ac3enc: doxygen update.
[libav.git] / libavcodec / ac3enc.c
1 /*
2 * The simplest AC-3 encoder
3 * Copyright (c) 2000 Fabrice Bellard
4 * Copyright (c) 2006-2010 Justin Ruggles <justin.ruggles@gmail.com>
5 * Copyright (c) 2006-2010 Prakash Punnoor <prakash@punnoor.de>
6 *
7 * This file is part of Libav.
8 *
9 * Libav is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
13 *
14 * Libav is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with Libav; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 */
23
24 /**
25 * @file
26 * The simplest AC-3 encoder.
27 */
28
29 //#define ASSERT_LEVEL 2
30
31 #include <stdint.h>
32
33 #include "libavutil/audioconvert.h"
34 #include "libavutil/avassert.h"
35 #include "libavutil/avstring.h"
36 #include "libavutil/crc.h"
37 #include "libavutil/opt.h"
38 #include "avcodec.h"
39 #include "put_bits.h"
40 #include "dsputil.h"
41 #include "ac3dsp.h"
42 #include "ac3.h"
43 #include "audioconvert.h"
44 #include "fft.h"
45 #include "ac3enc.h"
46 #include "eac3enc.h"
47
48 typedef struct AC3Mant {
49 int16_t *qmant1_ptr, *qmant2_ptr, *qmant4_ptr; ///< mantissa pointers for bap=1,2,4
50 int mant1_cnt, mant2_cnt, mant4_cnt; ///< mantissa counts for bap=1,2,4
51 } AC3Mant;
52
53 #define CMIXLEV_NUM_OPTIONS 3
54 static const float cmixlev_options[CMIXLEV_NUM_OPTIONS] = {
55 LEVEL_MINUS_3DB, LEVEL_MINUS_4POINT5DB, LEVEL_MINUS_6DB
56 };
57
58 #define SURMIXLEV_NUM_OPTIONS 3
59 static const float surmixlev_options[SURMIXLEV_NUM_OPTIONS] = {
60 LEVEL_MINUS_3DB, LEVEL_MINUS_6DB, LEVEL_ZERO
61 };
62
63 #define EXTMIXLEV_NUM_OPTIONS 8
64 static const float extmixlev_options[EXTMIXLEV_NUM_OPTIONS] = {
65 LEVEL_PLUS_3DB, LEVEL_PLUS_1POINT5DB, LEVEL_ONE, LEVEL_MINUS_4POINT5DB,
66 LEVEL_MINUS_3DB, LEVEL_MINUS_4POINT5DB, LEVEL_MINUS_6DB, LEVEL_ZERO
67 };
68
69
70 /**
71 * LUT for number of exponent groups.
72 * exponent_group_tab[coupling][exponent strategy-1][number of coefficients]
73 */
74 static uint8_t exponent_group_tab[2][3][256];
75
76
77 /**
78 * List of supported channel layouts.
79 */
80 const int64_t ff_ac3_channel_layouts[19] = {
81 AV_CH_LAYOUT_MONO,
82 AV_CH_LAYOUT_STEREO,
83 AV_CH_LAYOUT_2_1,
84 AV_CH_LAYOUT_SURROUND,
85 AV_CH_LAYOUT_2_2,
86 AV_CH_LAYOUT_QUAD,
87 AV_CH_LAYOUT_4POINT0,
88 AV_CH_LAYOUT_5POINT0,
89 AV_CH_LAYOUT_5POINT0_BACK,
90 (AV_CH_LAYOUT_MONO | AV_CH_LOW_FREQUENCY),
91 (AV_CH_LAYOUT_STEREO | AV_CH_LOW_FREQUENCY),
92 (AV_CH_LAYOUT_2_1 | AV_CH_LOW_FREQUENCY),
93 (AV_CH_LAYOUT_SURROUND | AV_CH_LOW_FREQUENCY),
94 (AV_CH_LAYOUT_2_2 | AV_CH_LOW_FREQUENCY),
95 (AV_CH_LAYOUT_QUAD | AV_CH_LOW_FREQUENCY),
96 (AV_CH_LAYOUT_4POINT0 | AV_CH_LOW_FREQUENCY),
97 AV_CH_LAYOUT_5POINT1,
98 AV_CH_LAYOUT_5POINT1_BACK,
99 0
100 };
101
102
103 /**
104 * LUT to select the bandwidth code based on the bit rate, sample rate, and
105 * number of full-bandwidth channels.
106 * bandwidth_tab[fbw_channels-1][sample rate code][bit rate code]
107 */
108 static const uint8_t ac3_bandwidth_tab[5][3][19] = {
109 // 32 40 48 56 64 80 96 112 128 160 192 224 256 320 384 448 512 576 640
110
111 { { 0, 0, 0, 12, 16, 32, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48 },
112 { 0, 0, 0, 16, 20, 36, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56 },
113 { 0, 0, 0, 32, 40, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60 } },
114
115 { { 0, 0, 0, 0, 0, 0, 0, 20, 24, 32, 48, 48, 48, 48, 48, 48, 48, 48, 48 },
116 { 0, 0, 0, 0, 0, 0, 4, 24, 28, 36, 56, 56, 56, 56, 56, 56, 56, 56, 56 },
117 { 0, 0, 0, 0, 0, 0, 20, 44, 52, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60 } },
118
119 { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 24, 32, 40, 48, 48, 48, 48, 48, 48 },
120 { 0, 0, 0, 0, 0, 0, 0, 0, 4, 20, 28, 36, 44, 56, 56, 56, 56, 56, 56 },
121 { 0, 0, 0, 0, 0, 0, 0, 0, 20, 40, 48, 60, 60, 60, 60, 60, 60, 60, 60 } },
122
123 { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 24, 32, 48, 48, 48, 48, 48, 48 },
124 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 28, 36, 56, 56, 56, 56, 56, 56 },
125 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 32, 48, 60, 60, 60, 60, 60, 60, 60 } },
126
127 { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 20, 32, 40, 48, 48, 48, 48 },
128 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 24, 36, 44, 56, 56, 56, 56 },
129 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 28, 44, 60, 60, 60, 60, 60, 60 } }
130 };
131
132
133 /**
134 * LUT to select the coupling start band based on the bit rate, sample rate, and
135 * number of full-bandwidth channels. -1 = coupling off
136 * ac3_coupling_start_tab[channel_mode-2][sample rate code][bit rate code]
137 *
138 * TODO: more testing for optimal parameters.
139 * multi-channel tests at 44.1kHz and 32kHz.
140 */
141 static const int8_t ac3_coupling_start_tab[6][3][19] = {
142 // 32 40 48 56 64 80 96 112 128 160 192 224 256 320 384 448 512 576 640
143
144 // 2/0
145 { { 0, 0, 0, 0, 0, 0, 0, 1, 1, 7, 8, 11, 12, -1, -1, -1, -1, -1, -1 },
146 { 0, 0, 0, 0, 0, 0, 1, 3, 5, 7, 10, 12, 13, -1, -1, -1, -1, -1, -1 },
147 { 0, 0, 0, 0, 1, 2, 2, 9, 13, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1 } },
148
149 // 3/0
150 { { 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 6, 9, 11, 12, 13, -1, -1, -1, -1 },
151 { 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 6, 9, 11, 12, 13, -1, -1, -1, -1 },
152 { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } },
153
154 // 2/1 - untested
155 { { 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 6, 9, 11, 12, 13, -1, -1, -1, -1 },
156 { 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 6, 9, 11, 12, 13, -1, -1, -1, -1 },
157 { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } },
158
159 // 3/1
160 { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 10, 11, 11, 12, 12, 14, -1 },
161 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 10, 11, 11, 12, 12, 14, -1 },
162 { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } },
163
164 // 2/2 - untested
165 { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 10, 11, 11, 12, 12, 14, -1 },
166 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 10, 11, 11, 12, 12, 14, -1 },
167 { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } },
168
169 // 3/2
170 { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 8, 11, 12, 12, -1, -1 },
171 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 8, 11, 12, 12, -1, -1 },
172 { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } },
173 };
174
175
176 /**
177 * Adjust the frame size to make the average bit rate match the target bit rate.
178 * This is only needed for 11025, 22050, and 44100 sample rates or any E-AC-3.
179 *
180 * @param s AC-3 encoder private context
181 */
182 void ff_ac3_adjust_frame_size(AC3EncodeContext *s)
183 {
184 while (s->bits_written >= s->bit_rate && s->samples_written >= s->sample_rate) {
185 s->bits_written -= s->bit_rate;
186 s->samples_written -= s->sample_rate;
187 }
188 s->frame_size = s->frame_size_min +
189 2 * (s->bits_written * s->sample_rate < s->samples_written * s->bit_rate);
190 s->bits_written += s->frame_size * 8;
191 s->samples_written += AC3_BLOCK_SIZE * s->num_blocks;
192 }
193
194
195 /**
196 * Set the initial coupling strategy parameters prior to coupling analysis.
197 *
198 * @param s AC-3 encoder private context
199 */
200 void ff_ac3_compute_coupling_strategy(AC3EncodeContext *s)
201 {
202 int blk, ch;
203 int got_cpl_snr;
204 int num_cpl_blocks;
205
206 /* set coupling use flags for each block/channel */
207 /* TODO: turn coupling on/off and adjust start band based on bit usage */
208 for (blk = 0; blk < s->num_blocks; blk++) {
209 AC3Block *block = &s->blocks[blk];
210 for (ch = 1; ch <= s->fbw_channels; ch++)
211 block->channel_in_cpl[ch] = s->cpl_on;
212 }
213
214 /* enable coupling for each block if at least 2 channels have coupling
215 enabled for that block */
216 got_cpl_snr = 0;
217 num_cpl_blocks = 0;
218 for (blk = 0; blk < s->num_blocks; blk++) {
219 AC3Block *block = &s->blocks[blk];
220 block->num_cpl_channels = 0;
221 for (ch = 1; ch <= s->fbw_channels; ch++)
222 block->num_cpl_channels += block->channel_in_cpl[ch];
223 block->cpl_in_use = block->num_cpl_channels > 1;
224 num_cpl_blocks += block->cpl_in_use;
225 if (!block->cpl_in_use) {
226 block->num_cpl_channels = 0;
227 for (ch = 1; ch <= s->fbw_channels; ch++)
228 block->channel_in_cpl[ch] = 0;
229 }
230
231 block->new_cpl_strategy = !blk;
232 if (blk) {
233 for (ch = 1; ch <= s->fbw_channels; ch++) {
234 if (block->channel_in_cpl[ch] != s->blocks[blk-1].channel_in_cpl[ch]) {
235 block->new_cpl_strategy = 1;
236 break;
237 }
238 }
239 }
240 block->new_cpl_leak = block->new_cpl_strategy;
241
242 if (!blk || (block->cpl_in_use && !got_cpl_snr)) {
243 block->new_snr_offsets = 1;
244 if (block->cpl_in_use)
245 got_cpl_snr = 1;
246 } else {
247 block->new_snr_offsets = 0;
248 }
249 }
250 if (!num_cpl_blocks)
251 s->cpl_on = 0;
252
253 /* set bandwidth for each channel */
254 for (blk = 0; blk < s->num_blocks; blk++) {
255 AC3Block *block = &s->blocks[blk];
256 for (ch = 1; ch <= s->fbw_channels; ch++) {
257 if (block->channel_in_cpl[ch])
258 block->end_freq[ch] = s->start_freq[CPL_CH];
259 else
260 block->end_freq[ch] = s->bandwidth_code * 3 + 73;
261 }
262 }
263 }
264
265
266 /**
267 * Apply stereo rematrixing to coefficients based on rematrixing flags.
268 *
269 * @param s AC-3 encoder private context
270 */
271 void ff_ac3_apply_rematrixing(AC3EncodeContext *s)
272 {
273 int nb_coefs;
274 int blk, bnd, i;
275 int start, end;
276 uint8_t *flags;
277
278 if (!s->rematrixing_enabled)
279 return;
280
281 for (blk = 0; blk < s->num_blocks; blk++) {
282 AC3Block *block = &s->blocks[blk];
283 if (block->new_rematrixing_strategy)
284 flags = block->rematrixing_flags;
285 nb_coefs = FFMIN(block->end_freq[1], block->end_freq[2]);
286 for (bnd = 0; bnd < block->num_rematrixing_bands; bnd++) {
287 if (flags[bnd]) {
288 start = ff_ac3_rematrix_band_tab[bnd];
289 end = FFMIN(nb_coefs, ff_ac3_rematrix_band_tab[bnd+1]);
290 for (i = start; i < end; i++) {
291 int32_t lt = block->fixed_coef[1][i];
292 int32_t rt = block->fixed_coef[2][i];
293 block->fixed_coef[1][i] = (lt + rt) >> 1;
294 block->fixed_coef[2][i] = (lt - rt) >> 1;
295 }
296 }
297 }
298 }
299 }
300
301
302 /*
303 * Initialize exponent tables.
304 */
305 static av_cold void exponent_init(AC3EncodeContext *s)
306 {
307 int expstr, i, grpsize;
308
309 for (expstr = EXP_D15-1; expstr <= EXP_D45-1; expstr++) {
310 grpsize = 3 << expstr;
311 for (i = 12; i < 256; i++) {
312 exponent_group_tab[0][expstr][i] = (i + grpsize - 4) / grpsize;
313 exponent_group_tab[1][expstr][i] = (i ) / grpsize;
314 }
315 }
316 /* LFE */
317 exponent_group_tab[0][0][7] = 2;
318
319 if (CONFIG_EAC3_ENCODER && s->eac3)
320 ff_eac3_exponent_init();
321 }
322
323
324 /*
325 * Extract exponents from the MDCT coefficients.
