Use bytestream and AV_RL* functions in ADPCM code where possible
[libav.git] / libavcodec / adpcm.c
1 /*
2 * ADPCM codecs
3 * Copyright (c) 2001-2003 The ffmpeg Project
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21 #include "avcodec.h"
22 #include "bitstream.h"
23 #include "bytestream.h"
24
25 /**
26 * @file adpcm.c
27 * ADPCM codecs.
28 * First version by Francois Revol (revol@free.fr)
29 * Fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
30 * by Mike Melanson (melanson@pcisys.net)
31 * CD-ROM XA ADPCM codec by BERO
32 * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com)
33 * EA ADPCM R1/R2/R3 decoder by Peter Ross (pross@xvid.org)
34 * EA IMA EACS decoder by Peter Ross (pross@xvid.org)
35 * EA IMA SEAD decoder by Peter Ross (pross@xvid.org)
36 * EA ADPCM XAS decoder by Peter Ross (pross@xvid.org)
37 * MAXIS EA ADPCM decoder by Robert Marston (rmarston@gmail.com)
38 * THP ADPCM decoder by Marco Gerards (mgerards@xs4all.nl)
39 *
40 * Features and limitations:
41 *
42 * Reference documents:
43 * http://www.pcisys.net/~melanson/codecs/simpleaudio.html
44 * http://www.geocities.com/SiliconValley/8682/aud3.txt
45 * http://openquicktime.sourceforge.net/plugins.htm
46 * XAnim sources (xa_codec.c) http://www.rasnaimaging.com/people/lapus/download.html
47 * http://www.cs.ucla.edu/~leec/mediabench/applications.html
48 * SoX source code http://home.sprynet.com/~cbagwell/sox.html
49 *
50 * CD-ROM XA:
51 * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html
52 * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html
53 * readstr http://www.geocities.co.jp/Playtown/2004/
54 */
55
56 #define BLKSIZE 1024
57
58 /* step_table[] and index_table[] are from the ADPCM reference source */
59 /* This is the index table: */
60 static const int index_table[16] = {
61 -1, -1, -1, -1, 2, 4, 6, 8,
62 -1, -1, -1, -1, 2, 4, 6, 8,
63 };
64
65 /**
66 * This is the step table. Note that many programs use slight deviations from
67 * this table, but such deviations are negligible:
68 */
69 static const int step_table[89] = {
70 7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
71 19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
72 50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
73 130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
74 337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
75 876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
76 2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
77 5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
78 15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767
79 };
80
81 /* These are for MS-ADPCM */
82 /* AdaptationTable[], AdaptCoeff1[], and AdaptCoeff2[] are from libsndfile */
83 static const int AdaptationTable[] = {
84 230, 230, 230, 230, 307, 409, 512, 614,
85 768, 614, 512, 409, 307, 230, 230, 230
86 };
87
88 static const uint8_t AdaptCoeff1[] = {
89 64, 128, 0, 48, 60, 115, 98
90 };
91
92 static const int8_t AdaptCoeff2[] = {
93 0, -64, 0, 16, 0, -52, -58
94 };
95
96 /* These are for CD-ROM XA ADPCM */
97 static const int xa_adpcm_table[5][2] = {
98 { 0, 0 },
99 { 60, 0 },
100 { 115, -52 },
101 { 98, -55 },
102 { 122, -60 }
103 };
104
105 static const int ea_adpcm_table[] = {
106 0, 240, 460, 392, 0, 0, -208, -220, 0, 1,
107 3, 4, 7, 8, 10, 11, 0, -1, -3, -4
108 };
109
110 static const int ct_adpcm_table[8] = {
111 0x00E6, 0x00E6, 0x00E6, 0x00E6,
112 0x0133, 0x0199, 0x0200, 0x0266
113 };
114
115 // padded to zero where table size is less then 16
116 static const int swf_index_tables[4][16] = {
