr, gb, &sbr->data[1]);
918 read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
919 read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
920 read_sbr_noise(sbr, gb, &sbr->data[0], 0);
921 read_sbr_noise(sbr, gb, &sbr->data[1], 1);
922 }
923
924 if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
925 get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
926 if ((sbr->data[1].bs_add_harmonic_flag = get_bits1(gb)))
927 get_bits1_vector(gb, sbr->data[1].bs_add_harmonic, sbr->n[1]);
928
929 return 0;
930 }
931
932 static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr,
933 GetBitContext *gb, int id_aac)
934 {
935 unsigned int cnt = get_bits_count(gb);
936
937 if (id_aac == TYPE_SCE || id_aac == TYPE_CCE) {
938 if (read_sbr_single_channel_element(ac, sbr, gb)) {
939 sbr->start = 0;
940 return get_bits_count(gb) - cnt;
941 }
942 } else if (id_aac == TYPE_CPE) {
943 if (read_sbr_channel_pair_element(ac, sbr, gb)) {
944 sbr->start = 0;
945 return get_bits_count(gb) - cnt;
946 }
947 } else {
948 av_log(ac->avccontext, AV_LOG_ERROR,
949 "Invalid bitstream - cannot apply SBR to element type %d\n", id_aac);
950 sbr->start = 0;
951 return get_bits_count(gb) - cnt;
952 }
953 if (get_bits1(gb)) { // bs_extended_data
954 int num_bits_left = get_bits(gb, 4); // bs_extension_size
955 if (num_bits_left == 15)
956 num_bits_left += get_bits(gb, 8); // bs_esc_count
957
958 num_bits_left <<= 3;
959 while (num_bits_left > 7) {
960 num_bits_left -= 2;
961 read_sbr_extension(ac, sbr, gb, get_bits(gb, 2), &num_bits_left); // bs_extension_id
962 }
963 }
964
965 return get_bits_count(gb) - cnt;
966 }
967
968 static void sbr_reset(AACContext *ac, SpectralBandReplication *sbr)
969 {
970 int err;
971 err = sbr_make_f_master(ac, sbr, &sbr->spectrum_params);
972 if (err >= 0)
973 err = sbr_make_f_derived(ac, sbr);
974 if (err < 0) {
975 av_log(ac->avccontext, AV_LOG_ERROR,
976 "SBR reset failed. Switching SBR to pure upsampling mode.\n");
977 sbr->start = 0;
978 }
979 }
980
981 /**
982 * Decode Spectral Band Replication extension data; reference: table 4.55.
983 *
984 * @param crc flag indicating the presence of CRC checksum
985 * @param cnt length of TYPE_FIL syntactic element in bytes
986 *
987 * @return Returns number of bytes consumed from the TYPE_FIL element.
988 */
989 int ff_decode_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
990 GetBitContext *gb_host, int crc, int cnt, int id_aac)
991 {
992 unsigned int num_sbr_bits = 0, num_align_bits;
993 unsigned bytes_read;
994 GetBitContext gbc = *gb_host, *gb = &gbc;
995 skip_bits_long(gb_host, cnt*8 - 4);
996
997 sbr->reset = 0;
998
999 if (!sbr->sample_rate)
1000 sbr->sample_rate = 2 * ac->m4ac.sample_rate; //TODO use the nominal sample rate for arbitrary sample rate support
1001 if (!ac->m4ac.ext_sample_rate)
1002 ac->m4ac.ext_sample_rate = 2 * ac->m4ac.sample_rate;
1003
1004 if (crc) {
1005 skip_bits(gb, 10); // bs_sbr_crc_bits; TODO - implement CRC check
1006 num_sbr_bits += 10;
1007 }
1008
1009 //Save some state from the previous frame.
1010 sbr->kx[0] = sbr->kx[1];
1011 sbr->m[0] = sbr->m[1];
1012
1013 num_sbr_bits++;
1014 if (get_bits1(gb)) // bs_header_flag
1015 num_sbr_bits += read_sbr_header(sbr, gb);
1016
1017 if (sbr->reset)
1018 sbr_reset(ac, sbr);
1019
1020 if (sbr->start)
1021 num_sbr_bits += read_sbr_data(ac, sbr, gb, id_aac);
1022
1023 num_align_bits = ((cnt << 3) - 4 - num_sbr_bits) & 7;
1024 bytes_read = ((num_sbr_bits + num_align_bits + 4) >> 3);
1025
1026 if (bytes_read > cnt) {
1027 av_log(ac->avccontext, AV_LOG_ERROR,
1028 "Expected to read %d SBR bytes actually read %d.\n", cnt, bytes_read);
1029 }
1030 return cnt;
1031 }
1032
1033 /// Time/frequency Grid (14496-3 sp04 p200)
1034 static int sbr_time_freq_grid(AACContext *ac, SpectralBandReplication *sbr,
1035 SBRData *ch_data, int ch)
1036 {
1037 int abs_bord_lead = ch_data->bs_frame_class >= 2 ? ch_data->bs_var_bord[0] : 0;