326 */
327 static void extract_exponents(AC3EncodeContext *s)
328 {
329 int ch = !s->cpl_on;
330 int chan_size = AC3_MAX_COEFS * s->num_blocks * (s->channels - ch + 1);
331 AC3Block *block = &s->blocks[0];
332
333 s->ac3dsp.extract_exponents(block->exp[ch], block->fixed_coef[ch], chan_size);
334 }
335
336
337 /**
338 * Exponent Difference Threshold.
339 * New exponents are sent if their SAD exceed this number.
340 */
341 #define EXP_DIFF_THRESHOLD 500
342
343 /**
344 * Table used to select exponent strategy based on exponent reuse block interval.
345 */
346 static const uint8_t exp_strategy_reuse_tab[4][6] = {
347 { EXP_D15, EXP_D15, EXP_D15, EXP_D15, EXP_D15, EXP_D15 },
348 { EXP_D15, EXP_D15, EXP_D15, EXP_D15, EXP_D15, EXP_D15 },
349 { EXP_D25, EXP_D25, EXP_D15, EXP_D15, EXP_D15, EXP_D15 },
350 { EXP_D45, EXP_D25, EXP_D25, EXP_D15, EXP_D15, EXP_D15 }
351 };
352
353 /*
354 * Calculate exponent strategies for all channels.
355 * Array arrangement is reversed to simplify the per-channel calculation.
356 */
357 static void compute_exp_strategy(AC3EncodeContext *s)
358 {
359 int ch, blk, blk1;
360
361 for (ch = !s->cpl_on; ch <= s->fbw_channels; ch++) {
362 uint8_t *exp_strategy = s->exp_strategy[ch];
363 uint8_t *exp = s->blocks[0].exp[ch];
364 int exp_diff;
365
366 /* estimate if the exponent variation & decide if they should be
367 reused in the next frame */
368 exp_strategy[0] = EXP_NEW;
369 exp += AC3_MAX_COEFS;
370 for (blk = 1; blk < s->num_blocks; blk++, exp += AC3_MAX_COEFS) {
371 if (ch == CPL_CH) {
372 if (!s->blocks[blk-1].cpl_in_use) {
373 exp_strategy[blk] = EXP_NEW;
374 continue;
375 } else if (!s->blocks[blk].cpl_in_use) {
376 exp_strategy[blk] = EXP_REUSE;
377 continue;
378 }
379 } else if (s->blocks[blk].channel_in_cpl[ch] != s->blocks[blk-1].channel_in_cpl[ch]) {
380 exp_strategy[blk] = EXP_NEW;
381 continue;
382 }
383 exp_diff = s->dsp.sad[0](NULL, exp, exp - AC3_MAX_COEFS, 16, 16);
384 exp_strategy[blk] = EXP_REUSE;
385 if (ch == CPL_CH && exp_diff > (EXP_DIFF_THRESHOLD * (s->blocks[blk].end_freq[ch] - s->start_freq[ch]) / AC3_MAX_COEFS))
386 exp_strategy[blk] = EXP_NEW;
387 else if (ch > CPL_CH && exp_diff > EXP_DIFF_THRESHOLD)
388 exp_strategy[blk] = EXP_NEW;
389 }
390
391 /* now select the encoding strategy type : if exponents are often
392 recoded, we use a coarse encoding */
393 blk = 0;
394 while (blk < s->num_blocks) {
395 blk1 = blk + 1;
396 while (blk1 < s->num_blocks && exp_strategy[blk1] == EXP_REUSE)
397 blk1++;
398 exp_strategy[blk] = exp_strategy_reuse_tab[s->num_blks_code][blk1-blk-1];
399 blk = blk1;
400 }
401 }
402 if (s->lfe_on) {
403 ch = s->lfe_channel;
404 s->exp_strategy[ch][0] = EXP_D15;
405 for (blk = 1; blk < s->num_blocks; blk++)
406 s->exp_strategy[ch][blk] = EXP_REUSE;
407 }
408
409 /* for E-AC-3, determine frame exponent strategy */
410 if (CONFIG_EAC3_ENCODER && s->eac3)
411 ff_eac3_get_frame_exp_strategy(s);
412 }
413
414
415 /**
416 * Update the exponents so that they are the ones the decoder will decode.
417 *
418 * @param[in,out] exp array of exponents for 1 block in 1 channel
419 * @param nb_exps number of exponents in active bandwidth
420 * @param exp_strategy exponent strategy for the block
421 * @param cpl indicates if the block is in the coupling channel
422 */
423 static void encode_exponents_blk_ch(uint8_t *exp, int nb_exps, int exp_strategy,
424 int cpl)
425 {
426 int nb_groups, i, k;
427
428 nb_groups = exponent_group_tab[cpl][exp_strategy-1][nb_exps] * 3;
429
430 /* for each group, compute the minimum exponent */
431 switch(exp_strategy) {
432 case EXP_D25:
433 for (i = 1, k = 1-cpl; i <= nb_groups; i++) {
434 uint8_t exp_min = exp[k];
435 if (exp[k+1] < exp_min)
436 exp_min = exp[k+1];
437 exp[i-cpl] = exp_min;
438 k += 2;
439 }
440 break;
441 case EXP_D45:
442 for (i = 1, k = 1-cpl; i <= nb_groups; i++) {
443 uint8_t exp_min = exp[k];
444 if (exp[k+1] < exp_min)
445 exp_min = exp[k+1];
446 if (exp[k+2] < exp_min)
447 exp_min = exp[k+2];
448 if (exp[k+3] < exp_min)
449 exp_min = exp[k+3];
450 exp[i-cpl] = exp_min;
451 k += 4;
452 }
453 break;
454 }
455
456 /* constraint for DC exponent */
457 if (!cpl && exp[0] > 15)
458 exp[0] = 15;
459
460 /* decrease the delta between each groups to within 2 so that they can be
461 differentially encoded */
462 for (i = 1; i <= nb_groups; i++)
463 exp[i] = FFMIN(exp[i], exp[i-1] + 2);
464 i--;
465 while (--i >= 0)
466 exp[i] = FFMIN(exp[i], exp[i+1] + 2);
467
468 if (cpl)
469 exp[-1] = exp[0] & ~1;
470
471 /* now we have the exponent values the decoder will see */
472 switch (exp_strategy) {
473 case EXP_D25:
474 for (i = nb_groups, k = (nb_groups * 2)-cpl; i > 0; i--) {
475 uint8_t exp1 = exp[i-cpl];
476 exp[k--] = exp1;
477 exp[k--] = exp1;
478 }
479 break;
480 case EXP_D45:
481 for (i = nb_groups, k = (nb_groups * 4)-cpl; i > 0; i--) {
482 exp[k] = exp[k-1] = exp[k-2] = exp[k-3] = exp[i-cpl];
483 k -= 4;
484 }
485 break;
486 }
487 }
488
489
490 /*
491 * Encode exponents from original extracted form to what the decoder will see.
492 * This copies and groups exponents based on exponent strategy and reduces
493 * deltas between adjacent exponent groups so that they can be differentially
494 * encoded.
495 */
496 static void encode_exponents(AC3EncodeContext *s)
497 {
498 int blk, blk1, ch, cpl;
499 uint8_t *exp, *exp_strategy;
500 int nb_coefs, num_reuse_blocks;
501
502 for (ch = !s->cpl_on; ch <= s->channels; ch++) {
503 exp = s->blocks[0].exp[ch] + s->start_freq[ch];
504 exp_strategy = s->exp_strategy[ch];
505
506 cpl = (ch == CPL_CH);
507 blk = 0;
508 while (blk < s->num_blocks) {
509 AC3Block *block = &s->blocks[blk];
510 if (cpl && !block->cpl_in_use) {
511 exp += AC3_MAX_COEFS;
512 blk++;
513 continue;
514 }
515 nb_coefs = block->end_freq[ch] - s->start_freq[ch];
516 blk1 = blk + 1;
517
518 /* count the number of EXP_REUSE blocks after the current block
519 and set exponent reference block numbers */
520 s->exp_ref_block[ch][blk] = blk;
521 while (blk1 < s->num_blocks && exp_strategy[blk1] == EXP_REUSE) {
522 s->exp_ref_block[ch][blk1] = blk;
523 blk1++;
524 }
525 num_reuse_blocks = blk1 - blk - 1;
526
527 /* for the EXP_REUSE case we select the min of the exponents */
528 s->ac3dsp.ac3_exponent_min(exp-s->start_freq[ch], num_reuse_blocks,
529 AC3_MAX_COEFS);
530
531 encode_exponents_blk_ch(exp, nb_coefs, exp_strategy[blk], cpl);
532
533 exp += AC3_MAX_COEFS * (num_reuse_blocks + 1);
534 blk = blk1;
535 }
536 }
537
538 /* reference block numbers have been changed, so reset ref_bap_set */
539 s->ref_bap_set = 0;
540 }
541
542
543 /*
544 * Count exponent bits based on bandwidth, coupling, and exponent strategies.
545 */
546 static int count_exponent_bits(AC3EncodeContext *s)
547 {
548 int blk, ch;
549 int nb_groups, bit_count;
550
551 bit_count = 0;
552 for (blk = 0; blk < s->num_blocks; blk++) {
553 AC3Block *block = &s->blocks[blk];
554 for (ch = !block->cpl_in_use; ch <= s->channels; ch++) {
555 int exp_strategy = s->exp_strategy[ch][blk];
556 int cpl = (ch == CPL_CH);
557 int nb_coefs = block->end_freq[ch] - s->start_freq[ch];
558
559 if (exp_strategy == EXP_REUSE)
560 continue;
561
562 nb_groups = exponent_group_tab[cpl][exp_strategy-1][nb_coefs];
563 bit_count += 4 + (nb_groups * 7);
564 }
565 }
566
567 return bit_count;
568 }
569
570
571 /**
572 * Group exponents.
573 * 3 delta-encoded exponents are in each 7-bit group. The number of groups
574 * varies depending on exponent strategy and bandwidth.
575 *
576 * @param s AC-3 encoder private context
577 */
578 void ff_ac3_group_exponents(AC3EncodeContext *s)
579 {
580 int blk, ch, i, cpl;
581 int group_size, nb_groups;
582 uint8_t *p;
583 int delta0, delta1, delta2;
584 int exp0, exp1;
585
586 for (blk = 0; blk < s->num_blocks; blk++) {
587 AC3Block *block = &s->blocks[blk];
588 for (ch = !block->cpl_in_use; ch <= s->channels; ch++) {
589 int exp_strategy = s->exp_strategy[ch][blk];
590 if (exp_strategy == EXP_REUSE)
591 continue;
592 cpl = (ch == CPL_CH);
593 group_size = exp_strategy + (exp_strategy == EXP_D45);
594 nb_groups = exponent_group_tab[cpl][exp_strategy-1][block->end_freq[ch]-s->start_freq[ch]];
595 p = block->exp[ch] + s->start_freq[ch] - cpl;
596
597 /* DC exponent */
598 exp1 = *p++;
599 block->grouped_exp[ch][0] = exp1;
600
601 /* remaining exponents are delta encoded */
602 for (i = 1; i <= nb_groups; i++) {
603 /* merge three delta in one code */
604 exp0 = exp1;
605 exp1 = p[0];
606 p += group_size;
607 delta0 = exp1 - exp0 + 2;
608 av_assert2(delta0 >= 0 && delta0 <= 4);
609
610 exp0 = exp1;
611 exp1 = p[0];
612 p += group_size;
613 delta1 = exp1 - exp0 + 2;
614 av_assert2(delta1 >= 0 && delta1 <= 4);
615
616 exp0 = exp1;
617 exp1 = p[0];
618 p += group_size;
619 delta2 = exp1 - exp0 + 2;
620 av_assert2(delta2 >= 0 && delta2 <= 4);
621
622 block->grouped_exp[ch][i] = ((delta0 * 5 + delta1) * 5) + delta2;
623 }
624 }
625 }
626 }
627
628
629 /**
630 * Calculate final exponents from the supplied MDCT coefficients and exponent shift.
631 * Extract exponents from MDCT coefficients, calculate exponent strategies,
632 * and encode final exponents.
633 *
634 * @param s AC-3 encoder private context
635 */
636 void ff_ac3_process_exponents(AC3EncodeContext *s)
637 {
638 extract_exponents(s);
639
640 compute_exp_strategy(s);
641
642 encode_exponents(s);
643
644 emms_c();
645 }
646
647
648 /*
649 * Count frame bits that are based solely on fixed parameters.
650 * This only has to be run once when the encoder is initialized.
