2 * AAC Spectral Band Replication decoding functions
3 * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
4 * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
6 * This file is part of FFmpeg.
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24 * @file libavcodec/aacsbr.c
25 * AAC Spectral Band Replication decoding functions
26 * @author Robert Swain ( rob opendot cl )
32 #include "aacsbrdata.h"
37 #define ENVELOPE_ADJUSTMENT_OFFSET 2
38 #define NOISE_FLOOR_OFFSET 6.0f
46 T_HUFFMAN_ENV_BAL_1_5DB
,
47 F_HUFFMAN_ENV_BAL_1_5DB
,
50 T_HUFFMAN_ENV_BAL_3_0DB
,
51 F_HUFFMAN_ENV_BAL_3_0DB
,
52 T_HUFFMAN_NOISE_3_0DB
,
53 T_HUFFMAN_NOISE_BAL_3_0DB
,
57 * bs_frame_class - frame class of current SBR frame (14496-3 sp04 p98)
70 static VLC vlc_sbr
[10];
71 static const int8_t vlc_sbr_lav
[10] =
72 { 60, 60, 24, 24, 31, 31, 12, 12, 31, 12 };
73 static DECLARE_ALIGNED(16, float, analysis_cos_pre
)[64];
74 static DECLARE_ALIGNED(16, float, analysis_sin_pre
)[64];
75 static DECLARE_ALIGNED(16, float, analysis_cossin_post
)[32][2];
76 static const DECLARE_ALIGNED(16, float, zero64
)[64];
78 #define SBR_INIT_VLC_STATIC(num, size) \
79 INIT_VLC_STATIC(&vlc_sbr[num], 9, sbr_tmp[num].table_size / sbr_tmp[num].elem_size, \
80 sbr_tmp[num].sbr_bits , 1, 1, \
81 sbr_tmp[num].sbr_codes, sbr_tmp[num].elem_size, sbr_tmp[num].elem_size, \
84 #define SBR_VLC_ROW(name) \
85 { name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) }
87 av_cold
void ff_aac_sbr_init(void)
91 const void *sbr_codes
, *sbr_bits
;
92 const unsigned int table_size
, elem_size
;
94 SBR_VLC_ROW(t_huffman_env_1_5dB
),
95 SBR_VLC_ROW(f_huffman_env_1_5dB
),
96 SBR_VLC_ROW(t_huffman_env_bal_1_5dB
),
97 SBR_VLC_ROW(f_huffman_env_bal_1_5dB
),
98 SBR_VLC_ROW(t_huffman_env_3_0dB
),
99 SBR_VLC_ROW(f_huffman_env_3_0dB
),
100 SBR_VLC_ROW(t_huffman_env_bal_3_0dB
),
101 SBR_VLC_ROW(f_huffman_env_bal_3_0dB
),
102 SBR_VLC_ROW(t_huffman_noise_3_0dB
),
103 SBR_VLC_ROW(t_huffman_noise_bal_3_0dB
),
106 // SBR VLC table initialization
107 SBR_INIT_VLC_STATIC(0, 1098);
108 SBR_INIT_VLC_STATIC(1, 1092);
109 SBR_INIT_VLC_STATIC(2, 768);
110 SBR_INIT_VLC_STATIC(3, 1026);
111 SBR_INIT_VLC_STATIC(4, 1058);
112 SBR_INIT_VLC_STATIC(5, 1052);
113 SBR_INIT_VLC_STATIC(6, 544);
114 SBR_INIT_VLC_STATIC(7, 544);
115 SBR_INIT_VLC_STATIC(8, 592);
116 SBR_INIT_VLC_STATIC(9, 512);
118 for (n
= 0; n
< 64; n
++) {
119 float pre
= M_PI
* n
/ 64;
120 analysis_cos_pre
[n
] = cosf(pre
);
121 analysis_sin_pre
[n
] = sinf(pre
);
123 for (k
= 0; k
< 32; k
++) {
124 float post
= M_PI
* (k
+ 0.5) / 128;
125 analysis_cossin_post
[k
][0] = 4.0 * cosf(post
);
126 analysis_cossin_post
[k
][1] = -4.0 * sinf(post
);
128 for (n
= 1; n
< 320; n
++)
129 sbr_qmf_window_us
[320 + n
] = sbr_qmf_window_us
[320 - n
];
130 sbr_qmf_window_us
[384] = -sbr_qmf_window_us
[384];
131 sbr_qmf_window_us
[512] = -sbr_qmf_window_us
[512];
133 for (n
= 0; n
< 320; n
++)
134 sbr_qmf_window_ds
[n
] = sbr_qmf_window_us
[2*n
];
137 av_cold
void ff_aac_sbr_ctx_init(SpectralBandReplication
*sbr
)
139 sbr
->kx
[0] = sbr
->kx
[1] = 32; //Typo in spec, kx' inits to 32
140 sbr
->data
[0].synthesis_filterbank_samples_offset
= SBR_SYNTHESIS_BUF_SIZE
- (1280 - 128);
141 sbr
->data
[1].synthesis_filterbank_samples_offset
= SBR_SYNTHESIS_BUF_SIZE
- (1280 - 128);
142 ff_mdct_init(&sbr
->mdct
, 7, 1, 1.0/64);
143 ff_rdft_init(&sbr
->rdft
, 6, IDFT_R2C
);
146 av_cold
void ff_aac_sbr_ctx_close(SpectralBandReplication
*sbr
)
148 ff_mdct_end(&sbr
->mdct
);
149 ff_rdft_end(&sbr
->rdft
);
152 static int qsort_comparison_function_int16(const void *a
, const void *b
)
154 return *(const int16_t *)a
- *(const int16_t *)b
;
157 static inline int in_table_int16(const int16_t *table
, int last_el
, int16_t needle
)
160 for (i
= 0; i
<= last_el
; i
++)
161 if (table
[i
] == needle
)
166 /// Limiter Frequency Band Table (14496-3 sp04 p198)
167 static void sbr_make_f_tablelim(SpectralBandReplication
*sbr
)
170 if (sbr
->bs_limiter_bands
> 0) {
171 static const float bands_warped
[3] = { 1.32715174233856803909f
, //2^(0.49/1.2)
172 1.18509277094158210129f
, //2^(0.49/2)
173 1.11987160404675912501f
}; //2^(0.49/3)
174 const float lim_bands_per_octave_warped
= bands_warped
[sbr
->bs_limiter_bands
- 1];
175 int16_t patch_borders
[5];
176 uint16_t *in
= sbr
->f_tablelim
+ 1, *out
= sbr
->f_tablelim
;
178 patch_borders
[0] = sbr
->kx
[1];
179 for (k
= 1; k
<= sbr
->num_patches
; k
++)
180 patch_borders
[k
] = patch_borders
[k
-1] + sbr
->patch_num_subbands
[k
-1];
182 memcpy(sbr
->f_tablelim
, sbr
->f_tablelow
,
183 (sbr
->n
[0] + 1) * sizeof(sbr
->f_tablelow
[0]));
184 if (sbr
->num_patches
> 1)
185 memcpy(sbr
->f_tablelim
+ sbr
->n
[0] + 1, patch_borders
+ 1,
186 (sbr
->num_patches
- 1) * sizeof(patch_borders
[0]));
188 qsort(sbr
->f_tablelim
, sbr
->num_patches
+ sbr
->n
[0],
189 sizeof(sbr
->f_tablelim
[0]),
190 qsort_comparison_function_int16
);
192 sbr
->n_lim
= sbr
->n
[0] + sbr
->num_patches
- 1;
193 while (out
< sbr
->f_tablelim
+ sbr
->n_lim
) {
194 if (*in
>= *out
* lim_bands_per_octave_warped
) {
196 } else if (*in
== *out
||
197 !in_table_int16(patch_borders
, sbr
->num_patches
, *in
)) {
200 } else if (!in_table_int16(patch_borders
, sbr
->num_patches
, *out
)) {
208 sbr
->f_tablelim
[0] = sbr
->f_tablelow
[0];
209 sbr
->f_tablelim
[1] = sbr
->f_tablelow
[sbr
->n
[0]];
214 static unsigned int read_sbr_header(SpectralBandReplication
*sbr
, GetBitContext
*gb
)
216 unsigned int cnt
= get_bits_count(gb
);
217 uint8_t bs_header_extra_1
;
218 uint8_t bs_header_extra_2
;
219 int old_bs_limiter_bands
= sbr
->bs_limiter_bands
;
220 SpectrumParameters old_spectrum_params
;
224 // Save last spectrum parameters variables to compare to new ones
225 memcpy(&old_spectrum_params
, &sbr
->spectrum_params
, sizeof(SpectrumParameters
));
227 sbr
->bs_amp_res_header
= get_bits1(gb
);
228 sbr
->spectrum_params
.bs_start_freq
= get_bits(gb
, 4);
229 sbr
->spectrum_params
.bs_stop_freq
= get_bits(gb
, 4);
230 sbr
->spectrum_params
.bs_xover_band
= get_bits(gb
, 3);
231 skip_bits(gb
, 2); // bs_reserved
233 bs_header_extra_1
= get_bits1(gb
);
234 bs_header_extra_2
= get_bits1(gb
);
236 if (bs_header_extra_1
) {
237 sbr
->spectrum_params
.bs_freq_scale
= get_bits(gb
, 2);
238 sbr
->spectrum_params
.bs_alter_scale
= get_bits1(gb
);
239 sbr
->spectrum_params
.bs_noise_bands
= get_bits(gb
, 2);
241 sbr
->spectrum_params
.bs_freq_scale
= 2;
242 sbr
->spectrum_params
.bs_alter_scale
= 1;
243 sbr
->spectrum_params
.bs_noise_bands
= 2;
246 // Check if spectrum parameters changed
247 if (memcmp(&old_spectrum_params
, &sbr
->spectrum_params
, sizeof(SpectrumParameters
)))
250 if (bs_header_extra_2
) {
251 sbr
->bs_limiter_bands
= get_bits(gb
, 2);
252 sbr
->bs_limiter_gains
= get_bits(gb
, 2);
253 sbr
->bs_interpol_freq
= get_bits1(gb
);
254 sbr
->bs_smoothing_mode
= get_bits1(gb
);
256 sbr
->bs_limiter_bands
= 2;
257 sbr
->bs_limiter_gains
= 2;
258 sbr
->bs_interpol_freq
= 1;
259 sbr
->bs_smoothing_mode
= 1;
262 if (sbr
->bs_limiter_bands
!= old_bs_limiter_bands
&& !sbr
->reset
)
263 sbr_make_f_tablelim(sbr
);
265 return get_bits_count(gb
) - cnt
;
268 static int array_min_int16(const int16_t *array
, int nel
)
270 int i
, min
= array
[0];
271 for (i
= 1; i
< nel
; i
++)
272 min
= FFMIN(array
[i
], min
);
276 static void make_bands(int16_t* bands
, int start
, int stop
, int num_bands
)
278 int k
, previous
, present
;
281 base
= powf((float)stop
/ start
, 1.0f
/ num_bands
);
285 for (k
