2 * AAC Spectral Band Replication decoding functions
3 * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
4 * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
6 * This file is part of FFmpeg.
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24 * @file libavcodec/aacsbr.c
25 * AAC Spectral Band Replication decoding functions
26 * @author Robert Swain ( rob opendot cl )
32 #include "aacsbrdata.h"
38 #define ENVELOPE_ADJUSTMENT_OFFSET 2
39 #define NOISE_FLOOR_OFFSET 6.0f
47 T_HUFFMAN_ENV_BAL_1_5DB
,
48 F_HUFFMAN_ENV_BAL_1_5DB
,
51 T_HUFFMAN_ENV_BAL_3_0DB
,
52 F_HUFFMAN_ENV_BAL_3_0DB
,
53 T_HUFFMAN_NOISE_3_0DB
,
54 T_HUFFMAN_NOISE_BAL_3_0DB
,
58 * bs_frame_class - frame class of current SBR frame (14496-3 sp04 p98)
71 static VLC vlc_sbr
[10];
72 static const int8_t vlc_sbr_lav
[10] =
73 { 60, 60, 24, 24, 31, 31, 12, 12, 31, 12 };
74 static DECLARE_ALIGNED(16, float, analysis_cos_pre
)[64];
75 static DECLARE_ALIGNED(16, float, analysis_sin_pre
)[64];
76 static DECLARE_ALIGNED(16, float, analysis_cossin_post
)[32][2];
77 static const DECLARE_ALIGNED(16, float, zero64
)[64];
79 #define SBR_INIT_VLC_STATIC(num, size) \
80 INIT_VLC_STATIC(&vlc_sbr[num], 9, sbr_tmp[num].table_size / sbr_tmp[num].elem_size, \
81 sbr_tmp[num].sbr_bits , 1, 1, \
82 sbr_tmp[num].sbr_codes, sbr_tmp[num].elem_size, sbr_tmp[num].elem_size, \
85 #define SBR_VLC_ROW(name) \
86 { name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) }
88 av_cold
void ff_aac_sbr_init(void)
92 const void *sbr_codes
, *sbr_bits
;
93 const unsigned int table_size
, elem_size
;
95 SBR_VLC_ROW(t_huffman_env_1_5dB
),
96 SBR_VLC_ROW(f_huffman_env_1_5dB
),
97 SBR_VLC_ROW(t_huffman_env_bal_1_5dB
),
98 SBR_VLC_ROW(f_huffman_env_bal_1_5dB
),
99 SBR_VLC_ROW(t_huffman_env_3_0dB
),
100 SBR_VLC_ROW(f_huffman_env_3_0dB
),
101 SBR_VLC_ROW(t_huffman_env_bal_3_0dB
),
102 SBR_VLC_ROW(f_huffman_env_bal_3_0dB
),
103 SBR_VLC_ROW(t_huffman_noise_3_0dB
),
104 SBR_VLC_ROW(t_huffman_noise_bal_3_0dB
),
107 // SBR VLC table initialization
108 SBR_INIT_VLC_STATIC(0, 1098);
109 SBR_INIT_VLC_STATIC(1, 1092);
110 SBR_INIT_VLC_STATIC(2, 768);
111 SBR_INIT_VLC_STATIC(3, 1026);
112 SBR_INIT_VLC_STATIC(4, 1058);
113 SBR_INIT_VLC_STATIC(5, 1052);
114 SBR_INIT_VLC_STATIC(6, 544);
115 SBR_INIT_VLC_STATIC(7, 544);
116 SBR_INIT_VLC_STATIC(8, 592);
117 SBR_INIT_VLC_STATIC(9, 512);
119 for (n
= 0; n
< 64; n
++) {
120 float pre
= M_PI
* n
/ 64;
121 analysis_cos_pre
[n
] = cosf(pre
);
122 analysis_sin_pre
[n
] = sinf(pre
);
124 for (k
= 0; k
< 32; k
++) {
125 float post
= M_PI
* (k
+ 0.5) / 128;
126 analysis_cossin_post
[k
][0] = 4.0 * cosf(post
);
127 analysis_cossin_post
[k
][1] = -4.0 * sinf(post
);
129 for (n
= 1; n
< 320; n
++)
130 sbr_qmf_window_us
[320 + n
] = sbr_qmf_window_us
[320 - n
];
131 sbr_qmf_window_us
[384] = -sbr_qmf_window_us
[384];
132 sbr_qmf_window_us
[512] = -sbr_qmf_window_us
[512];
134 for (n
= 0; n
< 320; n
++)
135 sbr_qmf_window_ds
[n
] = sbr_qmf_window_us
[2*n
];
138 av_cold
void ff_aac_sbr_ctx_init(SpectralBandReplication
*sbr
)
140 sbr
->kx
[0] = sbr
->kx
[1] = 32; //Typo in spec, kx' inits to 32
141 sbr
->data
[0].e_a
[1] = sbr
->data
[1].e_a
[1] = -1;
142 sbr
->data
[0].synthesis_filterbank_samples_offset
= SBR_SYNTHESIS_BUF_SIZE
- (1280 - 128);
143 sbr
->data
[1].synthesis_filterbank_samples_offset
= SBR_SYNTHESIS_BUF_SIZE
- (1280 - 128);
144 ff_mdct_init(&sbr
->mdct
, 7, 1, 1.0/64);
145 ff_rdft_init(&sbr
->rdft
, 6, IDFT_R2C
);
148 av_cold
void ff_aac_sbr_ctx_close(SpectralBandReplication
*sbr
)
150 ff_mdct_end(&sbr
->mdct
);
151 ff_rdft_end(&sbr
->rdft
);
154 static int qsort_comparison_function_int16(const void *a
, const void *b
)
156 return *(const int16_t *)a
- *(const int16_t *)b
;
159 static inline int in_table_int16(const int16_t *table
, int last_el
, int16_t needle
)
162 for (i
= 0; i
<= last_el
; i
++)
163 if (table
[i
] == needle
)
168 /// Limiter Frequency Band Table (14496-3 sp04 p198)
169 static void sbr_make_f_tablelim(SpectralBandReplication
*sbr
)
172 if (sbr
->bs_limiter_bands
> 0) {
173 static const float bands_warped
[3] = { 1.32715174233856803909f
, //2^(0.49/1.2)
174 1.18509277094158210129f
, //2^(0.49/2)
175 1.11987160404675912501f
}; //2^(0.49/3)
176 const float lim_bands_per_octave_warped
= bands_warped
[sbr
->bs_limiter_bands
- 1];
177 int16_t patch_borders
[5];
178 uint16_t *in
= sbr
->f_tablelim
+ 1, *out
= sbr
->f_tablelim
;
180 patch_borders
[0] = sbr
->kx
[1];
181 for (k
= 1; k
<= sbr
->num_patches
; k
++)
182 patch_borders
[k
] = patch_borders
[k
-1] + sbr
->patch_num_subbands
[k
-1];
184 memcpy(sbr
->f_tablelim
, sbr
->f_tablelow
,
185 (sbr
->n
[0] + 1) * sizeof(sbr
->f_tablelow
[0]));
186 if (sbr
->num_patches
> 1)
187 memcpy(sbr
->f_tablelim
+ sbr
->n
[0] + 1, patch_borders
+ 1,
188 (sbr
->num_patches
- 1) * sizeof(patch_borders
[0]));
190 qsort(sbr
->f_tablelim
, sbr
->num_patches
+ sbr
->n
[0],
191 sizeof(sbr
->f_tablelim
[0]),
192 qsort_comparison_function_int16
);
194 sbr
->n_lim
= sbr
->n
[0] + sbr
->num_patches
- 1;
195 while (out
< sbr
->f_tablelim
+ sbr
->n_lim
) {
196 if (*in
>= *out
* lim_bands_per_octave_warped
) {
198 } else if (*in
== *out
||
199 !in_table_int16(patch_borders
, sbr
->num_patches
, *in
)) {
202 } else if (!in_table_int16(patch_borders
, sbr
->num_patches
, *out
)) {
210 sbr
->f_tablelim
[0] = sbr
->f_tablelow
[0];
211 sbr
->f_tablelim
[1] = sbr
->f_tablelow
[sbr
->n
[0]];
216 static unsigned int read_sbr_header(SpectralBandReplication
*sbr
, GetBitContext
*gb
)
218 unsigned int cnt
= get_bits_count(gb
);
219 uint8_t bs_header_extra_1
;
220 uint8_t bs_header_extra_2
;
221 int old_bs_limiter_bands
= sbr
->bs_limiter_bands
;
222 SpectrumParameters old_spectrum_params
;
226 // Save last spectrum parameters variables to compare to new ones
227 memcpy(&old_spectrum_params
, &sbr
->spectrum_params
, sizeof(SpectrumParameters
));
229 sbr
->bs_amp_res_header
= get_bits1(gb
);
230 sbr
->spectrum_params
.bs_start_freq
= get_bits(gb
, 4);
231 sbr
->spectrum_params
.bs_stop_freq
= get_bits(gb
, 4);
232 sbr
->spectrum_params
.bs_xover_band
= get_bits(gb
, 3);
233 skip_bits(gb
, 2); // bs_reserved
235 bs_header_extra_1
= get_bits1(gb
);
236 bs_header_extra_2
= get_bits1(gb
);
238 if (bs_header_extra_1
) {
239 sbr
->spectrum_params
.bs_freq_scale
= get_bits(gb
, 2);
240 sbr
->spectrum_params
.bs_alter_scale
= get_bits1(gb
);
241 sbr
->spectrum_params
.bs_noise_bands
= get_bits(gb
, 2);
243 sbr
->spectrum_params
.bs_freq_scale
= 2;
244 sbr
->spectrum_params
.bs_alter_scale
= 1;
245 sbr
->spectrum_params
.bs_noise_bands
= 2;
248 // Check if spectrum parameters changed