1038 // frameLengthFlag ? 15 : 16; 960 sample length frames unsupported; this value is numTimeSlots
1039 int abs_bord_trail = (ch_data->bs_frame_class & 1 ? ch_data->bs_var_bord[1] : 0) + 16;
1040 int n_rel_lead;
1041 int i;
1042
1043 if (ch_data->bs_frame_class == FIXFIX) {
1044 n_rel_lead = ch_data->bs_num_env[1] - 1;
1045 } else if (ch_data->bs_frame_class == FIXVAR) {
1046 n_rel_lead = 0;
1047 } else if (ch_data->bs_frame_class < 4) { // VARFIX or VARVAR
1048 n_rel_lead = ch_data->bs_num_rel[0];
1049 } else {
1050 av_log(ac->avccontext, AV_LOG_ERROR,
1051 "Invalid bs_frame_class for SBR: %d\n", ch_data->bs_frame_class);
1052 return -1;
1053 }
1054
1055 ch_data->t_env_num_env_old = ch_data->t_env[ch_data->bs_num_env[0]];
1056 ch_data->t_env[0] = abs_bord_lead;
1057 ch_data->t_env[ch_data->bs_num_env[1]] = abs_bord_trail;
1058
1059 if (ch_data->bs_frame_class == FIXFIX) {
1060 int temp = (abs_bord_trail + (ch_data->bs_num_env[1] >> 1)) /
1061 ch_data->bs_num_env[1];
1062 for (i = 0; i < n_rel_lead; i++)
1063 ch_data->t_env[i + 1] = ch_data->t_env[i] + temp;
1064 } else if (ch_data->bs_frame_class > 1) { // VARFIX or VARVAR
1065 for (i = 0; i < n_rel_lead; i++)
1066 ch_data->t_env[i + 1] = ch_data->t_env[i] + ch_data->bs_rel_bord[0][i];
1067 } else { // FIXVAR
1068 for (i = 0; i < n_rel_lead; i++)
1069 ch_data->t_env[i + 1] = abs_bord_lead;
1070 }
1071
1072 if (ch_data->bs_frame_class & 1) { // FIXVAR or VARVAR
1073 for (i = ch_data->bs_num_env[1] - 1; i > n_rel_lead; i--)
1074 ch_data->t_env[i] = ch_data->t_env[i + 1] -
1075 ch_data->bs_rel_bord[1][ch_data->bs_num_env[1] - 1 - i];
1076 } else { // FIXFIX or VARFIX
1077 for (i = n_rel_lead; i < ch_data->bs_num_env[1]; i++)
1078 ch_data->t_env[i + 1] = abs_bord_trail;
1079 }
1080
1081 ch_data->t_q[0] = ch_data->t_env[0];
1082 if (ch_data->bs_num_noise > 1) { // typo in spec bases this on bs_num_env...
1083 unsigned int idx;
1084 if (ch_data->bs_frame_class == FIXFIX) {
1085 idx = ch_data->bs_num_env[1] >> 1;
1086 } else if (ch_data->bs_frame_class & 1) { // FIXVAR or VARVAR
1087 idx = ch_data->bs_num_env[1] - FFMAX(ch_data->bs_pointer - 1, 1);
1088 } else { // VARFIX
1089 if (!ch_data->bs_pointer)
1090 idx = 1;
1091 else if (ch_data->bs_pointer == 1)
1092 idx = ch_data->bs_num_env[1] - 1;
1093 else // bs_pointer > 1
1094 idx = ch_data->bs_pointer - 1;
1095 }
1096 ch_data->t_q[1] = ch_data->t_env[idx];
1097 ch_data->t_q[2] = ch_data->t_env[ch_data->bs_num_env[1]];
1098 } else
1099 ch_data->t_q[1] = ch_data->t_env[ch_data->bs_num_env[1]];
1100
1101 return 0;
1102 }
1103
1104 /// Dequantization and stereo decoding (14496-3 sp04 p203)
1105 static void sbr_dequant(SpectralBandReplication *sbr, int id_aac)
1106 {
1107 int k, e;
1108 int ch;
1109
1110 if (id_aac == TYPE_CPE && sbr->bs_coupling) {
1111 float alpha = sbr->data[0].bs_amp_res ? 1.0f : 0.5f;
1112 float pan_offset = sbr->data[0].bs_amp_res ? 12.0f : 24.0f;
1113 for (e = 1; e <= sbr->data[0].bs_num_env[1]; e++) {
1114 for (k = 0; k < sbr->n[sbr->data[0].bs_freq_res[e]]; k++) {
1115 float temp1 = exp2f(sbr->data[0].env_facs[e][k] * alpha + 7.0f);
1116 float temp2 = exp2f((pan_offset - sbr->data[1].env_facs[e][k]) * alpha);
1117 float fac = temp1 / (1.0f + temp2);
1118 sbr->data[0].env_facs[e][k] = fac;
1119 sbr->data[1].env_facs[e][k] = fac * temp2;
1120 }
1121 }
1122 for (e = 1; e <= sbr->data[0].bs_num_noise; e++) {
1123 for (k = 0; k < sbr->n_q; k++) {
1124 float temp1 = exp2f(NOISE_FLOOR_OFFSET - sbr->data[0].noise_facs[e][k] + 1);
1125 float temp2 = exp2f(12 - sbr->data[1].noise_facs[e][k]);
1126 float fac = temp1 / (1.0f + temp2);
1127 sbr->data[0].noise_facs[e][k] = fac;
1128 sbr->data[1].noise_facs[e][k] = fac * temp2;
1129 }
1130 }
1131 } else { // SCE or one non-coupled CPE
1132 for (ch = 0; ch < (id_aac == TYPE_CPE) + 1; ch++) {
1133 float alpha = sbr->data[ch].bs_amp_res ? 1.0f : 0.5f;