= 0; k
< num_bands
-1; k
++) {
287 present
= lrintf(prod
);
288 bands
[k
] = present
- previous
;
291 bands
[num_bands
-1] = stop
- previous
;
294 static int check_n_master(AVCodecContext
*avccontext
, int n_master
, int bs_xover_band
)
296 // Requirements (14496-3 sp04 p205)
298 av_log(avccontext
, AV_LOG_ERROR
, "Invalid n_master: %d\n", n_master
);
301 if (bs_xover_band
>= n_master
) {
302 av_log(avccontext
, AV_LOG_ERROR
,
303 "Invalid bitstream, crossover band index beyond array bounds: %d\n",
310 /// Master Frequency Band Table (14496-3 sp04 p194)
311 static int sbr_make_f_master(AACContext
*ac
, SpectralBandReplication
*sbr
,
312 SpectrumParameters
*spectrum
)
314 unsigned int temp
, max_qmf_subbands
;
315 unsigned int start_min
, stop_min
;
317 const int8_t *sbr_offset_ptr
;
320 if (sbr
->sample_rate
< 32000) {
322 } else if (sbr
->sample_rate
< 64000) {
327 start_min
= ((temp
<< 7) + (sbr
->sample_rate
>> 1)) / sbr
->sample_rate
;
328 stop_min
= ((temp
<< 8) + (sbr
->sample_rate
>> 1)) / sbr
->sample_rate
;
330 switch (sbr
->sample_rate
) {
332 sbr_offset_ptr
= sbr_offset
[0];
335 sbr_offset_ptr
= sbr_offset
[1];
338 sbr_offset_ptr
= sbr_offset
[2];
341 sbr_offset_ptr
= sbr_offset
[3];
343 case 44100: case 48000: case 64000:
344 sbr_offset_ptr
= sbr_offset
[4];
346 case 88200: case 96000: case 128000: case 176400: case 192000:
347 sbr_offset_ptr
= sbr_offset
[5];
350 av_log(ac
->avccontext
, AV_LOG_ERROR
,
351 "Unsupported sample rate for SBR: %d\n", sbr
->sample_rate
);
355 sbr
->k
[0] = start_min
+ sbr_offset_ptr
[spectrum
->bs_start_freq
];
357 if (spectrum
->bs_stop_freq
< 14) {
358 sbr
->k
[2] = stop_min
;
359 make_bands(stop_dk
, stop_min
, 64, 13);
360 qsort(stop_dk
, 13, sizeof(stop_dk
[0]), qsort_comparison_function_int16
);
361 for (k
= 0; k
< spectrum
->bs_stop_freq
; k
++)
362 sbr
->k
[2] += stop_dk
[k
];
363 } else if (spectrum
->bs_stop_freq
== 14) {
364 sbr
->k
[2] = 2*sbr
->k
[0];
365 } else if (spectrum
->bs_stop_freq
== 15) {
366 sbr
->k
[2] = 3*sbr
->k
[0];
368 av_log(ac
->avccontext
, AV_LOG_ERROR
,
369 "Invalid bs_stop_freq: %d\n", spectrum
->bs_stop_freq
);
372 sbr
->k
[2] = FFMIN(64, sbr
->k
[2]);
374 // Requirements (14496-3 sp04 p205)
375 if (sbr
->sample_rate
<= 32000) {
376 max_qmf_subbands
= 48;
377 } else if (sbr
->sample_rate
== 44100) {
378 max_qmf_subbands
= 35;
379 } else if (sbr
->sample_rate
>= 48000)
380 max_qmf_subbands
= 32;
382 if (sbr
->k
[2] - sbr
->k
[0] > max_qmf_subbands
) {
383 av_log(ac
->avccontext
, AV_LOG_ERROR
,
384 "Invalid bitstream, too many QMF subbands: %d\n", sbr
->k
[2] - sbr
->k
[0]);
388 if (!spectrum
->bs_freq_scale
) {
392 dk
= spectrum
->bs_alter_scale
+ 1;
393 sbr
->n_master
= ((sbr
->k
[2] - sbr
->k
[0] + (dk
&2)) >> dk
) << 1;
394 if (check_n_master(ac
->avccontext
, sbr
->n_master
, sbr
->spectrum_params
.bs_xover_band
))
397 for (k
= 1; k
<= sbr
->n_master
; k
++)
398 sbr
->f_master
[k
] = dk
;
400 k2diff
= sbr
->k
[2] - sbr
->k
[0] - sbr
->n_master
* dk
;
403 sbr
->f_master
[2]-= (k2diff
< 1);
405 sbr
->f_master
[sbr
->n_master
]++;
408 sbr
->f_master
[0] = sbr
->k
[0];
409 for (k
= 1; k
<= sbr
->n_master
; k
++)
410 sbr
->f_master
[k
] += sbr
->f_master
[k
- 1];
413 int half_bands
= 7 - spectrum
->bs_freq_scale
; // bs_freq_scale = {1,2,3}
414 int two_regions
, num_bands_0
;
415 int vdk0_max
, vdk1_min
;
418 if (49 * sbr
->k
[2] > 110 * sbr
->k
[0]) {
420 sbr
->k
[1] = 2 * sbr
->k
[0];
423 sbr
->k
[1] = sbr
->k
[2];
426 num_bands_0
= lrintf(half_bands
* log2f(sbr
->k
[1] / (float)sbr
->k
[0])) * 2;
428 if (num_bands_0
<= 0) { // Requirements (14496-3 sp04 p205)
429 av_log(ac
->avccontext
, AV_LOG_ERROR
, "Invalid num_bands_0: %d\n", num_bands_0
);
435 make_bands(vk0
+1, sbr
->k
[0], sbr
->k
[1], num_bands_0
);
437 qsort(vk0
+ 1, num_bands_0
, sizeof(vk0
[1]), qsort_comparison_function_int16
);
438 vdk0_max
= vk0
[num_bands_0
];
441 for (k
= 1; k
<= num_bands_0
; k
++) {
442 if (vk0
[k
] <= 0) { // Requirements (14496-3 sp04 p205)
443 av_log(ac
->avccontext
, AV_LOG_ERROR
, "Invalid vDk0[%d]: %d\n", k
, vk0
[k
]);
451 float invwarp
= spectrum
->bs_alter_scale ?
0.76923076923076923077f
452 : 1.0f
; // bs_alter_scale = {0,1}
453 int num_bands_1
= lrintf(half_bands
* invwarp
*
454 log2f(sbr
->k
[2] / (float)sbr
->k
[1])) * 2;
456 make_bands(vk1
+1, sbr
->k
[1], sbr
->k
[2], num_bands_1
);
458 vdk1_min
= array_min_int16(vk1
+ 1, num_bands_1
);
460 if (vdk1_min
< vdk0_max
) {
462 qsort(vk1
+ 1, num_bands_1
, sizeof(vk1
[1]), qsort_comparison_function_int16
);
463 change
= FFMIN(vdk0_max
- vk1
[1], (vk1
[num_bands_1
] - vk1
[1]) >> 1);
465 vk1
[num_bands_1
] -= change
;
468 qsort(vk1
+ 1, num_bands_1
, sizeof(vk1
[1]), qsort_comparison_function_int16
);
471 for (k
= 1; k
<= num_bands_1
; k
++) {
472 if (vk1
[k
] <= 0) { // Requirements (14496-3 sp04 p205)
473 av_log(ac
->avccontext
, AV_LOG_ERROR
, "Invalid vDk1[%d]: %d\n", k
, vk1
[k
]);
479 sbr
->n_master
= num_bands_0
+ num_bands_1
;
480 if (check_n_master(ac
->avccontext
, sbr
->n_master
, sbr
->spectrum_params
.bs_xover_band
))
482 memcpy(&sbr
->f_master
[0], vk0
,
483 (num_bands_0
+ 1) * sizeof(sbr
->f_master
[0]));
484 memcpy(&sbr
->f_master
[num_bands_0
+ 1], vk1
+ 1,
485 num_bands_1
* sizeof(sbr
->f_master
[0]));
488 sbr
->n_master
= num_bands_0
;
489 if (check_n_master(ac
->avccontext
, sbr
->n_master
, sbr
->spectrum_params
.bs_xover_band
))
491 memcpy(sbr
->f_master
, vk0
, (num_bands_0
+ 1) * sizeof(sbr
->f_master
[0]));
498 /// High Frequency Generation - Patch Construction (14496-3 sp04 p216 fig. 4.46)
499 static int sbr_hf_calc_npatches(AACContext
*ac
, SpectralBandReplication
*sbr
)
503 int usb
= sbr
->kx
[1];
504 int goal_sb
= ((1000 << 11) + (sbr
->sample_rate
>> 1)) / sbr
->sample_rate
;
506 sbr
->num_patches
= 0;
508 if (goal_sb
< sbr
->kx
[1] + sbr
->m
[1]) {
509 for (k
= 0; sbr
->f_master
[k
] < goal_sb
; k
++) ;
515 for (i
= k
; i
== k
|| sb
> (sbr
->k
[0] - 1 + msb
- odd
); i
--) {
516 sb
= sbr
->f_master
[i
];
517 odd
= (sb
+ sbr
->k
[0]) & 1;
520 sbr
->patch_num_subbands
[sbr
->num_patches
] = FFMAX(sb
- usb
, 0);
521 sbr
->patch_start_subband
[sbr
->num_patches
] = sbr
->k
[0] - odd
- sbr
->patch_num_subbands
[sbr
->num_patches
];
523 if (sbr
->patch_num_subbands
[sbr
->num_patches
] > 0) {
530 if (sbr
->f_master
[k
] - sb
< 3)
532 } while (sb
!= sbr
->kx
[1] + sbr
->m
[1]);
534 if (sbr
->patch_num_subbands
[sbr
->num_patches
-1] < 3 && sbr
->num_patches
> 1)
537 // Requirements (14496-3 sp04 p205) sets the maximum number of patches to 5
538 // However the Coding Technologies decoder check uses 6 patches
539 if (sbr
->num_patches
> 6) {
540 av_log(ac
->avccontext
, AV_LOG_ERROR
, "Too many patches: %d\n", sbr
->num_patches
);
547 /// Derived Frequency Band Tables (14496-3 sp04 p197)
548 static int sbr_make_f_derived(AACContext
*ac
, SpectralBandReplication
*sbr
)
552 sbr
->n
[1] = sbr
->n_master
- sbr
->spectrum_params
.bs_xover_band
;
553 sbr
->n
[0] = (sbr
->n
[1] + 1) >> 1;
555 memcpy(sbr
->f_tablehigh
, &sbr
->f_master
[sbr
->spectrum_params
.bs_xover_band
],
556 (sbr
->n
[1] + 1) * sizeof(sbr
->f_master
[0]));
557 sbr
->m
[1] = sbr
->f_tablehigh
[sbr
->n
[1]] - sbr
->f_tablehigh
[0];
558 sbr
->kx
[1] = sbr
->f_tablehigh
[0];
560 // Requirements (14496-3 sp04 p205)
561 if (sbr
->kx
[1] + sbr
->m
[1] > 64) {
562 av_log(ac
->avccontext
, AV_LOG_ERROR
,
563 "Stop frequency border too high: %d\n", sbr
->kx
[1] + sbr
->m
[1]);
566 if (sbr
->kx
[1] > 32) {
567 av_log(ac
