lavc: Add missing #includes for ff_dlog()
[libav.git] / libavcodec / ac3enc.c
1 /*
2 * The simplest AC-3 encoder
3 * Copyright (c) 2000 Fabrice Bellard
4 * Copyright (c) 2006-2010 Justin Ruggles <justin.ruggles@gmail.com>
5 * Copyright (c) 2006-2010 Prakash Punnoor <prakash@punnoor.de>
6 *
7 * This file is part of Libav.
8 *
9 * Libav is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
13 *
14 * Libav is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with Libav; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 */
23
24 /**
25 * @file
26 * The simplest AC-3 encoder.
27 */
28
29 #include <stdint.h>
30
31 #include "libavutil/attributes.h"
32 #include "libavutil/avassert.h"
33 #include "libavutil/avstring.h"
34 #include "libavutil/channel_layout.h"
35 #include "libavutil/crc.h"
36 #include "libavutil/internal.h"
37 #include "libavutil/opt.h"
38 #include "avcodec.h"
39 #include "me_cmp.h"
40 #include "put_bits.h"
41 #include "audiodsp.h"
42 #include "ac3dsp.h"
43 #include "ac3.h"
44 #include "fft.h"
45 #include "internal.h"
46 #include "ac3enc.h"
47 #include "eac3enc.h"
48
49 typedef struct AC3Mant {
50 int16_t *qmant1_ptr, *qmant2_ptr, *qmant4_ptr; ///< mantissa pointers for bap=1,2,4
51 int mant1_cnt, mant2_cnt, mant4_cnt; ///< mantissa counts for bap=1,2,4
52 } AC3Mant;
53
54 #define CMIXLEV_NUM_OPTIONS 3
55 static const float cmixlev_options[CMIXLEV_NUM_OPTIONS] = {
56 LEVEL_MINUS_3DB, LEVEL_MINUS_4POINT5DB, LEVEL_MINUS_6DB
57 };
58
59 #define SURMIXLEV_NUM_OPTIONS 3
60 static const float surmixlev_options[SURMIXLEV_NUM_OPTIONS] = {
61 LEVEL_MINUS_3DB, LEVEL_MINUS_6DB, LEVEL_ZERO
62 };
63
64 #define EXTMIXLEV_NUM_OPTIONS 8
65 static const float extmixlev_options[EXTMIXLEV_NUM_OPTIONS] = {
66 LEVEL_PLUS_3DB, LEVEL_PLUS_1POINT5DB, LEVEL_ONE, LEVEL_MINUS_4POINT5DB,
67 LEVEL_MINUS_3DB, LEVEL_MINUS_4POINT5DB, LEVEL_MINUS_6DB, LEVEL_ZERO
68 };
69
70
71 /**
72 * LUT for number of exponent groups.
73 * exponent_group_tab[coupling][exponent strategy-1][number of coefficients]
74 */
75 static uint8_t exponent_group_tab[2][3][256];
76
77
78 /**
79 * List of supported channel layouts.
80 */
81 const uint64_t ff_ac3_channel_layouts[19] = {
82 AV_CH_LAYOUT_MONO,
83 AV_CH_LAYOUT_STEREO,
84 AV_CH_LAYOUT_2_1,
85 AV_CH_LAYOUT_SURROUND,
86 AV_CH_LAYOUT_2_2,
87 AV_CH_LAYOUT_QUAD,
88 AV_CH_LAYOUT_4POINT0,
89 AV_CH_LAYOUT_5POINT0,
90 AV_CH_LAYOUT_5POINT0_BACK,
91 (AV_CH_LAYOUT_MONO | AV_CH_LOW_FREQUENCY),
92 (AV_CH_LAYOUT_STEREO | AV_CH_LOW_FREQUENCY),
93 (AV_CH_LAYOUT_2_1 | AV_CH_LOW_FREQUENCY),
94 (AV_CH_LAYOUT_SURROUND | AV_CH_LOW_FREQUENCY),
95 (AV_CH_LAYOUT_2_2 | AV_CH_LOW_FREQUENCY),
96 (AV_CH_LAYOUT_QUAD | AV_CH_LOW_FREQUENCY),
97 (AV_CH_LAYOUT_4POINT0 | AV_CH_LOW_FREQUENCY),
98 AV_CH_LAYOUT_5POINT1,
99 AV_CH_LAYOUT_5POINT1_BACK,
100 0
101 };
102
103
104 /**
105 * LUT to select the bandwidth code based on the bit rate, sample rate, and
106 * number of full-bandwidth channels.
107 * bandwidth_tab[fbw_channels-1][sample rate code][bit rate code]
108 */
109 static const uint8_t ac3_bandwidth_tab[5][3][19] = {
110 // 32 40 48 56 64 80 96 112 128 160 192 224 256 320 384 448 512 576 640
111
112 { { 0, 0, 0, 12, 16, 32, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48 },
113 { 0, 0, 0, 16, 20, 36, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56 },
114 { 0, 0, 0, 32, 40, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60 } },
115
116 { { 0, 0, 0, 0, 0, 0, 0, 20, 24, 32, 48, 48, 48, 48, 48, 48, 48, 48, 48 },
117 { 0, 0, 0, 0, 0, 0, 4, 24, 28, 36, 56, 56, 56, 56, 56, 56, 56, 56, 56 },
118 { 0, 0, 0, 0, 0, 0, 20, 44, 52, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60 } },
119
120 { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 24, 32, 40, 48, 48, 48, 48, 48, 48 },
121 { 0, 0, 0, 0, 0, 0, 0, 0, 4, 20, 28, 36, 44, 56, 56, 56, 56, 56, 56 },
122 { 0, 0, 0, 0, 0, 0, 0, 0, 20, 40, 48, 60, 60, 60, 60, 60, 60, 60, 60 } },
123
124 { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 24, 32, 48, 48, 48, 48, 48, 48 },
125 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 28, 36, 56, 56, 56, 56, 56, 56 },
126 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 32, 48, 60, 60, 60, 60, 60, 60, 60 } },
127
128 { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 20, 32, 40, 48, 48, 48, 48 },
129 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 24, 36, 44, 56, 56, 56, 56 },
130 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 28, 44, 60, 60, 60, 60, 60, 60 } }
131 };
132
133
134 /**
135 * LUT to select the coupling start band based on the bit rate, sample rate, and
136 * number of full-bandwidth channels. -1 = coupling off
137 * ac3_coupling_start_tab[channel_mode-2][sample rate code][bit rate code]
138 *
139 * TODO: more testing for optimal parameters.
140 * multi-channel tests at 44.1kHz and 32kHz.
141 */
142 static const int8_t ac3_coupling_start_tab[6][3][19] = {
143 // 32 40 48 56 64 80 96 112 128 160 192 224 256 320 384 448 512 576 640
144
145 // 2/0
146 { { 0, 0, 0, 0, 0, 0, 0, 1, 1, 7, 8, 11, 12, -1, -1, -1, -1, -1, -1 },
147 { 0, 0, 0, 0, 0, 0, 1, 3, 5, 7, 10, 12, 13, -1, -1, -1, -1, -1, -1 },
148 { 0, 0, 0, 0, 1, 2, 2, 9, 13, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1 } },
149
150 // 3/0
151 { { 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 6, 9, 11, 12, 13, -1, -1, -1, -1 },
152 { 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 6, 9, 11, 12, 13, -1, -1, -1, -1 },
153 { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } },
154
155 // 2/1 - untested
156 { { 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 6, 9, 11, 12, 13, -1, -1, -1, -1 },
157 { 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 6, 9, 11, 12, 13, -1, -1, -1, -1 },
158 { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } },
159
160 // 3/1
161 { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 10, 11, 11, 12, 12, 14, -1 },
162 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 10, 11, 11, 12, 12, 14, -1 },
163 { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } },
164
165 // 2/2 - untested
166 { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 10, 11, 11, 12, 12, 14, -1 },
167 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 10, 11, 11, 12, 12, 14, -1 },
168 { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } },
169
170 // 3/2
171 { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 8, 11, 12, 12, -1, -1 },
172 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 8, 11, 12, 12, -1, -1 },
173 { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } },
174 };
175
176
177 /**
178 * Adjust the frame size to make the average bit rate match the target bit rate.
179 * This is only needed for 11025, 22050, and 44100 sample rates or any E-AC-3.
180 *
181 * @param s AC-3 encoder private context
182 */
183 void ff_ac3_adjust_frame_size(AC3EncodeContext *s)
184 {
185 while (s->bits_written >= s->bit_rate && s->samples_written >= s->sample_rate) {
186 s->bits_written -= s->bit_rate;
187 s->samples_written -= s->sample_rate;
188 }
189 s->frame_size = s->frame_size_min +
190 2 * (s->bits_written * s->sample_rate < s->samples_written * s->bit_rate);
191 s->bits_written += s->frame_size * 8;
192 s->samples_written += AC3_BLOCK_SIZE * s->num_blocks;
193 }
194
195
196 /**
197 * Set the initial coupling strategy parameters prior to coupling analysis.
198 *
199 * @param s AC-3 encoder private context
200 */
201 void ff_ac3_compute_coupling_strategy(AC3EncodeContext *s)
202 {
203 int blk, ch;
204 int got_cpl_snr;
205 int num_cpl_blocks;
206
207 /* set coupling use flags for each block/channel */
208 /* TODO: turn coupling on/off and adjust start band based on bit usage */
209 for (blk = 0; blk < s->num_blocks; blk++) {
210 AC3Block *block = &s->blocks[blk];
211 for (ch = 1; ch <= s->fbw_channels; ch++)
212 block->channel_in_cpl[ch] = s->cpl_on;
213 }
214
215 /* enable coupling for each block if at least 2 channels have coupling
216 enabled for that block */
217 got_cpl_snr = 0;
218 num_cpl_blocks = 0;
219 for (blk = 0; blk < s->num_blocks; blk++) {
220 AC3Block *block = &s->blocks[blk];
221 block->num_cpl_channels = 0;
222 for (ch = 1; ch <= s->fbw_channels; ch++)
223 block->num_cpl_channels += block->channel_in_cpl[ch];
224 block->cpl_in_use = block->num_cpl_channels > 1;
225 num_cpl_blocks += block->cpl_in_use;
226 if (!block->cpl_in_use) {
227 block->num_cpl_channels = 0;
228 for (ch = 1; ch <= s->fbw_channels; ch++)
229 block->channel_in_cpl[ch] = 0;
230 }
231
232 block->new_cpl_strategy = !blk;
233 if (blk) {
234 for (ch = 1; ch <= s->fbw_channels; ch++) {
235 if (block->channel_in_cpl[ch] != s->blocks[blk-1].channel_in_cpl[ch]) {
236 block->new_cpl_strategy = 1;
237 break;
238 }
239 }
240 }
241 block->new_cpl_leak = block->new_cpl_strategy;
242
243 if (!blk || (block->cpl_in_use && !got_cpl_snr)) {
244 block->new_snr_offsets = 1;
245 if (block->cpl_in_use)
246 got_cpl_snr = 1;
247 } else {
248 block->new_snr_offsets = 0;
249 }
250 }
251 if (!num_cpl_blocks)
252 s->cpl_on = 0;
253
254 /* set bandwidth for each channel */
255 for (blk = 0; blk < s->num_blocks; blk++) {
256 AC3Block *block = &s->blocks[blk];
257 for (ch = 1; ch <= s->fbw_channels; ch++) {
258 if (block->channel_in_cpl[ch])
259 block->end_freq[ch] = s->start_freq[CPL_CH];
260 else
261 block->end_freq[ch] = s->bandwidth_code * 3 + 73;
262 }
263 }
264 }
265
266
267 /**
268 * Apply stereo rematrixing to coefficients based on rematrixing flags.
269 *
270 * @param s AC-3 encoder private context
271 */
272 void ff_ac3_apply_rematrixing(AC3EncodeContext *s)
273 {
274 int nb_coefs;
275 int blk, bnd, i;
276 int start, end;
277 uint8_t *flags;
278
279 if (!s->rematrixing_enabled)
280 return;
281
282 for (blk = 0; blk < s->num_blocks; blk++) {
283 AC3Block *block = &s->blocks[blk];
284 if (block->new_rematrixing_strategy)
285 flags = block->rematrixing_flags;
286 nb_coefs = FFMIN(block->end_freq[1], block->end_freq[2]);
287 for (bnd = 0; bnd < block->num_rematrixing_bands; bnd++) {
288 if (flags[bnd]) {
289 start = ff_ac3_rematrix_band_tab[bnd];
290 end = FFMIN(nb_coefs, ff_ac3_rematrix_band_tab[bnd+1]);
291 for (i = start; i < end; i++) {
292 int32_t lt = block->fixed_coef[1][i];
293 int32_t rt = block->fixed_coef[2][i];
294 block->fixed_coef[1][i] = (lt + rt) >> 1;
295 block->fixed_coef[2][i] = (lt - rt) >> 1;
296 }
297 }
298 }
299 }
300 }
301
302
303 /*
304 * Initialize exponent tables.
305 */
306 static av_cold void exponent_init(AC3EncodeContext *s)
307 {
308 int expstr, i, grpsize;
309
310 for (expstr = EXP_D15-1; expstr <= EXP_D45-1; expstr++) {
311 grpsize = 3 << expstr;
312 for (i = 12; i < 256; i++) {
313 exponent_group_tab[0][expstr][i] = (i + grpsize - 4) / grpsize;
314 exponent_group_tab[1][expstr][i] = (i ) / grpsize;
315 }
316 }
317 /* LFE */
318 exponent_group_tab[0][0][7] = 2;
319
320 if (CONFIG_EAC3_ENCODER && s->eac3)
321 ff_eac3_exponent_init();
322 }
323
324
325 /*
326 * Extract exponents from the MDCT coefficients.