651 */
652 static void count_frame_bits_fixed(AC3EncodeContext *s)
653 {
654 static const int frame_bits_inc[8] = { 0, 0, 2, 2, 2, 4, 2, 4 };
655 int blk;
656 int frame_bits;
657
658 /* assumptions:
659 * no dynamic range codes
660 * bit allocation parameters do not change between blocks
661 * no delta bit allocation
662 * no skipped data
663 * no auxilliary data
664 * no E-AC-3 metadata
665 */
666
667 /* header */
668 frame_bits = 16; /* sync info */
669 if (s->eac3) {
670 /* bitstream info header */
671 frame_bits += 35;
672 frame_bits += 1 + 1;
673 if (s->num_blocks != 0x6)
674 frame_bits++;
675 frame_bits++;
676 /* audio frame header */
677 if (s->num_blocks == 6)
678 frame_bits += 2;
679 frame_bits += 10;
680 /* exponent strategy */
681 if (s->use_frame_exp_strategy)
682 frame_bits += 5 * s->fbw_channels;
683 else
684 frame_bits += s->num_blocks * 2 * s->fbw_channels;
685 if (s->lfe_on)
686 frame_bits += s->num_blocks;
687 /* converter exponent strategy */
688 if (s->num_blks_code != 0x3)
689 frame_bits++;
690 else
691 frame_bits += s->fbw_channels * 5;
692 /* snr offsets */
693 frame_bits += 10;
694 /* block start info */
695 if (s->num_blocks != 1)
696 frame_bits++;
697 } else {
698 frame_bits += 49;
699 frame_bits += frame_bits_inc[s->channel_mode];
700 }
701
702 /* audio blocks */
703 for (blk = 0; blk < s->num_blocks; blk++) {
704 if (!s->eac3) {
705 /* block switch flags */
706 frame_bits += s->fbw_channels;
707
708 /* dither flags */
709 frame_bits += s->fbw_channels;
710 }
711
712 /* dynamic range */
713 frame_bits++;
714
715 /* spectral extension */
716 if (s->eac3)
717 frame_bits++;
718
719 if (!s->eac3) {
720 /* exponent strategy */
721 frame_bits += 2 * s->fbw_channels;
722 if (s->lfe_on)
723 frame_bits++;
724
725 /* bit allocation params */
726 frame_bits++;
727 if (!blk)
728 frame_bits += 2 + 2 + 2 + 2 + 3;
729 }
730
731 /* converter snr offset */
732 if (s->eac3)
733 frame_bits++;
734
735 if (!s->eac3) {
736 /* delta bit allocation */
737 frame_bits++;
738
739 /* skipped data */
740 frame_bits++;
741 }
742 }
743
744 /* auxiliary data */
745 frame_bits++;
746
747 /* CRC */
748 frame_bits += 1 + 16;
749
750 s->frame_bits_fixed = frame_bits;
751 }
752
753
754 /*
755 * Initialize bit allocation.
756 * Set default parameter codes and calculate parameter values.
757 */
758 static void bit_alloc_init(AC3EncodeContext *s)
759 {
760 int ch;
761
762 /* init default parameters */
763 s->slow_decay_code = 2;
764 s->fast_decay_code = 1;
765 s->slow_gain_code = 1;
766 s->db_per_bit_code = s->eac3 ? 2 : 3;
767 s->floor_code = 7;
768 for (ch = 0; ch <= s->channels; ch++)
769 s->fast_gain_code[ch] = 4;
770
771 /* initial snr offset */
772 s->coarse_snr_offset = 40;
773
774 /* compute real values */
775 /* currently none of these values change during encoding, so we can just
776 set them once at initialization */
777 s->bit_alloc.slow_decay = ff_ac3_slow_decay_tab[s->slow_decay_code] >> s->bit_alloc.sr_shift;
778 s->bit_alloc.fast_decay = ff_ac3_fast_decay_tab[s->fast_decay_code] >> s->bit_alloc.sr_shift;
779 s->bit_alloc.slow_gain = ff_ac3_slow_gain_tab[s->slow_gain_code];
780 s->bit_alloc.db_per_bit = ff_ac3_db_per_bit_tab[s->db_per_bit_code];
781 s->bit_alloc.floor = ff_ac3_floor_tab[s->floor_code];
782 s->bit_alloc.cpl_fast_leak = 0;
783 s->bit_alloc.cpl_slow_leak = 0;
784
785 count_frame_bits_fixed(s);
786 }
787
788
789 /*
790 * Count the bits used to encode the frame, minus exponents and mantissas.
791 * Bits based on fixed parameters have already been counted, so now we just
792 * have to add the bits based on parameters that change during encoding.
793 */
794 static void count_frame_bits(AC3EncodeContext *s)
795 {
796 AC3EncOptions *opt = &s->options;
797 int blk, ch;
798 int frame_bits = 0;
799
800 /* header */
801 if (s->eac3) {
802 if (opt->eac3_mixing_metadata) {
803 if (s->channel_mode > AC3_CHMODE_STEREO)
804 frame_bits += 2;
805 if (s->has_center)
806 frame_bits += 6;
807 if (s->has_surround)
808 frame_bits += 6;
809 frame_bits += s->lfe_on;
810 frame_bits += 1 + 1 + 2;
811 if (s->channel_mode < AC3_CHMODE_STEREO)
812 frame_bits++;
813 frame_bits++;
814 }
815 if (opt->eac3_info_metadata) {
816 frame_bits += 3 + 1 + 1;
817 if (s->channel_mode == AC3_CHMODE_STEREO)
818 frame_bits += 2 + 2;
819 if (s->channel_mode >= AC3_CHMODE_2F2R)
820 frame_bits += 2;
821 frame_bits++;
822 if (opt->audio_production_info)
823 frame_bits += 5 + 2 + 1;
824 frame_bits++;
825 }
826 /* coupling */
827 if (s->channel_mode > AC3_CHMODE_MONO) {
828 frame_bits++;
829 for (blk = 1; blk < s->num_blocks; blk++) {
830 AC3Block *block = &s->blocks[blk];
831 frame_bits++;
832 if (block->new_cpl_strategy)
833 frame_bits++;
834 }
835 }
836 /* coupling exponent strategy */
837 if (s->cpl_on) {
838 if (s->use_frame_exp_strategy) {
839 frame_bits += 5 * s->cpl_on;
840 } else {
841 for (blk = 0; blk < s->num_blocks; blk++)
842 frame_bits += 2 * s->blocks[blk].cpl_in_use;
843 }
844 }
845 } else {
846 if (opt->audio_production_info)
847 frame_bits += 7;
848 if (s->bitstream_id == 6) {
849 if (opt->extended_bsi_1)
850 frame_bits += 14;
851 if (opt->extended_bsi_2)
852 frame_bits += 14;
853 }
854 }
855
856 /* audio blocks */
857 for (blk = 0; blk < s->num_blocks; blk++) {
858 AC3Block *block = &s->blocks[blk];
859
860 /* coupling strategy */
861 if (!s->eac3)
862 frame_bits++;
863 if (block->new_cpl_strategy) {
864 if (!s->eac3)
865 frame_bits++;
866 if (block->cpl_in_use) {
867 if (s->eac3)
868 frame_bits++;
869 if (!s->eac3 || s->channel_mode != AC3_CHMODE_STEREO)
870 frame_bits += s->fbw_channels;
871 if (s->channel_mode == AC3_CHMODE_STEREO)
872 frame_bits++;
873 frame_bits += 4 + 4;
874 if (s->eac3)
875 frame_bits++;
876 else
877 frame_bits += s->num_cpl_subbands - 1;
878 }
879 }
880
881 /* coupling coordinates */
882 if (block->cpl_in_use) {
883 for (ch = 1; ch <= s->fbw_channels; ch++) {
884 if (block->channel_in_cpl[ch]) {
885 if (!s->eac3 || block->new_cpl_coords[ch] != 2)
886 frame_bits++;
887 if (block->new_cpl_coords[ch]) {
888 frame_bits += 2;
889 frame_bits += (4 + 4) * s->num_cpl_bands;
890 }
891 }
892 }
893 }
894
895 /* stereo rematrixing */
896 if (s->channel_mode == AC3_CHMODE_STEREO) {
897 if (!s->eac3 || blk > 0)
898 frame_bits++;
899 if (s->blocks[blk].new_rematrixing_strategy)
900 frame_bits += block->num_rematrixing_bands;
901 }
902
903 /* bandwidth codes & gain range */
904 for (ch = 1; ch <= s->fbw_channels; ch++) {
905 if (s->exp_strategy[ch][blk] != EXP_REUSE) {
906 if (!block->channel_in_cpl[ch])
907 frame_bits += 6;
908 frame_bits += 2;
909 }
910 }
911
912 /* coupling exponent strategy */
913 if (!s->eac3 && block->cpl_in_use)
914 frame_bits += 2;
915
916 /* snr offsets and fast gain codes */
917 if (!s->eac3) {
918 frame_bits++;
919 if (block->new_snr_offsets)
920 frame_bits += 6 + (s->channels + block->cpl_in_use) * (4 + 3);
921 }
922
923 /* coupling leak info */
924 if (block->cpl_in_use) {
925 if (!s->eac3 || block->new_cpl_leak != 2)
926 frame_bits++;
927 if (block->new_cpl_leak)
928 frame_bits += 3 + 3;
929 }
930 }
931
932 s->frame_bits = s->frame_bits_fixed + frame_bits;
933 }
934
935
936 /*
937 * Calculate masking curve based on the final exponents.
938 * Also calculate the power spectral densities to use in future calculations.
939 */
940 static void bit_alloc_masking(AC3EncodeContext *s)
941 {
942 int blk, ch;
943
944 for (blk = 0; blk < s->num_blocks; blk++) {
945 AC3Block *block = &s->blocks[blk];
946 for (ch = !block->cpl_in_use; ch <= s->channels; ch++) {
947 /* We only need psd and mask for calculating bap.
948 Since we currently do not calculate bap when exponent
949 strategy is EXP_REUSE we do not need to calculate psd or mask. */
950 if (s->exp_strategy[ch][blk] != EXP_REUSE) {
951 ff_ac3_bit_alloc_calc_psd(block->exp[ch], s->start_freq[ch],
952 block->end_freq[ch], block->psd[ch],
953 block->band_psd[ch]);
954 ff_ac3_bit_alloc_calc_mask(&s->bit_alloc, block->band_psd[ch],
955 s->start_freq[ch], block->end_freq[ch],
956 ff_ac3_fast_gain_tab[s->fast_gain_code[ch]],
957 ch == s->lfe_channel,
958 DBA_NONE, 0, NULL, NULL, NULL,
959 block->mask[ch]);
960 }
961 }
962 }
963 }
964
965
966 /*
967 * Ensure that bap for each block and channel point to the current bap_buffer.
968 * They may have been switched during the bit allocation search.
969 */
970 static void reset_block_bap(AC3EncodeContext *s)
971 {
972 int blk, ch;
973 uint8_t *ref_bap;
974
975 if (s->ref_bap[0][0] == s->bap_buffer && s->ref_bap_set)
976 return;
977
978 ref_bap = s->bap_buffer;
979 for (ch = 0; ch <= s->channels; ch++) {
980 for (blk = 0; blk < s->num_blocks; blk++)
981 s->ref_bap[ch][blk] = ref_bap + AC3_MAX_COEFS * s->exp_ref_block[ch][blk];
982 ref_bap += AC3_MAX_COEFS * s->num_blocks;
983 }
984 s->ref_bap_set = 1;
985 }
986
987
988 /**
989 * Initialize mantissa counts.
990 * These are set so that they are padded to the next whole group size when bits
991 * are counted in compute_mantissa_size.
992 *
993 * @param[in,out] mant_cnt running counts for each bap value for each block
994 */
995 static void count_mantissa_bits_init(uint16_t mant_cnt[AC3_MAX_BLOCKS][16])
996 {
997 int blk;
998
999 for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
1000 memset(mant_cnt[blk], 0, sizeof(mant_cnt[blk]));
1001 mant_cnt[blk][1] = mant_cnt[blk][2] = 2;
1002 mant_cnt[blk][4] = 1;
1003 }
1004 }
1005
1006
1007 /**
1008 * Update mantissa bit counts for all blocks in 1 channel in a given bandwidth
1009 * range.
1010 *
1011 * @param s AC-3 encoder private context
1012 * @param ch channel index
1013 * @param[in,out] mant_cnt running counts for each bap value for each block
1014 * @param start starting coefficient bin
1015 * @param end ending coefficient bin
1016 */
1017 static void count_mantissa_bits_update_ch(AC3EncodeContext *s, int ch,
1018 uint16_t mant_cnt[AC3_MAX_BLOCKS][16],
1019 int start, int end)
1020 {
1021 int blk;
1022
1023 for (blk = 0; blk < s->num_blocks; blk++) {
1024 AC3Block *block = &s->blocks[blk];
1025 if (ch == CPL_CH && !block->cpl_in_use)
1026 continue;
1027 s->ac3dsp.update_bap_counts(mant_cnt[blk],
1028 s->ref_bap[ch][blk] + start,
1029 FFMIN(end, block->end_freq[ch]) - start);
1030 }
1031 }
1032
1033
1034 /*
1035 * Count the number of mantissa bits in the frame based on the bap values.
1036 */
1037 static int count_mantissa_bits(AC3EncodeContext *s)
1038 {
1039 int ch, max_end_freq;
1040 LOCAL_ALIGNED_16(uint16_t, mant_cnt, [AC3_MAX_BLOCKS], [16]);
1041
1042 count_mantissa_bits_init(mant_cnt);
1043
1044 max_end_freq = s->bandwidth_code * 3 + 73;
1045 for (ch = !s->cpl_enabled; ch <= s->channels; ch++)
1046 count_mantissa_bits_update_ch(s, ch, mant_cnt, s->start_freq[ch],
1047 max_end_freq);
1048
1049 return s->ac3dsp.compute_mantissa_size(mant_cnt);
1050 }
1051
1052
1053 /**
1054 * Run the bit allocation with a given SNR offset.
