a85e45f4c7097a6e3d38a4652d968b9fb58e9874
[libav.git] / libavcodec / acelp_vectors.c
1 /*
2 * adaptive and fixed codebook vector operations for ACELP-based codecs
3 *
4 * Copyright (c) 2008 Vladimir Voroshilov
5 *
6 * This file is part of Libav.
7 *
8 * Libav is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * Libav is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with Libav; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23 #include <inttypes.h>
24
25 #include "libavutil/common.h"
26 #include "libavutil/float_dsp.h"
27 #include "avcodec.h"
28 #include "acelp_vectors.h"
29
30 const uint8_t ff_fc_2pulses_9bits_track1[16] =
31 {
32 1, 3,
33 6, 8,
34 11, 13,
35 16, 18,
36 21, 23,
37 26, 28,
38 31, 33,
39 36, 38
40 };
41 const uint8_t ff_fc_2pulses_9bits_track1_gray[16] =
42 {
43 1, 3,
44 8, 6,
45 18, 16,
46 11, 13,
47 38, 36,
48 31, 33,
49 21, 23,
50 28, 26,
51 };
52
53 const uint8_t ff_fc_4pulses_8bits_tracks_13[16] =
54 {
55 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75,
56 };
57
58 const uint8_t ff_fc_4pulses_8bits_track_4[32] =
59 {
60 3, 4,
61 8, 9,
62 13, 14,
63 18, 19,
64 23, 24,
65 28, 29,
66 33, 34,
67 38, 39,
68 43, 44,
69 48, 49,
70 53, 54,
71 58, 59,
72 63, 64,
73 68, 69,
74 73, 74,
75 78, 79,
76 };
77
78 const float ff_pow_0_7[10] = {
79 0.700000, 0.490000, 0.343000, 0.240100, 0.168070,
80 0.117649, 0.082354, 0.057648, 0.040354, 0.028248
81 };
82
83 const float ff_pow_0_75[10] = {
84 0.750000, 0.562500, 0.421875, 0.316406, 0.237305,
85 0.177979, 0.133484, 0.100113, 0.075085, 0.056314
86 };
87
88 const float ff_pow_0_55[10] = {
89 0.550000, 0.302500, 0.166375, 0.091506, 0.050328,
90 0.027681, 0.015224, 0.008373, 0.004605, 0.002533
91 };
92
93 const float ff_b60_sinc[61] = {
94 0.898529 , 0.865051 , 0.769257 , 0.624054 , 0.448639 , 0.265289 ,
95 0.0959167 , -0.0412598 , -0.134338 , -0.178986 , -0.178528 , -0.142609 ,
96 -0.0849304 , -0.0205078 , 0.0369568 , 0.0773926 , 0.0955200 , 0.0912781 ,
97 0.0689392 , 0.0357056 , 0. , -0.0305481 , -0.0504150 , -0.0570068 ,
98 -0.0508423 , -0.0350037 , -0.0141602 , 0.00665283, 0.0230713 , 0.0323486 ,
99 0.0335388 , 0.0275879 , 0.0167847 , 0.00411987, -0.00747681, -0.0156860 ,
100 -0.0193481 , -0.0183716 , -0.0137634 , -0.00704956, 0. , 0.00582886 ,
101 0.00939941, 0.0103760 , 0.00903320, 0.00604248, 0.00238037, -0.00109863 ,
102 -0.00366211, -0.00497437, -0.00503540, -0.00402832, -0.00241089, -0.000579834,
103 0.00103760, 0.00222778, 0.00277710, 0.00271606, 0.00213623, 0.00115967 ,
104 0.