327 */
328 static void extract_exponents(AC3EncodeContext *s)
329 {
330 int ch = !s->cpl_on;
331 int chan_size = AC3_MAX_COEFS * s->num_blocks * (s->channels - ch + 1);
332 AC3Block *block = &s->blocks[0];
333
334 s->ac3dsp.extract_exponents(block->exp[ch], block->fixed_coef[ch], chan_size);
335 }
336
337
338 /**
339 * Exponent Difference Threshold.
340 * New exponents are sent if their SAD exceed this number.
341 */
342 #define EXP_DIFF_THRESHOLD 500
343
344 /**
345 * Table used to select exponent strategy based on exponent reuse block interval.
346 */
347 static const uint8_t exp_strategy_reuse_tab[4][6] = {
348 { EXP_D15, EXP_D15, EXP_D15, EXP_D15, EXP_D15, EXP_D15 },
349 { EXP_D15, EXP_D15, EXP_D15, EXP_D15, EXP_D15, EXP_D15 },
350 { EXP_D25, EXP_D25, EXP_D15, EXP_D15, EXP_D15, EXP_D15 },
351 { EXP_D45, EXP_D25, EXP_D25, EXP_D15, EXP_D15, EXP_D15 }
352 };
353
354 /*
355 * Calculate exponent strategies for all channels.
356 * Array arrangement is reversed to simplify the per-channel calculation.
357 */
358 static void compute_exp_strategy(AC3EncodeContext *s)
359 {
360 int ch, blk, blk1;
361
362 for (ch = !s->cpl_on; ch <= s->fbw_channels; ch++) {
363 uint8_t *exp_strategy = s->exp_strategy[ch];
364 uint8_t *exp = s->blocks[0].exp[ch];
365 int exp_diff;
366
367 /* estimate if the exponent variation & decide if they should be
368 reused in the next frame */
369 exp_strategy[0] = EXP_NEW;
370 exp += AC3_MAX_COEFS;
371 for (blk = 1; blk < s->num_blocks; blk++, exp += AC3_MAX_COEFS) {
372 if (ch == CPL_CH) {
373 if (!s->blocks[blk-1].cpl_in_use) {
374 exp_strategy[blk] = EXP_NEW;
375 continue;
376 } else if (!s->blocks[blk].cpl_in_use) {
377 exp_strategy[blk] = EXP_REUSE;
378 continue;
379 }
380 } else if (s->blocks[blk].channel_in_cpl[ch] != s->blocks[blk-1].channel_in_cpl[ch]) {
381 exp_strategy[blk] = EXP_NEW;
382 continue;
383 }
384 exp_diff = s->mecc.sad[0](NULL, exp, exp - AC3_MAX_COEFS, 16, 16);
385 exp_strategy[blk] = EXP_REUSE;
386 if (ch == CPL_CH && exp_diff > (EXP_DIFF_THRESHOLD * (s->blocks[blk].end_freq[ch] - s->start_freq[ch]) / AC3_MAX_COEFS))
387 exp_strategy[blk] = EXP_NEW;
388 else if (ch > CPL_CH && exp_diff > EXP_DIFF_THRESHOLD)
389 exp_strategy[blk] = EXP_NEW;
390 }
391
392 /* now select the encoding strategy type : if exponents are often
393 recoded, we use a coarse encoding */
394 blk = 0;
395 while (blk < s->num_blocks) {
396 blk1 = blk + 1;
397 while (blk1 < s->num_blocks && exp_strategy[blk1] == EXP_REUSE)
398 blk1++;
399 exp_strategy[blk] = exp_strategy_reuse_tab[s->num_blks_code][blk1-blk-1];
400 blk = blk1;
401 }
402 }
403 if (s->lfe_on) {
404 ch = s->lfe_channel;
405 s->exp_strategy[ch][0] = EXP_D15;
406 for (blk = 1; blk < s->num_blocks; blk++)
407 s->exp_strategy[ch][blk] = EXP_REUSE;
408 }
409
410 /* for E-AC-3, determine frame exponent strategy */
411 if (CONFIG_EAC3_ENCODER && s->eac3)
412 ff_eac3_get_frame_exp_strategy(s);
413 }
414
415
416 /**
417 * Update the exponents so that they are the ones the decoder will decode.
418 *
419 * @param[in,out] exp array of exponents for 1 block in 1 channel
420 * @param nb_exps number of exponents in active bandwidth
421 * @param exp_strategy exponent strategy for the block
422 * @param cpl indicates if the block is in the coupling channel
423 */
424 static void encode_exponents_blk_ch(uint8_t *exp, int nb_exps, int exp_strategy,
425 int cpl)
426 {
427 int nb_groups, i, k;
428
429 nb_groups = exponent_group_tab[cpl][exp_strategy-1][nb_exps] * 3;
430
431 /* for each group, compute the minimum exponent */
432 switch(exp_strategy) {
433 case EXP_D25:
434 for (i = 1, k = 1-cpl; i <= nb_groups; i++) {
435 uint8_t exp_min = exp[k];
436 if (exp[k+1] < exp_min)
437 exp_min = exp[k+1];
438 exp[i-cpl] = exp_min;
439 k += 2;
440 }
441 break;
442 case EXP_D45:
443 for (i = 1, k = 1-cpl; i <= nb_groups; i++) {
444 uint8_t exp_min = exp[k];
445 if (exp[k+1] < exp_min)
446 exp_min = exp[k+1];
447 if (exp[k+2] < exp_min)
448 exp_min = exp[k+2];
449 if (exp[k+3] < exp_min)
450 exp_min = exp[k+3];
451 exp[i-cpl] = exp_min;
452 k += 4;
453 }
454 break;
455 }
456
457 /* constraint for DC exponent */
458 if (!cpl && exp[0] > 15)
459 exp[0] = 15;
460
461 /* decrease the delta between each groups to within 2 so that they can be
462 differentially encoded */
463 for (i = 1; i <= nb_groups; i++)
464 exp[i] = FFMIN(exp[i], exp[i-1] + 2);
465 i--;
466 while (--i >= 0)
467 exp[i] = FFMIN(exp[i], exp[i+1] + 2);
468
469 if (cpl)
470 exp[-1] = exp[0] & ~1;
471
472 /* now we have the exponent values the decoder will see */
473 switch (exp_strategy) {
474 case EXP_D25:
475 for (i = nb_groups, k = (nb_groups * 2)-cpl; i > 0; i--) {
476 uint8_t exp1 = exp[i-cpl];
477 exp[k--] = exp1;
478 exp[k--] = exp1;
479 }
480 break;
481 case EXP_D45:
482 for (i = nb_groups, k = (nb_groups * 4)-cpl; i > 0; i--) {
483 exp[k] = exp[k-1] = exp[k-2] = exp[k-3] = exp[i-cpl];
484 k -= 4;
485 }
486 break;
487 }
488 }
489
490
491 /*
492 * Encode exponents from original extracted form to what the decoder will see.
493 * This copies and groups exponents based on exponent strategy and reduces
494 * deltas between adjacent exponent groups so that they can be differentially
495 * encoded.
496 */
497 static void encode_exponents(AC3EncodeContext *s)
498 {
499 int blk, blk1, ch, cpl;
500 uint8_t *exp, *exp_strategy;
501 int nb_coefs, num_reuse_blocks;
502
503 for (ch = !s->cpl_on; ch <= s->channels; ch++) {
504 exp = s->blocks[0].exp[ch] + s->start_freq[ch];
505 exp_strategy = s->exp_strategy[ch];
506
507 cpl = (ch == CPL_CH);
508 blk = 0;
509 while (blk < s->num_blocks) {
510 AC3Block *block = &s->blocks[blk];
511 if (cpl && !block->cpl_in_use) {
512 exp += AC3_MAX_COEFS;
513 blk++;
514 continue;
515 }
516 nb_coefs = block->end_freq[ch] - s->start_freq[ch];
517 blk1 = blk + 1;
518
519 /* count the number of EXP_REUSE blocks after the current block
520 and set exponent reference block numbers */
521 s->exp_ref_block[ch][blk] = blk;
522 while (blk1 < s->num_blocks && exp_strategy[blk1] == EXP_REUSE) {
523 s->exp_ref_block[ch][blk1] = blk;
524 blk1++;
525 }
526 num_reuse_blocks = blk1 - blk - 1;
527
528 /* for the EXP_REUSE case we select the min of the exponents */
529 s->ac3dsp.ac3_exponent_min(exp-s->start_freq[ch], num_reuse_blocks,
530 AC3_MAX_COEFS);
531
532 encode_exponents_blk_ch(exp, nb_coefs, exp_strategy[blk], cpl);
533
534 exp += AC3_MAX_COEFS * (num_reuse_blocks + 1);
535 blk = blk1;
536 }
537 }
538
539 /* reference block numbers have been changed, so reset ref_bap_set */
540 s->ref_bap_set = 0;
541 }
542
543
544 /*
545 * Count exponent bits based on bandwidth, coupling, and exponent strategies.
546 */
547 static int count_exponent_bits(AC3EncodeContext *s)
548 {
549 int blk, ch;
550 int nb_groups, bit_count;
551
552 bit_count = 0;
553 for (blk = 0; blk < s->num_blocks; blk++) {
554 AC3Block *block = &s->blocks[blk];
555 for (ch = !block->cpl_in_use; ch <= s->channels; ch++) {
556 int exp_strategy = s->exp_strategy[ch][blk];
557 int cpl = (ch == CPL_CH);
558 int nb_coefs = block->end_freq[ch] - s->start_freq[ch];
559
560 if (exp_strategy == EXP_REUSE)
561 continue;
562
563 nb_groups = exponent_group_tab[cpl][exp_strategy-1][nb_coefs];
564 bit_count += 4 + (nb_groups * 7);
565 }
566 }
567
568 return bit_count;
569 }
570
571
572 /**
573 * Group exponents.
574 * 3 delta-encoded exponents are in each 7-bit group. The number of groups
575 * varies depending on exponent strategy and bandwidth.
576 *
577 * @param s AC-3 encoder private context
578 */
579 void ff_ac3_group_exponents(AC3EncodeContext *s)
580 {
581 int blk, ch, i, cpl;
582 int group_size, nb_groups;
583 uint8_t *p;
584 int delta0, delta1, delta2;
585 int exp0, exp1;
586
587 for (blk = 0; blk < s->num_blocks; blk++) {
588 AC3Block *block = &s->blocks[blk];
589 for (ch = !block->cpl_in_use; ch <= s->channels; ch++) {
590 int exp_strategy = s->exp_strategy[ch][blk];
591 if (exp_strategy == EXP_REUSE)
592 continue;
593 cpl = (ch == CPL_CH);
594 group_size = exp_strategy + (exp_strategy == EXP_D45);
595 nb_groups = exponent_group_tab[cpl][exp_strategy-1][block->end_freq[ch]-s->start_freq[ch]];
596 p = block->exp[ch] + s->start_freq[ch] - cpl;
597
598 /* DC exponent */
599 exp1 = *p++;
600 block->grouped_exp[ch][0] = exp1;
601
602 /* remaining exponents are delta encoded */
603 for (i = 1; i <= nb_groups; i++) {
604 /* merge three delta in one code */
605 exp0 = exp1;
606 exp1 = p[0];
607 p += group_size;
608 delta0 = exp1 - exp0 + 2;
609 av_assert2(delta0 >= 0 && delta0 <= 4);
610
611 exp0 = exp1;
612 exp1 = p[0];
613 p += group_size;
614 delta1 = exp1 - exp0 + 2;
615 av_assert2(delta1 >= 0 && delta1 <= 4);
616
617 exp0 = exp1;
618 exp1 = p[0];
619 p += group_size;
620 delta2 = exp1 - exp0 + 2;
621 av_assert2(delta2 >= 0 && delta2 <= 4);
622
623 block->grouped_exp[ch][i] = ((delta0 * 5 + delta1) * 5) + delta2;
624 }
625 }
626 }
627 }
628
629
630 /**
631 * Calculate final exponents from the supplied MDCT coefficients and exponent shift.
632 * Extract exponents from MDCT coefficients, calculate exponent strategies,
633 * and encode final exponents.
634 *
635 * @param s AC-3 encoder private context
636 */
637 void ff_ac3_process_exponents(AC3EncodeContext *s)
638 {
639 extract_exponents(s);
640
641 compute_exp_strategy(s);
642
643 encode_exponents(s);
644
645 emms_c();
646 }
647
648
649 /*
650 * Count frame bits that are based solely on fixed parameters.
651 * This only has to be run once when the encoder is initialized.