1055 * This calculates the bit allocation pointers that will be used to determine
1056 * the quantization of each mantissa.
1057 *
1058 * @param s AC-3 encoder private context
1059 * @param snr_offset SNR offset, 0 to 1023
1060 * @return the number of bits needed for mantissas if the given SNR offset is
1061 * is used.
1062 */
1063 static int bit_alloc(AC3EncodeContext *s, int snr_offset)
1064 {
1065 int blk, ch;
1066
1067 snr_offset = (snr_offset - 240) << 2;
1068
1069 reset_block_bap(s);
1070 for (blk = 0; blk < s->num_blocks; blk++) {
1071 AC3Block *block = &s->blocks[blk];
1072
1073 for (ch = !block->cpl_in_use; ch <= s->channels; ch++) {
1074 /* Currently the only bit allocation parameters which vary across
1075 blocks within a frame are the exponent values. We can take
1076 advantage of that by reusing the bit allocation pointers
1077 whenever we reuse exponents. */
1078 if (s->exp_strategy[ch][blk] != EXP_REUSE) {
1079 s->ac3dsp.bit_alloc_calc_bap(block->mask[ch], block->psd[ch],
1080 s->start_freq[ch], block->end_freq[ch],
1081 snr_offset, s->bit_alloc.floor,
1082 ff_ac3_bap_tab, s->ref_bap[ch][blk]);
1083 }
1084 }
1085 }
1086 return count_mantissa_bits(s);
1087 }
1088
1089
1090 /*
1091 * Constant bitrate bit allocation search.
1092 * Find the largest SNR offset that will allow data to fit in the frame.
1093 */
1094 static int cbr_bit_allocation(AC3EncodeContext *s)
1095 {
1096 int ch;
1097 int bits_left;
1098 int snr_offset, snr_incr;
1099
1100 bits_left = 8 * s->frame_size - (s->frame_bits + s->exponent_bits);
1101 if (bits_left < 0)
1102 return AVERROR(EINVAL);
1103
1104 snr_offset = s->coarse_snr_offset << 4;
1105
1106 /* if previous frame SNR offset was 1023, check if current frame can also
1107 use SNR offset of 1023. if so, skip the search. */
1108 if ((snr_offset | s->fine_snr_offset[1]) == 1023) {
1109 if (bit_alloc(s, 1023) <= bits_left)
1110 return 0;
1111 }
1112
1113 while (snr_offset >= 0 &&
1114 bit_alloc(s, snr_offset) > bits_left) {
1115 snr_offset -= 64;
1116 }
1117 if (snr_offset < 0)
1118 return AVERROR(EINVAL);
1119
1120 FFSWAP(uint8_t *, s->bap_buffer, s->bap1_buffer);
1121 for (snr_incr = 64; snr_incr > 0; snr_incr >>= 2) {
1122 while (snr_offset + snr_incr <= 1023 &&
1123 bit_alloc(s, snr_offset + snr_incr) <= bits_left) {
1124 snr_offset += snr_incr;
1125 FFSWAP(uint8_t *, s->bap_buffer, s->bap1_buffer);
1126 }
1127 }
1128 FFSWAP(uint8_t *, s->bap_buffer, s->bap1_buffer);
1129 reset_block_bap(s);
1130
1131 s->coarse_snr_offset = snr_offset >> 4;
1132 for (ch = !s->cpl_on; ch <= s->channels; ch++)
1133 s->fine_snr_offset[ch] = snr_offset & 0xF;
1134
1135 return 0;
1136 }
1137
1138
1139 /*
1140 * Perform bit allocation search.
1141 * Finds the SNR offset value that maximizes quality and fits in the specified
1142 * frame size. Output is the SNR offset and a set of bit allocation pointers
1143 * used to quantize the mantissas.
1144 */
1145 int ff_ac3_compute_bit_allocation(AC3EncodeContext *s)
1146 {
1147 count_frame_bits(s);
1148
1149 s->exponent_bits = count_exponent_bits(s);
1150
1151 bit_alloc_masking(s);
1152
1153 return cbr_bit_allocation(s);
1154 }
1155
1156
1157 /**
1158 * Symmetric quantization on 'levels' levels.
1159 *
1160 * @param c unquantized coefficient
1161 * @param e exponent
1162 * @param levels number of quantization levels
1163 * @return quantized coefficient
1164 */
1165 static inline int sym_quant(int c, int e, int levels)
1166 {
1167 int v = (((levels * c) >> (24 - e)) + levels) >> 1;
1168 av_assert2(v >= 0 && v < levels);
1169 return v;
1170 }
1171
1172
1173 /**
1174 * Asymmetric quantization on 2^qbits levels.
1175 *
1176 * @param c unquantized coefficient
1177 * @param e exponent
1178 * @param qbits number of quantization bits
1179 * @return quantized coefficient
1180 */
1181 static inline int asym_quant(int c, int e, int qbits)
1182 {
1183 int m;
1184
1185 c = (((c << e) >> (24 - qbits)) + 1) >> 1;
1186 m = (1 << (qbits-1));
1187 if (c >= m)
1188 c = m - 1;
1189 av_assert2(c >= -m);
1190 return c;
1191 }
1192
1193
1194 /**
1195 * Quantize a set of mantissas for a single channel in a single block.
1196 *
1197 * @param s Mantissa count context
1198 * @param fixed_coef unquantized fixed-point coefficients
1199 * @param exp exponents
1200 * @param bap bit allocation pointer indices
1201 * @param[out] qmant quantized coefficients
1202 * @param start_freq starting coefficient bin
1203 * @param end_freq ending coefficient bin
1204 */
1205 static void quantize_mantissas_blk_ch(AC3Mant *s, int32_t *fixed_coef,
1206 uint8_t *exp, uint8_t *bap,
1207 int16_t *qmant, int start_freq,
1208 int end_freq)
1209 {
1210 int i;
1211
1212 for (i = start_freq; i < end_freq; i++) {
1213 int v;
1214 int c = fixed_coef[i];
1215 int e = exp[i];
1216 int b = bap[i];
1217 switch (b) {
1218 case 0:
1219 v = 0;
1220 break;
1221 case 1:
1222 v = sym_quant(c, e, 3);
1223 switch (s->mant1_cnt) {
1224 case 0:
1225 s->qmant1_ptr = &qmant[i];
1226 v = 9 * v;
1227 s->mant1_cnt = 1;
1228 break;
1229 case 1:
1230 *s->qmant1_ptr += 3 * v;
1231 s->mant1_cnt = 2;
1232 v = 128;
1233 break;
1234 default:
1235 *s->qmant1_ptr += v;
1236 s->mant1_cnt = 0;
1237 v = 128;
1238 break;
1239 }
1240 break;
1241 case 2:
1242 v = sym_quant(c, e, 5);
1243 switch (s->mant2_cnt) {
1244 case 0:
1245 s->qmant2_ptr = &qmant[i];
1246 v = 25 * v;
1247 s->mant2_cnt = 1;
1248 break;
1249 case 1:
1250 *s->qmant2_ptr += 5 * v;
1251 s->mant2_cnt = 2;
1252 v = 128;
1253 break;
1254 default:
1255 *s->qmant2_ptr += v;
1256 s->mant2_cnt = 0;
1257 v = 128;
1258 break;
1259 }
1260 break;
1261 case 3:
1262 v = sym_quant(c, e, 7);
1263 break;
1264 case 4:
1265 v = sym_quant(c, e, 11);
1266 switch (s->mant4_cnt) {
1267 case 0:
1268 s->qmant4_ptr = &qmant[i];
1269 v = 11 * v;
1270 s->mant4_cnt = 1;
1271 break;
1272 default:
1273 *s->qmant4_ptr += v;
1274 s->mant4_cnt = 0;
1275 v = 128;
1276 break;
1277 }
1278 break;
1279 case 5:
1280 v = sym_quant(c, e, 15);
1281 break;
1282 case 14:
1283 v = asym_quant(c, e, 14);
1284 break;
1285 case 15:
1286 v = asym_quant(c, e, 16);
1287 break;
1288 default:
1289 v = asym_quant(c, e, b - 1);
1290 break;
1291 }
1292 qmant[i] = v;
1293 }
1294 }
1295
1296
1297 /**
1298 * Quantize mantissas using coefficients, exponents, and bit allocation pointers.
1299 *
1300 * @param s AC-3 encoder private context
1301 */
1302 void ff_ac3_quantize_mantissas(AC3EncodeContext *s)
1303 {
1304 int blk, ch, ch0=0, got_cpl;
1305
1306 for (blk = 0; blk < s->num_blocks; blk++) {
1307 AC3Block *block = &s->blocks[blk];
1308 AC3Mant m = { 0 };
1309
1310 got_cpl = !block->cpl_in_use;
1311 for (ch = 1; ch <= s->channels; ch++) {
1312 if (!got_cpl && ch > 1 && block->channel_in_cpl[ch-1]) {
1313 ch0 = ch - 1;
1314 ch = CPL_CH;
1315 got_cpl = 1;
1316 }
1317 quantize_mantissas_blk_ch(&m, block->fixed_coef[ch],
1318 s->blocks[s->exp_ref_block[ch][blk]].exp[ch],
1319 s->ref_bap[ch][blk], block->qmant[ch],
1320 s->start_freq[ch], block->end_freq[ch]);
1321 if (ch == CPL_CH)
1322 ch = ch0;
1323 }
1324 }
1325 }
1326
1327
1328 /*
1329 * Write the AC-3 frame header to the output bitstream.
1330 */
1331 static void ac3_output_frame_header(AC3EncodeContext *s)
1332 {
1333 AC3EncOptions *opt = &s->options;
1334
1335 put_bits(&s->pb, 16, 0x0b77); /* frame header */
1336 put_bits(&s->pb, 16, 0); /* crc1: will be filled later */
1337 put_bits(&s->pb, 2, s->bit_alloc.sr_code);
1338 put_bits(&s->pb, 6, s->frame_size_code + (s->frame_size - s->frame_size_min) / 2);
1339 put_bits(&s->pb, 5, s->bitstream_id);
1340 put_bits(&s->pb, 3, s->bitstream_mode);
1341 put_bits(&s->pb, 3, s->channel_mode);
1342 if ((s->channel_mode & 0x01) && s->channel_mode != AC3_CHMODE_MONO)
1343 put_bits(&s->pb, 2, s->center_mix_level);
1344 if (s->channel_mode & 0x04)
1345 put_bits(&s->pb, 2, s->surround_mix_level);
1346 if (s->channel_mode == AC3_CHMODE_STEREO)
1347 put_bits(&s->pb, 2, opt->dolby_surround_mode);
1348 put_bits(&s->pb, 1, s->lfe_on); /* LFE */
1349 put_bits(&s->pb, 5, -opt->dialogue_level);
1350 put_bits(&s->pb, 1, 0); /* no compression control word */
1351 put_bits(&s->pb, 1, 0); /* no lang code */
1352 put_bits(&s->pb, 1, opt->audio_production_info);
1353 if (opt->audio_production_info) {
1354 put_bits(&s->pb, 5, opt->mixing_level - 80);
1355 put_bits(&s->pb, 2, opt->room_type);
1356 }
1357 put_bits(&s->pb, 1, opt->copyright);
1358 put_bits(&s->pb, 1, opt->original);
1359 if (s->bitstream_id == 6) {
1360 /* alternate bit stream syntax */
1361 put_bits(&s->pb, 1, opt->extended_bsi_1);
1362 if (opt->extended_bsi_1) {
1363 put_bits(&s->pb, 2, opt->preferred_stereo_downmix);
1364 put_bits(&s->pb, 3, s->ltrt_center_mix_level);
1365 put_bits(&s->pb, 3, s->ltrt_surround_mix_level);
1366 put_bits(&s->pb, 3, s->loro_center_mix_level);
1367 put_bits(&s->pb, 3, s->loro_surround_mix_level);
1368 }
1369 put_bits(&s->pb, 1, opt->extended_bsi_2);
1370 if (opt->extended_bsi_2) {
1371 put_bits(&s->pb, 2, opt->dolby_surround_ex_mode);
1372 put_bits(&s->pb, 2, opt->dolby_headphone_mode);
1373 put_bits(&s->pb, 1, opt->ad_converter_type);
1374 put_bits(&s->pb, 9, 0); /* xbsi2 and encinfo : reserved */
1375 }
1376 } else {
1377 put_bits(&s->pb, 1, 0); /* no time code 1 */
1378 put_bits(&s->pb, 1, 0); /* no time code 2 */
1379 }
1380 put_bits(&s->pb, 1, 0); /* no additional bit stream info */
1381 }
1382
1383
1384 /*
1385 * Write one audio block to the output bitstream.