1134 for (e = 1; e <= sbr->data[ch].bs_num_env[1]; e++)
1135 for (k = 0; k < sbr->n[sbr->data[ch].bs_freq_res[e]]; k++)
1136 sbr->data[ch].env_facs[e][k] =
1137 exp2f(alpha * sbr->data[ch].env_facs[e][k] + 6.0f);
1138 for (e = 1; e <= sbr->data[ch].bs_num_noise; e++)
1139 for (k = 0; k < sbr->n_q; k++)
1140 sbr->data[ch].noise_facs[e][k] =
1141 exp2f(NOISE_FLOOR_OFFSET - sbr->data[ch].noise_facs[e][k]);
1142 }
1143 }
1144 }
1145
1146 /**
1147 * Analysis QMF Bank (14496-3 sp04 p206)
1148 *
1149 * @param x pointer to the beginning of the first sample window
1150 * @param W array of complex-valued samples split into subbands
1151 */
1152 static void sbr_qmf_analysis(DSPContext *dsp, RDFTContext *rdft, const float *in, float *x,
1153 float z[320], float W[2][32][32][2],
1154 float bias, float scale)
1155 {
1156 int i, k;
1157 memcpy(W[0], W[1], sizeof(W[0]));
1158 memcpy(x , x+1024, (320-32)*sizeof(x[0]));
1159 if (scale != 1.0f || bias != 0.0f)
1160 for (i = 0; i < 1024; i++)
1161 x[288 + i] = (in[i] - bias) * scale;
1162 else
1163 memcpy(x+288, in, 1024*sizeof(*x));
1164 for (i = 0; i < 32; i++) { // numTimeSlots*RATE = 16*2 as 960 sample frames
1165 // are not supported
1166 float re, im;
1167 dsp->vector_fmul_reverse(z, sbr_qmf_window_ds, x, 320);
1168 for (k = 0; k < 64; k++) {
1169 float f = z[k] + z[k + 64] + z[k + 128] + z[k + 192] + z[k + 256];
1170 z[k] = f * analysis_cos_pre[k];
1171 z[k+64] = f;
1172 }
1173 ff_rdft_calc(rdft, z);
1174 re = z[0] * 0.5f;
1175 im = 0.5f * dsp->scalarproduct_float(z+64, analysis_sin_pre, 64);
1176 W[1][i][0][0] = re * analysis_cossin_post[0][0] - im * analysis_cossin_post[0][1];
1177 W[1][i][0][1] = re * analysis_cossin_post[0][1] + im * analysis_cossin_post[0][0];
1178 for (k = 1; k < 32; k++) {
1179 re = z[2*k ] - re;
1180 im = z[2*k+1] - im;
1181 W[1][i][k][0] = re * analysis_cossin_post[k][0] - im * analysis_cossin_post[k][1];
1182 W[1][i][k][1] = re * analysis_cossin_post[k][1] + im * analysis_cossin_post[k][0];
1183 }
1184 x += 32;
1185 }
1186 }
1187
1188 /**
1189 * Synthesis QMF Bank (14496-3 sp04 p206) and Downsampled Synthesis QMF Bank
1190 * (14496-3 sp04 p206)
1191 */
1192 static void sbr_qmf_synthesis(DSPContext *dsp, FFTContext *mdct,
1193 float *out, float X[2][32][64],
1194 float mdct_buf[2][64],
1195 float *v0, int *v_off, const unsigned int div,
1196 float bias, float scale)
1197 {
1198 int i, n;
1199 const float *sbr_qmf_window = div ? sbr_qmf_window_ds : sbr_qmf_window_us;
1200 int scale_and_bias = scale != 1.0f || bias != 0.0f;
1201 float *v;
1202 for (i = 0; i < 32; i++) {
1203 if (*v_off == 0) {
1204 int saved_samples = (1280 - 128) >> div;
1205 memcpy(&v0[SBR_SYNTHESIS_BUF_SIZE - saved_samples], v0, saved_samples * sizeof(float));
1206 *v_off = SBR_SYNTHESIS_BUF_SIZE - saved_samples - (128 >> div);
1207 } else {
1208 *v_off -= 128 >> div;
1209 }
1210 v = v0 + *v_off;
1211 for (n = 1; n < 64 >> div; n+=2) {
1212 X[1][i][n] = -X[1][i][n];
1213 }
1214 if (div) {
1215 memset(X[0][i]+32, 0, 32*sizeof(float));
1216 memset(X[1][i]+32, 0, 32*sizeof(float));
1217 }
1218 ff_imdct_half(mdct, mdct_buf[0], X[0][i]);
1219 ff_imdct_half(mdct, mdct_buf[1], X[1][i]);
1220 if (div) {
1221 for (n = 0; n < 32; n++) {
1222 v[ n] = -mdct_buf[0][63 - 2*n] + mdct_buf[1][2*n ];
1223 v[ 63 - n] = mdct_buf[0][62 - 2*n] + mdct_buf[1][2*n + 1];
1224 }
1225 } else {
1226 for (n = 0; n < 64; n++) {
1227 v[ n] = -mdct_buf[0][63 - n] + mdct_buf[1][ n ];
1228 v[127 - n] = mdct_buf[0][63 - n] + mdct_buf[1][ n ];
1229 }
1230 }
1231 dsp->vector_fmul_add(out, v , sbr_qmf_window , zero64, 64 >> div);
1232 dsp->vector_fmul_add(out, v + ( 192 >> div), sbr_qmf_window + ( 64 >> div), out , 64 >> div);
1233 dsp->vector_fmul_add(out, v + ( 256 >> div), sbr_qmf_window + (128 >> div), out , 64 >> div);
1234 dsp->vector_fmul_add(out, v + ( 448 >> div), sbr_qmf_window + (192 >> div), out , 64 >> div);