->avccontext
, AV_LOG_ERROR
, "Start frequency border too high: %d\n", sbr
->kx
[1]);
571 sbr
->f_tablelow
[0] = sbr
->f_tablehigh
[0];
572 temp
= sbr
->n
[1] & 1;
573 for (k
= 1; k
<= sbr
->n
[0]; k
++)
574 sbr
->f_tablelow
[k
] = sbr
->f_tablehigh
[2 * k
- temp
];
576 sbr
->n_q
= FFMAX(1, lrintf(sbr
->spectrum_params
.bs_noise_bands
*
577 log2f(sbr
->k
[2] / (float)sbr
->kx
[1]))); // 0 <= bs_noise_bands <= 3
579 av_log(ac
->avccontext
, AV_LOG_ERROR
, "Too many noise floor scale factors: %d\n", sbr
->n_q
);
583 sbr
->f_tablenoise
[0] = sbr
->f_tablelow
[0];
585 for (k
= 1; k
<= sbr
->n_q
; k
++) {
586 temp
+= (sbr
->n
[0] - temp
) / (sbr
->n_q
+ 1 - k
);
587 sbr
->f_tablenoise
[k
] = sbr
->f_tablelow
[temp
];
590 if (sbr_hf_calc_npatches(ac
, sbr
) < 0)
593 sbr_make_f_tablelim(sbr
);
595 sbr
->data
[0].f_indexnoise
= 0;
596 sbr
->data
[1].f_indexnoise
= 0;
601 static av_always_inline
void get_bits1_vector(GetBitContext
*gb
, uint8_t *vec
,
605 for (i
= 0; i
< elements
; i
++) {
606 vec
[i
] = get_bits1(gb
);
610 /** ceil(log2(index+1)) */
611 static const int8_t ceil_log2
[] = {
615 static int read_sbr_grid(AACContext
*ac
, SpectralBandReplication
*sbr
,
616 GetBitContext
*gb
, SBRData
*ch_data
)
620 ch_data
->bs_freq_res
[0] = ch_data
->bs_freq_res
[ch_data
->bs_num_env
[1]];
621 ch_data
->bs_num_env
[0] = ch_data
->bs_num_env
[1];
622 ch_data
->bs_amp_res
= sbr
->bs_amp_res_header
;
624 switch (ch_data
->bs_frame_class
= get_bits(gb
, 2)) {
626 ch_data
->bs_num_env
[1] = 1 << get_bits(gb
, 2);
627 if (ch_data
->bs_num_env
[1] == 1)
628 ch_data
->bs_amp_res
= 0;
630 ch_data
->bs_freq_res
[1] = get_bits1(gb
);
631 for (i
= 1; i
< ch_data
->bs_num_env
[1]; i
++)
632 ch_data
->bs_freq_res
[i
+ 1] = ch_data
->bs_freq_res
[1];
635 ch_data
->bs_var_bord
[1] = get_bits(gb
, 2);
636 ch_data
->bs_num_rel
[1] = get_bits(gb
, 2);
637 ch_data
->bs_num_env
[1] = ch_data
->bs_num_rel
[1] + 1;
639 for (i
= 0; i
< ch_data
->bs_num_rel
[1]; i
++)
640 ch_data
->bs_rel_bord
[1][i
] = 2 * get_bits(gb
, 2) + 2;
642 ch_data
->bs_pointer
= get_bits(gb
, ceil_log2
[ch_data
->bs_num_env
[1]]);
644 for (i
= 0; i
< ch_data
->bs_num_env
[1]; i
++)
645 ch_data
->bs_freq_res
[ch_data
->bs_num_env
[1] - i
] = get_bits1(gb
);
648 ch_data
->bs_var_bord
[0] = get_bits(gb
, 2);
649 ch_data
->bs_num_rel
[0] = get_bits(gb
, 2);
650 ch_data
->bs_num_env
[1] = ch_data
->bs_num_rel
[0] + 1;
652 for (i
= 0; i
< ch_data
->bs_num_rel
[0]; i
++)
653 ch_data
->bs_rel_bord
[0][i
] = 2 * get_bits(gb
, 2) + 2;
655 ch_data
->bs_pointer
= get_bits(gb
, ceil_log2
[ch_data
->bs_num_env
[1]]);
657 get_bits1_vector(gb
, ch_data
->bs_freq_res
+ 1, ch_data
->bs_num_env
[1]);
660 ch_data
->bs_var_bord
[0] = get_bits(gb
, 2);
661 ch_data
->bs_var_bord
[1] = get_bits(gb
, 2);
662 ch_data
->bs_num_rel
[0] = get_bits(gb
, 2);
663 ch_data
->bs_num_rel
[1] = get_bits(gb
, 2);
664 ch_data
->bs_num_env
[1] = ch_data
->bs_num_rel
[0] + ch_data
->bs_num_rel
[1] + 1;
666 for (i
= 0; i
< ch_data
->bs_num_rel
[0]; i
++)
667 ch_data
->bs_rel_bord
[0][i
] = 2 * get_bits(gb
, 2) + 2;
668 for (i
= 0; i
< ch_data
->bs_num_rel
[1]; i
++)
669 ch_data
->bs_rel_bord
[1][i
] = 2 * get_bits(gb
, 2) + 2;
671 ch_data
->bs_pointer
= get_bits(gb
, ceil_log2
[ch_data
->bs_num_env
[1]]);
673 get_bits1_vector(gb
, ch_data
->bs_freq_res
+ 1, ch_data
->bs_num_env
[1]);
677 if (ch_data
->bs_frame_class
== FIXFIX
&& ch_data
->bs_num_env
[1] > 4) {
678 av_log(ac
->avccontext
, AV_LOG_ERROR
,
679 "Invalid bitstream, too many SBR envelopes in FIXFIX type SBR frame: %d\n",
680 ch_data
->bs_num_env
[1]);
683 if (ch_data
->bs_frame_class
== VARVAR
&& ch_data
->bs_num_env
[1] > 5) {
684 av_log(ac
->avccontext
, AV_LOG_ERROR
,
685 "Invalid bitstream, too many SBR envelopes in VARVAR type SBR frame: %d\n",
686 ch_data
->bs_num_env
[1]);
690 ch_data
->bs_num_noise
= (ch_data
->bs_num_env
[1] > 1) + 1;
695 static void copy_sbr_grid(SBRData
*dst
, const SBRData
*src
) {
696 //These variables are saved from the previous frame rather than copied
697 dst
->bs_freq_res
[0] = dst
->bs_freq_res
[dst
->bs_num_env
[1]];
698 dst
->bs_num_env
[0] = dst
->bs_num_env
[1];
700 //These variables are read from the bitstream and therefore copied
701 memcpy(dst
->bs_freq_res
+1, src
->bs_freq_res
+1, sizeof(dst
->bs_freq_res
)-sizeof(*dst
->bs_freq_res
));
702 memcpy(dst
->bs_num_env
+1, src
->bs_num_env
+1, sizeof(dst
->bs_num_env
)- sizeof(*dst
->bs_num_env
));
703 memcpy(dst
->bs_var_bord
, src
->bs_var_bord
, sizeof(dst
->bs_var_bord
));
704 memcpy(dst
->bs_rel_bord
, src
->bs_rel_bord
, sizeof(dst
->bs_rel_bord
));
705 memcpy(dst
->bs_num_rel
, src
->bs_num_rel
, sizeof(dst
->bs_rel_bord
));
706 dst
->bs_amp_res
= src
->bs_amp_res
;
707 dst
->bs_num_noise
= src
->bs_num_noise
;
708 dst
->bs_pointer
= src
->bs_pointer
;
709 dst
->bs_frame_class
= src
->bs_frame_class
;
712 /// Read how the envelope and noise floor data is delta coded
713 static void read_sbr_dtdf(SpectralBandReplication
*sbr
, GetBitContext
*gb
,
716 get_bits1_vector(gb
, ch_data
->bs_df_env
, ch_data
->bs_num_env
[1]);
717 get_bits1_vector(gb
, ch_data
->bs_df_noise
, ch_data
->bs_num_noise
);
720 /// Read inverse filtering data
721 static void read_sbr_invf(SpectralBandReplication
*sbr
, GetBitContext
*gb
,
726 memcpy(ch_data
->bs_invf_mode
[1], ch_data
->bs_invf_mode
[0], 5 * sizeof(uint8_t));
727 for (i
= 0; i
< sbr
->n_q
; i
++)
728 ch_data
->bs_invf_mode
[0][i
] = get_bits(gb
, 2);
731 static void read_sbr_envelope(SpectralBandReplication
*sbr
, GetBitContext
*gb
,
732 SBRData
*ch_data
, int ch
)
736 VLC_TYPE (*t_huff
)[2], (*f_huff
)[2];
738 const int delta
= (ch
== 1 && sbr
->bs_coupling
== 1) + 1;
739 const int odd
= sbr
->n
[1] & 1;
741 if (sbr
->bs_coupling
&& ch
) {
742 if (ch_data
->bs_amp_res
) {
744 t_huff
= vlc_sbr
[T_HUFFMAN_ENV_BAL_3_0DB
].table
;
745 t_lav
= vlc_sbr_lav
[T_HUFFMAN_ENV_BAL_3_0DB
];
746 f_huff
= vlc_sbr
[F_HUFFMAN_ENV_BAL_3_0DB
].table
;
747 f_lav
= vlc_sbr_lav
[F_HUFFMAN_ENV_BAL_3_0DB
];
750 t_huff
= vlc_sbr
[T_HUFFMAN_ENV_BAL_1_5DB
].table
;
751 t_lav
= vlc_sbr_lav
[T_HUFFMAN_ENV_BAL_1_5DB
];
752 f_huff
= vlc_sbr
[F_HUFFMAN_ENV_BAL_1_5DB
].table
;
753 f_lav
= vlc_sbr_lav
[F_HUFFMAN_ENV_BAL_1_5DB
];
756 if (ch_data
->bs_amp_res
) {
758 t_huff
= vlc_sbr
[T_HUFFMAN_ENV_3_0DB
].table
;
759 t_lav
= vlc_sbr_lav
[T_HUFFMAN_ENV_3_0DB
];
760 f_huff
= vlc_sbr
[F_HUFFMAN_ENV_3_0DB
].table
;
761 f_lav
= vlc_sbr_lav
[F_HUFFMAN_ENV_3_0DB
];
764 t_huff
= vlc_sbr
[T_HUFFMAN_ENV_1_5DB
].table
;
765 t_lav
= vlc_sbr_lav
[T_HUFFMAN_ENV_1_5DB
];
766 f_huff
= vlc_sbr
[F_HUFFMAN_ENV_1_5DB
].table
;
767 f_lav
= vlc_sbr_lav
[F_HUFFMAN_ENV_1_5DB
];
771 for (i
= 0; i
< ch_data
->bs_num_env
[1]; i
++) {
772 if (ch_data
->bs_df_env
[i
]) {
773 // bs_freq_res[0] == bs_freq_res[bs_num_env[1]] from prev frame
774 if (ch_data
->bs_freq_res
[i
+ 1] == ch_data
->bs_freq_res
[i
]) {
775 for (j
= 0; j
< sbr
->n
[ch_data
->bs_freq_res
[i
+ 1]]; j
++)
776 ch_data
->env_facs
[i
+ 1][j
] = ch_data
->env_facs
[i
][j
] + delta
* (get_vlc2(gb
, t_huff
, 9, 3) - t_lav
);
777 } else if (ch_data
->bs_freq_res
[i
+ 1]) {
778 for (j
= 0; j
< sbr
->n
[ch_data
->bs_freq_res
[i
+ 1]]; j
++) {
779 k
= (j
+ odd
) >> 1; // find k such that f_tablelow[k] <= f_tablehigh[j] < f_tablelow[k + 1]
780 ch_data
->env_facs
[i
+ 1][j
] = ch_data
->env_facs
[i
][k
] + delta
* (get_vlc2(gb
, t_huff
, 9, 3) - t_lav
);
783 for (j
= 0; j
< sbr
->n
[ch_data
->bs_freq_res
[i
+ 1]]; j
++) {
784 k
= j ?