117 /*2*/ { -1, 2 },
118 /*3*/ { -1, -1, 2, 4 },
119 /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 },
120 /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
121 };
122
123 static const int yamaha_indexscale[] = {
124 230, 230, 230, 230, 307, 409, 512, 614,
125 230, 230, 230, 230, 307, 409, 512, 614
126 };
127
128 static const int yamaha_difflookup[] = {
129 1, 3, 5, 7, 9, 11, 13, 15,
130 -1, -3, -5, -7, -9, -11, -13, -15
131 };
132
133 /* end of tables */
134
135 typedef struct ADPCMChannelStatus {
136 int predictor;
137 short int step_index;
138 int step;
139 /* for encoding */
140 int prev_sample;
141
142 /* MS version */
143 short sample1;
144 short sample2;
145 int coeff1;
146 int coeff2;
147 int idelta;
148 } ADPCMChannelStatus;
149
150 typedef struct ADPCMContext {
151 ADPCMChannelStatus status[6];
152 } ADPCMContext;
153
154 /* XXX: implement encoding */
155
156 #ifdef CONFIG_ENCODERS
157 static int adpcm_encode_init(AVCodecContext *avctx)
158 {
159 if (avctx->channels > 2)
160 return -1; /* only stereo or mono =) */
161
162 if(avctx->trellis && (unsigned)avctx->trellis > 16U){
163 av_log(avctx, AV_LOG_ERROR, "invalid trellis size\n");
164 return -1;
165 }
166
167 switch(avctx->codec->id) {
168 case CODEC_ID_ADPCM_IMA_WAV:
169 avctx->frame_size = (BLKSIZE - 4 * avctx->channels) * 8 / (4 * avctx->channels) + 1; /* each 16 bits sample gives one nibble */
170 /* and we have 4 bytes per channel overhead */
171 avctx->block_align = BLKSIZE;
172 /* seems frame_size isn't taken into account... have to buffer the samples :-( */
173 break;
174 case CODEC_ID_ADPCM_IMA_QT:
175 avctx->frame_size = 64;
176 avctx->block_align = 34 * avctx->channels;
177 break;
178 case CODEC_ID_ADPCM_MS:
179 avctx->frame_size = (BLKSIZE - 7 * avctx->channels) * 2 / avctx->channels + 2; /* each 16 bits sample gives one nibble */
180 /* and we have 7 bytes per channel overhead */
181 avctx->block_align = BLKSIZE;
182 break;
183 case CODEC_ID_ADPCM_YAMAHA:
184 avctx->frame_size = BLKSIZE * avctx->channels;
185 avctx->block_align = BLKSIZE;
186 break;
187 case CODEC_ID_ADPCM_SWF:
188 if (avctx->sample_rate != 11025 &&
189 avctx->sample_rate != 22050 &&
190 avctx->sample_rate != 44100) {
191 av_log(avctx, AV_LOG_ERROR, "Sample rate must be 11025, 22050 or 44100\n");
192 return -1;
193 }
194 avctx->frame_size = 512 * (avctx->sample_rate / 11025);
195 break;
196 default:
197 return -1;
198 break;
199 }
200
201 avctx->coded_frame= avcodec_alloc_frame();
202 avctx->coded_frame->key_frame= 1;
203
204 return 0;
205 }
206
207 static int adpcm_encode_close(AVCodecContext *avctx)
208 {
209 av_freep(&avctx->coded_frame);
210
211 return 0;
212 }
213
214
215 static inline unsigned char adpcm_ima_compress_sample(ADPCMChannelStatus *c, short sample)
216 {
217 int delta = sample - c->prev_sample;
218 int nibble = FFMIN(7, abs(delta)*4/step_table[c->step_index]) + (delta<0)*8;
219 c->prev_sample += ((step_table[c->step_index] * yamaha_difflookup[nibble]) / 8);
220 c->prev_sample = av_clip_int16(c->prev_sample);
221 c->step_index = av_clip(c->step_index + index_table[nibble], 0, 88);
222 return nibble;
223 }
224
225 static inline unsigned char adpcm_ms_compress_sample(ADPCMChannelStatus *c, short sample)
226 {
227 int predictor, nibble, bias;
228
229 predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64;
230
231 nibble= sample - predictor;
232 if(nibble>=0) bias= c->idelta/2;
233 else bias=-c->idelta/2;
234
235 nibble= (nibble + bias) / c->idelta;