249 if (memcmp(&old_spectrum_params
, &sbr
->spectrum_params
, sizeof(SpectrumParameters
)))
252 if (bs_header_extra_2
) {
253 sbr
->bs_limiter_bands
= get_bits(gb
, 2);
254 sbr
->bs_limiter_gains
= get_bits(gb
, 2);
255 sbr
->bs_interpol_freq
= get_bits1(gb
);
256 sbr
->bs_smoothing_mode
= get_bits1(gb
);
258 sbr
->bs_limiter_bands
= 2;
259 sbr
->bs_limiter_gains
= 2;
260 sbr
->bs_interpol_freq
= 1;
261 sbr
->bs_smoothing_mode
= 1;
264 if (sbr
->bs_limiter_bands
!= old_bs_limiter_bands
&& !sbr
->reset
)
265 sbr_make_f_tablelim(sbr
);
267 return get_bits_count(gb
) - cnt
;
270 static int array_min_int16(const int16_t *array
, int nel
)
272 int i
, min
= array
[0];
273 for (i
= 1; i
< nel
; i
++)
274 min
= FFMIN(array
[i
], min
);
278 static void make_bands(int16_t* bands
, int start
, int stop
, int num_bands
)
280 int k
, previous
, present
;
283 base
= powf((float)stop
/ start
, 1.0f
/ num_bands
);
287 for (k
= 0; k
< num_bands
-1; k
++) {
289 present
= lrintf(prod
);
290 bands
[k
] = present
- previous
;
293 bands
[num_bands
-1] = stop
- previous
;
296 static int check_n_master(AVCodecContext
*avccontext
, int n_master
, int bs_xover_band
)
298 // Requirements (14496-3 sp04 p205)
300 av_log(avccontext
, AV_LOG_ERROR
, "Invalid n_master: %d\n", n_master
);
303 if (bs_xover_band
>= n_master
) {
304 av_log(avccontext
, AV_LOG_ERROR
,
305 "Invalid bitstream, crossover band index beyond array bounds: %d\n",
312 /// Master Frequency Band Table (14496-3 sp04 p194)
313 static int sbr_make_f_master(AACContext
*ac
, SpectralBandReplication
*sbr
,
314 SpectrumParameters
*spectrum
)
316 unsigned int temp
, max_qmf_subbands
;
317 unsigned int start_min
, stop_min
;
319 const int8_t *sbr_offset_ptr
;
322 if (sbr
->sample_rate
< 32000) {
324 } else if (sbr
->sample_rate
< 64000) {
329 start_min
= ((temp
<< 7) + (sbr
->sample_rate
>> 1)) / sbr
->sample_rate
;
330 stop_min
= ((temp
<< 8) + (sbr
->sample_rate
>> 1)) / sbr
->sample_rate
;
332 switch (sbr
->sample_rate
) {
334 sbr_offset_ptr
= sbr_offset
[0];
337 sbr_offset_ptr
= sbr_offset
[1];
340 sbr_offset_ptr
= sbr_offset
[2];
343 sbr_offset_ptr
= sbr_offset
[3];
345 case 44100: case 48000: case 64000:
346 sbr_offset_ptr
= sbr_offset
[4];
348 case 88200: case 96000: case 128000: case 176400: case 192000:
349 sbr_offset_ptr
= sbr_offset
[5];
352 av_log(ac
->avccontext
, AV_LOG_ERROR
,
353 "Unsupported sample rate for SBR: %d\n", sbr
->sample_rate
);
357 sbr
->k
[0] = start_min
+ sbr_offset_ptr
[spectrum
->bs_start_freq
];
359 if (spectrum
->bs_stop_freq
< 14) {
360 sbr
->k
[2] = stop_min
;
361 make_bands(stop_dk
, stop_min
, 64, 13);
362 qsort(stop_dk
, 13, sizeof(stop_dk
[0]), qsort_comparison_function_int16
);
363 for (k
= 0; k
< spectrum
->bs_stop_freq
; k
++)
364 sbr
->k
[2] += stop_dk
[k
];
365 } else if (spectrum
->bs_stop_freq
== 14) {
366 sbr
->k
[2] = 2*sbr
->k
[0];
367 } else if (spectrum
->bs_stop_freq
== 15) {
368 sbr
->k
[2] = 3*sbr
->k
[0];
370 av_log(ac
->avccontext
, AV_LOG_ERROR
,
371 "Invalid bs_stop_freq: %d\n", spectrum
->bs_stop_freq
);
374 sbr
->k
[2] = FFMIN(64, sbr
->k
[2]);
376 // Requirements (14496-3 sp04 p205)
377 if (sbr
->sample_rate
<= 32000) {
378 max_qmf_subbands
= 48;
379 } else if (sbr
->sample_rate
== 44100) {
380 max_qmf_subbands
= 35;
381 } else if (sbr
->sample_rate
>= 48000)
382 max_qmf_subbands
= 32;
384 if (sbr
->k
[2] - sbr
->k
[0] > max_qmf_subbands
) {
385 av_log(ac
->avccontext
, AV_LOG_ERROR
,
386 "Invalid bitstream, too many QMF subbands: %d\n", sbr
->k
[2] - sbr
->k
[0]);
390 if (!spectrum
->bs_freq_scale
) {
394 dk
= spectrum
->bs_alter_scale
+ 1;
395 sbr
->n_master
= ((sbr
->k
[2] - sbr
->k
[0] + (dk
&2)) >> dk
) << 1;
396 if (check_n_master(ac
->avccontext
, sbr
->n_master
, sbr
->spectrum_params
.bs_xover_band
))
399 for (k
= 1; k
<= sbr
->n_master
; k
++)
400 sbr
->f_master
[k
] = dk
;
402 k2diff
= sbr
->k
[2] - sbr
->k
[0] - sbr
->n_master
* dk
;
405 sbr
->f_master
[2]-= (k2diff
< 1);
407 sbr
->f_master
[sbr
->n_master
]++;
410 sbr
->f_master
[0] = sbr
->k
[0];
411 for (k
= 1; k
<= sbr
->n_master
; k
++)
412 sbr
->f_master
[k
] += sbr
->f_master
[k
- 1];
415 int half_bands
= 7 - spectrum
->bs_freq_scale
; // bs_freq_scale = {1,2,3}
416 int two_regions
, num_bands_0
;
417 int vdk0_max
, vdk1_min
;
420 if (49 * sbr
->k
[2] > 110 * sbr
->k
[0]) {
422 sbr
->k
[1] = 2 * sbr
->k
[0];
425 sbr
->k
[1] = sbr
->k
[2];
428 num_bands_0
= lrintf(half_bands
* log2f(sbr
->k
[1] / (float)sbr
->k
[0])) * 2;
430 if (num_bands_0
<= 0) { // Requirements (14496-3 sp04 p205)
431 av_log(ac
->avccontext
, AV_LOG_ERROR
, "Invalid num_bands_0: %d\n", num_bands_0
);
437 make_bands(vk0
+1, sbr
->k
[0], sbr
->k
[1], num_bands_0
);
439 qsort(vk0
+ 1, num_bands_0
, sizeof(vk0
[1]), qsort_comparison_function_int16
);
440 vdk0_max
= vk0
[num_bands_0
];
443 for (k
= 1; k
<= num_bands_0
; k
++) {
444 if (vk0
[k
] <= 0) { // Requirements (14496-3 sp04 p205)
445 av_log(ac
->avccontext
, AV_LOG_ERROR
, "Invalid vDk0[%d]: %d\n", k
, vk0
[k
]);
453 float invwarp
= spectrum
->bs_alter_scale ?
0.76923076923076923077f
454 : 1.0f
; // bs_alter_scale = {0,1}
455 int num_bands_1
= lrintf(half_bands
* invwarp
*
456 log2f(sbr
->k
[2] / (float)sbr
->k
[1])) * 2;
458 make_bands(vk1
+1, sbr
->k
[1], sbr
->k
[2], num_bands_1
);
460 vdk1_min
= array_min_int16(vk1
+ 1, num_bands_1
);
462 if (vdk1_min
< vdk0_max
) {
464 qsort(vk1
+ 1, num_bands_1
, sizeof(vk1
[1]), qsort_comparison_function_int16
);
465 change
= FFMIN(vdk0_max
- vk1
[1], (vk1
[num_bands_1
] - vk1
[1]) >> 1);
467 vk1
[num_bands_1
] -= change
;
470 qsort(vk1
+ 1, num_bands_1
, sizeof(vk1
[1]), qsort_comparison_function_int16
);
473 for (k
= 1; k
<= num_bands_1
; k
++) {
474 if (vk1
[k
] <= 0) { // Requirements (14496-3 sp04 p205)
475 av_log(ac
->avccontext
, AV_LOG_ERROR
, "Invalid vDk1[%d]: %d\n", k
, vk1
[k
]);
481 sbr
->n_master
= num_bands_0
+ num_bands_1
;
482 if (check_n_master(ac
->avccontext
, sbr
->n_master
, sbr
->spectrum_params
.bs_xover_band
))
484 memcpy(&sbr
->f_master
[0], vk0
,
485 (num_bands_0
+ 1) * sizeof(sbr
->f_master
[0]));
486 memcpy(&sbr
->f_master
[num_bands_0
+ 1], vk1
+ 1,
487 num_bands_1
* sizeof(sbr
->f_master
[0]));
490 sbr
->n_master
= num_bands_0
;
491 if (check_n_master(ac
->avccontext
, sbr
->n_master
, sbr
->spectrum_params
.bs_xover_band
))
493 memcpy(sbr
->f_master
, vk0
, (num_bands_0
+ 1) * sizeof(sbr
->f_master
[0]));
500 /// High Frequency Generation - Patch Construction (14496-3 sp04 p216 fig. 4.46)
501 static int sbr_hf_calc_npatches(AACContext
*ac
, SpectralBandReplication
*sbr
)
505 int usb
= sbr
->kx
[1];
506 int goal_sb
= ((1000 << 11) + (sbr