2*j
- odd
: 0; // find k such that f_tablehigh[k] == f_tablelow[j]
785 ch_data
->env_facs
[i
+ 1][j
] = ch_data
->env_facs
[i
][k
] + delta
* (get_vlc2(gb
, t_huff
, 9, 3) - t_lav
);
789 ch_data
->env_facs
[i
+ 1][0] = delta
* get_bits(gb
, bits
); // bs_env_start_value_balance
790 for (j
= 1; j
< sbr
->n
[ch_data
->bs_freq_res
[i
+ 1]]; j
++)
791 ch_data
->env_facs
[i
+ 1][j
] = ch_data
->env_facs
[i
+ 1][j
- 1] + delta
* (get_vlc2(gb
, f_huff
, 9, 3) - f_lav
);
795 //assign 0th elements of env_facs from last elements
796 memcpy(ch_data
->env_facs
[0], ch_data
->env_facs
[ch_data
->bs_num_env
[1]],
797 sizeof(ch_data
->env_facs
[0]));
800 static void read_sbr_noise(SpectralBandReplication
*sbr
, GetBitContext
*gb
,
801 SBRData
*ch_data
, int ch
)
804 VLC_TYPE (*t_huff
)[2], (*f_huff
)[2];
806 int delta
= (ch
== 1 && sbr
->bs_coupling
== 1) + 1;
808 if (sbr
->bs_coupling
&& ch
) {
809 t_huff
= vlc_sbr
[T_HUFFMAN_NOISE_BAL_3_0DB
].table
;
810 t_lav
= vlc_sbr_lav
[T_HUFFMAN_NOISE_BAL_3_0DB
];
811 f_huff
= vlc_sbr
[F_HUFFMAN_ENV_BAL_3_0DB
].table
;
812 f_lav
= vlc_sbr_lav
[F_HUFFMAN_ENV_BAL_3_0DB
];
814 t_huff
= vlc_sbr
[T_HUFFMAN_NOISE_3_0DB
].table
;
815 t_lav
= vlc_sbr_lav
[T_HUFFMAN_NOISE_3_0DB
];
816 f_huff
= vlc_sbr
[F_HUFFMAN_ENV_3_0DB
].table
;
817 f_lav
= vlc_sbr_lav
[F_HUFFMAN_ENV_3_0DB
];
820 for (i
= 0; i
< ch_data
->bs_num_noise
; i
++) {
821 if (ch_data
->bs_df_noise
[i
]) {
822 for (j
= 0; j
< sbr
->n_q
; j
++)
823 ch_data
->noise_facs
[i
+ 1][j
] = ch_data
->noise_facs
[i
][j
] + delta
* (get_vlc2(gb
, t_huff
, 9, 2) - t_lav
);
825 ch_data
->noise_facs
[i
+ 1][0] = delta
* get_bits(gb
, 5); // bs_noise_start_value_balance or bs_noise_start_value_level
826 for (j
= 1; j
< sbr
->n_q
; j
++)
827 ch_data
->noise_facs
[i
+ 1][j
] = ch_data
->noise_facs
[i
+ 1][j
- 1] + delta
* (get_vlc2(gb
, f_huff
, 9, 3) - f_lav
);
831 //assign 0th elements of noise_facs from last elements
832 memcpy(ch_data
->noise_facs
[0], ch_data
->noise_facs
[ch_data
->bs_num_noise
],
833 sizeof(ch_data
->noise_facs
[0]));
836 static void read_sbr_extension(AACContext
*ac
, SpectralBandReplication
*sbr
,
838 int bs_extension_id
, int *num_bits_left
)
840 //TODO - implement ps_data for parametric stereo parsing
841 switch (bs_extension_id
) {
842 case EXTENSION_ID_PS
:
844 *num_bits_left
-= ff_ps_data(gb
, ps
);
846 av_log_missing_feature(ac
->avccontext
, "Parametric Stereo is", 0);
847 skip_bits_long(gb
, *num_bits_left
); // bs_fill_bits
852 av_log_missing_feature(ac
->avccontext
, "Reserved SBR extensions are", 1);
853 skip_bits_long(gb
, *num_bits_left
); // bs_fill_bits
859 static void read_sbr_single_channel_element(AACContext
*ac
,
860 SpectralBandReplication
*sbr
,
863 if (get_bits1(gb
)) // bs_data_extra
864 skip_bits(gb
, 4); // bs_reserved
866 read_sbr_grid(ac
, sbr
, gb
, &sbr
->data
[0]);
867 read_sbr_dtdf(sbr
, gb
, &sbr
->data
[0]);
868 read_sbr_invf(sbr
, gb
, &sbr
->data
[0]);
869 read_sbr_envelope(sbr
, gb
, &sbr
->data
[0], 0);
870 read_sbr_noise(sbr
, gb
, &sbr
->data
[0], 0);
872 if ((sbr
->data
[0].bs_add_harmonic_flag
= get_bits1(gb
)))
873 get_bits1_vector(gb
, sbr
->data
[0].bs_add_harmonic
, sbr
->n
[1]);
876 static void read_sbr_channel_pair_element(AACContext
*ac
,
877 SpectralBandReplication
*sbr
,
880 if (get_bits1(gb
)) // bs_data_extra
881 skip_bits(gb
, 8); // bs_reserved
883 if ((sbr
->bs_coupling
= get_bits1(gb
))) {
884 read_sbr_grid(ac
, sbr
, gb
, &sbr
->data
[0]);
885 copy_sbr_grid(&sbr
->data
[1], &sbr
->data
[0]);
886 read_sbr_dtdf(sbr
, gb
, &sbr
->data
[0]);
887 read_sbr_dtdf(sbr
, gb
, &sbr
->data
[1]);
888 read_sbr_invf(sbr
, gb
, &sbr
->data
[0]);
889 memcpy(sbr
->data
[1].bs_invf_mode
[1], sbr
->data
[1].bs_invf_mode
[0], sizeof(sbr
->data
[1].bs_invf_mode
[0]));
890 memcpy(sbr
->data
[1].bs_invf_mode
[0], sbr
->data
[0].bs_invf_mode
[0], sizeof(sbr
->data
[1].bs_invf_mode
[0]));
891 read_sbr_envelope(sbr
, gb
, &sbr
->data
[0], 0);
892 read_sbr_noise(sbr
, gb
, &sbr
->data
[0], 0);
893 read_sbr_envelope(sbr
, gb
, &sbr
->data
[1], 1);
894 read_sbr_noise(sbr
, gb
, &sbr
->data
[1], 1);
896 read_sbr_grid(ac
, sbr
, gb
, &sbr
->data
[0]);
897 read_sbr_grid(ac
, sbr
, gb
, &sbr
->data
[1]);
898 read_sbr_dtdf(sbr
, gb
, &sbr
->data
[0]);
899 read_sbr_dtdf(sbr
, gb
, &sbr
->data
[1]);
900 read_sbr_invf(sbr
, gb
, &sbr
->data
[0]);
901 read_sbr_invf(sbr
, gb
, &sbr
->data
[1]);
902 read_sbr_envelope(sbr
, gb
, &sbr
->data
[0], 0);
903 read_sbr_envelope(sbr
, gb
, &sbr
->data
[1], 1);
904 read_sbr_noise(sbr
, gb
, &sbr
->data
[0], 0);
905 read_sbr_noise(sbr
, gb
, &sbr
->data
[1], 1);
908 if ((sbr
->data
[0].bs_add_harmonic_flag
= get_bits1(gb
)))
909 get_bits1_vector(gb
, sbr
->data
[0].bs_add_harmonic
, sbr
->n
[1]);
910 if ((sbr
->data
[1].bs_add_harmonic_flag
= get_bits1(gb
)))
911 get_bits1_vector(gb
, sbr
->data
[1].bs_add_harmonic
, sbr
->n
[1]);
914 static unsigned int read_sbr_data(AACContext
*ac
, SpectralBandReplication
*sbr
,
915 GetBitContext
*gb
, int id_aac
)
917 unsigned int cnt
= get_bits_count(gb
);
919 if (id_aac
== TYPE_SCE
|| id_aac
== TYPE_CCE
) {
920 read_sbr_single_channel_element(ac
, sbr
, gb
);
921 } else if (id_aac
== TYPE_CPE
) {
922 read_sbr_channel_pair_element(ac
, sbr
, gb
);
924 av_log(ac
->avccontext
, AV_LOG_ERROR
,
925 "Invalid bitstream - cannot apply SBR to element type %d\n", id_aac
);
927 return get_bits_count(gb
) - cnt
;
929 if (get_bits1(gb
)) { // bs_extended_data
930 int num_bits_left
= get_bits(gb
, 4); // bs_extension_size
931 if (num_bits_left
== 15)
932 num_bits_left
+= get_bits(gb
, 8); // bs_esc_count
935 while (num_bits_left
> 7) {
937 read_sbr_extension(ac
, sbr
, gb
, get_bits(gb
, 2), &num_bits_left
); // bs_extension_id
941 return get_bits_count(gb
) - cnt
;
944 static void sbr_reset(AACContext
*ac
, SpectralBandReplication
*sbr
)
947 err
= sbr_make_f_master(ac
, sbr
, &sbr
->spectrum_params
);
949 err
= sbr_make_f_derived(ac
, sbr
);
951 av_log(ac
->avccontext
, AV_LOG_ERROR
,
952 "SBR reset failed. Switching SBR to pure upsampling mode.\n");
958 * Decode Spectral Band Replication extension data; reference: table 4.55.
960 * @param crc flag indicating the presence of CRC checksum
961 * @param cnt length of TYPE_FIL syntactic element in bytes
963 * @return Returns number of bytes consumed from the TYPE_FIL element.