1386 */
1387 static void output_audio_block(AC3EncodeContext *s, int blk)
1388 {
1389 int ch, i, baie, bnd, got_cpl;
1390 int av_uninit(ch0);
1391 AC3Block *block = &s->blocks[blk];
1392
1393 /* block switching */
1394 if (!s->eac3) {
1395 for (ch = 0; ch < s->fbw_channels; ch++)
1396 put_bits(&s->pb, 1, 0);
1397 }
1398
1399 /* dither flags */
1400 if (!s->eac3) {
1401 for (ch = 0; ch < s->fbw_channels; ch++)
1402 put_bits(&s->pb, 1, 1);
1403 }
1404
1405 /* dynamic range codes */
1406 put_bits(&s->pb, 1, 0);
1407
1408 /* spectral extension */
1409 if (s->eac3)
1410 put_bits(&s->pb, 1, 0);
1411
1412 /* channel coupling */
1413 if (!s->eac3)
1414 put_bits(&s->pb, 1, block->new_cpl_strategy);
1415 if (block->new_cpl_strategy) {
1416 if (!s->eac3)
1417 put_bits(&s->pb, 1, block->cpl_in_use);
1418 if (block->cpl_in_use) {
1419 int start_sub, end_sub;
1420 if (s->eac3)
1421 put_bits(&s->pb, 1, 0); /* enhanced coupling */
1422 if (!s->eac3 || s->channel_mode != AC3_CHMODE_STEREO) {
1423 for (ch = 1; ch <= s->fbw_channels; ch++)
1424 put_bits(&s->pb, 1, block->channel_in_cpl[ch]);
1425 }
1426 if (s->channel_mode == AC3_CHMODE_STEREO)
1427 put_bits(&s->pb, 1, 0); /* phase flags in use */
1428 start_sub = (s->start_freq[CPL_CH] - 37) / 12;
1429 end_sub = (s->cpl_end_freq - 37) / 12;
1430 put_bits(&s->pb, 4, start_sub);
1431 put_bits(&s->pb, 4, end_sub - 3);
1432 /* coupling band structure */
1433 if (s->eac3) {
1434 put_bits(&s->pb, 1, 0); /* use default */
1435 } else {
1436 for (bnd = start_sub+1; bnd < end_sub; bnd++)
1437 put_bits(&s->pb, 1, ff_eac3_default_cpl_band_struct[bnd]);
1438 }
1439 }
1440 }
1441
1442 /* coupling coordinates */
1443 if (block->cpl_in_use) {
1444 for (ch = 1; ch <= s->fbw_channels; ch++) {
1445 if (block->channel_in_cpl[ch]) {
1446 if (!s->eac3 || block->new_cpl_coords[ch] != 2)
1447 put_bits(&s->pb, 1, block->new_cpl_coords[ch]);
1448 if (block->new_cpl_coords[ch]) {
1449 put_bits(&s->pb, 2, block->cpl_master_exp[ch]);
1450 for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
1451 put_bits(&s->pb, 4, block->cpl_coord_exp [ch][bnd]);
1452 put_bits(&s->pb, 4, block->cpl_coord_mant[ch][bnd]);
1453 }
1454 }
1455 }
1456 }
1457 }
1458
1459 /* stereo rematrixing */
1460 if (s->channel_mode == AC3_CHMODE_STEREO) {
1461 if (!s->eac3 || blk > 0)
1462 put_bits(&s->pb, 1, block->new_rematrixing_strategy);
1463 if (block->new_rematrixing_strategy) {
1464 /* rematrixing flags */
1465 for (bnd = 0; bnd < block->num_rematrixing_bands; bnd++)
1466 put_bits(&s->pb, 1, block->rematrixing_flags[bnd]);
1467 }
1468 }
1469
1470 /* exponent strategy */
1471 if (!s->eac3) {
1472 for (ch = !block->cpl_in_use; ch <= s->fbw_channels; ch++)
1473 put_bits(&s->pb, 2, s->exp_strategy[ch][blk]);
1474 if (s->lfe_on)
1475 put_bits(&s->pb, 1, s->exp_strategy[s->lfe_channel][blk]);
1476 }
1477
1478 /* bandwidth */
1479 for (ch = 1; ch <= s->fbw_channels; ch++) {
1480 if (s->exp_strategy[ch][blk] != EXP_REUSE && !block->channel_in_cpl[ch])
1481 put_bits(&s->pb, 6, s->bandwidth_code);
1482 }
1483
1484 /* exponents */
1485 for (ch = !block->cpl_in_use; ch <= s->channels; ch++) {
1486 int nb_groups;
1487 int cpl = (ch == CPL_CH);
1488
1489 if (s->exp_strategy[ch][blk] == EXP_REUSE)
1490 continue;
1491
1492 /* DC exponent */
1493 put_bits(&s->pb, 4, block->grouped_exp[ch][0] >> cpl);
1494
1495 /* exponent groups */
1496 nb_groups = exponent_group_tab[cpl][s->exp_strategy[ch][blk]-1][block->end_freq[ch]-s->start_freq[ch]];
1497 for (i = 1; i <= nb_groups; i++)
1498 put_bits(&s->pb, 7, block->grouped_exp[ch][i]);
1499
1500 /* gain range info */
1501 if (ch != s->lfe_channel && !cpl)
1502 put_bits(&s->pb, 2, 0);
1503 }
1504
1505 /* bit allocation info */
1506 if (!s->eac3) {
1507 baie = (blk == 0);
1508 put_bits(&s->pb, 1, baie);
1509 if (baie) {
1510 put_bits(&s->pb, 2, s->slow_decay_code);
1511 put_bits(&s->pb, 2, s->fast_decay_code);
1512 put_bits(&s->pb, 2, s->slow_gain_code);
1513 put_bits(&s->pb, 2, s->db_per_bit_code);
1514 put_bits(&s->pb, 3, s->floor_code);
1515 }
1516 }
1517
1518 /* snr offset */
1519 if (!s->eac3) {
1520 put_bits(&s->pb, 1, block->new_snr_offsets);
1521 if (block->new_snr_offsets) {
1522 put_bits(&s->pb, 6, s->coarse_snr_offset);
1523 for (ch = !block->cpl_in_use; ch <= s->channels; ch++) {
1524 put_bits(&s->pb, 4, s->fine_snr_offset[ch]);
1525 put_bits(&s->pb, 3, s->fast_gain_code[ch]);
1526 }
1527 }
1528 } else {
1529 put_bits(&s->pb, 1, 0); /* no converter snr offset */
1530 }
1531
1532 /* coupling leak */
1533 if (block->cpl_in_use) {
1534 if (!s->eac3 || block->new_cpl_leak != 2)
1535 put_bits(&s->pb, 1, block->new_cpl_leak);
1536 if (block->new_cpl_leak) {
1537 put_bits(&s->pb, 3, s->bit_alloc.cpl_fast_leak);
1538 put_bits(&s->pb, 3, s->bit_alloc.cpl_slow_leak);
1539 }
1540 }
1541
1542 if (!s->eac3) {
1543 put_bits(&s->pb, 1, 0); /* no delta bit allocation */
1544 put_bits(&s->pb, 1, 0); /* no data to skip */
1545 }
1546
1547 /* mantissas */
1548 got_cpl = !block->cpl_in_use;
1549 for (ch = 1; ch <= s->channels; ch++) {
1550 int b, q;
1551
1552 if (!got_cpl && ch > 1 && block->channel_in_cpl[ch-1]) {
1553 ch0 = ch - 1;
1554 ch = CPL_CH;
1555 got_cpl = 1;
1556 }
1557 for (i = s->start_freq[ch]; i < block->end_freq[ch]; i++) {
1558 q = block->qmant[ch][i];
1559 b = s->ref_bap[ch][blk][i];
1560 switch (b) {
1561 case 0: break;
1562 case 1: if (q != 128) put_bits (&s->pb, 5, q); break;
1563 case 2: if (q != 128) put_bits (&s->pb, 7, q); break;
1564 case 3: put_sbits(&s->pb, 3, q); break;
1565 case 4: if (q != 128) put_bits (&s->pb, 7, q); break;
1566 case 14: put_sbits(&s->pb, 14, q); break;
1567 case 15: put_sbits(&s->pb, 16, q); break;
1568 default: put_sbits(&s->pb, b-1, q); break;
1569 }
1570 }
1571 if (ch == CPL_CH)
1572 ch = ch0;
1573 }
1574 }
1575
1576
1577 /** CRC-16 Polynomial */
1578 #define CRC16_POLY ((1 << 0) | (1 << 2) | (1 << 15) | (1 << 16))
1579
1580
1581 static unsigned int mul_poly(unsigned int a, unsigned int b, unsigned int poly)
1582 {
1583 unsigned int c;
1584
1585 c = 0;
1586 while (a) {
1587 if (a & 1)
1588 c ^= b;
1589 a = a >> 1;
1590 b = b << 1;
1591 if (b & (1 << 16))
1592 b ^= poly;
1593 }
1594 return c;
1595 }
1596
1597
1598 static unsigned int pow_poly(unsigned int a, unsigned int n, unsigned int poly)
1599 {
1600 unsigned int r;
1601 r = 1;
1602 while (n) {
1603 if (n & 1)
1604 r = mul_poly(r, a, poly);
1605 a = mul_poly(a, a, poly);
1606 n >>= 1;
1607 }
1608 return r;
1609 }
1610
1611
1612 /*
1613 * Fill the end of the frame with 0's and compute the two CRCs.
1614 */
1615 static void output_frame_end(AC3EncodeContext *s)
1616 {
1617 const AVCRC *crc_ctx = av_crc_get_table(AV_CRC_16_ANSI);
1618 int frame_size_58, pad_bytes, crc1, crc2_partial, crc2, crc_inv;
1619 uint8_t *frame;
1620
1621 frame_size_58 = ((s->frame_size >> 2) + (s->frame_size >> 4)) << 1;
1622
1623 /* pad the remainder of the frame with zeros */
1624 av_assert2(s->frame_size * 8 - put_bits_count(&s->pb) >= 18);
1625 flush_put_bits(&s->pb);
1626 frame = s->pb.buf;
1627 pad_bytes = s->frame_size - (put_bits_ptr(&s->pb) - frame) - 2;
1628 av_assert2(pad_bytes >= 0);
1629 if (pad_bytes > 0)
1630 memset(put_bits_ptr(&s->pb), 0, pad_bytes);
1631
1632 if (s->eac3) {
1633 /* compute crc2 */
1634 crc2_partial = av_crc(crc_ctx, 0, frame + 2, s->frame_size - 5);
1635 } else {
1636 /* compute crc1 */
1637 /* this is not so easy because it is at the beginning of the data... */
1638 crc1 = av_bswap16(av_crc(crc_ctx, 0, frame + 4, frame_size_58 - 4));
1639 crc_inv = s->crc_inv[s->frame_size > s->frame_size_min];
1640 crc1 = mul_poly(crc_inv, crc1, CRC16_POLY);
1641 AV_WB16(frame + 2, crc1);
1642
1643 /* compute crc2 */
1644 crc2_partial = av_crc(crc_ctx, 0, frame + frame_size_58,
1645 s->frame_size - frame_size_58 - 3);
1646 }
1647 crc2 = av_crc(crc_ctx, crc2_partial, frame + s->frame_size - 3, 1);
1648 /* ensure crc2 does not match sync word by flipping crcrsv bit if needed */
1649 if (crc2 == 0x770B) {
1650 frame[s->frame_size - 3] ^= 0x1;
1651 crc2 = av_crc(crc_ctx, crc2_partial, frame + s->frame_size - 3, 1);
1652 }
1653 crc2 = av_bswap16(crc2);
1654 AV_WB16(frame + s->frame_size - 2, crc2);
1655 }
1656
1657
1658 /**
1659 * Write the frame to the output bitstream.