236 nibble= av_clip(nibble, -8, 7)&0x0F;
237
238 predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
239
240 c->sample2 = c->sample1;
241 c->sample1 = av_clip_int16(predictor);
242
243 c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
244 if (c->idelta < 16) c->idelta = 16;
245
246 return nibble;
247 }
248
249 static inline unsigned char adpcm_yamaha_compress_sample(ADPCMChannelStatus *c, short sample)
250 {
251 int nibble, delta;
252
253 if(!c->step) {
254 c->predictor = 0;
255 c->step = 127;
256 }
257
258 delta = sample - c->predictor;
259
260 nibble = FFMIN(7, abs(delta)*4/c->step) + (delta<0)*8;
261
262 c->predictor += ((c->step * yamaha_difflookup[nibble]) / 8);
263 c->predictor = av_clip_int16(c->predictor);
264 c->step = (c->step * yamaha_indexscale[nibble]) >> 8;
265 c->step = av_clip(c->step, 127, 24567);
266
267 return nibble;
268 }
269
270 typedef struct TrellisPath {
271 int nibble;
272 int prev;
273 } TrellisPath;
274
275 typedef struct TrellisNode {
276 uint32_t ssd;
277 int path;
278 int sample1;
279 int sample2;
280 int step;
281 } TrellisNode;
282
283 static void adpcm_compress_trellis(AVCodecContext *avctx, const short *samples,
284 uint8_t *dst, ADPCMChannelStatus *c, int n)
285 {
286 #define FREEZE_INTERVAL 128
287 //FIXME 6% faster if frontier is a compile-time constant
288 const int frontier = 1 << avctx->trellis;
289 const int stride = avctx->channels;
290 const int version = avctx->codec->id;
291 const int max_paths = frontier*FREEZE_INTERVAL;
292 TrellisPath paths[max_paths], *p;
293 TrellisNode node_buf[2][frontier];
294 TrellisNode *nodep_buf[2][frontier];
295 TrellisNode **nodes = nodep_buf[0]; // nodes[] is always sorted by .ssd
296 TrellisNode **nodes_next = nodep_buf[1];
297 int pathn = 0, froze = -1, i, j, k;
298
299 assert(!(max_paths&(max_paths-1)));
300
301 memset(nodep_buf, 0, sizeof(nodep_buf));
302 nodes[0] = &node_buf[1][0];
303 nodes[0]->ssd = 0;
304 nodes[0]->path = 0;
305 nodes[0]->step = c->step_index;
306 nodes[0]->sample1 = c->sample1;
307 nodes[0]->sample2 = c->sample2;
308 if((version == CODEC_ID_ADPCM_IMA_WAV) || (version == CODEC_ID_ADPCM_IMA_QT) || (version == CODEC_ID_ADPCM_SWF))
309 nodes[0]->sample1 = c->prev_sample;
310 if(version == CODEC_ID_ADPCM_MS)
311 nodes[0]->step = c->idelta;
312 if(version == CODEC_ID_ADPCM_YAMAHA) {
313 if(c->step == 0) {
314 nodes[0]->step = 127;
315 nodes[0]->sample1 = 0;
316 } else {
317 nodes[0]->step = c->step;
318 nodes[0]->sample1 = c->predictor;
319 }
320 }
321
322 for(i=0; i<n; i++) {
323 TrellisNode *t = node_buf[i&1];
324 TrellisNode **u;
325 int sample = samples[i*stride];
326 memset(nodes_next, 0, frontier*sizeof(TrellisNode*));
327 for(j=0; j<frontier && nodes[j]; j++) {
328 // higher j have higher ssd already, so they're unlikely to use a suboptimal next sample too
329 const int range = (j < frontier/2) ? 1 : 0;
330 const int step = nodes[j]->step;
331 int nidx;
332 if(version == CODEC_ID_ADPCM_MS) {
333 const int predictor = ((nodes[j]->sample1 * c->coeff1) + (nodes[j]->sample2 * c->coeff2)) / 64;
334 const int div = (sample - predictor) / step;
335 const int nmin = av_clip(div-range, -8, 6);
336 const int nmax = av_clip(div+range, -7, 7);
337 for(nidx=nmin; nidx<=nmax; nidx++) {
338 const int nibble = nidx & 0xf;
339 int dec_sample = predictor + nidx * step;
340 #define STORE_NODE(NAME, STEP_INDEX)\
341 int d;\
342 uint32_t ssd;\
343 dec_sample = av_clip_int16(dec_sample);\
344 d = sample - dec_sample;\
345 ssd = nodes[j]->ssd + d*d;\
346 if(nodes_next[frontier-1] && ssd >= nodes_next[frontier-1]->ssd)\