652 */
653 static void count_frame_bits_fixed(AC3EncodeContext *s)
654 {
655 static const int frame_bits_inc[8] = { 0, 0, 2, 2, 2, 4, 2, 4 };
656 int blk;
657 int frame_bits;
658
659 /* assumptions:
660 * no dynamic range codes
661 * bit allocation parameters do not change between blocks
662 * no delta bit allocation
663 * no skipped data
664 * no auxiliary data
665 * no E-AC-3 metadata
666 */
667
668 /* header */
669 frame_bits = 16; /* sync info */
670 if (s->eac3) {
671 /* bitstream info header */
672 frame_bits += 35;
673 frame_bits += 1 + 1;
674 if (s->num_blocks != 0x6)
675 frame_bits++;
676 frame_bits++;
677 /* audio frame header */
678 if (s->num_blocks == 6)
679 frame_bits += 2;
680 frame_bits += 10;
681 /* exponent strategy */
682 if (s->use_frame_exp_strategy)
683 frame_bits += 5 * s->fbw_channels;
684 else
685 frame_bits += s->num_blocks * 2 * s->fbw_channels;
686 if (s->lfe_on)
687 frame_bits += s->num_blocks;
688 /* converter exponent strategy */
689 if (s->num_blks_code != 0x3)
690 frame_bits++;
691 else
692 frame_bits += s->fbw_channels * 5;
693 /* snr offsets */
694 frame_bits += 10;
695 /* block start info */
696 if (s->num_blocks != 1)
697 frame_bits++;
698 } else {
699 frame_bits += 49;
700 frame_bits += frame_bits_inc[s->channel_mode];
701 }
702
703 /* audio blocks */
704 for (blk = 0; blk < s->num_blocks; blk++) {
705 if (!s->eac3) {
706 /* block switch flags */
707 frame_bits += s->fbw_channels;
708
709 /* dither flags */
710 frame_bits += s->fbw_channels;
711 }
712
713 /* dynamic range */
714 frame_bits++;
715
716 /* spectral extension */
717 if (s->eac3)
718 frame_bits++;
719
720 if (!s->eac3) {
721 /* exponent strategy */
722 frame_bits += 2 * s->fbw_channels;
723 if (s->lfe_on)
724 frame_bits++;
725
726 /* bit allocation params */
727 frame_bits++;
728 if (!blk)
729 frame_bits += 2 + 2 + 2 + 2 + 3;
730 }
731
732 /* converter snr offset */
733 if (s->eac3)
734 frame_bits++;
735
736 if (!s->eac3) {
737 /* delta bit allocation */
738 frame_bits++;
739
740 /* skipped data */
741 frame_bits++;
742 }
743 }
744
745 /* auxiliary data */
746 frame_bits++;
747
748 /* CRC */
749 frame_bits += 1 + 16;
750
751 s->frame_bits_fixed = frame_bits;
752 }
753
754
755 /*
756 * Initialize bit allocation.
757 * Set default parameter codes and calculate parameter values.
758 */
759 static av_cold void bit_alloc_init(AC3EncodeContext *s)
760 {
761 int ch;
762
763 /* init default parameters */
764 s->slow_decay_code = 2;
765 s->fast_decay_code = 1;
766 s->slow_gain_code = 1;
767 s->db_per_bit_code = s->eac3 ? 2 : 3;
768 s->floor_code = 7;
769 for (ch = 0; ch <= s->channels; ch++)
770 s->fast_gain_code[ch] = 4;
771
772 /* initial snr offset */
773 s->coarse_snr_offset = 40;
774
775 /* compute real values */
776 /* currently none of these values change during encoding, so we can just
777 set them once at initialization */
778 s->bit_alloc.slow_decay = ff_ac3_slow_decay_tab[s->slow_decay_code] >> s->bit_alloc.sr_shift;
779 s->bit_alloc.fast_decay = ff_ac3_fast_decay_tab[s->fast_decay_code] >> s->bit_alloc.sr_shift;
780 s->bit_alloc.slow_gain = ff_ac3_slow_gain_tab[s->slow_gain_code];
781 s->bit_alloc.db_per_bit = ff_ac3_db_per_bit_tab[s->db_per_bit_code];
782 s->bit_alloc.floor = ff_ac3_floor_tab[s->floor_code];
783 s->bit_alloc.cpl_fast_leak = 0;
784 s->bit_alloc.cpl_slow_leak = 0;
785
786 count_frame_bits_fixed(s);
787 }
788
789
790 /*
791 * Count the bits used to encode the frame, minus exponents and mantissas.
792 * Bits based on fixed parameters have already been counted, so now we just
793 * have to add the bits based on parameters that change during encoding.
794 */
795 static void count_frame_bits(AC3EncodeContext *s)
796 {
797 AC3EncOptions *opt = &s->options;
798 int blk, ch;
799 int frame_bits = 0;
800
801 /* header */
802 if (s->eac3) {
803 if (opt->eac3_mixing_metadata) {
804 if (s->channel_mode > AC3_CHMODE_STEREO)
805 frame_bits += 2;
806 if (s->has_center)
807 frame_bits += 6;
808 if (s->has_surround)
809 frame_bits += 6;
810 frame_bits += s->lfe_on;
811 frame_bits += 1 + 1 + 2;
812 if (s->channel_mode < AC3_CHMODE_STEREO)
813 frame_bits++;
814 frame_bits++;
815 }
816 if (opt->eac3_info_metadata) {
817 frame_bits += 3 + 1 + 1;
818 if (s->channel_mode == AC3_CHMODE_STEREO)
819 frame_bits += 2 + 2;
820 if (s->channel_mode >= AC3_CHMODE_2F2R)
821 frame_bits += 2;
822 frame_bits++;
823 if (opt->audio_production_info)
824 frame_bits += 5 + 2 + 1;
825 frame_bits++;
826 }
827 /* coupling */
828 if (s->channel_mode > AC3_CHMODE_MONO) {
829 frame_bits++;
830 for (blk = 1; blk < s->num_blocks; blk++) {
831 AC3Block *block = &s->blocks[blk];
832 frame_bits++;
833 if (block->new_cpl_strategy)
834 frame_bits++;
835 }
836 }
837 /* coupling exponent strategy */
838 if (s->cpl_on) {
839 if (s->use_frame_exp_strategy) {
840 frame_bits += 5 * s->cpl_on;
841 } else {
842 for (blk = 0; blk < s->num_blocks; blk++)
843 frame_bits += 2 * s->blocks[blk].cpl_in_use;
844 }
845 }
846 } else {
847 if (opt->audio_production_info)
848 frame_bits += 7;
849 if (s->bitstream_id == 6) {
850 if (opt->extended_bsi_1)
851 frame_bits += 14;
852 if (opt->extended_bsi_2)
853 frame_bits += 14;
854 }
855 }
856
857 /* audio blocks */
858 for (blk = 0; blk < s->num_blocks; blk++) {
859 AC3Block *block = &s->blocks[blk];
860
861 /* coupling strategy */
862 if (!s->eac3)
863 frame_bits++;
864 if (block->new_cpl_strategy) {
865 if (!s->eac3)
866 frame_bits++;
867 if (block->cpl_in_use) {
868 if (s->eac3)
869 frame_bits++;
870 if (!s->eac3 || s->channel_mode != AC3_CHMODE_STEREO)
871 frame_bits += s->fbw_channels;
872 if (s->channel_mode == AC3_CHMODE_STEREO)
873 frame_bits++;
874 frame_bits += 4 + 4;
875 if (s->eac3)
876 frame_bits++;
877 else
878 frame_bits += s->num_cpl_subbands - 1;
879 }
880 }
881
882 /* coupling coordinates */
883 if (block->cpl_in_use) {
884 for (ch = 1; ch <= s->fbw_channels; ch++) {
885 if (block->channel_in_cpl[ch]) {
886 if (!s->eac3 || block->new_cpl_coords[ch] != 2)
887 frame_bits++;
888 if (block->new_cpl_coords[ch]) {
889 frame_bits += 2;
890 frame_bits += (4 + 4) * s->num_cpl_bands;
891 }
892 }
893 }
894 }
895
896 /* stereo rematrixing */
897 if (s->channel_mode == AC3_CHMODE_STEREO) {
898 if (!s->eac3 || blk > 0)
899 frame_bits++;
900 if (s->blocks[blk].new_rematrixing_strategy)
901 frame_bits += block->num_rematrixing_bands;
902 }
903
904 /* bandwidth codes & gain range */
905 for (ch = 1; ch <= s->fbw_channels; ch++) {
906 if (s->exp_strategy[ch][blk] != EXP_REUSE) {
907 if (!block->channel_in_cpl[ch])
908 frame_bits += 6;
909 frame_bits += 2;
910 }
911 }
912
913 /* coupling exponent strategy */
914 if (!s->eac3 && block->cpl_in_use)
915 frame_bits += 2;
916
917 /* snr offsets and fast gain codes */
918 if (!s->eac3) {
919 frame_bits++;
920 if (block->new_snr_offsets)
921 frame_bits += 6 + (s->channels + block->cpl_in_use) * (4 + 3);
922 }
923
924 /* coupling leak info */
925 if (block->cpl_in_use) {
926 if (!s->eac3 || block->new_cpl_leak != 2)
927 frame_bits++;
928 if (block->new_cpl_leak)
929 frame_bits += 3 + 3;
930 }
931 }
932
933 s->frame_bits = s->frame_bits_fixed + frame_bits;
934 }
935
936
937 /*
938 * Calculate masking curve based on the final exponents.
939 * Also calculate the power spectral densities to use in future calculations.
940 */
941 static void bit_alloc_masking(AC3EncodeContext *s)
942 {
943 int blk, ch;
944
945 for (blk = 0; blk < s->num_blocks; blk++) {
946 AC3Block *block = &s->blocks[blk];
947 for (ch = !block->cpl_in_use; ch <= s->channels; ch++) {
948 /* We only need psd and mask for calculating bap.
949 Since we currently do not calculate bap when exponent
950 strategy is EXP_REUSE we do not need to calculate psd or mask. */
951 if (s->exp_strategy[ch][blk] != EXP_REUSE) {
952 ff_ac3_bit_alloc_calc_psd(block->exp[ch], s->start_freq[ch],
953 block->end_freq[ch], block->psd[ch],
954 block->band_psd[ch]);
955 ff_ac3_bit_alloc_calc_mask(&s->bit_alloc, block->band_psd[ch],
956 s->start_freq[ch], block->end_freq[ch],
957 ff_ac3_fast_gain_tab[s->fast_gain_code[ch]],
958 ch == s->lfe_channel,
959 DBA_NONE, 0, NULL, NULL, NULL,
960 block->mask[ch]);
961 }
962 }
963 }
964 }
965
966
967 /*
968 * Ensure that bap for each block and channel point to the current bap_buffer.
969 * They may have been switched during the bit allocation search.
970 */
971 static void reset_block_bap(AC3EncodeContext *s)
972 {
973 int blk, ch;
974 uint8_t *ref_bap;
975
976 if (s->ref_bap[0][0] == s->bap_buffer && s->ref_bap_set)
977 return;
978
979 ref_bap = s->bap_buffer;
980 for (ch = 0; ch <= s->channels; ch++) {
981 for (blk = 0; blk < s->num_blocks; blk++)
982 s->ref_bap[ch][blk] = ref_bap + AC3_MAX_COEFS * s->exp_ref_block[ch][blk];
983 ref_bap += AC3_MAX_COEFS * s->num_blocks;
984 }
985 s->ref_bap_set = 1;
986 }
987
988
989 /**
990 * Initialize mantissa counts.
991 * These are set so that they are padded to the next whole group size when bits
992 * are counted in compute_mantissa_size.
993 *
994 * @param[in,out] mant_cnt running counts for each bap value for each block
995 */
996 static void count_mantissa_bits_init(uint16_t mant_cnt[AC3_MAX_BLOCKS][16])
997 {
998 int blk;
999
1000 for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
1001 memset(mant_cnt[blk], 0, sizeof(mant_cnt[blk]));
1002 mant_cnt[blk][1] = mant_cnt[blk][2] = 2;
1003 mant_cnt[blk][4] = 1;
1004 }
1005 }
1006
1007
1008 /**
1009 * Update mantissa bit counts for all blocks in 1 channel in a given bandwidth
1010 * range.
1011 *
1012 * @param s AC-3 encoder private context
1013 * @param ch channel index
1014 * @param[in,out] mant_cnt running counts for each bap value for each block
1015 * @param start starting coefficient bin
1016 * @param end ending coefficient bin
1017 */
1018 static void count_mantissa_bits_update_ch(AC3EncodeContext *s, int ch,
1019 uint16_t mant_cnt[AC3_MAX_BLOCKS][16],
1020 int start, int end)
1021 {
1022 int blk;
1023
1024 for (blk = 0; blk < s->num_blocks; blk++) {
1025 AC3Block *block = &s->blocks[blk];
1026 if (ch == CPL_CH && !block->cpl_in_use)
1027 continue;
1028 s->ac3dsp.update_bap_counts(mant_cnt[blk],
1029 s->ref_bap[ch][blk] + start,
1030 FFMIN(end, block->end_freq[ch]) - start);
1031 }
1032 }
1033
1034
1035 /*
1036 * Count the number of mantissa bits in the frame based on the bap values.
1037 */
1038 static int count_mantissa_bits(AC3EncodeContext *s)
1039 {
1040 int ch, max_end_freq;
1041 LOCAL_ALIGNED_16(uint16_t, mant_cnt, [AC3_MAX_BLOCKS], [16]);
1042
1043 count_mantissa_bits_init(mant_cnt);
1044
1045 max_end_freq = s->bandwidth_code * 3 + 73;
1046 for (ch = !s->cpl_enabled; ch <= s->channels; ch++)
1047 count_mantissa_bits_update_ch(s, ch, mant_cnt, s->start_freq[ch],
1048 max_end_freq);
1049
1050 return s->ac3dsp.compute_mantissa_size(mant_cnt);
1051 }
1052
1053
1054 /**
1055 * Run the bit allocation with a given SNR offset.