965 int ff_decode_sbr_extension(AACContext
*ac
, SpectralBandReplication
*sbr
,
966 GetBitContext
*gb_host
, int crc
, int cnt
, int id_aac
)
968 unsigned int num_sbr_bits
= 0, num_align_bits
;
970 GetBitContext gbc
= *gb_host
, *gb
= &gbc
;
971 skip_bits_long(gb_host
, cnt
*8 - 4);
975 if (!sbr
->sample_rate
)
976 sbr
->sample_rate
= 2 * ac
->m4ac
.sample_rate
; //TODO use the nominal sample rate for arbitrary sample rate support
977 if (!ac
->m4ac
.ext_sample_rate
)
978 ac
->m4ac
.ext_sample_rate
= 2 * ac
->m4ac
.sample_rate
;
981 skip_bits(gb
, 10); // bs_sbr_crc_bits; TODO - implement CRC check
985 //Save some state from the previous frame.
986 sbr
->kx
[0] = sbr
->kx
[1];
987 sbr
->m
[0] = sbr
->m
[1];
990 if (get_bits1(gb
)) // bs_header_flag
991 num_sbr_bits
+= read_sbr_header(sbr
, gb
);
997 num_sbr_bits
+= read_sbr_data(ac
, sbr
, gb
, id_aac
);
999 num_align_bits
= ((cnt
<< 3) - 4 - num_sbr_bits
) & 7;
1000 bytes_read
= ((num_sbr_bits
+ num_align_bits
+ 4) >> 3);
1002 if (bytes_read
> cnt
) {
1003 av_log(ac
->avccontext
, AV_LOG_ERROR
,
1004 "Expected to read %d SBR bytes actually read %d.\n", cnt
, bytes_read
);
1009 /// Time/frequency Grid (14496-3 sp04 p200)
1010 static int sbr_time_freq_grid(AACContext
*ac
, SpectralBandReplication
*sbr
,
1011 SBRData
*ch_data
, int ch
)
1013 int abs_bord_lead
= ch_data
->bs_frame_class
>= 2 ? ch_data
->bs_var_bord
[0] : 0;
1014 // frameLengthFlag ? 15 : 16; 960 sample length frames unsupported; this value is numTimeSlots
1015 int abs_bord_trail
= (ch_data
->bs_frame_class
& 1 ? ch_data
->bs_var_bord
[1] : 0) + 16;
1019 if (ch_data
->bs_frame_class
== FIXFIX
) {
1020 n_rel_lead
= ch_data
->bs_num_env
[1] - 1;
1021 } else if (ch_data
->bs_frame_class
== FIXVAR
) {
1023 } else if (ch_data
->bs_frame_class
< 4) { // VARFIX or VARVAR
1024 n_rel_lead
= ch_data
->bs_num_rel
[0];
1026 av_log(ac
->avccontext
, AV_LOG_ERROR
,
1027 "Invalid bs_frame_class for SBR: %d\n", ch_data
->bs_frame_class
);
1031 ch_data
->t_env_num_env_old
= ch_data
->t_env
[ch_data
->bs_num_env
[0]];
1032 ch_data
->t_env
[0] = abs_bord_lead
;
1033 ch_data
->t_env
[ch_data
->bs_num_env
[1]] = abs_bord_trail
;
1035 if (ch_data
->bs_frame_class
== FIXFIX
) {
1036 int temp
= (abs_bord_trail
+ (ch_data
->bs_num_env
[1] >> 1)) /
1037 ch_data
->bs_num_env
[1];
1038 for (i
= 0; i
< n_rel_lead
; i
++)
1039 ch_data
->t_env
[i
+ 1] = ch_data
->t_env
[i
] + temp
;
1040 } else if (ch_data
->bs_frame_class
> 1) { // VARFIX or VARVAR
1041 for (i
= 0; i
< n_rel_lead
; i
++)
1042 ch_data
->t_env
[i
+ 1] = ch_data
->t_env
[i
] + ch_data
->bs_rel_bord
[0][i
];
1044 for (i
= 0; i
< n_rel_lead
; i
++)
1045 ch_data
->t_env
[i
+ 1] = abs_bord_lead
;
1048 if (ch_data
->bs_frame_class
& 1) { // FIXVAR or VARVAR
1049 for (i
= ch_data
->bs_num_env
[1] - 1; i
> n_rel_lead
; i
--)
1050 ch_data
->t_env
[i
] = ch_data
->t_env
[i
+ 1] -
1051 ch_data
->bs_rel_bord
[1][ch_data
->bs_num_env
[1] - 1 - i
];
1052 } else { // FIXFIX or VARFIX
1053 for (i
= n_rel_lead
; i
< ch_data
->bs_num_env
[1]; i
++)
1054 ch_data
->t_env
[i
+ 1] = abs_bord_trail
;
1057 ch_data
->t_q
[0] = ch_data
->t_env
[0];
1058 if (ch_data
->bs_num_noise
> 1) { // typo in spec bases this on bs_num_env...
1060 if (ch_data
->bs_frame_class
== FIXFIX
) {
1061 idx
= ch_data
->bs_num_env
[1] >> 1;
1062 } else if (ch_data
->bs_frame_class
& 1) { // FIXVAR or VARVAR
1063 idx
= ch_data
->bs_num_env
[1] - FFMAX(ch_data
->bs_pointer
- 1, 1);
1065 if (!ch_data
->bs_pointer
)
1067 else if (ch_data
->bs_pointer
== 1)
1068 idx
= ch_data
->bs_num_env
[1] - 1;
1069 else // bs_pointer > 1
1070 idx
= ch_data
->bs_pointer
- 1;
1072 ch_data
->t_q
[1] = ch_data
->t_env
[idx
];
1073 ch_data
->t_q
[2] = ch_data
->t_env
[ch_data
->bs_num_env
[1]];
1075 ch_data
->t_q
[1] = ch_data
->t_env
[ch_data
->bs_num_env
[1]];
1080 /// Dequantization and stereo decoding (14496-3 sp04 p203)
1081 static void sbr_dequant(SpectralBandReplication
*sbr
, int id_aac
)
1086 if (id_aac
== TYPE_CPE
&& sbr
->bs_coupling
) {
1087 float alpha
= sbr
->data
[0].bs_amp_res ?
1.0f
: 0.5f
;
1088 float pan_offset
= sbr
->data
[0].bs_amp_res ?
12.0f
: 24.0f
;
1089 for (e
= 1; e
<= sbr
->data
[0].bs_num_env
[1]; e
++) {
1090 for (k
= 0; k
< sbr
->n
[sbr
->data
[0].bs_freq_res
[e
]]; k
++) {
1091 float temp1
= exp2f(sbr
->data
[0].env_facs
[e
][k
] * alpha
+ 7.0f
);
1092 float temp2
= exp2f((pan_offset
- sbr
->data
[1].env_facs
[e
][k
]) * alpha
);
1093 float fac
= temp1
/ (1.0f
+ temp2
);
1094 sbr
->data
[0].env_facs
[e
][k
] = fac
;
1095 sbr
->data
[1].env_facs
[e
][k
] = fac
* temp2
;
1098 for (e
= 1; e
<= sbr
->data
[0].bs_num_noise
; e
++) {
1099 for (k
= 0; k
< sbr
->n_q
; k
++) {
1100 float temp1
= exp2f(NOISE_FLOOR_OFFSET
- sbr
->data
[0].noise_facs
[e
][k
] + 1);
1101 float temp2
= exp2f(12 - sbr
->data
[1].noise_facs
[e
][k
]);
1102 float fac
= temp1
/ (1.0f
+ temp2
);
1103 sbr
->data
[0].noise_facs
[e
][k
] = fac
;
1104 sbr
->data
[1].noise_facs
[e
][k
] = fac
* temp2
;
1107 } else { // SCE or one non-coupled CPE
1108 for (ch
= 0; ch
< (id_aac
== TYPE_CPE
) + 1; ch
++) {
1109 float alpha
= sbr
->data
[ch
].bs_amp_res ?