->sample_rate
>> 1)) / sbr
->sample_rate
;
508 sbr
->num_patches
= 0;
510 if (goal_sb
< sbr
->kx
[1] + sbr
->m
[1]) {
511 for (k
= 0; sbr
->f_master
[k
] < goal_sb
; k
++) ;
517 for (i
= k
; i
== k
|| sb
> (sbr
->k
[0] - 1 + msb
- odd
); i
--) {
518 sb
= sbr
->f_master
[i
];
519 odd
= (sb
+ sbr
->k
[0]) & 1;
522 sbr
->patch_num_subbands
[sbr
->num_patches
] = FFMAX(sb
- usb
, 0);
523 sbr
->patch_start_subband
[sbr
->num_patches
] = sbr
->k
[0] - odd
- sbr
->patch_num_subbands
[sbr
->num_patches
];
525 if (sbr
->patch_num_subbands
[sbr
->num_patches
] > 0) {
532 if (sbr
->f_master
[k
] - sb
< 3)
534 } while (sb
!= sbr
->kx
[1] + sbr
->m
[1]);
536 if (sbr
->patch_num_subbands
[sbr
->num_patches
-1] < 3 && sbr
->num_patches
> 1)
539 // Requirements (14496-3 sp04 p205) sets the maximum number of patches to 5
540 // However the Coding Technologies decoder check uses 6 patches
541 if (sbr
->num_patches
> 6) {
542 av_log(ac
->avccontext
, AV_LOG_ERROR
, "Too many patches: %d\n", sbr
->num_patches
);
549 /// Derived Frequency Band Tables (14496-3 sp04 p197)
550 static int sbr_make_f_derived(AACContext
*ac
, SpectralBandReplication
*sbr
)
554 sbr
->n
[1] = sbr
->n_master
- sbr
->spectrum_params
.bs_xover_band
;
555 sbr
->n
[0] = (sbr
->n
[1] + 1) >> 1;
557 memcpy(sbr
->f_tablehigh
, &sbr
->f_master
[sbr
->spectrum_params
.bs_xover_band
],
558 (sbr
->n
[1] + 1) * sizeof(sbr
->f_master
[0]));
559 sbr
->m
[1] = sbr
->f_tablehigh
[sbr
->n
[1]] - sbr
->f_tablehigh
[0];
560 sbr
->kx
[1] = sbr
->f_tablehigh
[0];
562 // Requirements (14496-3 sp04 p205)
563 if (sbr
->kx
[1] + sbr
->m
[1] > 64) {
564 av_log(ac
->avccontext
, AV_LOG_ERROR
,
565 "Stop frequency border too high: %d\n", sbr
->kx
[1] + sbr
->m
[1]);
568 if (sbr
->kx
[1] > 32) {
569 av_log(ac
->avccontext
, AV_LOG_ERROR
, "Start frequency border too high: %d\n", sbr
->kx
[1]);
573 sbr
->f_tablelow
[0] = sbr
->f_tablehigh
[0];
574 temp
= sbr
->n
[1] & 1;
575 for (k
= 1; k
<= sbr
->n
[0]; k
++)
576 sbr
->f_tablelow
[k
] = sbr
->f_tablehigh
[2 * k
- temp
];
578 sbr
->n_q
= FFMAX(1, lrintf(sbr
->spectrum_params
.bs_noise_bands
*
579 log2f(sbr
->k
[2] / (float)sbr
->kx
[1]))); // 0 <= bs_noise_bands <= 3
581 av_log(ac
->avccontext
, AV_LOG_ERROR
, "Too many noise floor scale factors: %d\n", sbr
->n_q
);
585 sbr
->f_tablenoise
[0] = sbr
->f_tablelow
[0];
587 for (k
= 1; k
<= sbr
->n_q
; k
++) {
588 temp
+= (sbr
->n
[0] - temp
) / (sbr
->n_q
+ 1 - k
);
589 sbr
->f_tablenoise
[k
] = sbr
->f_tablelow
[temp
];
592 if (sbr_hf_calc_npatches(ac
, sbr
) < 0)
595 sbr_make_f_tablelim(sbr
);
597 sbr
->data
[0].f_indexnoise
= 0;
598 sbr
->data
[1].f_indexnoise
= 0;
603 static av_always_inline
void get_bits1_vector(GetBitContext
*gb
, uint8_t *vec
,
607 for (i
= 0; i
< elements
; i
++) {
608 vec
[i
] = get_bits1(gb
);
612 /** ceil(log2(index+1)) */
613 static const int8_t ceil_log2
[] = {
617 static int read_sbr_grid(AACContext
*ac
, SpectralBandReplication
*sbr
,
618 GetBitContext
*gb
, SBRData
*ch_data
)
621 unsigned bs_pointer
= 0;
622 // frameLengthFlag ? 15 : 16; 960 sample length frames unsupported; this value is numTimeSlots
623 int abs_bord_trail
= 16;
624 int num_rel_lead
, num_rel_trail
;
625 unsigned bs_num_env_old
= ch_data
->bs_num_env
;
627 ch_data
->bs_freq_res
[0] = ch_data
->bs_freq_res
[ch_data
->bs_num_env
];
628 ch_data
->bs_amp_res
= sbr
->bs_amp_res_header
;
629 ch_data
->t_env_num_env_old
= ch_data
->t_env
[bs_num_env_old
];
631 switch (ch_data
->bs_frame_class
= get_bits(gb
, 2)) {
633 ch_data
->bs_num_env
= 1 << get_bits(gb
, 2);
634 num_rel_lead
= ch_data
->bs_num_env
- 1;
635 if (ch_data
->bs_num_env
== 1)
636 ch_data
->bs_amp_res
= 0;
638 if (ch_data
->bs_num_env
> 4) {
639 av_log(ac
->avccontext
, AV_LOG_ERROR
,
640 "Invalid bitstream, too many SBR envelopes in FIXFIX type SBR frame: %d\n",
641 ch_data
->bs_num_env
);
645 ch_data
->t_env
[0] = 0;
646 ch_data
->t_env
[ch_data
->bs_num_env
] = abs_bord_trail
;
648 abs_bord_trail
= (abs_bord_trail
+ (ch_data
->bs_num_env
>> 1)) /
650 for (i
= 0; i
< num_rel_lead
; i
++)
651 ch_data
->t_env
[i
+ 1] = ch_data
->t_env
[i
] + abs_bord_trail
;
653 ch_data
->bs_freq_res
[1] = get_bits1(gb
);
654 for (i
= 1; i
< ch_data
->bs_num_env
; i
++)
655 ch_data
->bs_freq_res
[i
+ 1] = ch_data
->bs_freq_res
[1];
658 abs_bord_trail
+= get_bits(gb
, 2);
659 num_rel_trail
= get_bits(gb
, 2);
660 ch_data
->bs_num_env
= num_rel_trail
+ 1;
661 ch_data
->t_env
[0] = 0;
662 ch_data
->t_env
[ch_data
->bs_num_env
] = abs_bord_trail
;
664 for (i
= 0; i
< num_rel_trail
; i
++)
665 ch_data
->t_env
[ch_data
->bs_num_env
- 1 - i
] =
666 ch_data
->t_env
[ch_data
->bs_num_env
- i
] - 2 * get_bits(gb
, 2) - 2;
668 bs_pointer
= get_bits(gb
, ceil_log2
[ch_data
->bs_num_env
]);
670 for (i
= 0; i
< ch_data
->bs_num_env
; i
++)
671 ch_data
->bs_freq_res
[ch_data
->bs_num_env
- i
] = get_bits1(gb
);
674 ch_data
->t_env
[0] = get_bits(gb
, 2);
675 num_rel_lead
= get_bits(gb
, 2);
676 ch_data
->bs_num_env
= num_rel_lead
+ 1;
677 ch_data
->t_env
[ch_data
->bs_num_env
] = abs_bord_trail
;
679 for (i
= 0; i
< num_rel_lead
; i
++)
680 ch_data
->t_env
[i
+ 1] = ch_data
->t_env
[i
] + 2 * get_bits(gb
, 2) + 2;
682 bs_pointer
= get_bits(gb
, ceil_log2
[ch_data
->bs_num_env
]);
684 get_bits1_vector(gb
, ch_data
->bs_freq_res
+ 1, ch_data
->bs_num_env
);
687 ch_data
->t_env
[0] = get_bits(gb
, 2);
688 abs_bord_trail
+= get_bits(gb
, 2);
689 num_rel_lead
= get_bits(gb
, 2);
690 num_rel_trail
= get_bits(gb
, 2);
691 ch_data
->bs_num_env
= num_rel_lead
+ num_rel_trail
+ 1;
693 if (ch_data
->bs_num_env
> 5) {
694 av_log(ac
->avccontext
, AV_LOG_ERROR
,
695 "Invalid bitstream, too many SBR envelopes in VARVAR type SBR frame: %d\n",
696 ch_data
->bs_num_env
);
700 ch_data
->t_env
[ch_data
->bs_num_env
] = abs_bord_trail
;
702 for (i
= 0; i
< num_rel_lead
; i
++)
703 ch_data
->t_env
[i
+ 1] = ch_data
->t_env
[i
] + 2 * get_bits(gb
, 2) + 2;
704 for (i
= 0; i
< num_rel_trail
; i
++)
705 ch_data
->t_env
[ch_data
->bs_num_env
- 1 - i
] =
706 ch_data
->t_env
[ch_data
->bs_num_env
- i
] - 2 * get_bits(gb
, 2) - 2;
708 bs_pointer
= get_bits(gb
, ceil_log2
[ch_data
->bs_num_env
]);
710 get_bits1_vector(gb
, ch_data
->bs_freq_res
+ 1, ch_data
->bs_num_env
);
714 if (bs_pointer
> ch_data
->bs_num_env
+ 1) {
715 av_log(ac
->avccontext
, AV_LOG_ERROR
,
716 "Invalid bitstream, bs_pointer points to a middle noise border outside the time borders table: %d\n",
721 ch_data
->bs_num_noise
= (ch_data
->bs_num_env
> 1) + 1;
723 ch_data
->t_q
[0] = ch_data
->t_env
[0];
724 ch_data
->t_q
[ch_data
->bs_num_noise
] = ch_data
->t_env
[ch_data
->bs_num_env
];