1235 dsp->vector_fmul_add(out, v + ( 512 >> div), sbr_qmf_window + (256 >> div), out , 64 >> div);
1236 dsp->vector_fmul_add(out, v + ( 704 >> div), sbr_qmf_window + (320 >> div), out , 64 >> div);
1237 dsp->vector_fmul_add(out, v + ( 768 >> div), sbr_qmf_window + (384 >> div), out , 64 >> div);
1238 dsp->vector_fmul_add(out, v + ( 960 >> div), sbr_qmf_window + (448 >> div), out , 64 >> div);
1239 dsp->vector_fmul_add(out, v + (1024 >> div), sbr_qmf_window + (512 >> div), out , 64 >> div);
1240 dsp->vector_fmul_add(out, v + (1216 >> div), sbr_qmf_window + (576 >> div), out , 64 >> div);
1241 if (scale_and_bias)
1242 for (n = 0; n < 64 >> div; n++)
1243 out[n] = out[n] * scale + bias;
1244 out += 64 >> div;
1245 }
1246 }
1247
1248 static void autocorrelate(const float x[40][2], float phi[3][2][2], int lag)
1249 {
1250 int i;
1251 float real_sum = 0.0f;
1252 float imag_sum = 0.0f;
1253 if (lag) {
1254 for (i = 1; i < 38; i++) {
1255 real_sum += x[i][0] * x[i+lag][0] + x[i][1] * x[i+lag][1];
1256 imag_sum += x[i][0] * x[i+lag][1] - x[i][1] * x[i+lag][0];
1257 }
1258 phi[2-lag][1][0] = real_sum + x[ 0][0] * x[lag][0] + x[ 0][1] * x[lag][1];
1259 phi[2-lag][1][1] = imag_sum + x[ 0][0] * x[lag][1] - x[ 0][1] * x[lag][0];
1260 if (lag == 1) {
1261 phi[0][0][0] = real_sum + x[38][0] * x[39][0] + x[38][1] * x[39][1];
1262 phi[0][0][1] = imag_sum + x[38][0] * x[39][1] - x[38][1] * x[39][0];
1263 }
1264 } else {
1265 for (i = 1; i < 38; i++) {
1266 real_sum += x[i][0] * x[i][0] + x[i][1] * x[i][1];
1267 }
1268 phi[2][1][0] = real_sum + x[ 0][0] * x[ 0][0] + x[ 0][1] * x[ 0][1];
1269 phi[1][0][0] = real_sum + x[38][0] * x[38][0] + x[38][1] * x[38][1];
1270 }
1271 }
1272
1273 /** High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering
1274 * (14496-3 sp04 p214)
1275 * Warning: This routine does not seem numerically stable.
1276 */
1277 static void sbr_hf_inverse_filter(float (*alpha0)[2], float (*alpha1)[2],
1278 const float X_low[32][40][2], int k0)
1279 {
1280 int k;
1281 for (k = 0; k < k0; k++) {
1282 float phi[3][2][2], dk;
1283
1284 autocorrelate(X_low[k], phi, 0);
1285 autocorrelate(X_low[k], phi, 1);
1286 autocorrelate(X_low[k], phi, 2);
1287
1288 dk = phi[2][1][0] * phi[1][0][0] -
1289 (phi[1][1][0] * phi[1][1][0] + phi[1][1][1] * phi[1][1][1]) / 1.000001f;
1290
1291 if (!dk) {
1292 alpha1[k][0] = 0;
1293 alpha1[k][1] = 0;
1294 } else {
1295 float temp_real, temp_im;
1296 temp_real = phi[0][0][0] * phi[1][1][0] -
1297 phi[0][0][1] * phi[1][1][1] -
1298 phi[0][1][0] * phi[1][0][0];
1299 temp_im = phi[0][0][0] * phi[1][1][1] +
1300 phi[0][0][1] * phi[1][1][0] -
1301 phi[0][1][1] * phi[1][0][0];
1302
1303 alpha1[k][0] = temp_real / dk;
1304 alpha1[k][1] = temp_im / dk;
1305 }
1306
1307 if (!phi[1][0][0]) {
1308 alpha0[k][0] = 0;
1309 alpha0[k][1] = 0;
1310 } else {
1311 float temp_real, temp_im;
1312 temp_real = phi[0][0][0] + alpha1[k][0] * phi[1][1][0] +
1313 alpha1[k][1] * phi[1][1][1];
1314 temp_im = phi[0][0][1] + alpha1[k][1] * phi[1][1][0] -
1315 alpha1[k][0] * phi[1][1][1];
1316
1317 alpha0[k][0] = -temp_real / phi[1][0][0];
1318 alpha0[k][1] = -temp_im / phi[1][0][0];
1319 }
1320
1321 if (alpha1[k][0] * alpha1[k][0] + alpha1[k][1] * alpha1[k][1] >= 16.0f ||
1322 alpha0[k][0] * alpha0[k][0] + alpha0[k][1] * alpha0[k][1] >= 16.0f) {
1323 alpha1[k][0] = 0;
1324 alpha1[k][1] = 0;
1325 alpha0[k][0] = 0;
1326 alpha0[k][1] = 0;
1327 }
1328 }
1329 }
1330
1331 /// Chirp Factors (14496-3 sp04 p214)
1332 static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data)
1333 {
1334 int i;
1335 float new_bw;
1336 static const float bw_tab[] = { 0.0f, 0.75f, 0.9f, 0.98f };
1337
1338 for (i = 0; i < sbr->n_q; i++) {
1339 if (ch_data->bs_invf_mode[0][i] + ch_data->bs_invf_mode[1][i] == 1) {
1340 new_bw = 0.6f;
1341 } else
1342 new_bw = bw_tab[ch_data->bs_invf_mode[0][i]];
1343
1344 if (new_bw < ch_data->bw_array[i]) {