1.0f
: 0.5f
;
1110 for (e
= 1; e
<= sbr
->data
[ch
].bs_num_env
[1]; e
++)
1111 for (k
= 0; k
< sbr
->n
[sbr
->data
[ch
].bs_freq_res
[e
]]; k
++)
1112 sbr
->data
[ch
].env_facs
[e
][k
] =
1113 exp2f(alpha
* sbr
->data
[ch
].env_facs
[e
][k
] + 6.0f
);
1114 for (e
= 1; e
<= sbr
->data
[ch
].bs_num_noise
; e
++)
1115 for (k
= 0; k
< sbr
->n_q
; k
++)
1116 sbr
->data
[ch
].noise_facs
[e
][k
] =
1117 exp2f(NOISE_FLOOR_OFFSET
- sbr
->data
[ch
].noise_facs
[e
][k
]);
1123 * Analysis QMF Bank (14496-3 sp04 p206)
1125 * @param x pointer to the beginning of the first sample window
1126 * @param W array of complex-valued samples split into subbands
1128 static void sbr_qmf_analysis(DSPContext
*dsp
, RDFTContext
*rdft
, const float *in
, float *x
,
1129 float z
[320], float W
[2][32][32][2],
1130 float bias
, float scale
)
1133 memcpy(W
[0], W
[1], sizeof(W
[0]));
1134 memcpy(x
, x
+1024, (320-32)*sizeof(x
[0]));
1135 if (scale
!= 1.0f
|| bias
!= 0.0f
)
1136 for (i
= 0; i
< 1024; i
++)
1137 x
[288 + i
] = (in
[i
] - bias
) * scale
;
1139 memcpy(x
+288, in
, 1024*sizeof(*x
));
1140 for (i
= 0; i
< 32; i
++) { // numTimeSlots*RATE = 16*2 as 960 sample frames
1141 // are not supported
1143 dsp
->vector_fmul_reverse(z
, sbr_qmf_window_ds
, x
, 320);
1144 for (k
= 0; k
< 64; k
++) {
1145 float f
= z
[k
] + z
[k
+ 64] + z
[k
+ 128] + z
[k
+ 192] + z
[k
+ 256];
1146 z
[k
] = f
* analysis_cos_pre
[k
];
1149 ff_rdft_calc(rdft
, z
);
1151 im
= 0.5f
* dsp
->scalarproduct_float(z
+64, analysis_sin_pre
, 64);
1152 W
[1][i
][0][0] = re
* analysis_cossin_post
[0][0] - im
* analysis_cossin_post
[0][1];
1153 W
[1][i
][0][1] = re
* analysis_cossin_post
[0][1] + im
* analysis_cossin_post
[0][0];
1154 for (k
= 1; k
< 32; k
++) {
1157 W
[1][i
][k
][0] = re
* analysis_cossin_post
[k
][0] - im
* analysis_cossin_post
[k
][1];
1158 W
[1][i
][k
][1] = re
* analysis_cossin_post
[k
][1] + im
* analysis_cossin_post
[k
][0];
1165 * Synthesis QMF Bank (14496-3 sp04 p206) and Downsampled Synthesis QMF Bank
1166 * (14496-3 sp04 p206)
1168 static void sbr_qmf_synthesis(DSPContext
*dsp
, FFTContext
*mdct
,
1169 float *out
, float X
[2][32][64],
1170 float mdct_buf
[2][64],
1171 float *v0
, int *v_off
, const unsigned int div
,
1172 float bias
, float scale
)
1175 const float *sbr_qmf_window
= div ? sbr_qmf_window_ds
: sbr_qmf_window_us
;
1176 int scale_and_bias
= scale
!= 1.0f
|| bias
!= 0.0f
;
1178 for (i
= 0; i
< 32; i
++) {
1180 int saved_samples
= (1280 - 128) >> div
;
1181 memcpy(&v0
[SBR_SYNTHESIS_BUF_SIZE
- saved_samples
], v0
, saved_samples
* sizeof(float));
1182 *v_off
= SBR_SYNTHESIS_BUF_SIZE
- saved_samples
- (128 >> div
);
1184 *v_off
-= 128 >> div
;
1187 for (n
= 1; n
< 64 >> div
; n
+=2) {
1188 X
[1][i
][n
] = -X
[1][i
][n
];
1191 memset(X
[0][i
]+32, 0, 32*sizeof(float));
1192 memset(X
[1][i
]+32, 0, 32*sizeof(float));
1194 ff_imdct_half(mdct
, mdct_buf
[0], X
[0][i
]);
1195 ff_imdct_half(mdct
, mdct_buf
[1], X
[1][i
]);
1197 for (n
= 0; n
< 32; n
++) {
1198 v
[ n
] = -mdct_buf
[0][63 - 2*n
] + mdct_buf
[1][2*n
];
1199 v
[ 63 - n
] = mdct_buf
[0][62 - 2*n
] + mdct_buf
[1][2*n
+ 1];
1202 for (n
= 0; n
< 64; n
++) {
1203 v
[ n
] = -mdct_buf
[0][63 - n
] + mdct_buf
[1][ n
];
1204 v
[127 - n
] = mdct_buf
[0][63 - n
] + mdct_buf
[1][ n
];
1207 dsp
->vector_fmul_add(out
, v
, sbr_qmf_window
, zero64
, 64 >> div
);
1208 dsp
->vector_fmul_add(out
, v
+ ( 192 >> div
), sbr_qmf_window
+ ( 64 >> div
), out
, 64 >> div
);
1209 dsp
->vector_fmul_add(out
, v
+ ( 256 >> div
), sbr_qmf_window
+ (128 >> div
), out
, 64 >> div
);
1210 dsp
->vector_fmul_add(out
, v
+ ( 448 >> div
), sbr_qmf_window
+ (192 >> div
), out
, 64 >> div
);
1211 dsp
->vector_fmul_add(out
, v
+ ( 512 >> div
), sbr_qmf_window
+ (256 >> div
), out
, 64 >> div
);
1212 dsp
->vector_fmul_add(out
, v
+ ( 704 >> div
), sbr_qmf_window
+ (320 >> div
), out
, 64 >> div
);
1213 dsp
->vector_fmul_add(out
, v
+ ( 768 >> div
), sbr_qmf_window
+ (384 >> div
), out
, 64 >> div
);
1214 dsp
->vector_fmul_add(out
, v
+ ( 960 >> div
), sbr_qmf_window
+ (448 >> div
), out
, 64 >> div
);
1215 dsp
->vector_fmul_add(out
, v
+ (1024 >> div
), sbr_qmf_window
+ (512 >> div
), out
, 64 >> div
);
1216 dsp
->vector_fmul_add(out
, v
+ (1216 >> div
), sbr_qmf_window
+ (576 >> div
), out
, 64 >> div
);
1218 for (n
= 0; n
< 64 >> div
; n
++)
1219 out
[n
] = out
[n
] * scale
+ bias
;
1224 static void autocorrelate(const float x
[40][2], float phi
[3][2][2], int lag
)
1227 float real_sum
= 0.0f
;
1228 float imag_sum
= 0.0f
;
1230 for (i
= 1; i
< 38; i
++) {
1231 real_sum
+= x
[i
][0] * x
[i
+lag
][0] + x
[i
][1] * x
[i
+lag
][1];
1232 imag_sum
+= x
[i
][0] * x
[i
+lag
][1] - x
[i
][1] * x
[i
+lag
][0];
1234 phi
[2-lag
][1][0] = real_sum
+ x
[ 0][0] * x
[lag
][0] + x
[ 0][1] * x
[lag
][1];
1235 phi
[2-lag
][1][1] = imag_sum
+ x
[ 0][0] * x
[lag
][1] - x
[ 0][1] * x
[lag
][0];
1237 phi
[0][0][0] = real_sum
+ x
[38][0] * x
[39][0] + x
[38][1] * x
[39][1];
1238 phi
[0][0][1] = imag_sum
+ x
[38][0] * x
[39][1] - x
[38][1] * x
[39][0];
1241 for (i
= 1; i
< 38; i
++) {
1242 real_sum
+= x
[i
][0] * x
[i
][0] + x
[i
][1] * x
[i
][1];
1244 phi
[2][1][0] = real_sum
+ x
[ 0][0] * x
[ 0][0] + x
[ 0][1] * x
[ 0][1];
1245 phi
[1][0][0] = real_sum
+ x
[38][0] * x
[38][0] + x
[38][1] * x
[38][1];
1249 /** High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering
1250 * (14496-3 sp04 p214)
1251 * Warning: This routine does not seem numerically stable.
1253 static void sbr_hf_inverse_filter(float (*alpha0
)[2], float (*alpha1
)[2],
1254 const float X_low
[32][40][2], int k0
)
1257 for (k
= 0; k
< k0
; k
++) {
1258 float phi
[3][2][2], dk
;
1260 autocorrelate(X_low
[k
], phi
, 0);
1261 autocorrelate(X_low
[k
], phi
, 1);
1262 autocorrelate(X_low
[k
], phi
, 2);
1264 dk
= phi
[2][1][0] * phi
[1][0][0] -
1265 (phi
[1][1][0] * phi
[1][1][0] + phi
[1][1][1] * phi
[1][1][1]) / 1.000001f
;
1271 float temp_real
, temp_im
;
1272 temp_real
= phi
[0][0][0] * phi
[1][1][0] -
1273 phi
[0][0][1] * phi
[1][1][1] -
1274 phi
[0][1][0] * phi
[1][0][0];
1275 temp_im
= phi
[0][0][0] * phi
[1][1][1] +
1276 phi
[0][0][1] * phi
[1][1][0] -
1277 phi
[0][1][1] * phi
[1][0][0];
1279 alpha1
[k
][0] = temp_real
/ dk
;
1280 alpha1
[k
][1] = temp_im
/ dk
;
1283 if (!phi
[1][0][0]) {
1287 float temp_real
, temp_im
;
1288 temp_real
= phi
[0][0][0] + alpha1
[k
][0] * phi
[1][1][0] +
1289 alpha1
[k
][1] * phi
[1][1][1];
1290 temp_im
= phi
[0][0][1] + alpha1
[k
][1] * phi
[1][1][0] -
1291 alpha1
[k
][0] * phi
[1][1][1];
1293 alpha0
[k
][0] = -temp_real
/ phi
[1][0][0];
1294 alpha0
[k
][1] = -temp_im
/ phi
[1][0][0];
1297 if (alpha1
[k
][0] * alpha1
[k
][0] + alpha1
[k
][1] * alpha1
[k
][1] >= 16.0f
||
1298 alpha0
[k
][0] * alpha0
[k
][0] + alpha0
[k
][1] * alpha0
[k
][1] >= 16.0f
) {
1307 /// Chirp Factors (14496-3 sp04 p214)
1308 static void sbr_chirp(SpectralBandReplication
*sbr
, SBRData
*ch_data
)
1312 static const float bw_tab
[] = { 0.0f
, 0.75f
, 0.9f
, 0.98f
};
1314 for (i
= 0; i
< sbr
->n_q
; i
++) {
1315 if (ch_data
->bs_invf_mode
[0][i
] + ch_data
->bs_invf_mode
[1][i
] == 1) {
1318 new_bw
= bw_tab
[ch_data
->bs_invf_mode
[0][i
]];
1320 if (new_bw
< ch_data
->bw_array
[i
]) {
1321 new_bw
= 0.75f
* new_bw
+ 0.25f
* ch_data
->bw_array
[i
];
1323 new_bw
= 0.90625f
* new_bw
+ 0.09375f
* ch_data
->bw_array
[i
];
1324 ch_data
->bw_array
[i
] = new_bw
< 0.015625f ?