725 if (ch_data
->bs_num_noise
> 1) {
727 if (ch_data
->bs_frame_class
== FIXFIX
) {
728 idx
= ch_data
->bs_num_env
>> 1;
729 } else if (ch_data
->bs_frame_class
& 1) { // FIXVAR or VARVAR
730 idx
= ch_data
->bs_num_env
- FFMAX(bs_pointer
- 1, 1);
734 else if (bs_pointer
== 1)
735 idx
= ch_data
->bs_num_env
- 1;
736 else // bs_pointer > 1
737 idx
= bs_pointer
- 1;
739 ch_data
->t_q
[1] = ch_data
->t_env
[idx
];
742 ch_data
->e_a
[0] = -(ch_data
->e_a
[1] != bs_num_env_old
); // l_APrev
743 ch_data
->e_a
[1] = -1;
744 if ((ch_data
->bs_frame_class
& 1) && bs_pointer
) { // FIXVAR or VARVAR and bs_pointer != 0
745 ch_data
->e_a
[1] = ch_data
->bs_num_env
+ 1 - bs_pointer
;
746 } else if ((ch_data
->bs_frame_class
== 2) && (bs_pointer
> 1)) // VARFIX and bs_pointer > 1
747 ch_data
->e_a
[1] = bs_pointer
- 1;
752 static void copy_sbr_grid(SBRData
*dst
, const SBRData
*src
) {
753 //These variables are saved from the previous frame rather than copied
754 dst
->bs_freq_res
[0] = dst
->bs_freq_res
[dst
->bs_num_env
];
755 dst
->t_env_num_env_old
= dst
->t_env
[dst
->bs_num_env
];
756 dst
->e_a
[0] = -(dst
->e_a
[1] != dst
->bs_num_env
);
758 //These variables are read from the bitstream and therefore copied
759 memcpy(dst
->bs_freq_res
+1, src
->bs_freq_res
+1, sizeof(dst
->bs_freq_res
)-sizeof(*dst
->bs_freq_res
));
760 memcpy(dst
->t_env
, src
->t_env
, sizeof(dst
->t_env
));
761 memcpy(dst
->t_q
, src
->t_q
, sizeof(dst
->t_q
));
762 dst
->bs_num_env
= src
->bs_num_env
;
763 dst
->bs_amp_res
= src
->bs_amp_res
;
764 dst
->bs_num_noise
= src
->bs_num_noise
;
765 dst
->bs_frame_class
= src
->bs_frame_class
;
766 dst
->e_a
[1] = src
->e_a
[1];
769 /// Read how the envelope and noise floor data is delta coded
770 static void read_sbr_dtdf(SpectralBandReplication
*sbr
, GetBitContext
*gb
,
773 get_bits1_vector(gb
, ch_data
->bs_df_env
, ch_data
->bs_num_env
);
774 get_bits1_vector(gb
, ch_data
->bs_df_noise
, ch_data
->bs_num_noise
);
777 /// Read inverse filtering data
778 static void read_sbr_invf(SpectralBandReplication
*sbr
, GetBitContext
*gb
,
783 memcpy(ch_data
->bs_invf_mode
[1], ch_data
->bs_invf_mode
[0], 5 * sizeof(uint8_t));
784 for (i
= 0; i
< sbr
->n_q
; i
++)
785 ch_data
->bs_invf_mode
[0][i
] = get_bits(gb
, 2);
788 static void read_sbr_envelope(SpectralBandReplication
*sbr
, GetBitContext
*gb
,
789 SBRData
*ch_data
, int ch
)
793 VLC_TYPE (*t_huff
)[2], (*f_huff
)[2];
795 const int delta
= (ch
== 1 && sbr
->bs_coupling
== 1) + 1;
796 const int odd
= sbr
->n
[1] & 1;
798 if (sbr
->bs_coupling
&& ch
) {
799 if (ch_data
->bs_amp_res
) {
801 t_huff
= vlc_sbr
[T_HUFFMAN_ENV_BAL_3_0DB
].table
;
802 t_lav
= vlc_sbr_lav
[T_HUFFMAN_ENV_BAL_3_0DB
];
803 f_huff
= vlc_sbr
[F_HUFFMAN_ENV_BAL_3_0DB
].table
;
804 f_lav
= vlc_sbr_lav
[F_HUFFMAN_ENV_BAL_3_0DB
];
807 t_huff
= vlc_sbr
[T_HUFFMAN_ENV_BAL_1_5DB
].table
;
808 t_lav
= vlc_sbr_lav
[T_HUFFMAN_ENV_BAL_1_5DB
];
809 f_huff
= vlc_sbr
[F_HUFFMAN_ENV_BAL_1_5DB
].table
;
810 f_lav
= vlc_sbr_lav
[F_HUFFMAN_ENV_BAL_1_5DB
];
813 if (ch_data
->bs_amp_res
) {
815 t_huff
= vlc_sbr
[T_HUFFMAN_ENV_3_0DB
].table
;
816 t_lav
= vlc_sbr_lav
[T_HUFFMAN_ENV_3_0DB
];
817 f_huff
= vlc_sbr
[F_HUFFMAN_ENV_3_0DB
].table
;
818 f_lav
= vlc_sbr_lav
[F_HUFFMAN_ENV_3_0DB
];
821 t_huff
= vlc_sbr
[T_HUFFMAN_ENV_1_5DB
].table
;
822 t_lav
= vlc_sbr_lav
[T_HUFFMAN_ENV_1_5DB
];
823 f_huff
= vlc_sbr
[F_HUFFMAN_ENV_1_5DB
].table
;
824 f_lav
= vlc_sbr_lav
[F_HUFFMAN_ENV_1_5DB
];
828 for (i
= 0; i
< ch_data
->bs_num_env
; i
++) {
829 if (ch_data
->bs_df_env
[i
]) {
830 // bs_freq_res[0] == bs_freq_res[bs_num_env] from prev frame
831 if (ch_data
->bs_freq_res
[i
+ 1] == ch_data
->bs_freq_res
[i
]) {
832 for (j
= 0; j
< sbr
->n
[ch_data
->bs_freq_res
[i
+ 1]]; j
++)
833 ch_data
->env_facs
[i
+ 1][j
] = ch_data
->env_facs
[i
][j
] + delta
* (get_vlc2(gb
, t_huff
, 9, 3) - t_lav
);
834 } else if (ch_data
->bs_freq_res
[i
+ 1]) {
835 for (j
= 0; j
< sbr
->n
[ch_data
->bs_freq_res
[i
+ 1]]; j
++) {
836 k
= (j
+ odd
) >> 1; // find k such that f_tablelow[k] <= f_tablehigh[j] < f_tablelow[k + 1]
837 ch_data
->env_facs
[i
+ 1][j
] = ch_data
->env_facs
[i
][k
] + delta
* (get_vlc2(gb
, t_huff
, 9, 3) - t_lav
);
840 for (j
= 0; j
< sbr
->n
[ch_data
->bs_freq_res
[i
+ 1]]; j
++) {
841 k
= j ?
2*j
- odd
: 0; // find k such that f_tablehigh[k] == f_tablelow[j]
842 ch_data
->env_facs
[i
+ 1][j
] = ch_data
->env_facs
[i
][k
] + delta
* (get_vlc2(gb
, t_huff
, 9, 3) - t_lav
);
846 ch_data
->env_facs
[i
+ 1][0] = delta
* get_bits(gb
, bits
); // bs_env_start_value_balance
847 for (j
= 1; j
< sbr
->n
[ch_data
->bs_freq_res
[i
+ 1]]; j
++)
848 ch_data
->env_facs
[i
+ 1][j
] = ch_data
->env_facs
[i
+ 1][j
- 1] + delta
* (get_vlc2(gb
, f_huff
, 9, 3) - f_lav
);
852 //assign 0th elements of env_facs from last elements
853 memcpy(ch_data
->env_facs
[0], ch_data
->env_facs
[ch_data
->bs_num_env
],
854 sizeof(ch_data
->env_facs
[0]));
857 static void read_sbr_noise(SpectralBandReplication
*sbr
, GetBitContext
*gb
,
858 SBRData
*ch_data
, int ch
)
861 VLC_TYPE (*t_huff
)[2], (*f_huff
)[2];
863 int delta
= (ch
== 1 && sbr
->bs_coupling
== 1) + 1;
865 if (sbr
->bs_coupling
&& ch
) {
866 t_huff
= vlc_sbr
[T_HUFFMAN_NOISE_BAL_3_0DB
].table
;
867 t_lav
= vlc_sbr_lav
[T_HUFFMAN_NOISE_BAL_3_0DB
];
868 f_huff
= vlc_sbr
[F_HUFFMAN_ENV_BAL_3_0DB
].table
;
869 f_lav
= vlc_sbr_lav
[F_HUFFMAN_ENV_BAL_3_0DB
];
871 t_huff
= vlc_sbr
[T_HUFFMAN_NOISE_3_0DB
].table
;
872 t_lav
= vlc_sbr_lav
[T_HUFFMAN_NOISE_3_0DB
];
873 f_huff
= vlc_sbr
[F_HUFFMAN_ENV_3_0DB
].table
;
874 f_lav
= vlc_sbr_lav
[F_HUFFMAN_ENV_3_0DB
];
877 for (i
= 0; i
< ch_data
->bs_num_noise
; i
++) {
878 if (ch_data
->bs_df_noise
[i
]) {
879 for (j
= 0; j
< sbr
->n_q
; j
++)
880 ch_data
->noise_facs
[i
+ 1][j
] = ch_data
->noise_facs
[i
][j
] + delta
* (get_vlc2(gb
, t_huff
, 9, 2) - t_lav
);
882 ch_data
->noise_facs
[i
+ 1][0] = delta
* get_bits(gb
, 5); // bs_noise_start_value_balance or bs_noise_start_value_level
883 for (j
= 1; j
< sbr
->n_q
; j
++)
884 ch_data
->noise_facs
[i
+ 1][j
] = ch_data
->noise_facs
[i
+ 1][j
- 1] + delta
* (get_vlc2(gb
, f_huff
, 9, 3) - f_lav
);
888 //assign 0th elements of noise_facs from last elements
889 memcpy(ch_data
->noise_facs
[0], ch_data
->noise_facs
[ch_data
->bs_num_noise
],
890 sizeof(ch_data
->noise_facs
[0]));
893 static void read_sbr_extension(AACContext
*ac
, SpectralBandReplication
*sbr
,
895 int bs_extension_id
, int *num_bits_left
)
897 //TODO - implement ps_data for parametric stereo parsing
898 switch (bs_extension_id
) {
899 case EXTENSION_ID_PS
:
901 *num_bits_left
-= ff_ps_data(gb
, ps
);