1660 *
1661 * @param s AC-3 encoder private context
1662 * @param frame output data buffer
1663 */
1664 void ff_ac3_output_frame(AC3EncodeContext *s, unsigned char *frame)
1665 {
1666 int blk;
1667
1668 init_put_bits(&s->pb, frame, AC3_MAX_CODED_FRAME_SIZE);
1669
1670 s->output_frame_header(s);
1671
1672 for (blk = 0; blk < s->num_blocks; blk++)
1673 output_audio_block(s, blk);
1674
1675 output_frame_end(s);
1676 }
1677
1678
1679 static void dprint_options(AC3EncodeContext *s)
1680 {
1681 #ifdef DEBUG
1682 AVCodecContext *avctx = s->avctx;
1683 AC3EncOptions *opt = &s->options;
1684 char strbuf[32];
1685
1686 switch (s->bitstream_id) {
1687 case 6: av_strlcpy(strbuf, "AC-3 (alt syntax)", 32); break;
1688 case 8: av_strlcpy(strbuf, "AC-3 (standard)", 32); break;
1689 case 9: av_strlcpy(strbuf, "AC-3 (dnet half-rate)", 32); break;
1690 case 10: av_strlcpy(strbuf, "AC-3 (dnet quater-rate)", 32); break;
1691 case 16: av_strlcpy(strbuf, "E-AC-3 (enhanced)", 32); break;
1692 default: snprintf(strbuf, 32, "ERROR");
1693 }
1694 av_dlog(avctx, "bitstream_id: %s (%d)\n", strbuf, s->bitstream_id);
1695 av_dlog(avctx, "sample_fmt: %s\n", av_get_sample_fmt_name(avctx->sample_fmt));
1696 av_get_channel_layout_string(strbuf, 32, s->channels, avctx->channel_layout);
1697 av_dlog(avctx, "channel_layout: %s\n", strbuf);
1698 av_dlog(avctx, "sample_rate: %d\n", s->sample_rate);
1699 av_dlog(avctx, "bit_rate: %d\n", s->bit_rate);
1700 av_dlog(avctx, "blocks/frame: %d (code=%d)\n", s->num_blocks, s->num_blks_code);
1701 if (s->cutoff)
1702 av_dlog(avctx, "cutoff: %d\n", s->cutoff);
1703
1704 av_dlog(avctx, "per_frame_metadata: %s\n",
1705 opt->allow_per_frame_metadata?"on":"off");
1706 if (s->has_center)
1707 av_dlog(avctx, "center_mixlev: %0.3f (%d)\n", opt->center_mix_level,
1708 s->center_mix_level);
1709 else
1710 av_dlog(avctx, "center_mixlev: {not written}\n");
1711 if (s->has_surround)
1712 av_dlog(avctx, "surround_mixlev: %0.3f (%d)\n", opt->surround_mix_level,
1713 s->surround_mix_level);
1714 else
1715 av_dlog(avctx, "surround_mixlev: {not written}\n");
1716 if (opt->audio_production_info) {
1717 av_dlog(avctx, "mixing_level: %ddB\n", opt->mixing_level);
1718 switch (opt->room_type) {
1719 case AC3ENC_OPT_NOT_INDICATED: av_strlcpy(strbuf, "notindicated", 32); break;
1720 case AC3ENC_OPT_LARGE_ROOM: av_strlcpy(strbuf, "large", 32); break;
1721 case AC3ENC_OPT_SMALL_ROOM: av_strlcpy(strbuf, "small", 32); break;
1722 default: snprintf(strbuf, 32, "ERROR (%d)", opt->room_type);
1723 }
1724 av_dlog(avctx, "room_type: %s\n", strbuf);
1725 } else {
1726 av_dlog(avctx, "mixing_level: {not written}\n");
1727 av_dlog(avctx, "room_type: {not written}\n");
1728 }
1729 av_dlog(avctx, "copyright: %s\n", opt->copyright?"on":"off");
1730 av_dlog(avctx, "dialnorm: %ddB\n", opt->dialogue_level);
1731 if (s->channel_mode == AC3_CHMODE_STEREO) {
1732 switch (opt->dolby_surround_mode) {
1733 case AC3ENC_OPT_NOT_INDICATED: av_strlcpy(strbuf, "notindicated", 32); break;
1734 case AC3ENC_OPT_MODE_ON: av_strlcpy(strbuf, "on", 32); break;
1735 case AC3ENC_OPT_MODE_OFF: av_strlcpy(strbuf, "off", 32); break;
1736 default: snprintf(strbuf, 32, "ERROR (%d)", opt->dolby_surround_mode);
1737 }
1738 av_dlog(avctx, "dsur_mode: %s\n", strbuf);
1739 } else {
1740 av_dlog(avctx, "dsur_mode: {not written}\n");
1741 }
1742 av_dlog(avctx, "original: %s\n", opt->original?"on":"off");
1743
1744 if (s->bitstream_id == 6) {
1745 if (opt->extended_bsi_1) {
1746 switch (opt->preferred_stereo_downmix) {
1747 case AC3ENC_OPT_NOT_INDICATED: av_strlcpy(strbuf, "notindicated", 32); break;
1748 case AC3ENC_OPT_DOWNMIX_LTRT: av_strlcpy(strbuf, "ltrt", 32); break;
1749 case AC3ENC_OPT_DOWNMIX_LORO: av_strlcpy(strbuf, "loro", 32); break;
1750 default: snprintf(strbuf, 32, "ERROR (%d)", opt->preferred_stereo_downmix);
1751 }
1752 av_dlog(avctx, "dmix_mode: %s\n", strbuf);
1753 av_dlog(avctx, "ltrt_cmixlev: %0.3f (%d)\n",
1754 opt->ltrt_center_mix_level, s->ltrt_center_mix_level);
1755 av_dlog(avctx, "ltrt_surmixlev: %0.3f (%d)\n",
1756 opt->ltrt_surround_mix_level, s->ltrt_surround_mix_level);
1757 av_dlog(avctx, "loro_cmixlev: %0.3f (%d)\n",
1758 opt->loro_center_mix_level, s->loro_center_mix_level);
1759 av_dlog(avctx, "loro_surmixlev: %0.3f (%d)\n",
1760 opt->loro_surround_mix_level, s->loro_surround_mix_level);
1761 } else {
1762 av_dlog(avctx, "extended bitstream info 1: {not written}\n");
1763 }
1764 if (opt->extended_bsi_2) {
1765 switch (opt->dolby_surround_ex_mode) {
1766 case AC3ENC_OPT_NOT_INDICATED: av_strlcpy(strbuf, "notindicated", 32); break;
1767 case AC3ENC_OPT_MODE_ON: av_strlcpy(strbuf, "on", 32); break;
1768 case AC3ENC_OPT_MODE_OFF: av_strlcpy(strbuf, "off", 32); break;
1769 default: snprintf(strbuf, 32, "ERROR (%d)", opt->dolby_surround_ex_mode);
1770 }
1771 av_dlog(avctx, "dsurex_mode: %s\n", strbuf);
1772 switch (opt->dolby_headphone_mode) {
1773 case AC3ENC_OPT_NOT_INDICATED: av_strlcpy(strbuf, "notindicated", 32); break;
1774 case AC3ENC_OPT_MODE_ON: av_strlcpy(strbuf, "on", 32); break;
1775 case AC3ENC_OPT_MODE_OFF: av_strlcpy(strbuf, "off", 32); break;
1776 default: snprintf(strbuf, 32, "ERROR (%d)", opt->dolby_headphone_mode);
1777 }
1778 av_dlog(avctx, "dheadphone_mode: %s\n", strbuf);
1779
1780 switch (opt->ad_converter_type) {
1781 case AC3ENC_OPT_ADCONV_STANDARD: av_strlcpy(strbuf, "standard", 32); break;
1782 case AC3ENC_OPT_ADCONV_HDCD: av_strlcpy(strbuf, "hdcd", 32); break;
1783 default: snprintf(strbuf, 32, "ERROR (%d)", opt->ad_converter_type);
1784 }
1785 av_dlog(avctx, "ad_conv_type: %s\n", strbuf);
1786 } else {
1787 av_dlog(avctx, "extended bitstream info 2: {not written}\n");
1788 }
1789 }
1790 #endif
1791 }
1792
1793
1794 #define FLT_OPTION_THRESHOLD 0.01
1795
1796 static int validate_float_option(float v, const float *v_list, int v_list_size)
1797 {
1798 int i;
1799
1800 for (i = 0; i < v_list_size; i++) {
1801 if (v < (v_list[i] + FLT_OPTION_THRESHOLD) &&
1802 v > (v_list[i] - FLT_OPTION_THRESHOLD))
1803 break;
1804 }
1805 if (i == v_list_size)
1806 return -1;
1807
1808 return i;
1809 }
1810
1811
1812 static void validate_mix_level(void *log_ctx, const char *opt_name,
1813 float *opt_param, const float *list,
1814 int list_size, int default_value, int min_value,
1815 int *ctx_param)
1816 {
1817 int mixlev = validate_float_option(*opt_param, list, list_size);
1818 if (mixlev < min_value) {
1819 mixlev = default_value;
1820 if (*opt_param >= 0.0) {
1821 av_log(log_ctx, AV_LOG_WARNING, "requested %s is not valid. using "
1822 "default value: %0.3f\n", opt_name, list[mixlev]);
1823 }
1824 }
1825 *opt_param = list[mixlev];
1826 *ctx_param = mixlev;
1827 }
1828
1829
1830 /**
1831 * Validate metadata options as set by AVOption system.
1832 * These values can optionally be changed per-frame.
1833 *
1834 * @param s AC-3 encoder private context
1835 */
1836 int ff_ac3_validate_metadata(AC3EncodeContext *s)
1837 {
1838 AVCodecContext *avctx = s->avctx;
1839 AC3EncOptions *opt = &s->options;
1840
1841 opt->audio_production_info = 0;
1842 opt->extended_bsi_1 = 0;
1843 opt->extended_bsi_2 = 0;
1844 opt->eac3_mixing_metadata = 0;
1845 opt->eac3_info_metadata = 0;
1846
1847 /* determine mixing metadata / xbsi1 use */
1848 if (s->channel_mode > AC3_CHMODE_STEREO && opt->preferred_stereo_downmix != AC3ENC_OPT_NONE) {
1849 opt->extended_bsi_1 = 1;
1850 opt->eac3_mixing_metadata = 1;
1851 }
1852 if (s->has_center &&
1853 (opt->ltrt_center_mix_level >= 0 || opt->loro_center_mix_level >= 0)) {
1854 opt->extended_bsi_1 = 1;
1855 opt->eac3_mixing_metadata = 1;
1856 }
1857 if (s->has_surround &&
1858 (opt->ltrt_surround_mix_level >= 0 || opt->loro_surround_mix_level >= 0)) {
1859 opt->extended_bsi_1 = 1;
1860 opt->eac3_mixing_metadata = 1;
1861 }
1862
1863 if (s->eac3) {
1864 /* determine info metadata use */
1865 if (avctx->audio_service_type != AV_AUDIO_SERVICE_TYPE_MAIN)
1866 opt->eac3_info_metadata = 1;
1867 if (opt->copyright != AC3ENC_OPT_NONE || opt->original != AC3ENC_OPT_NONE)
1868 opt->eac3_info_metadata = 1;
1869 if (s->channel_mode == AC3_CHMODE_STEREO &&
1870 (opt->dolby_headphone_mode != AC3ENC_OPT_NONE || opt->dolby_surround_mode != AC3ENC_OPT_NONE))
1871 opt->eac3_info_metadata = 1;
1872 if (s->channel_mode >= AC3_CHMODE_2F2R && opt->dolby_surround_ex_mode != AC3ENC_OPT_NONE)
1873 opt->eac3_info_metadata = 1;
1874 if (opt->mixing_level != AC3ENC_OPT_NONE || opt->room_type != AC3ENC_OPT_NONE ||
1875 opt->ad_converter_type != AC3ENC_OPT_NONE) {
1876 opt->audio_production_info = 1;
1877 opt->eac3_info_metadata = 1;
1878 }
1879 } else {
1880 /* determine audio production info use */
1881 if (opt->mixing_level != AC3ENC_OPT_NONE || opt->room_type != AC3ENC_OPT_NONE)
1882 opt->audio_production_info = 1;
1883
1884 /* determine xbsi2 use */
1885 if (s->channel_mode >= AC3_CHMODE_2F2R && opt->dolby_surround_ex_mode != AC3ENC_OPT_NONE)
1886 opt->extended_bsi_2 = 1;
1887 if (s->channel_mode == AC3_CHMODE_STEREO && opt->dolby_headphone_mode != AC3ENC_OPT_NONE)
1888 opt->extended_bsi_2 = 1;
1889 if (opt->ad_converter_type != AC3ENC_OPT_NONE)
1890 opt->extended_bsi_2 = 1;
1891 }
1892
1893 /* validate AC-3 mixing levels */
1894 if (!s->eac3) {
1895 if (s->has_center) {
1896 validate_mix_level(avctx, "center_mix_level", &opt->center_mix_level,
1897 cmixlev_options, CMIXLEV_NUM_OPTIONS, 1, 0,
1898 &s->center_mix_level);
1899 }
1900 if (s->has_surround) {
1901 validate_mix_level(avctx, "surround_mix_level", &opt->surround_mix_level,
1902 surmixlev_options, SURMIXLEV_NUM_OPTIONS, 1, 0,
1903 &s->surround_mix_level);
1904 }
1905 }
1906
1907 /* validate extended bsi 1 / mixing metadata */
1908 if (opt->extended_bsi_1 || opt->eac3_mixing_metadata) {
1909 /* default preferred stereo downmix */
1910 if (opt->preferred_stereo_downmix == AC3ENC_OPT_NONE)
1911 opt->preferred_stereo_downmix = AC3ENC_OPT_NOT_INDICATED;
1912 if (!s->eac3 || s->has_center) {
1913 /* validate Lt/Rt center mix level */
1914 validate_mix_level(avctx, "ltrt_center_mix_level",
1915 &opt->ltrt_center_mix_level, extmixlev_options,
1916 EXTMIXLEV_NUM_OPTIONS, 5, 0,
1917 &s->ltrt_center_mix_level);
1918 /* validate Lo/Ro center mix level */
1919 validate_mix_level(avctx, "loro_center_mix_level",
1920 &opt->loro_center_mix_level, extmixlev_options,
1921 EXTMIXLEV_NUM_OPTIONS, 5, 0,
1922 &s->loro_center_mix_level);
1923 }
1924 if (!s->eac3 || s->has_surround) {
1925 /* validate Lt/Rt surround mix level */
1926 validate_mix_level(avctx, "ltrt_surround_mix_level",
1927 &opt->ltrt_surround_mix_level, extmixlev_options,
1928 EXTMIXLEV_NUM_OPTIONS, 6, 3,
1929 &s->ltrt_surround_mix_level);
1930 /* validate Lo/Ro surround mix level */
1931 validate_mix_level(avctx, "loro_surround_mix_level",
1932 &opt->loro_surround_mix_level, extmixlev_options,
1933 EXTMIXLEV_NUM_OPTIONS, 6, 3,
1934 &s->loro_surround_mix_level);
1935 }
1936 }
1937
1938 /* validate audio service type / channels combination */
1939 if ((avctx->audio_service_type == AV_AUDIO_SERVICE_TYPE_KARAOKE &&
1940 avctx->channels == 1) ||
1941 ((avctx->audio_service_type == AV_AUDIO_SERVICE_TYPE_COMMENTARY ||
1942 avctx->audio_service_type == AV_AUDIO_SERVICE_TYPE_EMERGENCY ||
1943 avctx->audio_service_type == AV_AUDIO_SERVICE_TYPE_VOICE_OVER)
1944 && avctx->channels > 1)) {
1945 av_log(avctx, AV_LOG_ERROR, "invalid audio service type for the "
1946 "specified number of channels\n");
1947 return AVERROR(EINVAL);
1948 }
1949
1950 /* validate extended bsi 2 / info metadata */
1951 if (opt->extended_bsi_2 || opt->eac3_info_metadata) {
1952 /* default dolby headphone mode */
1953 if (opt->dolby_headphone_mode == AC3ENC_OPT_NONE)
1954 opt->dolby_headphone_mode = AC3ENC_OPT_NOT_INDICATED;
1955 /* default dolby surround ex mode */
1956 if (opt->dolby_surround_ex_mode == AC3ENC_OPT_NONE)
1957 opt->dolby_surround_ex_mode = AC3ENC_OPT_NOT_INDICATED;
1958 /* default A/D converter type */
1959 if (opt->ad_converter_type == AC3ENC_OPT_NONE)
1960 opt->ad_converter_type = AC3ENC_OPT_ADCONV_STANDARD;
1961 }
1962
1963 /* copyright & original defaults */
1964 if (!s->eac3 || opt->eac3_info_metadata) {
1965 /* default copyright */
1966 if (opt->copyright == AC3ENC_OPT_NONE)
1967 opt->copyright = AC3ENC_OPT_OFF;
1968 /* default original */
1969 if (opt->original == AC3ENC_OPT_NONE)
1970 opt->original = AC3ENC_OPT_ON;
1971 }
1972
1973 /* dolby surround mode default */
1974 if (!s->eac3 || opt->eac3_info_metadata) {
1975 if (opt->dolby_surround_mode == AC3ENC_OPT_NONE)
1976 opt->dolby_surround_mode = AC3ENC_OPT_NOT_INDICATED;
1977 }
1978
1979 /* validate audio production info */
1980 if (opt->audio_production_info) {
1981 if (opt->mixing_level == AC3ENC_OPT_NONE) {
1982 av_log(avctx, AV_LOG_ERROR, "mixing_level must be set if "
1983 "room_type is set\n");
1984 return AVERROR(EINVAL);
1985 }
1986 if (opt->mixing_level < 80) {
1987 av_log(avctx, AV_LOG_ERROR, "invalid mixing level. must be between "
1988 "80dB and 111dB\n");
1989 return AVERROR(EINVAL);
1990 }
1991 /* default room type */
1992 if (opt->room_type == AC3ENC_OPT_NONE)
1993 opt->room_type = AC3ENC_OPT_NOT_INDICATED;
1994 }
1995
1996 /* set bitstream id for alternate bitstream syntax */
1997 if (!s->eac3 && (opt->extended_bsi_1 || opt->extended_bsi_2)) {
1998 if (s->bitstream_id > 8 && s->bitstream_id < 11) {
1999 static int warn_once = 1;
2000 if (warn_once) {
2001 av_log(avctx, AV_LOG_WARNING, "alternate bitstream syntax is "
2002 "not compatible with reduced samplerates. writing of "
2003 "extended bitstream information will be disabled.\n");
2004 warn_once = 0;
2005 }
2006 } else {
2007 s->bitstream_id = 6;
2008 }
2009 }
2010
2011 return 0;
2012 }
2013
2014
2015 /**
2016 * Finalize encoding and free any memory allocated by the encoder.