105 };
106
107 void ff_acelp_fc_pulse_per_track(
108 int16_t* fc_v,
109 const uint8_t *tab1,
110 const uint8_t *tab2,
111 int pulse_indexes,
112 int pulse_signs,
113 int pulse_count,
114 int bits)
115 {
116 int mask = (1 << bits) - 1;
117 int i;
118
119 for(i=0; i<pulse_count; i++)
120 {
121 fc_v[i + tab1[pulse_indexes & mask]] +=
122 (pulse_signs & 1) ? 8191 : -8192; // +/-1 in (2.13)
123
124 pulse_indexes >>= bits;
125 pulse_signs >>= 1;
126 }
127
128 fc_v[tab2[pulse_indexes]] += (pulse_signs & 1) ? 8191 : -8192;
129 }
130
131 void ff_decode_10_pulses_35bits(const int16_t *fixed_index,
132 AMRFixed *fixed_sparse,
133 const uint8_t *gray_decode,
134 int half_pulse_count, int bits)
135 {
136 int i;
137 int mask = (1 << bits) - 1;
138
139 fixed_sparse->no_repeat_mask = 0;
140 fixed_sparse->n = 2 * half_pulse_count;
141 for (i = 0; i < half_pulse_count; i++) {
142 const int pos1 = gray_decode[fixed_index[2*i+1] & mask] + i;
143 const int pos2 = gray_decode[fixed_index[2*i ] & mask] + i;
144 const float sign = (fixed_index[2*i+1] & (1 << bits)) ? -1.0 : 1.0;
145 fixed_sparse->x[2*i+1] = pos1;
146 fixed_sparse->x[2*i ] = pos2;
147 fixed_sparse->y[2*i+1] = sign;
148 fixed_sparse->y[2*i ] = pos2 < pos1 ? -sign : sign;
149 }
150 }
151
152 void ff_acelp_weighted_vector_sum(
153 int16_t* out,
154 const int16_t *in_a,
155 const int16_t *in_b,
156 int16_t weight_coeff_a,
157 int16_t weight_coeff_b,
158 int16_t rounder,
159 int shift,
160 int length)
161 {
162 int i;
163
164 // Clipping required here; breaks OVERFLOW test.
165 for(i=0; i<length; i++)
166 out[i] = av_clip_int16((
167 in_a[i] * weight_coeff_a +
168 in_b[i] * weight_coeff_b +
169 rounder) >> shift);
170 }
171
172 void ff_weighted_vector_sumf(float *out, const float *in_a, const float *in_b,
173 float weight_coeff_a, float weight_coeff_b, int length)
174 {
175 int i;
176
177 for(i=0; i<length; i++)
178 out[i] = weight_coeff_a * in_a[i]
179 + weight_coeff_b * in_b[i];
180 }
181
182 void ff_adaptive_gain_control(float *out, const float *in, float speech_energ,
183 int size, float alpha, float *gain_mem)
184 {
185 int i;
186 float postfilter_energ = avpriv_scalarproduct_float_c(in, in, size);
187 float gain_scale_factor = 1.0;
188 float mem = *gain_mem;
189
190 if (postfilter_energ)
191 gain_scale_factor = sqrt(speech_energ / postfilter_energ);
192
193 gain_scale_factor *= 1.0 - alpha;
194
195 for (i = 0; i < size; i++) {
196 mem = alpha * mem + gain_scale_factor;
197 out[i] = in[i] * mem;
198 }
199
200 *gain_mem = mem;
201 }
202
203 void ff_scale_vector_to_given_sum_of_squares(float *out, const float *in,
204 float sum_of_squares, const int n)
205 {
206 int i;
207 float scalefactor = avpriv_scalarproduct_float_c(in, in, n);
208 if (scalefactor)
209 scalefactor = sqrt(sum_of_squares / scalefactor);
210 for (i = 0; i < n; i++)
211 out[i] = in[i] * scalefactor;
212 }
213
214 void ff_set_fixed_vector(float *out, const AMRFixed *in, float scale, int size)
215 {
216 int i;
217
218 for (i=0; i < in->n; i++) {
219 int x = in->x[i], repeats = !((in->no_repeat_mask >> i) & 1);
220 float y = in->y[i] * scale;
221
222 do {
223 out[x] += y;
224 y *= in->pitch_fac;
225 x += in->pitch_lag;
226 } while (x < size && repeats);
227 }
228 }
229
230 void ff_clear_fixed_vector(float *out, const AMRFixed *in, int size)
231 {
232 int i;
233
234 for (i=0; i < in->n; i++) {
235 int x = in->x[i], repeats = !((in->no_repeat_mask >> i) & 1);
236
237 do {
238 out[x] = 0.0;
239 x += in->pitch_lag;
240 } while (x < size && repeats);
241 }
242 }