0.0f
: new_bw
;
1328 /// Generate the subband filtered lowband
1329 static int sbr_lf_gen(AACContext
*ac
, SpectralBandReplication
*sbr
,
1330 float X_low
[32][40][2], const float W
[2][32][32][2])
1333 const int t_HFGen
= 8;
1335 memset(X_low
, 0, 32*sizeof(*X_low
));
1336 for (k
= 0; k
< sbr
->kx
[1]; k
++) {
1337 for (i
= t_HFGen
; i
< i_f
+ t_HFGen
; i
++) {
1338 X_low
[k
][i
][0] = W
[1][i
- t_HFGen
][k
][0];
1339 X_low
[k
][i
][1] = W
[1][i
- t_HFGen
][k
][1];
1342 for (k
= 0; k
< sbr
->kx
[0]; k
++) {
1343 for (i
= 0; i
< t_HFGen
; i
++) {
1344 X_low
[k
][i
][0] = W
[0][i
+ i_f
- t_HFGen
][k
][0];
1345 X_low
[k
][i
][1] = W
[0][i
+ i_f
- t_HFGen
][k
][1];
1351 /// High Frequency Generator (14496-3 sp04 p215)
1352 static int sbr_hf_gen(AACContext
*ac
, SpectralBandReplication
*sbr
,
1353 float X_high
[64][40][2], const float X_low
[32][40][2],
1354 const float (*alpha0
)[2], const float (*alpha1
)[2],
1355 const float bw_array
[5], const uint8_t *t_env
,
1361 for (j
= 0; j
< sbr
->num_patches
; j
++) {
1362 for (x
= 0; x
< sbr
->patch_num_subbands
[j
]; x
++, k
++) {
1364 const int p
= sbr
->patch_start_subband
[j
] + x
;
1365 while (g
<= sbr
->n_q
&& k
>= sbr
->f_tablenoise
[g
])
1370 av_log(ac
->avccontext
, AV_LOG_ERROR
,
1371 "ERROR : no subband found for frequency %d\n", k
);
1375 alpha
[0] = alpha1
[p
][0] * bw_array
[g
] * bw_array
[g
];
1376 alpha
[1] = alpha1
[p
][1] * bw_array
[g
] * bw_array
[g
];
1377 alpha
[2] = alpha0
[p
][0] * bw_array
[g
];
1378 alpha
[3] = alpha0
[p
][1] * bw_array
[g
];
1380 for (i
= 2 * t_env
[0]; i
< 2 * t_env
[bs_num_env
]; i
++) {
1381 const int idx
= i
+ ENVELOPE_ADJUSTMENT_OFFSET
;
1383 X_low
[p
][idx
- 2][0] * alpha
[0] -
1384 X_low
[p
][idx
- 2][1] * alpha
[1] +
1385 X_low
[p
][idx
- 1][0] * alpha
[2] -
1386 X_low
[p
][idx
- 1][1] * alpha
[3] +
1389 X_low
[p
][idx
- 2][1] * alpha
[0] +
1390 X_low
[p
][idx
- 2][0] * alpha
[1] +
1391 X_low
[p
][idx
- 1][1] * alpha
[2] +
1392 X_low
[p
][idx
- 1][0] * alpha
[3] +
1397 if (k
< sbr
->m
[1] + sbr
->kx
[1])
1398 memset(X_high
+ k
, 0, (sbr
->m
[1] + sbr
->kx
[1] - k
) * sizeof(*X_high
));
1403 /// Generate the subband filtered lowband
1404 static int sbr_x_gen(SpectralBandReplication
*sbr
, float X
[2][32][64],
1405 const float X_low
[32][40][2], const float Y
[2][38][64][2],
1410 const int i_Temp
= FFMAX(2*sbr
->data
[ch
].t_env_num_env_old
- i_f
, 0);
1411 memset(X
, 0, 2*sizeof(*X
));
1412 for (k
= 0; k
< sbr
->kx
[0]; k
++) {
1413 for (i
= 0; i
< i_Temp
; i
++) {
1414 X
[0][i
][k
] = X_low
[k
][i
+ ENVELOPE_ADJUSTMENT_OFFSET
][0];
1415 X
[1][i
][k
] = X_low
[k
][i
+ ENVELOPE_ADJUSTMENT_OFFSET
][1];
1418 for (; k
< sbr
->kx
[0] + sbr
->m
[0]; k
++) {
1419 for (i
= 0; i
< i_Temp
; i
++) {
1420 X
[0][i
][k
] = Y
[0][i
+ i_f
][k
][0];
1421 X
[1][i
][k
] = Y
[0][i
+ i_f
][k
][1];
1425 for (k
= 0; k
< sbr
->kx
[1]; k
++) {
1426 for (i
= i_Temp
; i
< i_f
; i
++) {
1427 X
[0][i
][k
] = X_low
[k
][i
+ ENVELOPE_ADJUSTMENT_OFFSET
][0];
1428 X
[1][i
][k
] = X_low
[k
][i
+ ENVELOPE_ADJUSTMENT_OFFSET
][1];
1431 for (; k
< sbr
->kx
[1] + sbr
->m
[1]; k
++) {
1432 for (i
= i_Temp
; i
< i_f
; i
++) {
1433 X
[0][i
][k
] = Y
[1][i
][k
][0];
1434 X
[1][i
][k
] = Y
[1][i
][k
][1];
1440 /** High Frequency Adjustment (14496-3 sp04 p217) and Mapping
1441 * (14496-3 sp04 p217)
1443 static void sbr_mapping(AACContext
*ac
, SpectralBandReplication
*sbr
,
1444 SBRData
*ch_data
, int e_a
[2])
1448 e_a
[0] = -(e_a
[1] != ch_data
->bs_num_env
[0]); // l_APrev
1450 if ((ch_data
->bs_frame_class
& 1) && ch_data
->bs_pointer
) { // FIXVAR or VARVAR and bs_pointer != 0
1451 e_a
[1] = ch_data
->bs_num_env
[1] + 1 - ch_data
->bs_pointer
;
1452 } else if ((ch_data
->bs_frame_class
== 2) && (ch_data
->bs_pointer
> 1)) // VARFIX and bs_pointer > 1
1453 e_a
[1] = ch_data
->bs_pointer
- 1;
1455 memset(ch_data
->s_indexmapped
[1], 0, 7*sizeof(ch_data
->s_indexmapped
[1]));
1456 for (e
= 0; e
< ch_data
->bs_num_env
[1]; e
++) {
1457 const unsigned int ilim
= sbr
->n
[ch_data
->bs_freq_res
[e
+ 1]];
1458 uint16_t *table
= ch_data
->bs_freq_res
[e
+ 1] ? sbr
->f_tablehigh
: sbr
->f_tablelow
;
1461 for (i
= 0; i
< ilim
; i
++)
1462 for (m
= table
[i
]; m
< table
[i
+ 1]; m
++)
1463 sbr
->e_origmapped
[e
][m
- sbr
->kx
[1]] = ch_data
->env_facs
[e
+1][i
];
1465 // ch_data->bs_num_noise > 1 => 2 noise floors
1466 k
= (ch_data
->bs_num_noise
> 1) && (ch_data
->t_env
[e
] >= ch_data
->t_q
[1]);
1467 for (i
= 0; i
< sbr
->n_q
; i
++)
1468 for (m
= sbr
->f_tablenoise
[i
]; m
< sbr
->f_tablenoise
[i
+ 1]; m
++)
1469 sbr
->q_mapped
[e
][m
- sbr
->kx
[1]] = ch_data
->noise_facs
[k
+1][i
];
1471 for (i
= 0; i
< sbr
->n
[1]; i
++) {
1472 if (ch_data
->bs_add_harmonic_flag
) {
1473 const unsigned int m_midpoint
=
1474 (sbr
->f_tablehigh
[i
] + sbr
->f_tablehigh
[i
+ 1]) >> 1;
1476 ch_data
->s_indexmapped
[e
+ 1][m_midpoint
- sbr
->kx
[1]] = ch_data
->bs_add_harmonic
[i
] *
1477 (e
>= e_a
[1] || (ch_data
->s_indexmapped
[0][m_midpoint
- sbr
->kx
[1]] == 1));
1481 for (i
= 0; i
< ilim
; i
++) {
1482 int additional_sinusoid_present
= 0;
1483 for (m
= table
[i
]; m
< table
[i
+ 1]; m
++) {
1484 if (ch_data
->s_indexmapped
[e
+ 1][m
- sbr
->kx
[1]]) {
1485 additional_sinusoid_present
= 1;
1489 memset(&sbr
->s_mapped
[e
][table
[i
] - sbr
->kx
[1]], additional_sinusoid_present
,
1490 (table
[i
+ 1] - table
[i
]) * sizeof(sbr
->s_mapped
[e
][0]));
1494 memcpy(ch_data
->s_indexmapped
[0], ch_data
->s_indexmapped
[ch_data
->bs_num_env
[1]], sizeof(ch_data
->s_indexmapped
[0]));
1497 /// Estimation of current envelope (14496-3 sp04 p218)
1498 static void sbr_env_estimate(float (*e_curr
)[48], float X_high
[64][40][2],
1499 SpectralBandReplication
*sbr
, SBRData
*ch_data
)
1503 if (sbr
->bs_interpol_freq
) {
1504 for (e
= 0; e
< ch_data
->bs_num_env
[1]; e
++) {
1505 const float recip_env_size
= 0.5f
/ (ch_data
->t_env
[e
+ 1] - ch_data
->t_env
[e
]);
1506 int ilb
= ch_data
->t_env
[e
] * 2 + ENVELOPE_ADJUSTMENT_OFFSET
;
1507 int iub
= ch_data
->t_env
[e
+ 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET
;
1509 for (m
= 0; m
< sbr
->m
[1]; m
++) {
1512 for (i
= ilb
; i
< iub
; i
++) {
1513 sum
+= X_high
[m
+ sbr
->kx
[1]][i
][0] * X_high
[m
+ sbr
->kx
[1]][i
][0] +
1514 X_high
[m
+ sbr
->kx
[1]][i
][1] * X_high
[m
+ sbr
->kx
[1]][i
][1];
1516 e_curr
[e
][m
] = sum
* recip_env_size
;
1522 for (e
= 0; e
< ch_data
->bs_num_env
[1]; e
++) {
1523 const int env_size
= 2 * (ch_data
->t_env
[e
+ 1] - ch_data
->t_env
[e
]);
1524 int ilb
= ch_data
->t_env
[e
] * 2 + ENVELOPE_ADJUSTMENT_OFFSET
;
1525 int iub
= ch_data
->t_env
[e
+ 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET
;
1526 const uint16_t *table
= ch_data
->bs_freq_res
[e
+ 1] ? sbr
->f_tablehigh
: sbr
->f_tablelow
;
1528 for (p
= 0; p
< sbr
->n
[ch_data
->bs_freq_res
[e
+ 1]]; p
++) {
1530 const int den
= env_size
* (table
[p
+ 1] - table
[p
]);
1532 for (k
= table
[p
]; k
< table
[p
+ 1]; k
++) {
1533 for (i
= ilb
; i
< iub
; i
++) {
1534 sum
+= X_high
[k
][i
][0] * X_high
[k
][i
][0] +
1535 X_high
[k
][i
][1] * X_high
[k
][i
][1];
1539 for (k
= table
[p
]; k
< table
[p
+ 1]; k
++) {
1540 e_curr
[e
][k
- sbr
->kx
[1]] = sum
;
1548 * Calculation of levels of additional HF signal components (14496-3 sp04 p219)
1549 * and Calculation of gain (14496-3 sp04 p219)
1551 static void sbr_gain_calc(AACContext
*ac
, SpectralBandReplication
*sbr
,
1552 SBRData
*ch_data
, const int e_a
[2])
1555 // max gain limits : -3dB, 0dB, 3dB, inf dB (limiter off)