1056 * This calculates the bit allocation pointers that will be used to determine
1057 * the quantization of each mantissa.
1058 *
1059 * @param s AC-3 encoder private context
1060 * @param snr_offset SNR offset, 0 to 1023
1061 * @return the number of bits needed for mantissas if the given SNR offset is
1062 * is used.
1063 */
1064 static int bit_alloc(AC3EncodeContext *s, int snr_offset)
1065 {
1066 int blk, ch;
1067
1068 snr_offset = (snr_offset - 240) << 2;
1069
1070 reset_block_bap(s);
1071 for (blk = 0; blk < s->num_blocks; blk++) {
1072 AC3Block *block = &s->blocks[blk];
1073
1074 for (ch = !block->cpl_in_use; ch <= s->channels; ch++) {
1075 /* Currently the only bit allocation parameters which vary across
1076 blocks within a frame are the exponent values. We can take
1077 advantage of that by reusing the bit allocation pointers
1078 whenever we reuse exponents. */
1079 if (s->exp_strategy[ch][blk] != EXP_REUSE) {
1080 s->ac3dsp.bit_alloc_calc_bap(block->mask[ch], block->psd[ch],
1081 s->start_freq[ch], block->end_freq[ch],
1082 snr_offset, s->bit_alloc.floor,
1083 ff_ac3_bap_tab, s->ref_bap[ch][blk]);
1084 }
1085 }
1086 }
1087 return count_mantissa_bits(s);
1088 }
1089
1090
1091 /*
1092 * Constant bitrate bit allocation search.
1093 * Find the largest SNR offset that will allow data to fit in the frame.
1094 */
1095 static int cbr_bit_allocation(AC3EncodeContext *s)
1096 {
1097 int ch;
1098 int bits_left;
1099 int snr_offset, snr_incr;
1100
1101 bits_left = 8 * s->frame_size - (s->frame_bits + s->exponent_bits);
1102 if (bits_left < 0)
1103 return AVERROR(EINVAL);
1104
1105 snr_offset = s->coarse_snr_offset << 4;
1106
1107 /* if previous frame SNR offset was 1023, check if current frame can also
1108 use SNR offset of 1023. if so, skip the search. */
1109 if ((snr_offset | s->fine_snr_offset[1]) == 1023) {
1110 if (bit_alloc(s, 1023) <= bits_left)
1111 return 0;
1112 }
1113
1114 while (snr_offset >= 0 &&
1115 bit_alloc(s, snr_offset) > bits_left) {
1116 snr_offset -= 64;
1117 }
1118 if (snr_offset < 0)
1119 return AVERROR(EINVAL);
1120
1121 FFSWAP(uint8_t *, s->bap_buffer, s->bap1_buffer);
1122 for (snr_incr = 64; snr_incr > 0; snr_incr >>= 2) {
1123 while (snr_offset + snr_incr <= 1023 &&
1124 bit_alloc(s, snr_offset + snr_incr) <= bits_left) {
1125 snr_offset += snr_incr;
1126 FFSWAP(uint8_t *, s->bap_buffer, s->bap1_buffer);
1127 }
1128 }
1129 FFSWAP(uint8_t *, s->bap_buffer, s->bap1_buffer);
1130 reset_block_bap(s);
1131
1132 s->coarse_snr_offset = snr_offset >> 4;
1133 for (ch = !s->cpl_on; ch <= s->channels; ch++)
1134 s->fine_snr_offset[ch] = snr_offset & 0xF;
1135
1136 return 0;
1137 }
1138
1139
1140 /*
1141 * Perform bit allocation search.
1142 * Finds the SNR offset value that maximizes quality and fits in the specified
1143 * frame size. Output is the SNR offset and a set of bit allocation pointers
1144 * used to quantize the mantissas.
1145 */
1146 int ff_ac3_compute_bit_allocation(AC3EncodeContext *s)
1147 {
1148 count_frame_bits(s);
1149
1150 s->exponent_bits = count_exponent_bits(s);
1151
1152 bit_alloc_masking(s);
1153
1154 return cbr_bit_allocation(s);
1155 }
1156
1157
1158 /**
1159 * Symmetric quantization on 'levels' levels.
1160 *
1161 * @param c unquantized coefficient
1162 * @param e exponent
1163 * @param levels number of quantization levels
1164 * @return quantized coefficient
1165 */
1166 static inline int sym_quant(int c, int e, int levels)
1167 {
1168 int v = (((levels * c) >> (24 - e)) + levels) >> 1;
1169 av_assert2(v >= 0 && v < levels);
1170 return v;
1171 }
1172
1173
1174 /**
1175 * Asymmetric quantization on 2^qbits levels.
1176 *
1177 * @param c unquantized coefficient
1178 * @param e exponent
1179 * @param qbits number of quantization bits
1180 * @return quantized coefficient
1181 */
1182 static inline int asym_quant(int c, int e, int qbits)
1183 {
1184 int m;
1185
1186 c = (((c << e) >> (24 - qbits)) + 1) >> 1;
1187 m = (1 << (qbits-1));
1188 if (c >= m)
1189 c = m - 1;
1190 av_assert2(c >= -m);
1191 return c;
1192 }
1193
1194
1195 /**
1196 * Quantize a set of mantissas for a single channel in a single block.
1197 *
1198 * @param s Mantissa count context
1199 * @param fixed_coef unquantized fixed-point coefficients
1200 * @param exp exponents
1201 * @param bap bit allocation pointer indices
1202 * @param[out] qmant quantized coefficients
1203 * @param start_freq starting coefficient bin
1204 * @param end_freq ending coefficient bin
1205 */
1206 static void quantize_mantissas_blk_ch(AC3Mant *s, int32_t *fixed_coef,
1207 uint8_t *exp, uint8_t *bap,
1208 int16_t *qmant, int start_freq,
1209 int end_freq)
1210 {
1211 int i;
1212
1213 for (i = start_freq; i < end_freq; i++) {
1214 int v;
1215 int c = fixed_coef[i];
1216 int e = exp[i];
1217 int b = bap[i];
1218 switch (b) {
1219 case 0:
1220 v = 0;
1221 break;
1222 case 1:
1223 v = sym_quant(c, e, 3);
1224 switch (s->mant1_cnt) {
1225 case 0:
1226 s->qmant1_ptr = &qmant[i];
1227 v = 9 * v;
1228 s->mant1_cnt = 1;
1229 break;
1230 case 1:
1231 *s->qmant1_ptr += 3 * v;
1232 s->mant1_cnt = 2;
1233 v = 128;
1234 break;
1235 default:
1236 *s->qmant1_ptr += v;
1237 s->mant1_cnt = 0;
1238 v = 128;
1239 break;
1240 }
1241 break;
1242 case 2:
1243 v = sym_quant(c, e, 5);
1244 switch (s->mant2_cnt) {
1245 case 0:
1246 s->qmant2_ptr = &qmant[i];
1247 v = 25 * v;
1248 s->mant2_cnt = 1;
1249 break;
1250 case 1:
1251 *s->qmant2_ptr += 5 * v;
1252 s->mant2_cnt = 2;
1253 v = 128;
1254 break;
1255 default:
1256 *s->qmant2_ptr += v;
1257 s->mant2_cnt = 0;
1258 v = 128;
1259 break;
1260 }
1261 break;
1262 case 3:
1263 v = sym_quant(c, e, 7);
1264 break;
1265 case 4:
1266 v = sym_quant(c, e, 11);
1267 switch (s->mant4_cnt) {
1268 case 0:
1269 s->qmant4_ptr = &qmant[i];
1270 v = 11 * v;
1271 s->mant4_cnt = 1;
1272 break;
1273 default:
1274 *s->qmant4_ptr += v;
1275 s->mant4_cnt = 0;
1276 v = 128;
1277 break;
1278 }
1279 break;
1280 case 5:
1281 v = sym_quant(c, e, 15);
1282 break;
1283 case 14:
1284 v = asym_quant(c, e, 14);
1285 break;
1286 case 15:
1287 v = asym_quant(c, e, 16);
1288 break;
1289 default:
1290 v = asym_quant(c, e, b - 1);
1291 break;
1292 }
1293 qmant[i] = v;
1294 }
1295 }
1296
1297
1298 /**
1299 * Quantize mantissas using coefficients, exponents, and bit allocation pointers.
1300 *
1301 * @param s AC-3 encoder private context
1302 */
1303 void ff_ac3_quantize_mantissas(AC3EncodeContext *s)
1304 {
1305 int blk, ch, ch0=0, got_cpl;
1306
1307 for (blk = 0; blk < s->num_blocks; blk++) {
1308 AC3Block *block = &s->blocks[blk];
1309 AC3Mant m = { 0 };
1310
1311 got_cpl = !block->cpl_in_use;
1312 for (ch = 1; ch <= s->channels; ch++) {
1313 if (!got_cpl && ch > 1 && block->channel_in_cpl[ch-1]) {
1314 ch0 = ch - 1;
1315 ch = CPL_CH;
1316 got_cpl = 1;
1317 }
1318 quantize_mantissas_blk_ch(&m, block->fixed_coef[ch],
1319 s->blocks[s->exp_ref_block[ch][blk]].exp[ch],
1320 s->ref_bap[ch][blk], block->qmant[ch],
1321 s->start_freq[ch], block->end_freq[ch]);
1322 if (ch == CPL_CH)
1323 ch = ch0;
1324 }
1325 }
1326 }
1327
1328
1329 /*
1330 * Write the AC-3 frame header to the output bitstream.
1331 */
1332 static void ac3_output_frame_header(AC3EncodeContext *s)
1333 {
1334 AC3EncOptions *opt = &s->options;
1335
1336 put_bits(&s->pb, 16, 0x0b77); /* frame header */
1337 put_bits(&s->pb, 16, 0); /* crc1: will be filled later */
1338 put_bits(&s->pb, 2, s->bit_alloc.sr_code);
1339 put_bits(&s->pb, 6, s->frame_size_code + (s->frame_size - s->frame_size_min) / 2);
1340 put_bits(&s->pb, 5, s->bitstream_id);
1341 put_bits(&s->pb, 3, s->bitstream_mode);
1342 put_bits(&s->pb, 3, s->channel_mode);
1343 if ((s->channel_mode & 0x01) && s->channel_mode != AC3_CHMODE_MONO)
1344 put_bits(&s->pb, 2, s->center_mix_level);
1345 if (s->channel_mode & 0x04)
1346 put_bits(&s->pb, 2, s->surround_mix_level);
1347 if (s->channel_mode == AC3_CHMODE_STEREO)
1348 put_bits(&s->pb, 2, opt->dolby_surround_mode);
1349 put_bits(&s->pb, 1, s->lfe_on); /* LFE */
1350 put_bits(&s->pb, 5, -opt->dialogue_level);
1351 put_bits(&s->pb, 1, 0); /* no compression control word */
1352 put_bits(&s->pb, 1, 0); /* no lang code */
1353 put_bits(&s->pb, 1, opt->audio_production_info);
1354 if (opt->audio_production_info) {
1355 put_bits(&s->pb, 5, opt->mixing_level - 80);
1356 put_bits(&s->pb, 2, opt->room_type);
1357 }
1358 put_bits(&s->pb, 1, opt->copyright);
1359 put_bits(&s->pb, 1, opt->original);
1360 if (s->bitstream_id == 6) {
1361 /* alternate bit stream syntax */
1362 put_bits(&s->pb, 1, opt->extended_bsi_1);
1363 if (opt->extended_bsi_1) {
1364 put_bits(&s->pb, 2, opt->preferred_stereo_downmix);
1365 put_bits(&s->pb, 3, s->ltrt_center_mix_level);
1366 put_bits(&s->pb, 3, s->ltrt_surround_mix_level);
1367 put_bits(&s->pb, 3, s->loro_center_mix_level);
1368 put_bits(&s->pb, 3, s->loro_surround_mix_level);
1369 }
1370 put_bits(&s->pb, 1, opt->extended_bsi_2);
1371 if (opt->extended_bsi_2) {
1372 put_bits(&s->pb, 2, opt->dolby_surround_ex_mode);
1373 put_bits(&s->pb, 2, opt->dolby_headphone_mode);
1374 put_bits(&s->pb, 1, opt->ad_converter_type);
1375 put_bits(&s->pb, 9, 0); /* xbsi2 and encinfo : reserved */
1376 }
1377 } else {
1378 put_bits(&s->pb, 1, 0); /* no time code 1 */
1379 put_bits(&s->pb, 1, 0); /* no time code 2 */
1380 }
1381 put_bits(&s->pb, 1, 0); /* no additional bit stream info */
1382 }
1383
1384
1385 /*
1386 * Write one audio block to the output bitstream.