2017 *
2018 * @param avctx Codec context
2019 */
2020 av_cold int ff_ac3_encode_close(AVCodecContext *avctx)
2021 {
2022 int blk, ch;
2023 AC3EncodeContext *s = avctx->priv_data;
2024
2025 av_freep(&s->windowed_samples);
2026 for (ch = 0; ch < s->channels; ch++)
2027 av_freep(&s->planar_samples[ch]);
2028 av_freep(&s->planar_samples);
2029 av_freep(&s->bap_buffer);
2030 av_freep(&s->bap1_buffer);
2031 av_freep(&s->mdct_coef_buffer);
2032 av_freep(&s->fixed_coef_buffer);
2033 av_freep(&s->exp_buffer);
2034 av_freep(&s->grouped_exp_buffer);
2035 av_freep(&s->psd_buffer);
2036 av_freep(&s->band_psd_buffer);
2037 av_freep(&s->mask_buffer);
2038 av_freep(&s->qmant_buffer);
2039 av_freep(&s->cpl_coord_exp_buffer);
2040 av_freep(&s->cpl_coord_mant_buffer);
2041 for (blk = 0; blk < s->num_blocks; blk++) {
2042 AC3Block *block = &s->blocks[blk];
2043 av_freep(&block->mdct_coef);
2044 av_freep(&block->fixed_coef);
2045 av_freep(&block->exp);
2046 av_freep(&block->grouped_exp);
2047 av_freep(&block->psd);
2048 av_freep(&block->band_psd);
2049 av_freep(&block->mask);
2050 av_freep(&block->qmant);
2051 av_freep(&block->cpl_coord_exp);
2052 av_freep(&block->cpl_coord_mant);
2053 }
2054
2055 s->mdct_end(s);
2056
2057 av_freep(&avctx->coded_frame);
2058 return 0;
2059 }
2060
2061
2062 /*
2063 * Set channel information during initialization.
2064 */
2065 static av_cold int set_channel_info(AC3EncodeContext *s, int channels,
2066 int64_t *channel_layout)
2067 {
2068 int ch_layout;
2069
2070 if (channels < 1 || channels > AC3_MAX_CHANNELS)
2071 return AVERROR(EINVAL);
2072 if ((uint64_t)*channel_layout > 0x7FF)
2073 return AVERROR(EINVAL);
2074 ch_layout = *channel_layout;
2075 if (!ch_layout)
2076 ch_layout = avcodec_guess_channel_layout(channels, CODEC_ID_AC3, NULL);
2077
2078 s->lfe_on = !!(ch_layout & AV_CH_LOW_FREQUENCY);
2079 s->channels = channels;
2080 s->fbw_channels = channels - s->lfe_on;
2081 s->lfe_channel = s->lfe_on ? s->fbw_channels + 1 : -1;
2082 if (s->lfe_on)
2083 ch_layout -= AV_CH_LOW_FREQUENCY;
2084
2085 switch (ch_layout) {
2086 case AV_CH_LAYOUT_MONO: s->channel_mode = AC3_CHMODE_MONO; break;
2087 case AV_CH_LAYOUT_STEREO: s->channel_mode = AC3_CHMODE_STEREO; break;
2088 case AV_CH_LAYOUT_SURROUND: s->channel_mode = AC3_CHMODE_3F; break;
2089 case AV_CH_LAYOUT_2_1: s->channel_mode = AC3_CHMODE_2F1R; break;
2090 case AV_CH_LAYOUT_4POINT0: s->channel_mode = AC3_CHMODE_3F1R; break;
2091 case AV_CH_LAYOUT_QUAD:
2092 case AV_CH_LAYOUT_2_2: s->channel_mode = AC3_CHMODE_2F2R; break;
2093 case AV_CH_LAYOUT_5POINT0:
2094 case AV_CH_LAYOUT_5POINT0_BACK: s->channel_mode = AC3_CHMODE_3F2R; break;
2095 default:
2096 return AVERROR(EINVAL);
2097 }
2098 s->has_center = (s->channel_mode & 0x01) && s->channel_mode != AC3_CHMODE_MONO;
2099 s->has_surround = s->channel_mode & 0x04;
2100
2101 s->channel_map = ff_ac3_enc_channel_map[s->channel_mode][s->lfe_on];
2102 *channel_layout = ch_layout;
2103 if (s->lfe_on)
2104 *channel_layout |= AV_CH_LOW_FREQUENCY;
2105
2106 return 0;
2107 }
2108
2109
2110 static av_cold int validate_options(AC3EncodeContext *s)
2111 {
2112 AVCodecContext *avctx = s->avctx;
2113 int i, ret, max_sr;
2114
2115 /* validate channel layout */
2116 if (!avctx->channel_layout) {
2117 av_log(avctx, AV_LOG_WARNING, "No channel layout specified. The "
2118 "encoder will guess the layout, but it "
2119 "might be incorrect.\n");
2120 }
2121 ret = set_channel_info(s, avctx->channels, &avctx->channel_layout);
2122 if (ret) {
2123 av_log(avctx, AV_LOG_ERROR, "invalid channel layout\n");
2124 return ret;
2125 }
2126
2127 /* validate sample rate */
2128 /* note: max_sr could be changed from 2 to 5 for E-AC-3 once we find a
2129 decoder that supports half sample rate so we can validate that
2130 the generated files are correct. */
2131 max_sr = s->eac3 ? 2 : 8;
2132 for (i = 0; i <= max_sr; i++) {
2133 if ((ff_ac3_sample_rate_tab[i % 3] >> (i / 3)) == avctx->sample_rate)
2134 break;
2135 }
2136 if (i > max_sr) {
2137 av_log(avctx, AV_LOG_ERROR, "invalid sample rate\n");
2138 return AVERROR(EINVAL);
2139 }
2140 s->sample_rate = avctx->sample_rate;
2141 s->bit_alloc.sr_shift = i / 3;
2142 s->bit_alloc.sr_code = i % 3;
2143 s->bitstream_id = s->eac3 ? 16 : 8 + s->bit_alloc.sr_shift;
2144
2145 /* validate bit rate */
2146 if (s->eac3) {
2147 int max_br, min_br, wpf, min_br_dist, min_br_code;
2148 int num_blks_code, num_blocks, frame_samples;
2149
2150 /* calculate min/max bitrate */
2151 /* TODO: More testing with 3 and 2 blocks. All E-AC-3 samples I've
2152 found use either 6 blocks or 1 block, even though 2 or 3 blocks
2153 would work as far as the bit rate is concerned. */
2154 for (num_blks_code = 3; num_blks_code >= 0; num_blks_code--) {
2155 num_blocks = ((int[]){ 1, 2, 3, 6 })[num_blks_code];
2156 frame_samples = AC3_BLOCK_SIZE * num_blocks;
2157 max_br = 2048 * s->sample_rate / frame_samples * 16;
2158 min_br = ((s->sample_rate + (frame_samples-1)) / frame_samples) * 16;
2159 if (avctx->bit_rate <= max_br)
2160 break;
2161 }
2162 if (avctx->bit_rate < min_br || avctx->bit_rate > max_br) {
2163 av_log(avctx, AV_LOG_ERROR, "invalid bit rate. must be %d to %d "
2164 "for this sample rate\n", min_br, max_br);
2165 return AVERROR(EINVAL);
2166 }
2167 s->num_blks_code = num_blks_code;
2168 s->num_blocks = num_blocks;
2169
2170 /* calculate words-per-frame for the selected bitrate */
2171 wpf = (avctx->bit_rate / 16) * frame_samples / s->sample_rate;
2172 av_assert1(wpf > 0 && wpf <= 2048);
2173
2174 /* find the closest AC-3 bitrate code to the selected bitrate.
2175 this is needed for lookup tables for bandwidth and coupling
2176 parameter selection */
2177 min_br_code = -1;
2178 min_br_dist = INT_MAX;
2179 for (i = 0; i < 19; i++) {
2180 int br_dist = abs(ff_ac3_bitrate_tab[i] * 1000 - avctx->bit_rate);
2181 if (br_dist < min_br_dist) {
2182 min_br_dist = br_dist;
2183 min_br_code = i;
2184 }
2185 }
2186
2187 /* make sure the minimum frame size is below the average frame size */
2188 s->frame_size_code = min_br_code << 1;
2189 while (wpf > 1 && wpf * s->sample_rate / AC3_FRAME_SIZE * 16 > avctx->bit_rate)
2190 wpf--;
2191 s->frame_size_min = 2 * wpf;
2192 } else {
2193 for (i = 0; i < 19; i++) {
2194 if ((ff_ac3_bitrate_tab[i] >> s->bit_alloc.sr_shift)*1000 == avctx->bit_rate)
2195 break;
2196 }
2197 if (i == 19) {
2198 av_log(avctx, AV_LOG_ERROR, "invalid bit rate\n");
2199 return AVERROR(EINVAL);
2200 }
2201 s->frame_size_code = i << 1;
2202 s->frame_size_min = 2 * ff_ac3_frame_size_tab[s->frame_size_code][s->bit_alloc.sr_code];
2203 s->num_blks_code = 0x3;
2204 s->num_blocks = 6;
2205 }
2206 s->bit_rate = avctx->bit_rate;
2207 s->frame_size = s->frame_size_min;
2208
2209 /* validate cutoff */
2210 if (avctx->cutoff < 0) {
2211 av_log(avctx, AV_LOG_ERROR, "invalid cutoff frequency\n");
2212 return AVERROR(EINVAL);
2213 }
2214 s->cutoff = avctx->cutoff;
2215 if (s->cutoff > (s->sample_rate >> 1))
2216 s->cutoff = s->sample_rate >> 1;
2217
2218 ret = ff_ac3_validate_metadata(s);
2219 if (ret)
2220 return ret;
2221
2222 s->rematrixing_enabled = s->options.stereo_rematrixing &&
2223 (s->channel_mode == AC3_CHMODE_STEREO);
2224
2225 s->cpl_enabled = s->options.channel_coupling &&
2226 s->channel_mode >= AC3_CHMODE_STEREO;
2227
2228 return 0;
2229 }
2230
2231
2232 /*
2233 * Set bandwidth for all channels.