1345 new_bw = 0.75f * new_bw + 0.25f * ch_data->bw_array[i];
1346 } else
1347 new_bw = 0.90625f * new_bw + 0.09375f * ch_data->bw_array[i];
1348 ch_data->bw_array[i] = new_bw < 0.015625f ? 0.0f : new_bw;
1349 }
1350 }
1351
1352 /// Generate the subband filtered lowband
1353 static int sbr_lf_gen(AACContext *ac, SpectralBandReplication *sbr,
1354 float X_low[32][40][2], const float W[2][32][32][2])
1355 {
1356 int i, k;
1357 const int t_HFGen = 8;
1358 const int i_f = 32;
1359 memset(X_low, 0, 32*sizeof(*X_low));
1360 for (k = 0; k < sbr->kx[1]; k++) {
1361 for (i = t_HFGen; i < i_f + t_HFGen; i++) {
1362 X_low[k][i][0] = W[1][i - t_HFGen][k][0];
1363 X_low[k][i][1] = W[1][i - t_HFGen][k][1];
1364 }
1365 }
1366 for (k = 0; k < sbr->kx[0]; k++) {
1367 for (i = 0; i < t_HFGen; i++) {
1368 X_low[k][i][0] = W[0][i + i_f - t_HFGen][k][0];
1369 X_low[k][i][1] = W[0][i + i_f - t_HFGen][k][1];
1370 }
1371 }
1372 return 0;
1373 }
1374
1375 /// High Frequency Generator (14496-3 sp04 p215)
1376 static int sbr_hf_gen(AACContext *ac, SpectralBandReplication *sbr,
1377 float X_high[64][40][2], const float X_low[32][40][2],
1378 const float (*alpha0)[2], const float (*alpha1)[2],
1379 const float bw_array[5], const uint8_t *t_env,
1380 int bs_num_env)
1381 {
1382 int i, j, x;
1383 int g = 0;
1384 int k = sbr->kx[1];
1385 for (j = 0; j < sbr->num_patches; j++) {
1386 for (x = 0; x < sbr->patch_num_subbands[j]; x++, k++) {
1387 float alpha[4];
1388 const int p = sbr->patch_start_subband[j] + x;
1389 while (g <= sbr->n_q && k >= sbr->f_tablenoise[g])
1390 g++;
1391 g--;
1392
1393 if (g < 0) {
1394 av_log(ac->avccontext, AV_LOG_ERROR,
1395 "ERROR : no subband found for frequency %d\n", k);
1396 return -1;
1397 }
1398
1399 alpha[0] = alpha1[p][0] * bw_array[g] * bw_array[g];
1400 alpha[1] = alpha1[p][1] * bw_array[g] * bw_array[g];
1401 alpha[2] = alpha0[p][0] * bw_array[g];
1402 alpha[3] = alpha0[p][1] * bw_array[g];
1403
1404 for (i = 2 * t_env[0]; i < 2 * t_env[bs_num_env]; i++) {
1405 const int idx = i + ENVELOPE_ADJUSTMENT_OFFSET;
1406 X_high[k][idx][0] =
1407 X_low[p][idx - 2][0] * alpha[0] -
1408 X_low[p][idx - 2][1] * alpha[1] +
1409 X_low[p][idx - 1][0] * alpha[2] -
1410 X_low[p][idx - 1][1] * alpha[3] +
1411 X_low[p][idx][0];
1412 X_high[k][idx][1] =
1413 X_low[p][idx - 2][1] * alpha[0] +
1414 X_low[p][idx - 2][0] * alpha[1] +
1415 X_low[p][idx - 1][1] * alpha[2] +
1416 X_low[p][idx - 1][0] * alpha[3] +
1417 X_low[p][idx][1];
1418 }
1419 }
1420 }
1421 if (k < sbr->m[1] + sbr->kx[1])
1422 memset(X_high + k, 0, (sbr->m[1] + sbr->kx[1] - k) * sizeof(*X_high));
1423
1424 return 0;
1425 }
1426
1427 /// Generate the subband filtered lowband
1428 static int sbr_x_gen(SpectralBandReplication *sbr, float X[2][32][64],
1429 const float X_low[32][40][2], const float Y[2][38][64][2],
1430 int ch)
1431 {
1432 int k, i;
1433 const int i_f = 32;
1434 const int i_Temp = FFMAX(2*sbr->data[ch].t_env_num_env_old - i_f, 0);
1435 memset(X, 0, 2*sizeof(*X));
1436 for (k = 0; k < sbr->kx[0]; k++) {
1437 for (i = 0; i < i_Temp; i++) {
1438 X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
1439 X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
1440 }
1441 }
1442 for (; k < sbr->kx[0] + sbr->m[0]; k++) {
1443 for (i = 0; i < i_Temp; i++) {
1444 X[0][i][k] = Y[0][i + i_f][k][0];
1445 X[1][i][k] = Y[0][i + i_f][k][1];
1446 }
1447 }
1448
1449 for (k = 0; k < sbr->kx[1]; k++) {
1450 for (i = i_Temp; i < i_f; i++) {
1451 X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
1452 X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
1453 }
1454 }
1455 for (; k < sbr->kx[1] + sbr->m[1]; k++) {
1456 for (i = i_Temp; i < i_f; i++) {
1457 X[0][i][k] = Y[1][i][k][0];
1458 X[1][i][k] = Y[1][i][k][1];
1459 }
1460 }
1461 return 0;
1462 }
1463
1464 /** High Frequency Adjustment (14496-3 sp04 p217) and Mapping
1465 * (14496-3 sp04 p217)
1466 */