1387 */
1388 static void output_audio_block(AC3EncodeContext *s, int blk)
1389 {
1390 int ch, i, baie, bnd, got_cpl, ch0;
1391 AC3Block *block = &s->blocks[blk];
1392
1393 /* block switching */
1394 if (!s->eac3) {
1395 for (ch = 0; ch < s->fbw_channels; ch++)
1396 put_bits(&s->pb, 1, 0);
1397 }
1398
1399 /* dither flags */
1400 if (!s->eac3) {
1401 for (ch = 0; ch < s->fbw_channels; ch++)
1402 put_bits(&s->pb, 1, 1);
1403 }
1404
1405 /* dynamic range codes */
1406 put_bits(&s->pb, 1, 0);
1407
1408 /* spectral extension */
1409 if (s->eac3)
1410 put_bits(&s->pb, 1, 0);
1411
1412 /* channel coupling */
1413 if (!s->eac3)
1414 put_bits(&s->pb, 1, block->new_cpl_strategy);
1415 if (block->new_cpl_strategy) {
1416 if (!s->eac3)
1417 put_bits(&s->pb, 1, block->cpl_in_use);
1418 if (block->cpl_in_use) {
1419 int start_sub, end_sub;
1420 if (s->eac3)
1421 put_bits(&s->pb, 1, 0); /* enhanced coupling */
1422 if (!s->eac3 || s->channel_mode != AC3_CHMODE_STEREO) {
1423 for (ch = 1; ch <= s->fbw_channels; ch++)
1424 put_bits(&s->pb, 1, block->channel_in_cpl[ch]);
1425 }
1426 if (s->channel_mode == AC3_CHMODE_STEREO)
1427 put_bits(&s->pb, 1, 0); /* phase flags in use */
1428 start_sub = (s->start_freq[CPL_CH] - 37) / 12;
1429 end_sub = (s->cpl_end_freq - 37) / 12;
1430 put_bits(&s->pb, 4, start_sub);
1431 put_bits(&s->pb, 4, end_sub - 3);
1432 /* coupling band structure */
1433 if (s->eac3) {
1434 put_bits(&s->pb, 1, 0); /* use default */
1435 } else {
1436 for (bnd = start_sub+1; bnd < end_sub; bnd++)
1437 put_bits(&s->pb, 1, ff_eac3_default_cpl_band_struct[bnd]);
1438 }
1439 }
1440 }
1441
1442 /* coupling coordinates */
1443 if (block->cpl_in_use) {
1444 for (ch = 1; ch <= s->fbw_channels; ch++) {
1445 if (block->channel_in_cpl[ch]) {
1446 if (!s->eac3 || block->new_cpl_coords[ch] != 2)
1447 put_bits(&s->pb, 1, block->new_cpl_coords[ch]);
1448 if (block->new_cpl_coords[ch]) {
1449 put_bits(&s->pb, 2, block->cpl_master_exp[ch]);
1450 for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
1451 put_bits(&s->pb, 4, block->cpl_coord_exp [ch][bnd]);
1452 put_bits(&s->pb, 4, block->cpl_coord_mant[ch][bnd]);
1453 }
1454 }
1455 }
1456 }
1457 }
1458
1459 /* stereo rematrixing */
1460 if (s->channel_mode == AC3_CHMODE_STEREO) {
1461 if (!s->eac3 || blk > 0)
1462 put_bits(&s->pb, 1, block->new_rematrixing_strategy);
1463 if (block->new_rematrixing_strategy) {
1464 /* rematrixing flags */
1465 for (bnd = 0; bnd < block->num_rematrixing_bands; bnd++)
1466 put_bits(&s->pb, 1, block->rematrixing_flags[bnd]);
1467 }
1468 }
1469
1470 /* exponent strategy */
1471 if (!s->eac3) {
1472 for (ch = !block->cpl_in_use; ch <= s->fbw_channels; ch++)
1473 put_bits(&s->pb, 2, s->exp_strategy[ch][blk]);
1474 if (s->lfe_on)
1475 put_bits(&s->pb, 1, s->exp_strategy[s->lfe_channel][blk]);
1476 }
1477
1478 /* bandwidth */
1479 for (ch = 1; ch <= s->fbw_channels; ch++) {
1480 if (s->exp_strategy[ch][blk] != EXP_REUSE && !block->channel_in_cpl[ch])
1481 put_bits(&s->pb, 6, s->bandwidth_code);
1482 }
1483
1484 /* exponents */
1485 for (ch = !block->cpl_in_use; ch <= s->channels; ch++) {
1486 int nb_groups;
1487 int cpl = (ch == CPL_CH);
1488
1489 if (s->exp_strategy[ch][blk] == EXP_REUSE)
1490 continue;
1491
1492 /* DC exponent */
1493 put_bits(&s->pb, 4, block->grouped_exp[ch][0] >> cpl);
1494
1495 /* exponent groups */
1496 nb_groups = exponent_group_tab[cpl][s->exp_strategy[ch][blk]-1][block->end_freq[ch]-s->start_freq[ch]];
1497 for (i = 1; i <= nb_groups; i++)
1498 put_bits(&s->pb, 7, block->grouped_exp[ch][i]);
1499
1500 /* gain range info */
1501 if (ch != s->lfe_channel && !cpl)
1502 put_bits(&s->pb, 2, 0);
1503 }
1504
1505 /* bit allocation info */
1506 if (!s->eac3) {
1507 baie = (blk == 0);
1508 put_bits(&s->pb, 1, baie);
1509 if (baie) {
1510 put_bits(&s->pb, 2, s->slow_decay_code);
1511 put_bits(&s->pb, 2, s->fast_decay_code);
1512 put_bits(&s->pb, 2, s->slow_gain_code);
1513 put_bits(&s->pb, 2, s->db_per_bit_code);
1514 put_bits(&s->pb, 3, s->floor_code);
1515 }
1516 }
1517
1518 /* snr offset */
1519 if (!s->eac3) {
1520 put_bits(&s->pb, 1, block->new_snr_offsets);
1521 if (block->new_snr_offsets) {
1522 put_bits(&s->pb, 6, s->coarse_snr_offset);
1523 for (ch = !block->cpl_in_use; ch <= s->channels; ch++) {
1524 put_bits(&s->pb, 4, s->fine_snr_offset[ch]);
1525 put_bits(&s->pb, 3, s->fast_gain_code[ch]);
1526 }
1527 }
1528 } else {
1529 put_bits(&s->pb, 1, 0); /* no converter snr offset */
1530 }
1531
1532 /* coupling leak */
1533 if (block->cpl_in_use) {
1534 if (!s->eac3 || block->new_cpl_leak != 2)
1535 put_bits(&s->pb, 1, block->new_cpl_leak);
1536 if (block->new_cpl_leak) {
1537 put_bits(&s->pb, 3, s->bit_alloc.cpl_fast_leak);
1538 put_bits(&s->pb, 3, s->bit_alloc.cpl_slow_leak);
1539 }
1540 }
1541
1542 if (!s->eac3) {
1543 put_bits(&s->pb, 1, 0); /* no delta bit allocation */
1544 put_bits(&s->pb, 1, 0); /* no data to skip */
1545 }
1546
1547 /* mantissas */
1548 got_cpl = !block->cpl_in_use;
1549 for (ch = 1; ch <= s->channels; ch++) {
1550 int b, q;
1551
1552 if (!got_cpl && ch > 1 && block->channel_in_cpl[ch-1]) {
1553 ch0 = ch - 1;
1554 ch = CPL_CH;
1555 got_cpl = 1;
1556 }
1557 for (i = s->start_freq[ch]; i < block->end_freq[ch]; i++) {
1558 q = block->qmant[ch][i];
1559 b = s->ref_bap[ch][blk][i];
1560 switch (b) {
1561 case 0: break;
1562 case 1: if (q != 128) put_bits (&s->pb, 5, q); break;
1563 case 2: if (q != 128) put_bits (&s->pb, 7, q); break;
1564 case 3: put_sbits(&s->pb, 3, q); break;
1565 case 4: if (q != 128) put_bits (&s->pb, 7, q); break;
1566 case 14: put_sbits(&s->pb, 14, q); break;
1567 case 15: put_sbits(&s->pb, 16, q); break;
1568 default: put_sbits(&s->pb, b-1, q); break;
1569 }
1570 }
1571 if (ch == CPL_CH)
1572 ch = ch0;
1573 }
1574 }
1575
1576
1577 /** CRC-16 Polynomial */
1578 #define CRC16_POLY ((1 << 0) | (1 << 2) | (1 << 15) | (1 << 16))
1579
1580
1581 static unsigned int mul_poly(unsigned int a, unsigned int b, unsigned int poly)
1582 {
1583 unsigned int c;
1584
1585 c = 0;
1586 while (a) {
1587 if (a & 1)
1588 c ^= b;
1589 a = a >> 1;
1590 b = b << 1;
1591 if (b & (1 << 16))
1592 b ^= poly;
1593 }
1594 return c;
1595 }
1596
1597
1598 static unsigned int pow_poly(unsigned int a, unsigned int n, unsigned int poly)
1599 {
1600 unsigned int r;
1601 r = 1;
1602 while (n) {
1603 if (n & 1)
1604 r = mul_poly(r, a, poly);
1605 a = mul_poly(a, a, poly);
1606 n >>= 1;
1607 }
1608 return r;
1609 }
1610
1611
1612 /*
1613 * Fill the end of the frame with 0's and compute the two CRCs.
1614 */
1615 static void output_frame_end(AC3EncodeContext *s)
1616 {
1617 const AVCRC *crc_ctx = av_crc_get_table(AV_CRC_16_ANSI);
1618 int frame_size_58, pad_bytes, crc1, crc2_partial, crc2, crc_inv;
1619 uint8_t *frame;
1620
1621 frame_size_58 = ((s->frame_size >> 2) + (s->frame_size >> 4)) << 1;
1622
1623 /* pad the remainder of the frame with zeros */
1624 av_assert2(s->frame_size * 8 - put_bits_count(&s->pb) >= 18);
1625 flush_put_bits(&s->pb);
1626 frame = s->pb.buf;
1627 pad_bytes = s->frame_size - (put_bits_ptr(&s->pb) - frame) - 2;
1628 av_assert2(pad_bytes >= 0);
1629 if (pad_bytes > 0)
1630 memset(put_bits_ptr(&s->pb), 0, pad_bytes);
1631
1632 if (s->eac3) {
1633 /* compute crc2 */
1634 crc2_partial = av_crc(crc_ctx, 0, frame + 2, s->frame_size - 5);
1635 } else {
1636 /* compute crc1 */
1637 /* this is not so easy because it is at the beginning of the data... */
1638 crc1 = av_bswap16(av_crc(crc_ctx, 0, frame + 4, frame_size_58 - 4));
1639 crc_inv = s->crc_inv[s->frame_size > s->frame_size_min];
1640 crc1 = mul_poly(crc_inv, crc1, CRC16_POLY);
1641 AV_WB16(frame + 2, crc1);
1642
1643 /* compute crc2 */
1644 crc2_partial = av_crc(crc_ctx, 0, frame + frame_size_58,
1645 s->frame_size - frame_size_58 - 3);
1646 }
1647 crc2 = av_crc(crc_ctx, crc2_partial, frame + s->frame_size - 3, 1);
1648 /* ensure crc2 does not match sync word by flipping crcrsv bit if needed */
1649 if (crc2 == 0x770B) {
1650 frame[s->frame_size - 3] ^= 0x1;
1651 crc2 = av_crc(crc_ctx, crc2_partial, frame + s->frame_size - 3, 1);
1652 }
1653 crc2 = av_bswap16(crc2);
1654 AV_WB16(frame + s->frame_size - 2, crc2);
1655 }
1656
1657
1658 /**
1659 * Write the frame to the output bitstream.