903 av_log_missing_feature(ac
->avccontext
, "Parametric Stereo is", 0);
904 skip_bits_long(gb
, *num_bits_left
); // bs_fill_bits
909 av_log_missing_feature(ac
->avccontext
, "Reserved SBR extensions are", 1);
910 skip_bits_long(gb
, *num_bits_left
); // bs_fill_bits
916 static int read_sbr_single_channel_element(AACContext
*ac
,
917 SpectralBandReplication
*sbr
,
920 if (get_bits1(gb
)) // bs_data_extra
921 skip_bits(gb
, 4); // bs_reserved
923 if (read_sbr_grid(ac
, sbr
, gb
, &sbr
->data
[0]))
925 read_sbr_dtdf(sbr
, gb
, &sbr
->data
[0]);
926 read_sbr_invf(sbr
, gb
, &sbr
->data
[0]);
927 read_sbr_envelope(sbr
, gb
, &sbr
->data
[0], 0);
928 read_sbr_noise(sbr
, gb
, &sbr
->data
[0], 0);
930 if ((sbr
->data
[0].bs_add_harmonic_flag
= get_bits1(gb
)))
931 get_bits1_vector(gb
, sbr
->data
[0].bs_add_harmonic
, sbr
->n
[1]);
936 static int read_sbr_channel_pair_element(AACContext
*ac
,
937 SpectralBandReplication
*sbr
,
940 if (get_bits1(gb
)) // bs_data_extra
941 skip_bits(gb
, 8); // bs_reserved
943 if ((sbr
->bs_coupling
= get_bits1(gb
))) {
944 if (read_sbr_grid(ac
, sbr
, gb
, &sbr
->data
[0]))
946 copy_sbr_grid(&sbr
->data
[1], &sbr
->data
[0]);
947 read_sbr_dtdf(sbr
, gb
, &sbr
->data
[0]);
948 read_sbr_dtdf(sbr
, gb
, &sbr
->data
[1]);
949 read_sbr_invf(sbr
, gb
, &sbr
->data
[0]);
950 memcpy(sbr
->data
[1].bs_invf_mode
[1], sbr
->data
[1].bs_invf_mode
[0], sizeof(sbr
->data
[1].bs_invf_mode
[0]));
951 memcpy(sbr
->data
[1].bs_invf_mode
[0], sbr
->data
[0].bs_invf_mode
[0], sizeof(sbr
->data
[1].bs_invf_mode
[0]));
952 read_sbr_envelope(sbr
, gb
, &sbr
->data
[0], 0);
953 read_sbr_noise(sbr
, gb
, &sbr
->data
[0], 0);
954 read_sbr_envelope(sbr
, gb
, &sbr
->data
[1], 1);
955 read_sbr_noise(sbr
, gb
, &sbr
->data
[1], 1);
957 if (read_sbr_grid(ac
, sbr
, gb
, &sbr
->data
[0]) ||
958 read_sbr_grid(ac
, sbr
, gb
, &sbr
->data
[1]))
960 read_sbr_dtdf(sbr
, gb
, &sbr
->data
[0]);
961 read_sbr_dtdf(sbr
, gb
, &sbr
->data
[1]);
962 read_sbr_invf(sbr
, gb
, &sbr
->data
[0]);
963 read_sbr_invf(sbr
, gb
, &sbr
->data
[1]);
964 read_sbr_envelope(sbr
, gb
, &sbr
->data
[0], 0);
965 read_sbr_envelope(sbr
, gb
, &sbr
->data
[1], 1);
966 read_sbr_noise(sbr
, gb
, &sbr
->data
[0], 0);
967 read_sbr_noise(sbr
, gb
, &sbr
->data
[1], 1);
970 if ((sbr
->data
[0].bs_add_harmonic_flag
= get_bits1(gb
)))
971 get_bits1_vector(gb
, sbr
->data
[0].bs_add_harmonic
, sbr
->n
[1]);
972 if ((sbr
->data
[1].bs_add_harmonic_flag
= get_bits1(gb
)))
973 get_bits1_vector(gb
, sbr
->data
[1].bs_add_harmonic
, sbr
->n
[1]);
978 static unsigned int read_sbr_data(AACContext
*ac
, SpectralBandReplication
*sbr
,
979 GetBitContext
*gb
, int id_aac
)
981 unsigned int cnt
= get_bits_count(gb
);
983 if (id_aac
== TYPE_SCE
|| id_aac
== TYPE_CCE
) {
984 if (read_sbr_single_channel_element(ac
, sbr
, gb
)) {
986 return get_bits_count(gb
) - cnt
;
988 } else if (id_aac
== TYPE_CPE
) {
989 if (read_sbr_channel_pair_element(ac
, sbr
, gb
)) {
991 return get_bits_count(gb
) - cnt
;
994 av_log(ac
->avccontext
, AV_LOG_ERROR
,
995 "Invalid bitstream - cannot apply SBR to element type %d\n", id_aac
);
997 return get_bits_count(gb
) - cnt
;
999 if (get_bits1(gb
)) { // bs_extended_data
1000 int num_bits_left
= get_bits(gb
, 4); // bs_extension_size
1001 if (num_bits_left
== 15)
1002 num_bits_left
+= get_bits(gb
, 8); // bs_esc_count
1004 num_bits_left
<<= 3;
1005 while (num_bits_left
> 7) {
1007 read_sbr_extension(ac
, sbr
, gb
, get_bits(gb
, 2), &num_bits_left
); // bs_extension_id
1011 return get_bits_count(gb
) - cnt
;
1014 static void sbr_reset(AACContext
*ac
, SpectralBandReplication
*sbr
)
1017 err
= sbr_make_f_master(ac
, sbr
, &sbr
->spectrum_params
);
1019 err
= sbr_make_f_derived(ac
, sbr
);
1021 av_log(ac
->avccontext
, AV_LOG_ERROR
,
1022 "SBR reset failed. Switching SBR to pure upsampling mode.\n");
1028 * Decode Spectral Band Replication extension data; reference: table 4.55.
1030 * @param crc flag indicating the presence of CRC checksum
1031 * @param cnt length of TYPE_FIL syntactic element in bytes
1033 * @return Returns number of bytes consumed from the TYPE_FIL element.
1035 int ff_decode_sbr_extension(AACContext
*ac
, SpectralBandReplication
*sbr
,
1036 GetBitContext
*gb_host
, int crc
, int cnt
, int id_aac
)
1038 unsigned int num_sbr_bits
= 0, num_align_bits
;
1039 unsigned bytes_read
;
1040 GetBitContext gbc
= *gb_host
, *gb
= &gbc
;
1041 skip_bits_long(gb_host
, cnt
*8 - 4);
1045 if (!sbr
->sample_rate
)
1046 sbr
->sample_rate
= 2 * ac
->m4ac
.sample_rate
; //TODO use the nominal sample rate for arbitrary sample rate support
1047 if (!ac
->m4ac
.ext_sample_rate
)
1048 ac
->m4ac
.ext_sample_rate
= 2 * ac
->m4ac
.sample_rate
;
1051 skip_bits(gb
, 10); // bs_sbr_crc_bits; TODO - implement CRC check
1055 //Save some state from the previous frame.
1056 sbr
->kx
[0] = sbr
->kx
[1];
1057 sbr
->m
[0] = sbr
->m
[1];
1060 if (get_bits1(gb
)) // bs_header_flag
1061 num_sbr_bits
+= read_sbr_header(sbr
, gb
);
1067 num_sbr_bits
+= read_sbr_data(ac
, sbr
, gb
, id_aac
);
1069 num_align_bits
= ((cnt
<< 3) - 4 - num_sbr_bits
) & 7;
1070 bytes_read
= ((num_sbr_bits
+ num_align_bits
+ 4) >> 3);
1072 if (bytes_read
> cnt
) {
1073 av_log(ac
->avccontext
, AV_LOG_ERROR
,
1074 "Expected to read %d SBR bytes actually read %d.\n", cnt
, bytes_read
);
1079 /// Dequantization and stereo decoding (14496-3 sp04 p203)
1080 static void sbr_dequant(SpectralBandReplication
*sbr
, int id_aac
)
1085 if (id_aac
== TYPE_CPE
&& sbr
->bs_coupling
) {
1086 float alpha
= sbr
->data
[0].bs_amp_res ?
1.0f
: 0.5f
;
1087 float pan_offset
= sbr
->data
[0].bs_amp_res ?
12.0f
: 24.0f
;
1088 for (e
= 1; e
<= sbr
->data
[0].bs_num_env
; e
++) {
1089 for (k
= 0; k
< sbr
->n
[sbr
->data
[0].bs_freq_res
[e
]]; k
++) {
1090 float temp1
= exp2f(sbr
->data
[0].env_facs
[e
][k
] * alpha
+ 7.0f
);
1091 float temp2
= exp2f((pan_offset
- sbr
->data
[1].env_facs
[e
][k
]) * alpha
);
1092 float fac
= temp1
/ (1.0f
+ temp2
);
1093 sbr
->data
[0].env_facs
[e
][k
] = fac
;
1094 sbr
->data
[1].env_facs
[e
][k
] = fac
* temp2
;
1097 for (e
= 1; e
<= sbr
->data
[0].bs_num_noise
; e
++) {
1098 for (k
= 0; k
< sbr
->n_q
; k
++) {
1099 float temp1
= exp2f(NOISE_FLOOR_OFFSET
- sbr
->data
[0].noise_facs
[e
][k
] + 1);
1100 float temp2
= exp2f(12 - sbr
->data
[1].noise_facs
[e
][k
]);
1101 float fac
= temp1
/ (1.0f
+ temp2
);
1102 sbr
->data
[0].noise_facs
[e
][k
] = fac
;
1103 sbr
->data
[1].noise_facs
[e
][k
] = fac
* temp2
;
1106 } else { // SCE or one non-coupled CPE
1107 for (ch
= 0; ch
< (id_aac
== TYPE_CPE
) + 1; ch
++) {
1108 float alpha
= sbr
->data
[ch
].bs_amp_res ?