1467 static void sbr_mapping(AACContext *ac, SpectralBandReplication *sbr,
1468 SBRData *ch_data, int e_a[2])
1469 {
1470 int e, i, m;
1471
1472 e_a[0] = -(e_a[1] != ch_data->bs_num_env[0]); // l_APrev
1473 e_a[1] = -1;
1474 if ((ch_data->bs_frame_class & 1) && ch_data->bs_pointer) { // FIXVAR or VARVAR and bs_pointer != 0
1475 e_a[1] = ch_data->bs_num_env[1] + 1 - ch_data->bs_pointer;
1476 } else if ((ch_data->bs_frame_class == 2) && (ch_data->bs_pointer > 1)) // VARFIX and bs_pointer > 1
1477 e_a[1] = ch_data->bs_pointer - 1;
1478
1479 memset(ch_data->s_indexmapped[1], 0, 7*sizeof(ch_data->s_indexmapped[1]));
1480 for (e = 0; e < ch_data->bs_num_env[1]; e++) {
1481 const unsigned int ilim = sbr->n[ch_data->bs_freq_res[e + 1]];
1482 uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
1483 int k;
1484
1485 for (i = 0; i < ilim; i++)
1486 for (m = table[i]; m < table[i + 1]; m++)
1487 sbr->e_origmapped[e][m - sbr->kx[1]] = ch_data->env_facs[e+1][i];
1488
1489 // ch_data->bs_num_noise > 1 => 2 noise floors
1490 k = (ch_data->bs_num_noise > 1) && (ch_data->t_env[e] >= ch_data->t_q[1]);
1491 for (i = 0; i < sbr->n_q; i++)
1492 for (m = sbr->f_tablenoise[i]; m < sbr->f_tablenoise[i + 1]; m++)
1493 sbr->q_mapped[e][m - sbr->kx[1]] = ch_data->noise_facs[k+1][i];
1494
1495 for (i = 0; i < sbr->n[1]; i++) {
1496 if (ch_data->bs_add_harmonic_flag) {
1497 const unsigned int m_midpoint =
1498 (sbr->f_tablehigh[i] + sbr->f_tablehigh[i + 1]) >> 1;
1499
1500 ch_data->s_indexmapped[e + 1][m_midpoint - sbr->kx[1]] = ch_data->bs_add_harmonic[i] *
1501 (e >= e_a[1] || (ch_data->s_indexmapped[0][m_midpoint - sbr->kx[1]] == 1));
1502 }
1503 }
1504
1505 for (i = 0; i < ilim; i++) {
1506 int additional_sinusoid_present = 0;
1507 for (m = table[i]; m < table[i + 1]; m++) {
1508 if (ch_data->s_indexmapped[e + 1][m - sbr->kx[1]]) {
1509 additional_sinusoid_present = 1;
1510 break;
1511 }
1512 }
1513 memset(&sbr->s_mapped[e][table[i] - sbr->kx[1]], additional_sinusoid_present,
1514 (table[i + 1] - table[i]) * sizeof(sbr->s_mapped[e][0]));
1515 }
1516 }
1517
1518 memcpy(ch_data->s_indexmapped[0], ch_data->s_indexmapped[ch_data->bs_num_env[1]], sizeof(ch_data->s_indexmapped[0]));
1519 }
1520
1521 /// Estimation of current envelope (14496-3 sp04 p218)
1522 static void sbr_env_estimate(float (*e_curr)[48], float X_high[64][40][2],
1523 SpectralBandReplication *sbr, SBRData *ch_data)
1524 {
1525 int e, i, m;
1526
1527 if (sbr->bs_interpol_freq) {
1528 for (e = 0; e < ch_data->bs_num_env[1]; e++) {
1529 const float recip_env_size = 0.5f / (ch_data->t_env[e + 1] - ch_data->t_env[e]);
1530 int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1531 int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1532
1533 for (m = 0; m < sbr->m[1]; m++) {
1534 float sum = 0.0f;
1535
1536 for (i = ilb; i < iub; i++) {
1537 sum += X_high[m + sbr->kx[1]][i][0] * X_high[m + sbr->kx[1]][i][0] +
1538 X_high[m + sbr->kx[1]][i][1] * X_high[m + sbr->kx[1]][i][1];
1539 }
1540 e_curr[e][m] = sum * recip_env_size;
1541 }
1542 }
1543 } else {
1544 int k, p;
1545
1546 for (e = 0; e < ch_data->bs_num_env[1]; e++) {
1547 const int env_size = 2 * (ch_data->t_env[e + 1] - ch_data->t_env[e]);
1548 int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1549 int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1550 const uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
1551
1552 for (p = 0; p < sbr->n[ch_data->bs_freq_res[e + 1]]; p++) {
1553 float sum = 0.0f;
1554 const int den = env_size * (table[p + 1] - table[p]);
1555
1556 for (k = table[p]; k < table[p + 1]; k++) {
1557 for (i = ilb; i < iub; i++) {
1558 sum += X_high[k][i][0] * X_high[k][i][0] +
1559 X_high[k][i][1] * X_high[k][i][1];
1560 }
1561 }
1562 sum /= den;
1563 for (k = table[p]; k < table[p + 1]; k++) {
1564 e_curr[e][k - sbr->kx[1]] = sum;
1565 }
1566 }
1567 }
1568 }
1569 }
1570
1571 /**