1660 *
1661 * @param s AC-3 encoder private context
1662 * @param frame output data buffer
1663 */
1664 void ff_ac3_output_frame(AC3EncodeContext *s, unsigned char *frame)
1665 {
1666 int blk;
1667
1668 init_put_bits(&s->pb, frame, AC3_MAX_CODED_FRAME_SIZE);
1669
1670 s->output_frame_header(s);
1671
1672 for (blk = 0; blk < s->num_blocks; blk++)
1673 output_audio_block(s, blk);
1674
1675 output_frame_end(s);
1676 }
1677
1678
1679 static void dprint_options(AC3EncodeContext *s)
1680 {
1681 #ifdef DEBUG
1682 AVCodecContext *avctx = s->avctx;
1683 AC3EncOptions *opt = &s->options;
1684 char strbuf[32];
1685
1686 switch (s->bitstream_id) {
1687 case 6: av_strlcpy(strbuf, "AC-3 (alt syntax)", 32); break;
1688 case 8: av_strlcpy(strbuf, "AC-3 (standard)", 32); break;
1689 case 9: av_strlcpy(strbuf, "AC-3 (dnet half-rate)", 32); break;
1690 case 10: av_strlcpy(strbuf, "AC-3 (dnet quater-rate)", 32); break;
1691 case 16: av_strlcpy(strbuf, "E-AC-3 (enhanced)", 32); break;
1692 default: snprintf(strbuf, 32, "ERROR");
1693 }
1694 ff_dlog(avctx, "bitstream_id: %s (%d)\n", strbuf, s->bitstream_id);
1695 ff_dlog(avctx, "sample_fmt: %s\n", av_get_sample_fmt_name(avctx->sample_fmt));
1696 av_get_channel_layout_string(strbuf, 32, s->channels, avctx->channel_layout);
1697 ff_dlog(avctx, "channel_layout: %s\n", strbuf);
1698 ff_dlog(avctx, "sample_rate: %d\n", s->sample_rate);
1699 ff_dlog(avctx, "bit_rate: %d\n", s->bit_rate);
1700 ff_dlog(avctx, "blocks/frame: %d (code=%d)\n", s->num_blocks, s->num_blks_code);
1701 if (s->cutoff)
1702 ff_dlog(avctx, "cutoff: %d\n", s->cutoff);
1703
1704 ff_dlog(avctx, "per_frame_metadata: %s\n",
1705 opt->allow_per_frame_metadata?"on":"off");
1706 if (s->has_center)
1707 ff_dlog(avctx, "center_mixlev: %0.3f (%d)\n", opt->center_mix_level,
1708 s->center_mix_level);
1709 else
1710 ff_dlog(avctx, "center_mixlev: {not written}\n");
1711 if (s->has_surround)
1712 ff_dlog(avctx, "surround_mixlev: %0.3f (%d)\n", opt->surround_mix_level,
1713 s->surround_mix_level);
1714 else
1715 ff_dlog(avctx, "surround_mixlev: {not written}\n");
1716 if (opt->audio_production_info) {
1717 ff_dlog(avctx, "mixing_level: %ddB\n", opt->mixing_level);
1718 switch (opt->room_type) {
1719 case AC3ENC_OPT_NOT_INDICATED: av_strlcpy(strbuf, "notindicated", 32); break;
1720 case AC3ENC_OPT_LARGE_ROOM: av_strlcpy(strbuf, "large", 32); break;
1721 case AC3ENC_OPT_SMALL_ROOM: av_strlcpy(strbuf, "small", 32); break;
1722 default: snprintf(strbuf, 32, "ERROR (%d)", opt->room_type);
1723 }
1724 ff_dlog(avctx, "room_type: %s\n", strbuf);
1725 } else {
1726 ff_dlog(avctx, "mixing_level: {not written}\n");
1727 ff_dlog(avctx, "room_type: {not written}\n");
1728 }
1729 ff_dlog(avctx, "copyright: %s\n", opt->copyright?"on":"off");
1730 ff_dlog(avctx, "dialnorm: %ddB\n", opt->dialogue_level);
1731 if (s->channel_mode == AC3_CHMODE_STEREO) {
1732 switch (opt->dolby_surround_mode) {
1733 case AC3ENC_OPT_NOT_INDICATED: av_strlcpy(strbuf, "notindicated", 32); break;
1734 case AC3ENC_OPT_MODE_ON: av_strlcpy(strbuf, "on", 32); break;
1735 case AC3ENC_OPT_MODE_OFF: av_strlcpy(strbuf, "off", 32); break;
1736 default: snprintf(strbuf, 32, "ERROR (%d)", opt->dolby_surround_mode);
1737 }
1738 ff_dlog(avctx, "dsur_mode: %s\n", strbuf);
1739 } else {
1740 ff_dlog(avctx, "dsur_mode: {not written}\n");
1741 }
1742 ff_dlog(avctx, "original: %s\n", opt->original?"on":"off");
1743
1744 if (s->bitstream_id == 6) {
1745 if (opt->extended_bsi_1) {
1746 switch (opt->preferred_stereo_downmix) {
1747 case AC3ENC_OPT_NOT_INDICATED: av_strlcpy(strbuf, "notindicated", 32); break;
1748 case AC3ENC_OPT_DOWNMIX_LTRT: av_strlcpy(strbuf, "ltrt", 32); break;
1749 case AC3ENC_OPT_DOWNMIX_LORO: av_strlcpy(strbuf, "loro", 32); break;
1750 default: snprintf(strbuf, 32, "ERROR (%d)", opt->preferred_stereo_downmix);
1751 }
1752 ff_dlog(avctx, "dmix_mode: %s\n", strbuf);
1753 ff_dlog(avctx, "ltrt_cmixlev: %0.3f (%d)\n",
1754 opt->ltrt_center_mix_level, s->ltrt_center_mix_level);
1755 ff_dlog(avctx, "ltrt_surmixlev: %0.3f (%d)\n",
1756 opt->ltrt_surround_mix_level, s->ltrt_surround_mix_level);
1757 ff_dlog(avctx, "loro_cmixlev: %0.3f (%d)\n",
1758 opt->loro_center_mix_level, s->loro_center_mix_level);
1759 ff_dlog(avctx, "loro_surmixlev: %0.3f (%d)\n",
1760 opt->loro_surround_mix_level, s->loro_surround_mix_level);
1761 } else {
1762 ff_dlog(avctx, "extended bitstream info 1: {not written}\n");
1763 }
1764 if (opt->extended_bsi_2) {
1765 switch (opt->dolby_surround_ex_mode) {
1766 case AC3ENC_OPT_NOT_INDICATED: av_strlcpy(strbuf, "notindicated", 32); break;
1767 case AC3ENC_OPT_MODE_ON: av_strlcpy(strbuf, "on", 32); break;
1768 case AC3ENC_OPT_MODE_OFF: av_strlcpy(strbuf, "off", 32); break;
1769 default: snprintf(strbuf, 32, "ERROR (%d)", opt->dolby_surround_ex_mode);
1770 }
1771 ff_dlog(avctx, "dsurex_mode: %s\n", strbuf);
1772 switch (opt->dolby_headphone_mode) {
1773 case AC3ENC_OPT_NOT_INDICATED: av_strlcpy(strbuf, "notindicated", 32); break;
1774 case AC3ENC_OPT_MODE_ON: av_strlcpy(strbuf, "on", 32); break;
1775 case AC3ENC_OPT_MODE_OFF: av_strlcpy(strbuf, "off", 32); break;
1776 default: snprintf(strbuf, 32, "ERROR (%d)", opt->dolby_headphone_mode);
1777 }
1778 ff_dlog(avctx, "dheadphone_mode: %s\n", strbuf);
1779
1780 switch (opt->ad_converter_type) {
1781 case AC3ENC_OPT_ADCONV_STANDARD: av_strlcpy(strbuf, "standard", 32); break;
1782 case AC3ENC_OPT_ADCONV_HDCD: av_strlcpy(strbuf, "hdcd", 32); break;
1783 default: snprintf(strbuf, 32, "ERROR (%d)", opt->ad_converter_type);
1784 }
1785 ff_dlog(avctx, "ad_conv_type: %s\n", strbuf);
1786 } else {
1787 ff_dlog(avctx, "extended bitstream info 2: {not written}\n");
1788 }
1789 }
1790 #endif
1791 }
1792
1793
1794 #define FLT_OPTION_THRESHOLD 0.01
1795
1796 static int validate_float_option(float v, const float *v_list, int v_list_size)
1797 {
1798 int i;
1799
1800 for (i = 0; i < v_list_size; i++) {
1801 if (v < (v_list[i] + FLT_OPTION_THRESHOLD) &&
1802 v > (v_list[i] - FLT_OPTION_THRESHOLD))
1803 break;
1804 }
1805 if (i == v_list_size)
1806 return -1;
1807
1808 return i;
1809 }
1810
1811
1812 static void validate_mix_level(void *log_ctx, const char *opt_name,
1813 float *opt_param, const float *list,
1814 int list_size, int default_value, int min_value,
1815 int *ctx_param)
1816 {
1817 int mixlev = validate_float_option(*opt_param, list, list_size);
1818 if (mixlev < min_value) {
1819 mixlev = default_value;
1820 if (*opt_param >= 0.0) {
1821 av_log(log_ctx, AV_LOG_WARNING, "requested %s is not valid. using "
1822 "default value: %0.3f\n", opt_name, list[mixlev]);
1823 }
1824 }
1825 *opt_param = list[mixlev];
1826 *ctx_param = mixlev;
1827 }
1828
1829
1830 /**
1831 * Validate metadata options as set by AVOption system.
1832 * These values can optionally be changed per-frame.
1833 *
1834 * @param s AC-3 encoder private context
1835 */
1836 int ff_ac3_validate_metadata(AC3EncodeContext *s)
1837 {
1838 AVCodecContext *avctx = s->avctx;
1839 AC3EncOptions *opt = &s->options;
1840
1841 opt->audio_production_info = 0;
1842 opt->extended_bsi_1 = 0;
1843 opt->extended_bsi_2 = 0;
1844 opt->eac3_mixing_metadata = 0;
1845 opt->eac3_info_metadata = 0;
1846
1847 /* determine mixing metadata / xbsi1 use */
1848 if (s->channel_mode > AC3_CHMODE_STEREO && opt->preferred_stereo_downmix != AC3ENC_OPT_NONE) {
1849 opt->extended_bsi_1 = 1;
1850 opt->eac3_mixing_metadata = 1;
1851 }
1852 if (s->has_center &&
1853 (opt->ltrt_center_mix_level >= 0 || opt->loro_center_mix_level >= 0)) {
1854 opt->extended_bsi_1 = 1;
1855 opt->eac3_mixing_metadata = 1;
1856 }
1857 if (s->has_surround &&
1858 (opt->ltrt_surround_mix_level >= 0 || opt->loro_surround_mix_level >= 0)) {
1859 opt->extended_bsi_1 = 1;
1860 opt->eac3_mixing_metadata = 1;
1861 }
1862
1863 if (s->eac3) {
1864 /* determine info metadata use */
1865 if (avctx->audio_service_type != AV_AUDIO_SERVICE_TYPE_MAIN)
1866 opt->eac3_info_metadata = 1;
1867 if (opt->copyright != AC3ENC_OPT_NONE || opt->original != AC3ENC_OPT_NONE)
1868 opt->eac3_info_metadata = 1;
1869 if (s->channel_mode == AC3_CHMODE_STEREO &&
1870 (opt->dolby_headphone_mode != AC3ENC_OPT_NONE || opt->dolby_surround_mode != AC3ENC_OPT_NONE))
1871 opt->eac3_info_metadata = 1;
1872 if (s->channel_mode >= AC3_CHMODE_2F2R && opt->dolby_surround_ex_mode != AC3ENC_OPT_NONE)
1873 opt->eac3_info_metadata = 1;
1874 if (opt->mixing_level != AC3ENC_OPT_NONE || opt->room_type != AC3ENC_OPT_NONE ||
1875 opt->ad_converter_type != AC3ENC_OPT_NONE) {
1876 opt->audio_production_info = 1;
1877 opt->eac3_info_metadata = 1;
1878 }
1879 } else {
1880 /* determine audio production info use */
1881 if (opt->mixing_level != AC3ENC_OPT_NONE || opt->room_type != AC3ENC_OPT_NONE)
1882 opt->audio_production_info = 1;
1883
1884 /* determine xbsi2 use */
1885 if (s->channel_mode >= AC3_CHMODE_2F2R && opt->dolby_surround_ex_mode != AC3ENC_OPT_NONE)
1886 opt->extended_bsi_2 = 1;
1887 if (s->channel_mode == AC3_CHMODE_STEREO && opt->dolby_headphone_mode != AC3ENC_OPT_NONE)
1888 opt->extended_bsi_2 = 1;
1889 if (opt->ad_converter_type != AC3ENC_OPT_NONE)
1890 opt->extended_bsi_2 = 1;
1891 }
1892
1893 /* validate AC-3 mixing levels */
1894 if (!s->eac3) {
1895 if (s->has_center) {
1896 validate_mix_level(avctx, "center_mix_level", &opt->center_mix_level,
1897 cmixlev_options, CMIXLEV_NUM_OPTIONS, 1, 0,
1898 &s->center_mix_level);
1899 }
1900 if (s->has_surround) {
1901 validate_mix_level(avctx, "surround_mix_level", &opt->surround_mix_level,
1902 surmixlev_options, SURMIXLEV_NUM_OPTIONS, 1, 0,
1903 &s->surround_mix_level);
1904 }
1905 }
1906
1907 /* validate extended bsi 1 / mixing metadata */
1908 if (opt->extended_bsi_1 || opt->eac3_mixing_metadata) {
1909 /* default preferred stereo downmix */
1910 if (opt->preferred_stereo_downmix == AC3ENC_OPT_NONE)
1911 opt->preferred_stereo_downmix = AC3ENC_OPT_NOT_INDICATED;
1912 if (!s->eac3 || s->has_center) {
1913 /* validate Lt/Rt center mix level */
1914 validate_mix_level(avctx, "ltrt_center_mix_level",
1915 &opt->ltrt_center_mix_level, extmixlev_options,
1916 EXTMIXLEV_NUM_OPTIONS, 5, 0,
1917 &s->ltrt_center_mix_level);
1918 /* validate Lo/Ro center mix level */
1919 validate_mix_level(avctx, "loro_center_mix_level",
1920 &opt->loro_center_mix_level, extmixlev_options,
1921 EXTMIXLEV_NUM_OPTIONS, 5, 0,
1922 &s->loro_center_mix_level);
1923 }
1924 if (!s->eac3 || s->has_surround) {
1925 /* validate Lt/Rt surround mix level */
1926 validate_mix_level(avctx, "ltrt_surround_mix_level",
1927 &opt->ltrt_surround_mix_level, extmixlev_options,
1928 EXTMIXLEV_NUM_OPTIONS, 6, 3,
1929 &s->ltrt_surround_mix_level);
1930 /* validate Lo/Ro surround mix level */
1931 validate_mix_level(avctx, "loro_surround_mix_level",
1932 &opt->loro_surround_mix_level, extmixlev_options,
1933 EXTMIXLEV_NUM_OPTIONS, 6, 3,
1934 &s->loro_surround_mix_level);
1935 }
1936 }
1937
1938 /* validate audio service type / channels combination */
1939 if ((avctx->audio_service_type == AV_AUDIO_SERVICE_TYPE_KARAOKE &&
1940 avctx->channels == 1) ||
1941 ((avctx->audio_service_type == AV_AUDIO_SERVICE_TYPE_COMMENTARY ||
1942 avctx->audio_service_type == AV_AUDIO_SERVICE_TYPE_EMERGENCY ||
1943 avctx->audio_service_type == AV_AUDIO_SERVICE_TYPE_VOICE_OVER)
1944 && avctx->channels > 1)) {
1945 av_log(avctx, AV_LOG_ERROR, "invalid audio service type for the "
1946 "specified number of channels\n");
1947 return AVERROR(EINVAL);
1948 }
1949
1950 /* validate extended bsi 2 / info metadata */
1951 if (opt->extended_bsi_2 || opt->eac3_info_metadata) {
1952 /* default dolby headphone mode */
1953 if (opt->dolby_headphone_mode == AC3ENC_OPT_NONE)
1954 opt->dolby_headphone_mode = AC3ENC_OPT_NOT_INDICATED;
1955 /* default dolby surround ex mode */
1956 if (opt->dolby_surround_ex_mode == AC3ENC_OPT_NONE)
1957 opt->dolby_surround_ex_mode = AC3ENC_OPT_NOT_INDICATED;
1958 /* default A/D converter type */
1959 if (opt->ad_converter_type == AC3ENC_OPT_NONE)
1960 opt->ad_converter_type = AC3ENC_OPT_ADCONV_STANDARD;
1961 }
1962
1963 /* copyright & original defaults */
1964 if (!s->eac3 || opt->eac3_info_metadata) {
1965 /* default copyright */
1966 if (opt->copyright == AC3ENC_OPT_NONE)
1967 opt->copyright = AC3ENC_OPT_OFF;
1968 /* default original */
1969 if (opt->original == AC3ENC_OPT_NONE)
1970 opt->original = AC3ENC_OPT_ON;
1971 }
1972
1973 /* dolby surround mode default */
1974 if (!s->eac3 || opt->eac3_info_metadata) {
1975 if (opt->dolby_surround_mode == AC3ENC_OPT_NONE)
1976 opt->dolby_surround_mode = AC3ENC_OPT_NOT_INDICATED;
1977 }
1978
1979 /* validate audio production info */
1980 if (opt->audio_production_info) {
1981 if (opt->mixing_level == AC3ENC_OPT_NONE) {
1982 av_log(avctx, AV_LOG_ERROR, "mixing_level must be set if "
1983 "room_type is set\n");
1984 return AVERROR(EINVAL);
1985 }
1986 if (opt->mixing_level < 80) {
1987 av_log(avctx, AV_LOG_ERROR, "invalid mixing level. must be between "
1988 "80dB and 111dB\n");
1989 return AVERROR(EINVAL);
1990 }
1991 /* default room type */
1992 if (opt->room_type == AC3ENC_OPT_NONE)
1993 opt->room_type = AC3ENC_OPT_NOT_INDICATED;
1994 }
1995
1996 /* set bitstream id for alternate bitstream syntax */
1997 if (!s->eac3 && (opt->extended_bsi_1 || opt->extended_bsi_2)) {
1998 if (s->bitstream_id > 8 && s->bitstream_id < 11) {
1999 static int warn_once = 1;
2000 if (warn_once) {
2001 av_log(avctx, AV_LOG_WARNING, "alternate bitstream syntax is "
2002 "not compatible with reduced samplerates. writing of "
2003 "extended bitstream information will be disabled.\n");
2004 warn_once = 0;
2005 }
2006 } else {
2007 s->bitstream_id = 6;
2008 }
2009 }
2010
2011 return 0;
2012 }
2013
2014
2015 /**
2016 * Finalize encoding and free any memory allocated by the encoder.