2234 * The user can optionally supply a cutoff frequency. Otherwise an appropriate
2235 * default value will be used.
2236 */
2237 static av_cold void set_bandwidth(AC3EncodeContext *s)
2238 {
2239 int blk, ch;
2240 int av_uninit(cpl_start);
2241
2242 if (s->cutoff) {
2243 /* calculate bandwidth based on user-specified cutoff frequency */
2244 int fbw_coeffs;
2245 fbw_coeffs = s->cutoff * 2 * AC3_MAX_COEFS / s->sample_rate;
2246 s->bandwidth_code = av_clip((fbw_coeffs - 73) / 3, 0, 60);
2247 } else {
2248 /* use default bandwidth setting */
2249 s->bandwidth_code = ac3_bandwidth_tab[s->fbw_channels-1][s->bit_alloc.sr_code][s->frame_size_code/2];
2250 }
2251
2252 /* set number of coefficients for each channel */
2253 for (ch = 1; ch <= s->fbw_channels; ch++) {
2254 s->start_freq[ch] = 0;
2255 for (blk = 0; blk < s->num_blocks; blk++)
2256 s->blocks[blk].end_freq[ch] = s->bandwidth_code * 3 + 73;
2257 }
2258 /* LFE channel always has 7 coefs */
2259 if (s->lfe_on) {
2260 s->start_freq[s->lfe_channel] = 0;
2261 for (blk = 0; blk < s->num_blocks; blk++)
2262 s->blocks[blk].end_freq[ch] = 7;
2263 }
2264
2265 /* initialize coupling strategy */
2266 if (s->cpl_enabled) {
2267 if (s->options.cpl_start != AC3ENC_OPT_AUTO) {
2268 cpl_start = s->options.cpl_start;
2269 } else {
2270 cpl_start = ac3_coupling_start_tab[s->channel_mode-2][s->bit_alloc.sr_code][s->frame_size_code/2];
2271 if (cpl_start < 0) {
2272 if (s->options.channel_coupling == AC3ENC_OPT_AUTO)
2273 s->cpl_enabled = 0;
2274 else
2275 cpl_start = 15;
2276 }
2277 }
2278 }
2279 if (s->cpl_enabled) {
2280 int i, cpl_start_band, cpl_end_band;
2281 uint8_t *cpl_band_sizes = s->cpl_band_sizes;
2282
2283 cpl_end_band = s->bandwidth_code / 4 + 3;
2284 cpl_start_band = av_clip(cpl_start, 0, FFMIN(cpl_end_band-1, 15));
2285
2286 s->num_cpl_subbands = cpl_end_band - cpl_start_band;
2287
2288 s->num_cpl_bands = 1;
2289 *cpl_band_sizes = 12;
2290 for (i = cpl_start_band + 1; i < cpl_end_band; i++) {
2291 if (ff_eac3_default_cpl_band_struct[i]) {
2292 *cpl_band_sizes += 12;
2293 } else {
2294 s->num_cpl_bands++;
2295 cpl_band_sizes++;
2296 *cpl_band_sizes = 12;
2297 }
2298 }
2299
2300 s->start_freq[CPL_CH] = cpl_start_band * 12 + 37;
2301 s->cpl_end_freq = cpl_end_band * 12 + 37;
2302 for (blk = 0; blk < s->num_blocks; blk++)
2303 s->blocks[blk].end_freq[CPL_CH] = s->cpl_end_freq;
2304 }
2305 }
2306
2307
2308 static av_cold int allocate_buffers(AC3EncodeContext *s)
2309 {
2310 AVCodecContext *avctx = s->avctx;
2311 int blk, ch;
2312 int channels = s->channels + 1; /* includes coupling channel */
2313 int channel_blocks = channels * s->num_blocks;
2314 int total_coefs = AC3_MAX_COEFS * channel_blocks;
2315
2316 if (s->allocate_sample_buffers(s))
2317 goto alloc_fail;
2318
2319 FF_ALLOC_OR_GOTO(avctx, s->bap_buffer, total_coefs *
2320 sizeof(*s->bap_buffer), alloc_fail);
2321 FF_ALLOC_OR_GOTO(avctx, s->bap1_buffer, total_coefs *
2322 sizeof(*s->bap1_buffer), alloc_fail);
2323 FF_ALLOCZ_OR_GOTO(avctx, s->mdct_coef_buffer, total_coefs *
2324 sizeof(*s->mdct_coef_buffer), alloc_fail);
2325 FF_ALLOC_OR_GOTO(avctx, s->exp_buffer, total_coefs *
2326 sizeof(*s->exp_buffer), alloc_fail);
2327 FF_ALLOC_OR_GOTO(avctx, s->grouped_exp_buffer, channel_blocks * 128 *
2328 sizeof(*s->grouped_exp_buffer), alloc_fail);
2329 FF_ALLOC_OR_GOTO(avctx, s->psd_buffer, total_coefs *
2330 sizeof(*s->psd_buffer), alloc_fail);
2331 FF_ALLOC_OR_GOTO(avctx, s->band_psd_buffer, channel_blocks * 64 *
2332 sizeof(*s->band_psd_buffer), alloc_fail);
2333 FF_ALLOC_OR_GOTO(avctx, s->mask_buffer, channel_blocks * 64 *
2334 sizeof(*s->mask_buffer), alloc_fail);
2335 FF_ALLOC_OR_GOTO(avctx, s->qmant_buffer, total_coefs *
2336 sizeof(*s->qmant_buffer), alloc_fail);
2337 if (s->cpl_enabled) {
2338 FF_ALLOC_OR_GOTO(avctx, s->cpl_coord_exp_buffer, channel_blocks * 16 *
2339 sizeof(*s->cpl_coord_exp_buffer), alloc_fail);
2340 FF_ALLOC_OR_GOTO(avctx, s->cpl_coord_mant_buffer, channel_blocks * 16 *
2341 sizeof(*s->cpl_coord_mant_buffer), alloc_fail);
2342 }
2343 for (blk = 0; blk < s->num_blocks; blk++) {
2344 AC3Block *block = &s->blocks[blk];
2345 FF_ALLOCZ_OR_GOTO(avctx, block->mdct_coef, channels * sizeof(*block->mdct_coef),
2346 alloc_fail);
2347 FF_ALLOCZ_OR_GOTO(avctx, block->exp, channels * sizeof(*block->exp),
2348 alloc_fail);
2349 FF_ALLOCZ_OR_GOTO(avctx, block->grouped_exp, channels * sizeof(*block->grouped_exp),
2350 alloc_fail);
2351 FF_ALLOCZ_OR_GOTO(avctx, block->psd, channels * sizeof(*block->psd),
2352 alloc_fail);
2353 FF_ALLOCZ_OR_GOTO(avctx, block->band_psd, channels * sizeof(*block->band_psd),
2354 alloc_fail);
2355 FF_ALLOCZ_OR_GOTO(avctx, block->mask, channels * sizeof(*block->mask),
2356 alloc_fail);
2357 FF_ALLOCZ_OR_GOTO(avctx, block->qmant, channels * sizeof(*block->qmant),
2358 alloc_fail);
2359 if (s->cpl_enabled) {
2360 FF_ALLOCZ_OR_GOTO(avctx, block->cpl_coord_exp, channels * sizeof(*block->cpl_coord_exp),
2361 alloc_fail);
2362 FF_ALLOCZ_OR_GOTO(avctx, block->cpl_coord_mant, channels * sizeof(*block->cpl_coord_mant),
2363 alloc_fail);
2364 }
2365
2366 for (ch = 0; ch < channels; ch++) {
2367 /* arrangement: block, channel, coeff */
2368 block->grouped_exp[ch] = &s->grouped_exp_buffer[128 * (blk * channels + ch)];
2369 block->psd[ch] = &s->psd_buffer [AC3_MAX_COEFS * (blk * channels + ch)];
2370 block->band_psd[ch] = &s->band_psd_buffer [64 * (blk * channels + ch)];
2371 block->mask[ch] = &s->mask_buffer [64 * (blk * channels + ch)];
2372 block->qmant[ch] = &s->qmant_buffer [AC3_MAX_COEFS * (blk * channels + ch)];
2373 if (s->cpl_enabled) {
2374 block->cpl_coord_exp[ch] = &s->cpl_coord_exp_buffer [16 * (blk * channels + ch)];
2375 block->cpl_coord_mant[ch] = &s->cpl_coord_mant_buffer[16 * (blk * channels + ch)];
2376 }
2377
2378 /* arrangement: channel, block, coeff */
2379 block->exp[ch] = &s->exp_buffer [AC3_MAX_COEFS * (s->num_blocks * ch + blk)];
2380 block->mdct_coef[ch] = &s->mdct_coef_buffer [AC3_MAX_COEFS * (s->num_blocks * ch + blk)];
2381 }
2382 }
2383
2384 if (!s->fixed_point) {
2385 FF_ALLOCZ_OR_GOTO(avctx, s->fixed_coef_buffer, total_coefs *
2386 sizeof(*s->fixed_coef_buffer), alloc_fail);
2387 for (blk = 0; blk < s->num_blocks; blk++) {
2388 AC3Block *block = &s->blocks[blk];
2389 FF_ALLOCZ_OR_GOTO(avctx, block->fixed_coef, channels *
2390 sizeof(*block->fixed_coef), alloc_fail);
2391 for (ch = 0; ch < channels; ch++)
2392 block->fixed_coef[ch] = &s->fixed_coef_buffer[AC3_MAX_COEFS * (s->num_blocks * ch + blk)];
2393 }
2394 } else {
2395 for (blk = 0; blk < s->num_blocks; blk++) {
2396 AC3Block *block = &s->blocks[blk];
2397 FF_ALLOCZ_OR_GOTO(avctx, block->fixed_coef, channels *
2398 sizeof(*block->fixed_coef), alloc_fail);
2399 for (ch = 0; ch < channels; ch++)
2400 block->fixed_coef[ch] = (int32_t *)block->mdct_coef[ch];
2401 }
2402 }
2403
2404 return 0;
2405 alloc_fail:
2406 return AVERROR(ENOMEM);
2407 }
2408
2409
2410 av_cold int ff_ac3_encode_init(AVCodecContext *avctx)
2411 {
2412 AC3EncodeContext *s = avctx->priv_data;
2413 int ret, frame_size_58;
2414
2415 s->avctx = avctx;
2416
2417 s->eac3 = avctx->codec_id == CODEC_ID_EAC3;
2418
2419 ff_ac3_common_init();
2420
2421 ret = validate_options(s);
2422 if (ret)
2423 return ret;
2424
2425 avctx->frame_size = AC3_BLOCK_SIZE * s->num_blocks;
2426
2427 s->bitstream_mode = avctx->audio_service_type;
2428 if (s->bitstream_mode == AV_AUDIO_SERVICE_TYPE_KARAOKE)
2429 s->bitstream_mode = 0x7;
2430
2431 s->bits_written = 0;
2432 s->samples_written = 0;
2433
2434 /* calculate crc_inv for both possible frame sizes */
2435 frame_size_58 = (( s->frame_size >> 2) + ( s->frame_size >> 4)) << 1;
2436 s->crc_inv[0] = pow_poly((CRC16_POLY >> 1), (8 * frame_size_58) - 16, CRC16_POLY);
2437 if (s->bit_alloc.sr_code == 1) {
2438 frame_size_58 = (((s->frame_size+2) >> 2) + ((s->frame_size+2) >> 4)) << 1;
2439 s->crc_inv[1] = pow_poly((CRC16_POLY >> 1), (8 * frame_size_58) - 16, CRC16_POLY);
2440 }
2441
2442 /* set function pointers */
2443 if (CONFIG_AC3_FIXED_ENCODER && s->fixed_point) {
2444 s->mdct_end = ff_ac3_fixed_mdct_end;
2445 s->mdct_init = ff_ac3_fixed_mdct_init;
2446 s->allocate_sample_buffers = ff_ac3_fixed_allocate_sample_buffers;
2447 } else if (CONFIG_AC3_ENCODER || CONFIG_EAC3_ENCODER) {
2448 s->mdct_end = ff_ac3_float_mdct_end;
2449 s->mdct_init = ff_ac3_float_mdct_init;
2450 s->allocate_sample_buffers = ff_ac3_float_allocate_sample_buffers;
2451 }
2452 if (CONFIG_EAC3_ENCODER && s->eac3)
2453 s->output_frame_header = ff_eac3_output_frame_header;
2454 else
2455 s->output_frame_header = ac3_output_frame_header;
2456
2457 set_bandwidth(s);
2458
2459 exponent_init(s);
2460
2461 bit_alloc_init(s);
2462
2463 ret = s->mdct_init(s);
2464 if (ret)
2465 goto init_fail;
2466
2467 ret = allocate_buffers(s);
2468 if (ret)
2469 goto init_fail;
2470
2471 avctx->coded_frame= avcodec_alloc_frame();
2472
2473 dsputil_init(&s->dsp, avctx);
2474 ff_ac3dsp_init(&s->ac3dsp, avctx->flags & CODEC_FLAG_BITEXACT);
2475
2476 dprint_options(s);
2477
2478 return 0;
2479 init_fail:
2480 ff_ac3_encode_close(avctx);
2481 return ret;
2482 }