1572 * Calculation of levels of additional HF signal components (14496-3 sp04 p219)
1573 * and Calculation of gain (14496-3 sp04 p219)
1574 */
1575 static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr,
1576 SBRData *ch_data, const int e_a[2])
1577 {
1578 int e, k, m;
1579 // max gain limits : -3dB, 0dB, 3dB, inf dB (limiter off)
1580 static const float limgain[4] = { 0.70795, 1.0, 1.41254, 10000000000 };
1581
1582 for (e = 0; e < ch_data->bs_num_env[1]; e++) {
1583 int delta = !((e == e_a[1]) || (e == e_a[0]));
1584 for (k = 0; k < sbr->n_lim; k++) {
1585 float gain_boost, gain_max;
1586 float sum[2] = { 0.0f, 0.0f };
1587 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1588 const float temp = sbr->e_origmapped[e][m] / (1.0f + sbr->q_mapped[e][m]);
1589 sbr->q_m[e][m] = sqrtf(temp * sbr->q_mapped[e][m]);
1590 sbr->s_m[e][m] = sqrtf(temp * ch_data->s_indexmapped[e + 1][m]);
1591 if (!sbr->s_mapped[e][m]) {
1592 sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] /
1593 ((1.0f + sbr->e_curr[e][m]) *
1594 (1.0f + sbr->q_mapped[e][m] * delta)));
1595 } else {
1596 sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] * sbr->q_mapped[e][m] /
1597 ((1.0f + sbr->e_curr[e][m]) *
1598 (1.0f + sbr->q_mapped[e][m])));
1599 }
1600 }
1601 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1602 sum[0] += sbr->e_origmapped[e][m];
1603 sum[1] += sbr->e_curr[e][m];
1604 }
1605 gain_max = limgain[sbr->bs_limiter_gains] * sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
1606 gain_max = FFMIN(100000, gain_max);
1607 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1608 float q_m_max = sbr->q_m[e][m] * gain_max / sbr->gain[e][m];
1609 sbr->q_m[e][m] = FFMIN(sbr->q_m[e][m], q_m_max);
1610 sbr->gain[e][m] = FFMIN(sbr->gain[e][m], gain_max);
1611 }
1612 sum[0] = sum[1] = 0.0f;
1613 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1614 sum[0] += sbr->e_origmapped[e][m];
1615 sum[1] += sbr->e_curr[e][m] * sbr->gain[e][m] * sbr->gain[e][m]
1616 + sbr->s_m[e][m] * sbr->s_m[e][m]
1617 + (delta && !sbr->s_m[e][m]) * sbr->q_m[e][m] * sbr->q_m[e][m];
1618 }
1619 gain_boost = sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
1620 gain_boost = FFMIN(1.584893192, gain_boost);
1621 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1622 sbr->gain[e][m] *= gain_boost;
1623 sbr->q_m[e][m] *= gain_boost;
1624 sbr->s_m[e][m] *= gain_boost;
1625 }
1626 }
1627 }
1628 }
1629
1630 /// Assembling HF Signals (14496-3 sp04 p220)
1631 static void sbr_hf_assemble(float Y[2][38][64][2], const float X_high[64][40][2],
1632 SpectralBandReplication *sbr, SBRData *ch_data,
1633 const int e_a[2])
1634 {
1635 int e, i, j, m;
1636 const int h_SL = 4 * !sbr->bs_smoothing_mode;
1637 const int kx = sbr->kx[1];
1638 const int m_max = sbr->m[1];
1639 static const float h_smooth[5] = {
1640 0.33333333333333,
1641 0.30150283239582,
1642 0.21816949906249,
1643 0.11516383427084,
1644 0.03183050093751,
1645 };
1646 static const int8_t phi[2][4] = {
1647 { 1, 0, -1, 0}, // real
1648 { 0, 1, 0, -1}, // imaginary
1649 };
1650 float (*g_temp)[48] = ch_data->g_temp, (*q_temp)[48] = ch_data->q_temp;
1651 int indexnoise = ch_data->f_indexnoise;
1652 int indexsine = ch_data->f_indexsine;
1653 memcpy(Y[0], Y[1], sizeof(Y[0]));
1654
1655 if (sbr->reset) {
1656 for (i = 0; i < h_SL; i++) {
1657 memcpy(g_temp[i + 2*ch_data->t_env[0]], sbr->gain[0], m_max * sizeof(sbr->gain[0][0]));
1658 memcpy(q_temp[i + 2*ch_data->t_env[0]], sbr->q_m[0], m_max * sizeof(sbr->q_m[0][0]));
1659 }
1660 } else if (h_SL) {
1661 memcpy(g_temp[2*ch_data->t_env[0]], g_temp[2*ch_data->t_env_num_env_old], 4*sizeof(g_temp[0]));
1662 memcpy(q_temp[2*ch_data->t_env[0]], q_temp[2*ch_data->t_env_num_env_old], 4*sizeof(q_temp[0]));
1663 }
1664
1665 for (e = 0; e < ch_data->bs_num_env[1]; e++) {
1666 for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
1667 memcpy(g_temp[h_SL + i], sbr->gain[e], m_max * sizeof(sbr->gain[0][0]));