1.0f
: 0.5f
;
1109 for (e
= 1; e
<= sbr
->data
[ch
].bs_num_env
; e
++)
1110 for (k
= 0; k
< sbr
->n
[sbr
->data
[ch
].bs_freq_res
[e
]]; k
++)
1111 sbr
->data
[ch
].env_facs
[e
][k
] =
1112 exp2f(alpha
* sbr
->data
[ch
].env_facs
[e
][k
] + 6.0f
);
1113 for (e
= 1; e
<= sbr
->data
[ch
].bs_num_noise
; e
++)
1114 for (k
= 0; k
< sbr
->n_q
; k
++)
1115 sbr
->data
[ch
].noise_facs
[e
][k
] =
1116 exp2f(NOISE_FLOOR_OFFSET
- sbr
->data
[ch
].noise_facs
[e
][k
]);
1122 * Analysis QMF Bank (14496-3 sp04 p206)
1124 * @param x pointer to the beginning of the first sample window
1125 * @param W array of complex-valued samples split into subbands
1127 static void sbr_qmf_analysis(DSPContext
*dsp
, RDFTContext
*rdft
, const float *in
, float *x
,
1128 float z
[320], float W
[2][32][32][2],
1132 memcpy(W
[0], W
[1], sizeof(W
[0]));
1133 memcpy(x
, x
+1024, (320-32)*sizeof(x
[0]));
1135 for (i
= 0; i
< 1024; i
++)
1136 x
[288 + i
] = in
[i
] * scale
;
1138 memcpy(x
+288, in
, 1024*sizeof(*x
));
1139 for (i
= 0; i
< 32; i
++) { // numTimeSlots*RATE = 16*2 as 960 sample frames
1140 // are not supported
1142 dsp
->vector_fmul_reverse(z
, sbr_qmf_window_ds
, x
, 320);
1143 for (k
= 0; k
< 64; k
++) {
1144 float f
= z
[k
] + z
[k
+ 64] + z
[k
+ 128] + z
[k
+ 192] + z
[k
+ 256];
1145 z
[k
] = f
* analysis_cos_pre
[k
];
1148 ff_rdft_calc(rdft
, z
);
1150 im
= 0.5f
* dsp
->scalarproduct_float(z
+64, analysis_sin_pre
, 64);
1151 W
[1][i
][0][0] = re
* analysis_cossin_post
[0][0] - im
* analysis_cossin_post
[0][1];
1152 W
[1][i
][0][1] = re
* analysis_cossin_post
[0][1] + im
* analysis_cossin_post
[0][0];
1153 for (k
= 1; k
< 32; k
++) {
1156 W
[1][i
][k
][0] = re
* analysis_cossin_post
[k
][0] - im
* analysis_cossin_post
[k
][1];
1157 W
[1][i
][k
][1] = re
* analysis_cossin_post
[k
][1] + im
* analysis_cossin_post
[k
][0];
1164 * Synthesis QMF Bank (14496-3 sp04 p206) and Downsampled Synthesis QMF Bank
1165 * (14496-3 sp04 p206)
1167 static void sbr_qmf_synthesis(DSPContext
*dsp
, FFTContext
*mdct
,
1168 float *out
, float X
[2][32][64],
1169 float mdct_buf
[2][64],
1170 float *v0
, int *v_off
, const unsigned int div
,
1171 float bias
, float scale
)
1174 const float *sbr_qmf_window
= div ? sbr_qmf_window_ds
: sbr_qmf_window_us
;
1175 int scale_and_bias
= scale
!= 1.0f
|| bias
!= 0.0f
;
1177 for (i
= 0; i
< 32; i
++) {
1179 int saved_samples
= (1280 - 128) >> div
;
1180 memcpy(&v0
[SBR_SYNTHESIS_BUF_SIZE
- saved_samples
], v0
, saved_samples
* sizeof(float));
1181 *v_off
= SBR_SYNTHESIS_BUF_SIZE
- saved_samples
- (128 >> div
);
1183 *v_off
-= 128 >> div
;
1186 for (n
= 1; n
< 64 >> div
; n
+=2) {
1187 X
[1][i
][n
] = -X
[1][i
][n
];
1190 memset(X
[0][i
]+32, 0, 32*sizeof(float));
1191 memset(X
[1][i
]+32, 0, 32*sizeof(float));
1193 ff_imdct_half(mdct
, mdct_buf
[0], X
[0][i
]);
1194 ff_imdct_half(mdct
, mdct_buf
[1], X
[1][i
]);
1196 for (n
= 0; n
< 32; n
++) {
1197 v
[ n
] = -mdct_buf
[0][63 - 2*n
] + mdct_buf
[1][2*n
];
1198 v
[ 63 - n
] = mdct_buf
[0][62 - 2*n
] + mdct_buf
[1][2*n
+ 1];
1201 for (n
= 0; n
< 64; n
++) {
1202 v
[ n
] = -mdct_buf
[0][63 - n
] + mdct_buf
[1][ n
];
1203 v
[127 - n
] = mdct_buf
[0][63 - n
] + mdct_buf
[1][ n
];
1206 dsp
->vector_fmul_add(out
, v
, sbr_qmf_window
, zero64
, 64 >> div
);
1207 dsp
->vector_fmul_add(out
, v
+ ( 192 >> div
), sbr_qmf_window
+ ( 64 >> div
), out
, 64 >> div
);
1208 dsp
->vector_fmul_add(out
, v
+ ( 256 >> div
), sbr_qmf_window
+ (128 >> div
), out
, 64 >> div
);
1209 dsp
->vector_fmul_add(out
, v
+ ( 448 >> div
), sbr_qmf_window
+ (192 >> div
), out
, 64 >> div
);
1210 dsp
->vector_fmul_add(out
, v
+ ( 512 >> div
), sbr_qmf_window
+ (256 >> div
), out
, 64 >> div
);
1211 dsp
->vector_fmul_add(out
, v
+ ( 704 >> div
), sbr_qmf_window
+ (320 >> div
), out
, 64 >> div
);
1212 dsp
->vector_fmul_add(out
, v
+ ( 768 >> div
), sbr_qmf_window
+ (384 >> div
), out
, 64 >> div
);
1213 dsp
->vector_fmul_add(out
, v
+ ( 960 >> div
), sbr_qmf_window
+ (448 >> div
), out
, 64 >> div
);
1214 dsp
->vector_fmul_add(out
, v
+ (1024 >> div
), sbr_qmf_window
+ (512 >> div
), out
, 64 >> div
);
1215 dsp
->vector_fmul_add(out
, v
+ (1216 >> div
), sbr_qmf_window
+ (576 >> div
), out
, 64 >> div
);
1217 for (n
= 0; n
< 64 >> div
; n
++)
1218 out
[n
] = out
[n
] * scale
+ bias
;
1223 static void autocorrelate(const float x
[40][2], float phi
[3][2][2], int lag
)
1226 float real_sum
= 0.0f
;
1227 float imag_sum
= 0.0f
;
1229 for (i
= 1; i
< 38; i
++) {
1230 real_sum
+= x
[i
][0] * x
[i
+lag
][0] + x
[i
][1] * x
[i
+lag
][1];
1231 imag_sum
+= x
[i
][0] * x
[i
+lag
][1] - x
[i
][1] * x
[i
+lag
][0];
1233 phi
[2-lag
][1][0] = real_sum
+ x
[ 0][0] * x
[lag
][0] + x
[ 0][1] * x
[lag
][1];
1234 phi
[2-lag
][1][1] = imag_sum
+ x
[ 0][0] * x
[lag
][1] - x
[ 0][1] * x
[lag
][0];
1236 phi
[0][0][0] = real_sum
+ x
[38][0] * x
[39][0] + x
[38][1] * x
[39][1];
1237 phi
[0][0][1] = imag_sum
+ x
[38][0] * x
[39][1] - x
[38][1] * x
[39][0];
1240 for (i
= 1; i
< 38; i
++) {
1241 real_sum
+= x
[i
][0] * x
[i
][0] + x
[i
][1] * x
[i
][1];
1243 phi
[2][1][0] = real_sum
+ x
[ 0][0] * x
[ 0][0] + x
[ 0][1] * x
[ 0][1];
1244 phi
[1][0][0] = real_sum
+ x
[38][0] * x
[38][0] + x
[38][1] * x
[38][1];
1248 /** High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering
1249 * (14496-3 sp04 p214)
1250 * Warning: This routine does not seem numerically stable.
1252 static void sbr_hf_inverse_filter(float (*alpha0
)[2], float (*alpha1
)[2],
1253 const float X_low
[32][40][2], int k0
)
1256 for (k
= 0; k
< k0
; k
++) {
1257 float phi
[3][2][2], dk
;
1259 autocorrelate(X_low
[k
], phi
, 0);
1260 autocorrelate(X_low
[k
], phi
, 1);
1261 autocorrelate(X_low
[k
], phi
, 2);
1263 dk
= phi
[2][1][0] * phi
[1][0][0] -
1264 (phi
[1][1][0] * phi
[1][1][0] + phi
[1][1][1] * phi
[1][1][1]) / 1.000001f
;
1270 float temp_real
, temp_im
;
1271 temp_real
= phi
[0][0][0] * phi
[1][1][0] -
1272 phi
[0][0][1] * phi
[1][1][1] -
1273 phi
[0][1][0] * phi
[1][0][0];
1274 temp_im
= phi
[0][0][0] * phi
[1][1][1] +
1275 phi
[0][0][1] * phi
[1][1][0] -
1276 phi
[0][1][1] * phi
[1][0][0];
1278 alpha1
[k
][0] = temp_real
/ dk
;
1279 alpha1
[k
][1] = temp_im
/ dk
;
1282 if (!phi
[1][0][0]) {
1286 float temp_real
, temp_im
;
1287 temp_real
= phi
[0][0][0] + alpha1
[k
][0] * phi
[1][1][0] +
1288 alpha1
[k
][1] * phi
[1][1][1];
1289 temp_im
= phi
[0][0][1] + alpha1
[k
][1] * phi
[1][1][0] -
1290 alpha1
[k
][0] * phi
[1][1][1];
1292 alpha0
[k
][0] = -temp_real
/ phi
[1][0][0];
1293 alpha0
[k
][1] = -temp_im
/ phi
[1][0][0];
1296 if (alpha1
[k
][0] * alpha1
[k
][0] + alpha1
[k
][1] * alpha1
[k
][1] >= 16.0f
||
1297 alpha0
[k
][0] * alpha0
[k
][0] + alpha0
[k
][1] * alpha0
[k
][1] >= 16.0f
) {
1306 /// Chirp Factors (14496-3 sp04 p214)
1307 static void sbr_chirp(SpectralBandReplication
*sbr
, SBRData
*ch_data
)
1311 static const float bw_tab
[] = { 0.0f
, 0.75f
, 0.9f
, 0.98f
};
1313 for (i
= 0; i
< sbr
->n_q
; i
++) {
1314 if (ch_data
->bs_invf_mode
[0][i
] + ch_data
->bs_invf_mode
[1][i
] == 1) {
1317 new_bw
= bw_tab
[ch_data
->bs_invf_mode
[0][i
]];
1319 if (new_bw
< ch_data
->bw_array
[i
]) {
1320 new_bw
= 0.75f
* new_bw
+ 0.25f
* ch_data
->bw_array
[i
];
1322 new_bw
= 0.90625f
* new_bw
+ 0.09375f
* ch_data
->bw_array
[i
];
1323 ch_data
->bw_array
[i
] = new_bw
< 0.015625f ?