2017 *
2018 * @param avctx Codec context
2019 */
2020 av_cold int ff_ac3_encode_close(AVCodecContext *avctx)
2021 {
2022 int blk, ch;
2023 AC3EncodeContext *s = avctx->priv_data;
2024
2025 av_freep(&s->windowed_samples);
2026 for (ch = 0; ch < s->channels; ch++)
2027 av_freep(&s->planar_samples[ch]);
2028 av_freep(&s->planar_samples);
2029 av_freep(&s->bap_buffer);
2030 av_freep(&s->bap1_buffer);
2031 av_freep(&s->mdct_coef_buffer);
2032 av_freep(&s->fixed_coef_buffer);
2033 av_freep(&s->exp_buffer);
2034 av_freep(&s->grouped_exp_buffer);
2035 av_freep(&s->psd_buffer);
2036 av_freep(&s->band_psd_buffer);
2037 av_freep(&s->mask_buffer);
2038 av_freep(&s->qmant_buffer);
2039 av_freep(&s->cpl_coord_exp_buffer);
2040 av_freep(&s->cpl_coord_mant_buffer);
2041 for (blk = 0; blk < s->num_blocks; blk++) {
2042 AC3Block *block = &s->blocks[blk];
2043 av_freep(&block->mdct_coef);
2044 av_freep(&block->fixed_coef);
2045 av_freep(&block->exp);
2046 av_freep(&block->grouped_exp);
2047 av_freep(&block->psd);
2048 av_freep(&block->band_psd);
2049 av_freep(&block->mask);
2050 av_freep(&block->qmant);
2051 av_freep(&block->cpl_coord_exp);
2052 av_freep(&block->cpl_coord_mant);
2053 }
2054
2055 s->mdct_end(s);
2056
2057 return 0;
2058 }
2059
2060
2061 /*
2062 * Set channel information during initialization.
2063 */
2064 static av_cold int set_channel_info(AC3EncodeContext *s, int channels,
2065 uint64_t *channel_layout)
2066 {
2067 int ch_layout;
2068
2069 if (channels < 1 || channels > AC3_MAX_CHANNELS)
2070 return AVERROR(EINVAL);
2071 if (*channel_layout > 0x7FF)
2072 return AVERROR(EINVAL);
2073 ch_layout = *channel_layout;
2074 if (!ch_layout)
2075 ch_layout = av_get_default_channel_layout(channels);
2076
2077 s->lfe_on = !!(ch_layout & AV_CH_LOW_FREQUENCY);
2078 s->channels = channels;
2079 s->fbw_channels = channels - s->lfe_on;
2080 s->lfe_channel = s->lfe_on ? s->fbw_channels + 1 : -1;
2081 if (s->lfe_on)
2082 ch_layout -= AV_CH_LOW_FREQUENCY;
2083
2084 switch (ch_layout) {
2085 case AV_CH_LAYOUT_MONO: s->channel_mode = AC3_CHMODE_MONO; break;
2086 case AV_CH_LAYOUT_STEREO: s->channel_mode = AC3_CHMODE_STEREO; break;
2087 case AV_CH_LAYOUT_SURROUND: s->channel_mode = AC3_CHMODE_3F; break;
2088 case AV_CH_LAYOUT_2_1: s->channel_mode = AC3_CHMODE_2F1R; break;
2089 case AV_CH_LAYOUT_4POINT0: s->channel_mode = AC3_CHMODE_3F1R; break;
2090 case AV_CH_LAYOUT_QUAD:
2091 case AV_CH_LAYOUT_2_2: s->channel_mode = AC3_CHMODE_2F2R; break;
2092 case AV_CH_LAYOUT_5POINT0:
2093 case AV_CH_LAYOUT_5POINT0_BACK: s->channel_mode = AC3_CHMODE_3F2R; break;
2094 default:
2095 return AVERROR(EINVAL);
2096 }
2097 s->has_center = (s->channel_mode & 0x01) && s->channel_mode != AC3_CHMODE_MONO;
2098 s->has_surround = s->channel_mode & 0x04;
2099
2100 s->channel_map = ff_ac3_enc_channel_map[s->channel_mode][s->lfe_on];
2101 *channel_layout = ch_layout;
2102 if (s->lfe_on)
2103 *channel_layout |= AV_CH_LOW_FREQUENCY;
2104
2105 return 0;
2106 }
2107
2108
2109 static av_cold int validate_options(AC3EncodeContext *s)
2110 {
2111 AVCodecContext *avctx = s->avctx;
2112 int i, ret, max_sr;
2113
2114 /* validate channel layout */
2115 if (!avctx->channel_layout) {
2116 av_log(avctx, AV_LOG_WARNING, "No channel layout specified. The "
2117 "encoder will guess the layout, but it "
2118 "might be incorrect.\n");
2119 }
2120 ret = set_channel_info(s, avctx->channels, &avctx->channel_layout);
2121 if (ret) {
2122 av_log(avctx, AV_LOG_ERROR, "invalid channel layout\n");
2123 return ret;
2124 }
2125
2126 /* validate sample rate */
2127 /* note: max_sr could be changed from 2 to 5 for E-AC-3 once we find a
2128 decoder that supports half sample rate so we can validate that
2129 the generated files are correct. */
2130 max_sr = s->eac3 ? 2 : 8;
2131 for (i = 0; i <= max_sr; i++) {
2132 if ((ff_ac3_sample_rate_tab[i % 3] >> (i / 3)) == avctx->sample_rate)
2133 break;
2134 }
2135 if (i > max_sr) {
2136 av_log(avctx, AV_LOG_ERROR, "invalid sample rate\n");
2137 return AVERROR(EINVAL);
2138 }
2139 s->sample_rate = avctx->sample_rate;
2140 s->bit_alloc.sr_shift = i / 3;
2141 s->bit_alloc.sr_code = i % 3;
2142 s->bitstream_id = s->eac3 ? 16 : 8 + s->bit_alloc.sr_shift;
2143
2144 /* select a default bit rate if not set by the user */
2145 if (!avctx->bit_rate) {
2146 switch (s->fbw_channels) {
2147 case 1: avctx->bit_rate = 96000; break;
2148 case 2: avctx->bit_rate = 192000; break;
2149 case 3: avctx->bit_rate = 320000; break;
2150 case 4: avctx->bit_rate = 384000; break;
2151 case 5: avctx->bit_rate = 448000; break;
2152 }
2153 }
2154
2155 /* validate bit rate */
2156 if (s->eac3) {
2157 int max_br, min_br, wpf, min_br_dist, min_br_code;
2158 int num_blks_code, num_blocks, frame_samples;
2159
2160 /* calculate min/max bitrate */
2161 /* TODO: More testing with 3 and 2 blocks. All E-AC-3 samples I've
2162 found use either 6 blocks or 1 block, even though 2 or 3 blocks
2163 would work as far as the bit rate is concerned. */
2164 for (num_blks_code = 3; num_blks_code >= 0; num_blks_code--) {
2165 num_blocks = ((int[]){ 1, 2, 3, 6 })[num_blks_code];
2166 frame_samples = AC3_BLOCK_SIZE * num_blocks;
2167 max_br = 2048 * s->sample_rate / frame_samples * 16;
2168 min_br = ((s->sample_rate + (frame_samples-1)) / frame_samples) * 16;
2169 if (avctx->bit_rate <= max_br)
2170 break;
2171 }
2172 if (avctx->bit_rate < min_br || avctx->bit_rate > max_br) {
2173 av_log(avctx, AV_LOG_ERROR, "invalid bit rate. must be %d to %d "
2174 "for this sample rate\n", min_br, max_br);
2175 return AVERROR(EINVAL);
2176 }
2177 s->num_blks_code = num_blks_code;
2178 s->num_blocks = num_blocks;
2179
2180 /* calculate words-per-frame for the selected bitrate */
2181 wpf = (avctx->bit_rate / 16) * frame_samples / s->sample_rate;
2182 av_assert1(wpf > 0 && wpf <= 2048);
2183
2184 /* find the closest AC-3 bitrate code to the selected bitrate.
2185 this is needed for lookup tables for bandwidth and coupling
2186 parameter selection */
2187 min_br_code = -1;
2188 min_br_dist = INT_MAX;
2189 for (i = 0; i < 19; i++) {
2190 int br_dist = abs(ff_ac3_bitrate_tab[i] * 1000 - avctx->bit_rate);
2191 if (br_dist < min_br_dist) {
2192 min_br_dist = br_dist;
2193 min_br_code = i;
2194 }
2195 }
2196
2197 /* make sure the minimum frame size is below the average frame size */
2198 s->frame_size_code = min_br_code << 1;
2199 while (wpf > 1 && wpf * s->sample_rate / AC3_FRAME_SIZE * 16 > avctx->bit_rate)
2200 wpf--;
2201 s->frame_size_min = 2 * wpf;
2202 } else {
2203 int best_br = 0, best_code = 0, best_diff = INT_MAX;
2204 for (i = 0; i < 19; i++) {
2205 int br = (ff_ac3_bitrate_tab[i] >> s->bit_alloc.sr_shift) * 1000;
2206 int diff = abs(br - avctx->bit_rate);
2207 if (diff < best_diff) {
2208 best_br = br;
2209 best_code = i;
2210 best_diff = diff;
2211 }
2212 if (!best_diff)
2213 break;
2214 }
2215 avctx->bit_rate = best_br;
2216 s->frame_size_code = best_code << 1;
2217 s->frame_size_min = 2 * ff_ac3_frame_size_tab[s->frame_size_code][s->bit_alloc.sr_code];
2218 s->num_blks_code = 0x3;
2219 s->num_blocks = 6;
2220 }
2221 s->bit_rate = avctx->bit_rate;
2222 s->frame_size = s->frame_size_min;
2223
2224 /* validate cutoff */
2225 if (avctx->cutoff < 0) {
2226 av_log(avctx, AV_LOG_ERROR, "invalid cutoff frequency\n");
2227 return AVERROR(EINVAL);
2228 }
2229 s->cutoff = avctx->cutoff;
2230 if (s->cutoff > (s->sample_rate >> 1))
2231 s->cutoff = s->sample_rate >> 1;
2232
2233 ret = ff_ac3_validate_metadata(s);
2234 if (ret)
2235 return ret;
2236
2237 s->rematrixing_enabled = s->options.stereo_rematrixing &&
2238 (s->channel_mode == AC3_CHMODE_STEREO);
2239
2240 s->cpl_enabled = s->options.channel_coupling &&
2241 s->channel_mode >= AC3_CHMODE_STEREO;
2242
2243 return 0;
2244 }
2245
2246
2247 /*
2248 * Set bandwidth for all channels.