1556 static const float limgain
[4] = { 0.70795, 1.0, 1.41254, 10000000000 };
1558 for (e
= 0; e
< ch_data
->bs_num_env
[1]; e
++) {
1559 int delta
= !((e
== e_a
[1]) || (e
== e_a
[0]));
1560 for (k
= 0; k
< sbr
->n_lim
; k
++) {
1561 float gain_boost
, gain_max
;
1562 float sum
[2] = { 0.0f
, 0.0f
};
1563 for (m
= sbr
->f_tablelim
[k
] - sbr
->kx
[1]; m
< sbr
->f_tablelim
[k
+ 1] - sbr
->kx
[1]; m
++) {
1564 const float temp
= sbr
->e_origmapped
[e
][m
] / (1.0f
+ sbr
->q_mapped
[e
][m
]);
1565 sbr
->q_m
[e
][m
] = sqrtf(temp
* sbr
->q_mapped
[e
][m
]);
1566 sbr
->s_m
[e
][m
] = sqrtf(temp
* ch_data
->s_indexmapped
[e
+ 1][m
]);
1567 if (!sbr
->s_mapped
[e
][m
]) {
1568 sbr
->gain
[e
][m
] = sqrtf(sbr
->e_origmapped
[e
][m
] /
1569 ((1.0f
+ sbr
->e_curr
[e
][m
]) *
1570 (1.0f
+ sbr
->q_mapped
[e
][m
] * delta
)));
1572 sbr
->gain
[e
][m
] = sqrtf(sbr
->e_origmapped
[e
][m
] * sbr
->q_mapped
[e
][m
] /
1573 ((1.0f
+ sbr
->e_curr
[e
][m
]) *
1574 (1.0f
+ sbr
->q_mapped
[e
][m
])));
1577 for (m
= sbr
->f_tablelim
[k
] - sbr
->kx
[1]; m
< sbr
->f_tablelim
[k
+ 1] - sbr
->kx
[1]; m
++) {
1578 sum
[0] += sbr
->e_origmapped
[e
][m
];
1579 sum
[1] += sbr
->e_curr
[e
][m
];
1581 gain_max
= limgain
[sbr
->bs_limiter_gains
] * sqrtf((FLT_EPSILON
+ sum
[0]) / (FLT_EPSILON
+ sum
[1]));
1582 gain_max
= FFMIN(100000, gain_max
);
1583 for (m
= sbr
->f_tablelim
[k
] - sbr
->kx
[1]; m
< sbr
->f_tablelim
[k
+ 1] - sbr
->kx
[1]; m
++) {
1584 float q_m_max
= sbr
->q_m
[e
][m
] * gain_max
/ sbr
->gain
[e
][m
];
1585 sbr
->q_m
[e
][m
] = FFMIN(sbr
->q_m
[e
][m
], q_m_max
);
1586 sbr
->gain
[e
][m
] = FFMIN(sbr
->gain
[e
][m
], gain_max
);
1588 sum
[0] = sum
[1] = 0.0f
;
1589 for (m
= sbr
->f_tablelim
[k
] - sbr
->kx
[1]; m
< sbr
->f_tablelim
[k
+ 1] - sbr
->kx
[1]; m
++) {
1590 sum
[0] += sbr
->e_origmapped
[e
][m
];
1591 sum
[1] += sbr
->e_curr
[e
][m
] * sbr
->gain
[e
][m
] * sbr
->gain
[e
][m
]
1592 + sbr
->s_m
[e
][m
] * sbr
->s_m
[e
][m
]
1593 + (delta
&& !sbr
->s_m
[e
][m
]) * sbr
->q_m
[e
][m
] * sbr
->q_m
[e
][m
];
1595 gain_boost
= sqrtf((FLT_EPSILON
+ sum
[0]) / (FLT_EPSILON
+ sum
[1]));
1596 gain_boost
= FFMIN(1.584893192, gain_boost
);
1597 for (m
= sbr
->f_tablelim
[k
] - sbr
->kx
[1]; m
< sbr
->f_tablelim
[k
+ 1] - sbr
->kx
[1]; m
++) {
1598 sbr
->gain
[e
][m
] *= gain_boost
;
1599 sbr
->q_m
[e
][m
] *= gain_boost
;
1600 sbr
->s_m
[e
][m
] *= gain_boost
;
1606 /// Assembling HF Signals (14496-3 sp04 p220)
1607 static void sbr_hf_assemble(float Y
[2][38][64][2], const float X_high
[64][40][2],
1608 SpectralBandReplication
*sbr
, SBRData
*ch_data
,
1612 const int h_SL
= 4 * !sbr
->bs_smoothing_mode
;
1613 const int kx
= sbr
->kx
[1];
1614 const int m_max
= sbr
->m
[1];
1615 static const float h_smooth
[5] = {
1622 static const int8_t phi
[2][4] = {
1623 { 1, 0, -1, 0}, // real
1624 { 0, 1, 0, -1}, // imaginary
1626 float (*g_temp
)[48] = ch_data
->g_temp
, (*q_temp
)[48] = ch_data
->q_temp
;
1627 int indexnoise
= ch_data
->f_indexnoise
;
1628 int indexsine
= ch_data
->f_indexsine
;
1629 memcpy(Y
[0], Y
[1], sizeof(Y
[0]));
1632 for (i
= 0; i
< h_SL
; i
++) {
1633 memcpy(g_temp
[i
+ 2*ch_data
->t_env
[0]], sbr
->gain
[0], m_max
* sizeof(sbr
->gain
[0][0]));
1634 memcpy(q_temp
[i
+ 2*ch_data
->t_env
[0]], sbr
->q_m
[0], m_max
* sizeof(sbr
->q_m
[0][0]));
1637 memcpy(g_temp
[2*ch_data
->t_env
[0]], g_temp
[2*ch_data
->t_env_num_env_old
], 4*sizeof(g_temp
[0]));
1638 memcpy(q_temp
[2*ch_data
->t_env
[0]], q_temp
[2*ch_data
->t_env_num_env_old
], 4*sizeof(q_temp
[0]));
1641 for (e
= 0; e
< ch_data
->bs_num_env
[1]; e
++) {
1642 for (i
= 2 * ch_data
->t_env
[e
]; i
< 2 * ch_data
->t_env
[e
+ 1]; i
++) {
1643 memcpy(g_temp
[h_SL
+ i
], sbr
->gain
[e
], m_max
* sizeof(sbr
->gain
[0][0]));
1644 memcpy(q_temp
[h_SL
+ i
], sbr
->q_m
[e
], m_max
* sizeof(sbr
->q_m
[0][0]));
1648 for (e
= 0; e
< ch_data
->bs_num_env
[1]; e
++) {
1649 for (i
= 2 * ch_data
->t_env
[e
]; i
< 2 * ch_data
->t_env
[e
+ 1]; i
++) {
1650 int phi_sign
= (1 - 2*(kx
& 1));
1652 if (h_SL
&& e
!= e_a
[0] && e
!= e_a
[1]) {
1653 for (m
= 0; m
< m_max
; m
++) {
1654 const int idx1
= i
+ h_SL
;
1655 float g_filt
= 0.0f
;
1656 for (j
= 0; j
<= h_SL
; j
++)
1657 g_filt
+= g_temp
[idx1
- j
][m
] * h_smooth
[j
];
1658 Y
[1][i
][m
+ kx
][0] =
1659 X_high
[m
+ kx
][i
+ ENVELOPE_ADJUSTMENT_OFFSET
][0] * g_filt
;
1660 Y
[1][i
][m
+ kx
][1] =
1661 X_high
[m
+ kx
][i
+ ENVELOPE_ADJUSTMENT_OFFSET
][1] * g_filt
;
1664 for (m
= 0; m
< m_max
; m
++) {
1665 const float g_filt
= g_temp
[i
+ h_SL
][m
];
1666 Y
[1][i
][m
+ kx
][0] =
1667 X_high
[m
+ kx
][i
+ ENVELOPE_ADJUSTMENT_OFFSET
][0] * g_filt
;
1668 Y
[1][i
][m
+ kx
][1] =
1669 X_high
[m
+ kx
][i
+ ENVELOPE_ADJUSTMENT_OFFSET
][1] * g_filt
;
1673 if (e
!= e_a
[0] && e
!= e_a
[1]) {
1674 for (m
= 0; m
< m_max
; m
++) {
1675 indexnoise
= (indexnoise
+ 1) & 0x1ff;
1676 if (sbr
->s_m
[e
][m
]) {
1677 Y
[1][i
][m
+ kx
][0] +=
1678 sbr
->s_m
[e
][m
] * phi
[0][indexsine
];
1679 Y
[1][i
][m
+ kx
][1] +=
1680 sbr
->s_m
[e
][m
] * (phi
[1][indexsine
] * phi_sign
);
1684 const int idx1
= i
+ h_SL
;
1686 for (j
= 0; j
<= h_SL
; j
++)
1687 q_filt
+= q_temp
[idx1
- j
][m
] * h_smooth
[j
];
1689 q_filt
= q_temp
[i
][m
];
1691 Y
[1][i
][m
+ kx
][0] +=
1692 q_filt
* sbr_noise_table
[indexnoise
][0];
1693 Y
[1][i
][m
+ kx
][1] +=
1694 q_filt
* sbr_noise_table
[indexnoise
][1];
1696 phi_sign
= -phi_sign
;
1699 indexnoise
= (indexnoise
+ m_max
) & 0x1ff;
1700 for (m
= 0; m
< m_max
; m
++) {
1701 Y
[1][i
][m
+ kx
][0] +=
1702 sbr
->s_m
[e
][m
] * phi
[0][indexsine
];
1703 Y
[1][i
][m
+ kx
][1] +=
1704 sbr
->s_m
[e
][m
] * (phi
[1][indexsine
] * phi_sign
);
1705 phi_sign
= -phi_sign
;
1708 indexsine
= (indexsine
+ 1) & 3;
1711 ch_data
->f_indexnoise
= indexnoise
;
1712 ch_data
->f_indexsine
= indexsine
;
1715 void ff_sbr_dequant(AACContext
*ac
, SpectralBandReplication
*sbr
, int id_aac
)
1720 for (ch
= 0; ch
< (id_aac
== TYPE_CPE
) + 1; ch
++) {
1721 sbr_time_freq_grid(ac
, sbr
, &sbr
->data
[ch
], ch
);
1723 sbr_dequant(sbr
, id_aac
);
1727 void ff_sbr_apply(AACContext
*ac
, SpectralBandReplication
*sbr
, int ch
,
1728 const float* in
, float* out
)
1730 int downsampled
= ac
->m4ac
.ext_sample_rate
< sbr
->sample_rate
;
1732 /* decode channel */
1733 sbr_qmf_analysis(&ac
->dsp
, &sbr
->rdft
, in
, sbr
->data
[ch
].analysis_filterbank_samples
,
1734 (float*)sbr
->qmf_filter_scratch
,
1735 sbr
->data
[ch
].W
, ac
->add_bias
, 1/(-1024 * ac
->sf_scale
));
1736 sbr_lf_gen(ac
, sbr
, sbr
->X_low
, sbr
->data
[ch
].W
);
1738 sbr_hf_inverse_filter(sbr
->alpha0
, sbr
->alpha1
, sbr
->X_low
, sbr
->k
[0]);
1739 sbr_chirp(sbr
, &sbr
->data
[ch
]);
1740 sbr_hf_gen(ac
, sbr
, sbr
->X_high
, sbr
->X_low
, sbr
->alpha0
, sbr
->alpha1
,
1741 sbr
->data
[ch
].bw_array
, sbr
->data
[ch
].t_env
,
1742 sbr
->data
[ch
].bs_num_env
[1]);
1745 sbr_mapping(ac
, sbr
, &sbr
->data
[ch
], sbr
->data
[ch
].e_a
);
1746 sbr_env_estimate(sbr
->e_curr
, sbr
->X_high
, sbr
, &sbr
->data
[ch
]);
1747 sbr_gain_calc(ac
, sbr
, &sbr
->data
[ch
], sbr
->data
[ch
].e_a
);
1748 sbr_hf_assemble(sbr
->data
[ch
].Y
, sbr
->X_high
, sbr
, &sbr
->data
[ch
],
1753 sbr_x_gen(sbr
, sbr
->X
, sbr
->X_low
, sbr
->data
[ch
].Y
, ch
);
1754 sbr_qmf_synthesis(&ac
->dsp
, &sbr
->mdct
, out
, sbr
->X
, sbr
->qmf_filter_scratch
,
1755 sbr
->data
[ch
].synthesis_filterbank_samples
,
1756 &sbr
->data
[ch
].synthesis_filterbank_samples_offset
,
1758 ac
->add_bias
, -1024 * ac
->sf_scale
);