1668 memcpy(q_temp[h_SL + i], sbr->q_m[e], m_max * sizeof(sbr->q_m[0][0]));
1669 }
1670 }
1671
1672 for (e = 0; e < ch_data->bs_num_env[1]; e++) {
1673 for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
1674 int phi_sign = (1 - 2*(kx & 1));
1675
1676 if (h_SL && e != e_a[0] && e != e_a[1]) {
1677 for (m = 0; m < m_max; m++) {
1678 const int idx1 = i + h_SL;
1679 float g_filt = 0.0f;
1680 for (j = 0; j <= h_SL; j++)
1681 g_filt += g_temp[idx1 - j][m] * h_smooth[j];
1682 Y[1][i][m + kx][0] =
1683 X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][0] * g_filt;
1684 Y[1][i][m + kx][1] =
1685 X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][1] * g_filt;
1686 }
1687 } else {
1688 for (m = 0; m < m_max; m++) {
1689 const float g_filt = g_temp[i + h_SL][m];
1690 Y[1][i][m + kx][0] =
1691 X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][0] * g_filt;
1692 Y[1][i][m + kx][1] =
1693 X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][1] * g_filt;
1694 }
1695 }
1696
1697 if (e != e_a[0] && e != e_a[1]) {
1698 for (m = 0; m < m_max; m++) {
1699 indexnoise = (indexnoise + 1) & 0x1ff;
1700 if (sbr->s_m[e][m]) {
1701 Y[1][i][m + kx][0] +=
1702 sbr->s_m[e][m] * phi[0][indexsine];
1703 Y[1][i][m + kx][1] +=
1704 sbr->s_m[e][m] * (phi[1][indexsine] * phi_sign);
1705 } else {
1706 float q_filt;
1707 if (h_SL) {
1708 const int idx1 = i + h_SL;
1709 q_filt = 0.0f;
1710 for (j = 0; j <= h_SL; j++)
1711 q_filt += q_temp[idx1 - j][m] * h_smooth[j];
1712 } else {
1713 q_filt = q_temp[i][m];
1714 }
1715 Y[1][i][m + kx][0] +=
1716 q_filt * sbr_noise_table[indexnoise][0];
1717 Y[1][i][m + kx][1] +=
1718 q_filt * sbr_noise_table[indexnoise][1];
1719 }
1720 phi_sign = -phi_sign;
1721 }
1722 } else {
1723 indexnoise = (indexnoise + m_max) & 0x1ff;
1724 for (m = 0; m < m_max; m++) {
1725 Y[1][i][m + kx][0] +=
1726 sbr->s_m[e][m] * phi[0][indexsine];
1727 Y[1][i][m + kx][1] +=
1728 sbr->s_m[e][m] * (phi[1][indexsine] * phi_sign);
1729 phi_sign = -phi_sign;
1730 }
1731 }
1732 indexsine = (indexsine + 1) & 3;
1733 }
1734 }
1735 ch_data->f_indexnoise = indexnoise;
1736 ch_data->f_indexsine = indexsine;
1737 }
1738
1739 void ff_sbr_dequant(AACContext *ac, SpectralBandReplication *sbr, int id_aac)
1740 {
1741 int ch;
1742
1743 if (sbr->start) {
1744 for (ch = 0; ch < (id_aac == TYPE_CPE) + 1; ch++) {
1745 sbr_time_freq_grid(ac, sbr, &sbr->data[ch], ch);
1746 }
1747 sbr_dequant(sbr, id_aac);
1748 }
1749 }
1750
1751 void ff_sbr_apply(AACContext *ac, SpectralBandReplication *sbr, int ch,
1752 const float* in, float* out)
1753 {
1754 int downsampled = ac->m4ac.ext_sample_rate < sbr->sample_rate;
1755
1756 /* decode channel */
1757 sbr_qmf_analysis(&ac->dsp, &sbr->rdft, in, sbr->data[ch].analysis_filterbank_samples,
1758 (float*)sbr->qmf_filter_scratch,
1759 sbr->data[ch].W, ac->add_bias, 1/(-1024 * ac->sf_scale));
1760 sbr_lf_gen(ac, sbr, sbr->X_low, sbr->data[ch].W);
1761 if (sbr->start) {
1762 sbr_hf_inverse_filter(sbr->alpha0, sbr->alpha1, sbr->X_low, sbr->k[0]);
1763 sbr_chirp(sbr, &sbr->data[ch]);
1764 sbr_hf_gen(ac, sbr, sbr->X_high, sbr->X_low, sbr->alpha0, sbr->alpha1,
1765 sbr->data[ch].bw_array, sbr->data[ch].t_env,
1766 sbr->data[ch].bs_num_env[1]);
1767
1768 // hf_adj
1769 sbr_mapping(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
1770 sbr_env_estimate(sbr->e_curr, sbr->X_high, sbr, &sbr->data[ch]);
1771 sbr_gain_calc(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
1772 sbr_hf_assemble(sbr->data[ch].Y, sbr->X_high, sbr, &sbr->data[ch],
1773 sbr->data[ch].e_a);
1774 }
1775
1776 /* synthesis */
1777 sbr_x_gen(sbr, sbr->X, sbr->X_low, sbr->data[ch].Y, ch);
1778 sbr_qmf_synthesis(&ac->dsp, &sbr->mdct, out, sbr->X, sbr->qmf_filter_scratch,
1779 sbr->data[ch].synthesis_filterbank_samples,
1780 &sbr->data[ch].synthesis_filterbank_samples_offset,
1781 downsampled,
1782 ac->add_bias, -1024 * ac->sf_scale);
1783 }