2249 * The user can optionally supply a cutoff frequency. Otherwise an appropriate
2250 * default value will be used.
2251 */
2252 static av_cold void set_bandwidth(AC3EncodeContext *s)
2253 {
2254 int blk, ch, cpl_start;
2255
2256 if (s->cutoff) {
2257 /* calculate bandwidth based on user-specified cutoff frequency */
2258 int fbw_coeffs;
2259 fbw_coeffs = s->cutoff * 2 * AC3_MAX_COEFS / s->sample_rate;
2260 s->bandwidth_code = av_clip((fbw_coeffs - 73) / 3, 0, 60);
2261 } else {
2262 /* use default bandwidth setting */
2263 s->bandwidth_code = ac3_bandwidth_tab[s->fbw_channels-1][s->bit_alloc.sr_code][s->frame_size_code/2];
2264 }
2265
2266 /* set number of coefficients for each channel */
2267 for (ch = 1; ch <= s->fbw_channels; ch++) {
2268 s->start_freq[ch] = 0;
2269 for (blk = 0; blk < s->num_blocks; blk++)
2270 s->blocks[blk].end_freq[ch] = s->bandwidth_code * 3 + 73;
2271 }
2272 /* LFE channel always has 7 coefs */
2273 if (s->lfe_on) {
2274 s->start_freq[s->lfe_channel] = 0;
2275 for (blk = 0; blk < s->num_blocks; blk++)
2276 s->blocks[blk].end_freq[ch] = 7;
2277 }
2278
2279 /* initialize coupling strategy */
2280 if (s->cpl_enabled) {
2281 if (s->options.cpl_start != AC3ENC_OPT_AUTO) {
2282 cpl_start = s->options.cpl_start;
2283 } else {
2284 cpl_start = ac3_coupling_start_tab[s->channel_mode-2][s->bit_alloc.sr_code][s->frame_size_code/2];
2285 if (cpl_start < 0) {
2286 if (s->options.channel_coupling == AC3ENC_OPT_AUTO)
2287 s->cpl_enabled = 0;
2288 else
2289 cpl_start = 15;
2290 }
2291 }
2292 }
2293 if (s->cpl_enabled) {
2294 int i, cpl_start_band, cpl_end_band;
2295 uint8_t *cpl_band_sizes = s->cpl_band_sizes;
2296
2297 cpl_end_band = s->bandwidth_code / 4 + 3;
2298 cpl_start_band = av_clip(cpl_start, 0, FFMIN(cpl_end_band-1, 15));
2299
2300 s->num_cpl_subbands = cpl_end_band - cpl_start_band;
2301
2302 s->num_cpl_bands = 1;
2303 *cpl_band_sizes = 12;
2304 for (i = cpl_start_band + 1; i < cpl_end_band; i++) {
2305 if (ff_eac3_default_cpl_band_struct[i]) {
2306 *cpl_band_sizes += 12;
2307 } else {
2308 s->num_cpl_bands++;
2309 cpl_band_sizes++;
2310 *cpl_band_sizes = 12;
2311 }
2312 }
2313
2314 s->start_freq[CPL_CH] = cpl_start_band * 12 + 37;
2315 s->cpl_end_freq = cpl_end_band * 12 + 37;
2316 for (blk = 0; blk < s->num_blocks; blk++)
2317 s->blocks[blk].end_freq[CPL_CH] = s->cpl_end_freq;
2318 }
2319 }
2320
2321
2322 static av_cold int allocate_buffers(AC3EncodeContext *s)
2323 {
2324 AVCodecContext *avctx = s->avctx;
2325 int blk, ch;
2326 int channels = s->channels + 1; /* includes coupling channel */
2327 int channel_blocks = channels * s->num_blocks;
2328 int total_coefs = AC3_MAX_COEFS * channel_blocks;
2329
2330 if (s->allocate_sample_buffers(s))
2331 goto alloc_fail;
2332
2333 FF_ALLOC_OR_GOTO(avctx, s->bap_buffer, total_coefs *
2334 sizeof(*s->bap_buffer), alloc_fail);
2335 FF_ALLOC_OR_GOTO(avctx, s->bap1_buffer, total_coefs *
2336 sizeof(*s->bap1_buffer), alloc_fail);
2337 FF_ALLOCZ_OR_GOTO(avctx, s->mdct_coef_buffer, total_coefs *
2338 sizeof(*s->mdct_coef_buffer), alloc_fail);
2339 FF_ALLOC_OR_GOTO(avctx, s->exp_buffer, total_coefs *
2340 sizeof(*s->exp_buffer), alloc_fail);
2341 FF_ALLOC_OR_GOTO(avctx, s->grouped_exp_buffer, channel_blocks * 128 *
2342 sizeof(*s->grouped_exp_buffer), alloc_fail);
2343 FF_ALLOC_OR_GOTO(avctx, s->psd_buffer, total_coefs *
2344 sizeof(*s->psd_buffer), alloc_fail);
2345 FF_ALLOC_OR_GOTO(avctx, s->band_psd_buffer, channel_blocks * 64 *
2346 sizeof(*s->band_psd_buffer), alloc_fail);
2347 FF_ALLOC_OR_GOTO(avctx, s->mask_buffer, channel_blocks * 64 *
2348 sizeof(*s->mask_buffer), alloc_fail);
2349 FF_ALLOC_OR_GOTO(avctx, s->qmant_buffer, total_coefs *
2350 sizeof(*s->qmant_buffer), alloc_fail);
2351 if (s->cpl_enabled) {
2352 FF_ALLOC_OR_GOTO(avctx, s->cpl_coord_exp_buffer, channel_blocks * 16 *
2353 sizeof(*s->cpl_coord_exp_buffer), alloc_fail);
2354 FF_ALLOC_OR_GOTO(avctx, s->cpl_coord_mant_buffer, channel_blocks * 16 *
2355 sizeof(*s->cpl_coord_mant_buffer), alloc_fail);
2356 }
2357 for (blk = 0; blk < s->num_blocks; blk++) {
2358 AC3Block *block = &s->blocks[blk];
2359 FF_ALLOCZ_OR_GOTO(avctx, block->mdct_coef, channels * sizeof(*block->mdct_coef),
2360 alloc_fail);
2361 FF_ALLOCZ_OR_GOTO(avctx, block->exp, channels * sizeof(*block->exp),
2362 alloc_fail);
2363 FF_ALLOCZ_OR_GOTO(avctx, block->grouped_exp, channels * sizeof(*block->grouped_exp),
2364 alloc_fail);
2365 FF_ALLOCZ_OR_GOTO(avctx, block->psd, channels * sizeof(*block->psd),
2366 alloc_fail);
2367 FF_ALLOCZ_OR_GOTO(avctx, block->band_psd, channels * sizeof(*block->band_psd),
2368 alloc_fail);
2369 FF_ALLOCZ_OR_GOTO(avctx, block->mask, channels * sizeof(*block->mask),
2370 alloc_fail);
2371 FF_ALLOCZ_OR_GOTO(avctx, block->qmant, channels * sizeof(*block->qmant),
2372 alloc_fail);
2373 if (s->cpl_enabled) {
2374 FF_ALLOCZ_OR_GOTO(avctx, block->cpl_coord_exp, channels * sizeof(*block->cpl_coord_exp),
2375 alloc_fail);
2376 FF_ALLOCZ_OR_GOTO(avctx, block->cpl_coord_mant, channels * sizeof(*block->cpl_coord_mant),
2377 alloc_fail);
2378 }
2379
2380 for (ch = 0; ch < channels; ch++) {
2381 /* arrangement: block, channel, coeff */
2382 block->grouped_exp[ch] = &s->grouped_exp_buffer[128 * (blk * channels + ch)];
2383 block->psd[ch] = &s->psd_buffer [AC3_MAX_COEFS * (blk * channels + ch)];
2384 block->band_psd[ch] = &s->band_psd_buffer [64 * (blk * channels + ch)];
2385 block->mask[ch] = &s->mask_buffer [64 * (blk * channels + ch)];
2386 block->qmant[ch] = &s->qmant_buffer [AC3_MAX_COEFS * (blk * channels + ch)];
2387 if (s->cpl_enabled) {
2388 block->cpl_coord_exp[ch] = &s->cpl_coord_exp_buffer [16 * (blk * channels + ch)];
2389 block->cpl_coord_mant[ch] = &s->cpl_coord_mant_buffer[16 * (blk * channels + ch)];
2390 }
2391
2392 /* arrangement: channel, block, coeff */
2393 block->exp[ch] = &s->exp_buffer [AC3_MAX_COEFS * (s->num_blocks * ch + blk)];
2394 block->mdct_coef[ch] = &s->mdct_coef_buffer [AC3_MAX_COEFS * (s->num_blocks * ch + blk)];
2395 }
2396 }
2397
2398 if (!s->fixed_point) {
2399 FF_ALLOCZ_OR_GOTO(avctx, s->fixed_coef_buffer, total_coefs *
2400 sizeof(*s->fixed_coef_buffer), alloc_fail);
2401 for (blk = 0; blk < s->num_blocks; blk++) {
2402 AC3Block *block = &s->blocks[blk];
2403 FF_ALLOCZ_OR_GOTO(avctx, block->fixed_coef, channels *
2404 sizeof(*block->fixed_coef), alloc_fail);
2405 for (ch = 0; ch < channels; ch++)
2406 block->fixed_coef[ch] = &s->fixed_coef_buffer[AC3_MAX_COEFS * (s->num_blocks * ch + blk)];
2407 }
2408 } else {
2409 for (blk = 0; blk < s->num_blocks; blk++) {
2410 AC3Block *block = &s->blocks[blk];
2411 FF_ALLOCZ_OR_GOTO(avctx, block->fixed_coef, channels *
2412 sizeof(*block->fixed_coef), alloc_fail);
2413 for (ch = 0; ch < channels; ch++)
2414 block->fixed_coef[ch] = (int32_t *)block->mdct_coef[ch];
2415 }
2416 }
2417
2418 return 0;
2419 alloc_fail:
2420 return AVERROR(ENOMEM);
2421 }
2422
2423
2424 av_cold int ff_ac3_encode_init(AVCodecContext *avctx)
2425 {
2426 AC3EncodeContext *s = avctx->priv_data;
2427 int ret, frame_size_58;
2428
2429 s->avctx = avctx;
2430
2431 s->eac3 = avctx->codec_id == AV_CODEC_ID_EAC3;
2432
2433 ff_ac3_common_init();
2434
2435 ret = validate_options(s);
2436 if (ret)
2437 return ret;
2438
2439 avctx->frame_size = AC3_BLOCK_SIZE * s->num_blocks;
2440 avctx->initial_padding = AC3_BLOCK_SIZE;
2441
2442 s->bitstream_mode = avctx->audio_service_type;
2443 if (s->bitstream_mode == AV_AUDIO_SERVICE_TYPE_KARAOKE)
2444 s->bitstream_mode = 0x7;
2445
2446 s->bits_written = 0;
2447 s->samples_written = 0;
2448
2449 /* calculate crc_inv for both possible frame sizes */
2450 frame_size_58 = (( s->frame_size >> 2) + ( s->frame_size >> 4)) << 1;
2451 s->crc_inv[0] = pow_poly((CRC16_POLY >> 1), (8 * frame_size_58) - 16, CRC16_POLY);
2452 if (s->bit_alloc.sr_code == 1) {
2453 frame_size_58 = (((s->frame_size+2) >> 2) + ((s->frame_size+2) >> 4)) << 1;
2454 s->crc_inv[1] = pow_poly((CRC16_POLY >> 1), (8 * frame_size_58) - 16, CRC16_POLY);
2455 }
2456
2457 /* set function pointers */
2458 if (CONFIG_AC3_FIXED_ENCODER && s->fixed_point) {
2459 s->mdct_end = ff_ac3_fixed_mdct_end;
2460 s->mdct_init = ff_ac3_fixed_mdct_init;
2461 s->allocate_sample_buffers = ff_ac3_fixed_allocate_sample_buffers;
2462 } else if (CONFIG_AC3_ENCODER || CONFIG_EAC3_ENCODER) {
2463 s->mdct_end = ff_ac3_float_mdct_end;
2464 s->mdct_init = ff_ac3_float_mdct_init;
2465 s->allocate_sample_buffers = ff_ac3_float_allocate_sample_buffers;
2466 }
2467 if (CONFIG_EAC3_ENCODER && s->eac3)
2468 s->output_frame_header = ff_eac3_output_frame_header;
2469 else
2470 s->output_frame_header = ac3_output_frame_header;
2471
2472 set_bandwidth(s);
2473
2474 exponent_init(s);
2475
2476 bit_alloc_init(s);
2477
2478 ret = s->mdct_init(s);
2479 if (ret)
2480 goto init_fail;
2481
2482 ret = allocate_buffers(s);
2483 if (ret)
2484 goto init_fail;
2485
2486 ff_audiodsp_init(&s->adsp);
2487 ff_me_cmp_init(&s->mecc, avctx);
2488 ff_ac3dsp_init(&s->ac3dsp, avctx->flags & AV_CODEC_FLAG_BITEXACT);
2489
2490 dprint_options(s);
2491
2492 return 0;
2493 init_fail:
2494 ff_ac3_encode_close(avctx);
2495 return ret;
2496 }