0.0f
: new_bw
;
1327 /// Generate the subband filtered lowband
1328 static int sbr_lf_gen(AACContext
*ac
, SpectralBandReplication
*sbr
,
1329 float X_low
[32][40][2], const float W
[2][32][32][2])
1332 const int t_HFGen
= 8;
1334 memset(X_low
, 0, 32*sizeof(*X_low
));
1335 for (k
= 0; k
< sbr
->kx
[1]; k
++) {
1336 for (i
= t_HFGen
; i
< i_f
+ t_HFGen
; i
++) {
1337 X_low
[k
][i
][0] = W
[1][i
- t_HFGen
][k
][0];
1338 X_low
[k
][i
][1] = W
[1][i
- t_HFGen
][k
][1];
1341 for (k
= 0; k
< sbr
->kx
[0]; k
++) {
1342 for (i
= 0; i
< t_HFGen
; i
++) {
1343 X_low
[k
][i
][0] = W
[0][i
+ i_f
- t_HFGen
][k
][0];
1344 X_low
[k
][i
][1] = W
[0][i
+ i_f
- t_HFGen
][k
][1];
1350 /// High Frequency Generator (14496-3 sp04 p215)
1351 static int sbr_hf_gen(AACContext
*ac
, SpectralBandReplication
*sbr
,
1352 float X_high
[64][40][2], const float X_low
[32][40][2],
1353 const float (*alpha0
)[2], const float (*alpha1
)[2],
1354 const float bw_array
[5], const uint8_t *t_env
,
1360 for (j
= 0; j
< sbr
->num_patches
; j
++) {
1361 for (x
= 0; x
< sbr
->patch_num_subbands
[j
]; x
++, k
++) {
1363 const int p
= sbr
->patch_start_subband
[j
] + x
;
1364 while (g
<= sbr
->n_q
&& k
>= sbr
->f_tablenoise
[g
])
1369 av_log(ac
->avccontext
, AV_LOG_ERROR
,
1370 "ERROR : no subband found for frequency %d\n", k
);
1374 alpha
[0] = alpha1
[p
][0] * bw_array
[g
] * bw_array
[g
];
1375 alpha
[1] = alpha1
[p
][1] * bw_array
[g
] * bw_array
[g
];
1376 alpha
[2] = alpha0
[p
][0] * bw_array
[g
];
1377 alpha
[3] = alpha0
[p
][1] * bw_array
[g
];
1379 for (i
= 2 * t_env
[0]; i
< 2 * t_env
[bs_num_env
]; i
++) {
1380 const int idx
= i
+ ENVELOPE_ADJUSTMENT_OFFSET
;
1382 X_low
[p
][idx
- 2][0] * alpha
[0] -
1383 X_low
[p
][idx
- 2][1] * alpha
[1] +
1384 X_low
[p
][idx
- 1][0] * alpha
[2] -
1385 X_low
[p
][idx
- 1][1] * alpha
[3] +
1388 X_low
[p
][idx
- 2][1] * alpha
[0] +
1389 X_low
[p
][idx
- 2][0] * alpha
[1] +
1390 X_low
[p
][idx
- 1][1] * alpha
[2] +
1391 X_low
[p
][idx
- 1][0] * alpha
[3] +
1396 if (k
< sbr
->m
[1] + sbr
->kx
[1])
1397 memset(X_high
+ k
, 0, (sbr
->m
[1] + sbr
->kx
[1] - k
) * sizeof(*X_high
));
1402 /// Generate the subband filtered lowband
1403 static int sbr_x_gen(SpectralBandReplication
*sbr
, float X
[2][32][64],
1404 const float X_low
[32][40][2], const float Y
[2][38][64][2],
1409 const int i_Temp
= FFMAX(2*sbr
->data
[ch
].t_env_num_env_old
- i_f
, 0);
1410 memset(X
, 0, 2*sizeof(*X
));
1411 for (k
= 0; k
< sbr
->kx
[0]; k
++) {
1412 for (i
= 0; i
< i_Temp
; i
++) {
1413 X
[0][i
][k
] = X_low
[k
][i
+ ENVELOPE_ADJUSTMENT_OFFSET
][0];
1414 X
[1][i
][k
] = X_low
[k
][i
+ ENVELOPE_ADJUSTMENT_OFFSET
][1];
1417 for (; k
< sbr
->kx
[0] + sbr
->m
[0]; k
++) {
1418 for (i
= 0; i
< i_Temp
; i
++) {
1419 X
[0][i
][k
] = Y
[0][i
+ i_f
][k
][0];
1420 X
[1][i
][k
] = Y
[0][i
+ i_f
][k
][1];
1424 for (k
= 0; k
< sbr
->kx
[1]; k
++) {
1425 for (i
= i_Temp
; i
< i_f
; i
++) {
1426 X
[0][i
][k
] = X_low
[k
][i
+ ENVELOPE_ADJUSTMENT_OFFSET
][0];
1427 X
[1][i
][k
] = X_low
[k
][i
+ ENVELOPE_ADJUSTMENT_OFFSET
][1];
1430 for (; k
< sbr
->kx
[1] + sbr
->m
[1]; k
++) {
1431 for (i
= i_Temp
; i
< i_f
; i
++) {
1432 X
[0][i
][k
] = Y
[1][i
][k
][0];
1433 X
[1][i
][k
] = Y
[1][i
][k
][1];
1439 /** High Frequency Adjustment (14496-3 sp04 p217) and Mapping
1440 * (14496-3 sp04 p217)
1442 static void sbr_mapping(AACContext
*ac
, SpectralBandReplication
*sbr
,
1443 SBRData
*ch_data
, int e_a
[2])
1447 memset(ch_data
->s_indexmapped
[1], 0, 7*sizeof(ch_data
->s_indexmapped
[1]));
1448 for (e
= 0; e
< ch_data
->bs_num_env
; e
++) {
1449 const unsigned int ilim
= sbr
->n
[ch_data
->bs_freq_res
[e
+ 1]];
1450 uint16_t *table
= ch_data
->bs_freq_res
[e
+ 1] ? sbr
->f_tablehigh
: sbr
->f_tablelow
;
1453 for (i
= 0; i
< ilim
; i
++)
1454 for (m
= table
[i
]; m
< table
[i
+ 1]; m
++)
1455 sbr
->e_origmapped
[e
][m
- sbr
->kx
[1]] = ch_data
->env_facs
[e
+1][i
];
1457 // ch_data->bs_num_noise > 1 => 2 noise floors
1458 k
= (ch_data
->bs_num_noise
> 1) && (ch_data
->t_env
[e
] >= ch_data
->t_q
[1]);
1459 for (i
= 0; i
< sbr
->n_q
; i
++)
1460 for (m
= sbr
->f_tablenoise
[i
]; m
< sbr
->f_tablenoise
[i
+ 1]; m
++)
1461 sbr
->q_mapped
[e
][m
- sbr
->kx
[1]] = ch_data
->noise_facs
[k
+1][i
];
1463 for (i
= 0; i
< sbr
->n
[1]; i
++) {
1464 if (ch_data
->bs_add_harmonic_flag
) {
1465 const unsigned int m_midpoint
=
1466 (sbr
->f_tablehigh
[i
] + sbr
->f_tablehigh
[i
+ 1]) >> 1;
1468 ch_data
->s_indexmapped
[e
+ 1][m_midpoint
- sbr
->kx
[1]] = ch_data
->bs_add_harmonic
[i
] *
1469 (e
>= e_a
[1] || (ch_data
->s_indexmapped
[0][m_midpoint
- sbr
->kx
[1]] == 1));
1473 for (i
= 0; i
< ilim
; i
++) {
1474 int additional_sinusoid_present
= 0;
1475 for (m
= table
[i
]; m
< table
[i
+ 1]; m
++) {
1476 if (ch_data
->s_indexmapped
[e
+ 1][m
- sbr
->kx
[1]]) {
1477 additional_sinusoid_present
= 1;
1481 memset(&sbr
->s_mapped
[e
][table
[i
] - sbr
->kx
[1]], additional_sinusoid_present
,
1482 (table
[i
+ 1] - table
[i
]) * sizeof(sbr
->s_mapped
[e
][0]));
1486 memcpy(ch_data
->s_indexmapped
[0], ch_data
->s_indexmapped
[ch_data
->bs_num_env
], sizeof(ch_data
->s_indexmapped
[0]));
1489 /// Estimation of current envelope (14496-3 sp04 p218)
1490 static void sbr_env_estimate(float (*e_curr
)[48], float X_high
[64][40][2],
1491 SpectralBandReplication
*sbr
, SBRData
*ch_data
)
1495 if (sbr
->bs_interpol_freq
) {
1496 for (e
= 0; e
< ch_data
->bs_num_env
; e
++) {
1497 const float recip_env_size
= 0.5f
/ (ch_data
->t_env
[e
+ 1] - ch_data
->t_env
[e
]);
1498 int ilb
= ch_data
->t_env
[e
] * 2 + ENVELOPE_ADJUSTMENT_OFFSET
;
1499 int iub
= ch_data
->t_env
[e
+ 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET
;
1501 for (m
= 0; m
< sbr
->m
[1]; m
++) {
1504 for (i
= ilb
; i
< iub
; i
++) {
1505 sum
+= X_high
[m
+ sbr
->kx
[1]][i
][0] * X_high
[m
+ sbr
->kx
[1]][i
][0] +
1506 X_high
[m
+ sbr
->kx
[1]][i
][1] * X_high
[m
+ sbr
->kx
[1]][i
][1];
1508 e_curr
[e
][m
] = sum
* recip_env_size
;
1514 for (e
= 0; e
< ch_data
->bs_num_env
; e
++) {
1515 const int env_size
= 2 * (ch_data
->t_env
[e
+ 1] - ch_data
->t_env
[e
]);
1516 int ilb
= ch_data
->t_env
[e
] * 2 + ENVELOPE_ADJUSTMENT_OFFSET
;
1517 int iub
= ch_data
->t_env
[e
+ 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET
;
1518 const uint16_t *table
= ch_data
->bs_freq_res
[e
+ 1] ? sbr
->f_tablehigh
: sbr
->f_tablelow
;
1520 for (p
= 0; p
< sbr
->n
[ch_data
->bs_freq_res
[e
+ 1]]; p
++) {
1522 const int den
= env_size
* (table
[p
+ 1] - table
[p
]);
1524 for (k
= table
[p
]; k
< table
[p
+ 1]; k
++) {
1525 for (i
= ilb
; i
< iub
; i
++) {
1526 sum
+= X_high
[k
][i
][0] * X_high
[k
][i
][0] +
1527 X_high
[k
][i
][1] * X_high
[k
][i
][1];
1531 for (k
= table
[p
]; k
< table
[p
+ 1]; k
++) {
1532 e_curr
[e
][k
- sbr
->kx
[1]] = sum
;
1540 * Calculation of levels of additional HF signal components (14496-3 sp04 p219)
1541 * and Calculation of gain (14496-3 sp04 p219)
1543 static void sbr_gain_calc(AACContext
*ac
, SpectralBandReplication
*sbr
,
1544 SBRData
*ch_data
, const int e_a
[2])
1547 // max gain limits : -3dB, 0dB, 3dB, inf dB (limiter off)
1548 static const float limgain
[4] = { 0.70795, 1.0, 1.41254, 10000000000 };
1550 for (e
= 0; e
< ch_data
->bs_num_env
; e
++) {
1551 int delta
= !((e
== e_a
[1]) || (e
== e_a
[0]));
1552 for (k
= 0; k
< sbr
->n_lim
; k
++) {
1553 float gain_boost
, gain_max
;
1554 float sum
[2] = { 0.0f
, 0.0f
};
1555 for (m
= sbr
->f_tablelim
[k
] - sbr
->kx
[1]; m
< sbr
->f_tablelim
[k
+ 1] - sbr
->kx
[1]; m
++) {
1556 const float temp
= sbr
->e_origmapped
[e
][m
] / (1.0f
+ sbr
->q_mapped
[e
][m
]);
1557 sbr
->q_m
[e
][m
] = sqrtf(temp
* sbr
->q_mapped
[e
][m
]);
1558 sbr
->s_m
[e
][m
] = sqrtf(temp
* ch_data
->s_indexmapped
[e
+ 1][m
]);
1559 if (!sbr
->s_mapped
[e
][m
]) {
1560 sbr
->gain
[e
][m
] = sqrtf(sbr
->e_origmapped
[e
][m
] /
1561 ((1.0f
+ sbr
->e_curr
[e
][m
]) *
1562 (1.0f
+ sbr
->q_mapped
[e
][m
] * delta
)));
1564 sbr
->gain
[e
][m
] = sqrtf(sbr
->e_origmapped
[e
][m
] * sbr
->q_mapped
[e
][m
] /
1565 ((1.0f
+ sbr
->e_curr
[e
][m
]) *
1566 (1.0f
+ sbr
->q_mapped
[e
][m
])));
1569 for (m
= sbr
->f_tablelim
[k
] - sbr
->kx
[1]; m
< sbr
->f_tablelim
[k
+ 1] - sbr
->kx
[1]; m
++) {
1570 sum
[0] += sbr
->e_origmapped
[e
][m
];
1571 sum
[1] += sbr
->e_curr
[e
][m
];
1573 gain_max
= limgain
[sbr
->bs_limiter_gains
] * sqrtf((FLT_EPSILON
+ sum
[0]) / (FLT_EPSILON
+ sum
[1]));
1574 gain_max
= FFMIN(100000, gain_max
);
1575 for (m
= sbr
->f_tablelim
[k
] - sbr
->kx
[1]; m
< sbr
->f_tablelim
[k
+ 1] - sbr
->kx
[1]; m
++) {
1576 float q_m_max
= sbr
->q_m
[e
][m
] * gain_max
/ sbr
->gain
[e
][m
];
1577 sbr
->q_m
[e
][m
] = FFMIN(sbr
->q_m
[e
][m
], q_m_max
);
1578 sbr
->gain
[e
][m
] = FFMIN(sbr
->gain
[e
][m
], gain_max
);
1580 sum
[0] = sum
[1] = 0.0f
;
1581 for (m
= sbr
->f_tablelim
[k
] - sbr
->kx
[1]; m
< sbr
->f_tablelim
[k
+ 1] - sbr
->kx
[1]; m
++) {
1582 sum
[0] += sbr
->e_origmapped
[e
][m
];
1583 sum
[1] += sbr
->e_curr
[e
][m
] * sbr
->gain
[e
][m
] * sbr
->gain
[e
][m
]
1584 + sbr
->s_m
[e
][m
] * sbr
->s_m
[e
][m
]
1585 + (delta
&& !sbr
->s_m
[e
][m
]) * sbr
->q_m
[e
][m
] * sbr
->q_m
[e
][m
];
1587 gain_boost
= sqrtf((FLT_EPSILON
+ sum
[0]) / (FLT_EPSILON
+ sum
[1]));
1588 gain_boost
= FFMIN(1.584893192, gain_boost
);
1589 for (m
= sbr
->f_tablelim
[k
] - sbr
->kx
[1]; m
< sbr
->f_tablelim
[k
+ 1] - sbr
->kx
[1]; m
++) {
1590 sbr
->gain
[e
][m
] *= gain_boost
;
1591 sbr
->q_m
[e
][m
] *= gain_boost
;
1592 sbr
->s_m
[e
][m
] *= gain_boost
;
1598 /// Assembling HF Signals (14496-3 sp04 p220)
1599 static void sbr_hf_assemble(float Y
[2][38][64][2], const float X_high
[64][40][2],
1600 SpectralBandReplication
*sbr
, SBRData
*ch_data
,
1604 const int h_SL
= 4 * !sbr
->bs_smoothing_mode
;
1605 const int kx
= sbr
->kx
[1];
1606 const int m_max
= sbr
->m
[1];
1607 static const float h_smooth
[5] = {
1614 static const int8_t phi
[2][4] = {
1615 { 1, 0, -1, 0}, // real
1616 { 0, 1, 0, -1}, // imaginary
1618 float (*g_temp
)[48] = ch_data
->g_temp
, (*q_temp
)[48] = ch_data
->q_temp
;
1619 int indexnoise
= ch_data
->f_indexnoise
;
1620 int indexsine
= ch_data
->f_indexsine
;
1621 memcpy(Y
[0], Y
[1], sizeof(Y
[0]));
1624 for (i
= 0; i
< h_SL
; i
++) {
1625 memcpy(g_temp
[i
+ 2*ch_data
->t_env
[0]], sbr
->gain
[0], m_max
* sizeof(sbr
->gain
[0][0]));
1626 memcpy(q_temp
[i
+ 2*ch_data
->t_env
[0]], sbr
->q_m
[0], m_max
* sizeof(sbr
->q_m
[0][0]));
1629 memcpy(g_temp
[2*ch_data
->t_env
[0]], g_temp
[2*ch_data
->t_env_num_env_old
], 4*sizeof(g_temp
[0]));
1630 memcpy(q_temp
[2*ch_data
->t_env
[0]], q_temp
[2*ch_data
->t_env_num_env_old
], 4*sizeof(q_temp
[0]));
1633 for (e
= 0; e
< ch_data
->bs_num_env
; e
++) {
1634 for (i
= 2 * ch_data
->t_env
[e
]; i
< 2 * ch_data
->t_env
[e
+ 1]; i
++) {
1635 memcpy(g_temp
[h_SL
+ i
], sbr
->gain
[e
], m_max
* sizeof(sbr
->gain
[0][0]));
1636 memcpy(q_temp
[h_SL
+ i
], sbr
->q_m
[e
], m_max
* sizeof(sbr
->q_m
[0][0]));
1640 for (e
= 0; e
< ch_data
->bs_num_env
; e
++) {
1641 for (i
= 2 * ch_data
->t_env
[e
]; i
< 2 * ch_data
->t_env
[e
+ 1]; i
++) {
1642 int phi_sign
= (1 - 2*(kx
& 1));
1644 if (h_SL
&& e
!= e_a
[0] && e
!= e_a
[1]) {
1645 for (m
= 0; m
< m_max
; m
++) {
1646 const int idx1
= i
+ h_SL
;
1647 float g_filt
= 0.0f
;
1648 for (j
= 0; j
<= h_SL
; j
++)
1649 g_filt
+= g_temp
[idx1
- j
][m
] * h_smooth
[j
];
1650 Y
[1][i
][m
+ kx
][0] =
1651 X_high
[m
+ kx
][i
+ ENVELOPE_ADJUSTMENT_OFFSET
][0] * g_filt
;
1652 Y
[1][i
][m
+ kx
][1] =
1653 X_high
[m
+ kx
][i
+ ENVELOPE_ADJUSTMENT_OFFSET
][1] * g_filt
;
1656 for (m
= 0; m
< m_max
; m
++) {
1657 const float g_filt
= g_temp
[i
+ h_SL
][m
];
1658 Y
[1][i
][m
+ kx
][0] =
1659 X_high
[m
+ kx
][i
+ ENVELOPE_ADJUSTMENT_OFFSET
][0] * g_filt
;
1660 Y
[1][i
][m
+ kx
][1] =
1661 X_high
[m
+ kx
][i
+ ENVELOPE_ADJUSTMENT_OFFSET
][1] * g_filt
;
1665 if (e
!= e_a
[0] && e
!= e_a
[1]) {
1666 for (m
= 0; m
< m_max
; m
++) {
1667 indexnoise
= (indexnoise
+ 1) & 0x1ff;
1668 if (sbr
->s_m
[e
][m
]) {
1669 Y
[1][i
][m
+ kx
][0] +=
1670 sbr
->s_m
[e
][m
] * phi
[0][indexsine
];
1671 Y
[1][i
][m
+ kx
][1] +=
1672 sbr
->s_m
[e
][m
] * (phi
[1][indexsine
] * phi_sign
);
1676 const int idx1
= i
+ h_SL
;
1678 for (j
= 0; j
<= h_SL
; j
++)
1679 q_filt
+= q_temp
[idx1
- j
][m
] * h_smooth
[j
];
1681 q_filt
= q_temp
[i
][m
];
1683 Y
[1][i
][m
+ kx
][0] +=
1684 q_filt
* sbr_noise_table
[indexnoise
][0];
1685 Y
[1][i
][m
+ kx
][1] +=
1686 q_filt
* sbr_noise_table
[indexnoise
][1];
1688 phi_sign
= -phi_sign
;
1691 indexnoise
= (indexnoise
+ m_max
) & 0x1ff;
1692 for (m
= 0; m
< m_max
; m
++) {
1693 Y
[1][i
][m
+ kx
][0] +=
1694 sbr
->s_m
[e
][m
] * phi
[0][indexsine
];
1695 Y
[1][i
][m
+ kx
][1] +=
1696 sbr
->s_m
[e
][m
] * (phi
[1][indexsine
] * phi_sign
);
1697 phi_sign
= -phi_sign
;
1700 indexsine
= (indexsine
+ 1) & 3;
1703 ch_data
->f_indexnoise
= indexnoise
;
1704 ch_data
->f_indexsine
= indexsine
;
1707 void ff_sbr_dequant(AACContext
*ac
, SpectralBandReplication
*sbr
, int id_aac
)
1710 sbr_dequant(sbr
, id_aac
);
1714 void ff_sbr_apply(AACContext
*ac
, SpectralBandReplication
*sbr
, int ch
,
1715 const float* in
, float* out
)
1717 int downsampled
= ac
->m4ac
.ext_sample_rate
< sbr
->sample_rate
;
1719 /* decode channel */
1720 sbr_qmf_analysis(&ac
->dsp
, &sbr
->rdft
, in
, sbr
->data
[ch
].analysis_filterbank_samples
,
1721 (float*)sbr
->qmf_filter_scratch
,
1722 sbr
->data
[ch
].W
, 1/(-1024 * ac
->sf_scale
));
1723 sbr_lf_gen(ac
, sbr
, sbr
->X_low
, sbr
->data
[ch
].W
);
1725 sbr_hf_inverse_filter(sbr
->alpha0
, sbr
->alpha1
, sbr
->X_low
, sbr
->k
[0]);
1726 sbr_chirp(sbr
, &sbr
->data
[ch
]);
1727 sbr_hf_gen(ac
, sbr
, sbr
->X_high
, sbr
->X_low
, sbr
->alpha0
, sbr
->alpha1
,
1728 sbr
->data
[ch
].bw_array
, sbr
->data
[ch
].t_env
,
1729 sbr
->data
[ch
].bs_num_env
);
1732 sbr_mapping(ac
, sbr
, &sbr
->data
[ch
], sbr
->data
[ch
].e_a
);
1733 sbr_env_estimate(sbr
->e_curr
, sbr
->X_high
, sbr
, &sbr
->data
[ch
]);
1734 sbr_gain_calc(ac
, sbr
, &sbr
->data
[ch
], sbr
->data
[ch
].e_a
);
1735 sbr_hf_assemble(sbr
->data
[ch
].Y
, sbr
->X_high
, sbr
, &sbr
->data
[ch
],
1740 sbr_x_gen(sbr
, sbr
->X
, sbr
->X_low
, sbr
->data
[ch
].Y
, ch
);
1741 sbr_qmf_synthesis(&ac
->dsp
, &sbr
->mdct
, out
, sbr
->X
, sbr
->qmf_filter_scratch
,
1742 sbr
->data
[ch
].synthesis_filterbank_samples
,
1743 &sbr
->data
[ch
].synthesis_filterbank_samples_offset
,
1745 ac
->add_bias
, -1024 * ac
->sf_scale
);