347 continue;\
348 /* Collapse any two states with the same previous sample value. \
349 * One could also distinguish states by step and by 2nd to last
350 * sample, but the effects of that are negligible. */\
351 for(k=0; k<frontier && nodes_next[k]; k++) {\
352 if(dec_sample == nodes_next[k]->sample1) {\
353 assert(ssd >= nodes_next[k]->ssd);\
354 goto next_##NAME;\
355 }\
356 }\
357 for(k=0; k<frontier; k++) {\
358 if(!nodes_next[k] || ssd < nodes_next[k]->ssd) {\
359 TrellisNode *u = nodes_next[frontier-1];\
360 if(!u) {\
361 assert(pathn < max_paths);\
362 u = t++;\
363 u->path = pathn++;\
364 }\
365 u->ssd = ssd;\
366 u->step = STEP_INDEX;\
367 u->sample2 = nodes[j]->sample1;\
368 u->sample1 = dec_sample;\
369 paths[u->path].nibble = nibble;\
370 paths[u->path].prev = nodes[j]->path;\
371 memmove(&nodes_next[k+1], &nodes_next[k], (frontier-k-1)*sizeof(TrellisNode*));\
372 nodes_next[k] = u;\
373 break;\
374 }\
375 }\
376 next_##NAME:;
377 STORE_NODE(ms, FFMAX(16, (AdaptationTable[nibble] * step) >> 8));
378 }
379 } else if((version == CODEC_ID_ADPCM_IMA_WAV)|| (version == CODEC_ID_ADPCM_IMA_QT)|| (version == CODEC_ID_ADPCM_SWF)) {
380 #define LOOP_NODES(NAME, STEP_TABLE, STEP_INDEX)\
381 const int predictor = nodes[j]->sample1;\
382 const int div = (sample - predictor) * 4 / STEP_TABLE;\
383 int nmin = av_clip(div-range, -7, 6);\
384 int nmax = av_clip(div+range, -6, 7);\
385 if(nmin<=0) nmin--; /* distinguish -0 from +0 */\
386 if(nmax<0) nmax--;\
387 for(nidx=nmin; nidx<=nmax; nidx++) {\
388 const int nibble = nidx<0 ? 7-nidx : nidx;\
389 int dec_sample = predictor + (STEP_TABLE * yamaha_difflookup[nibble]) / 8;\
390 STORE_NODE(NAME, STEP_INDEX);\
391 }
392 LOOP_NODES(ima, step_table[step], av_clip(step + index_table[nibble], 0, 88));
393 } else { //CODEC_ID_ADPCM_YAMAHA
394 LOOP_NODES(yamaha, step, av_clip((step * yamaha_indexscale[nibble]) >> 8, 127, 24567));
395 #undef LOOP_NODES
396 #undef STORE_NODE
397 }
398 }
399
400 u = nodes;
401 nodes = nodes_next;
402 nodes_next = u;
403
404 // prevent overflow
405 if(nodes[0]->ssd > (1<<28)) {
406 for(j=1; j<frontier && nodes[j]; j++)
407 nodes[j]->ssd -= nodes[0]->ssd;
408 nodes[0]->ssd = 0;
409 }
410
411 // merge old paths to save memory
412 if(i == froze + FREEZE_INTERVAL) {
413 p = &paths[nodes[0]->path];
414 for(k=i; k>froze; k--) {
415 dst[k] = p->nibble;
416 p = &paths[p->prev];
417 }
418 froze = i;
419 pathn = 0;
420 // other nodes might use paths that don't coincide with the frozen one.
421 // checking which nodes do so is too slow, so just kill them all.
422 // this also slightly improves quality, but I don't know why.
423 memset(nodes+1, 0, (frontier-1)*sizeof(TrellisNode*));
424 }
425 }
426
427 p = &paths[nodes[0]->path];
428 for(i=n-1; i>froze; i--) {
429 dst[i] = p->nibble;
430 p = &paths[p->prev];
431 }
432
433 c->predictor = nodes[0]->sample1;
434 c->sample1 = nodes[0]->sample1;
435 c->sample2 = nodes[0]->sample2;
436 c->step_index = nodes[0]->step;
437 c->step = nodes[0]->step;
438 c->idelta = nodes[0]->step;
439 }
440
441 static int adpcm_encode_frame(AVCodecContext *avctx,
442 unsigned char *frame, int buf_size, void *data)
443 {
444 int n, i, st;
445 short *samples;
446 unsigned char *dst;
447 ADPCMContext *c = avctx->priv_data;
448
449 dst = frame;
450 samples = (short *)data;
451 st= avctx->channels == 2;
452 /* n = (BLKSIZE - 4 * avctx->channels) / (2 * 8 * avctx->channels); */
453
454 switch(avctx->codec->id) {
455 case CODEC_ID_ADPCM_IMA_WAV:
456 n = avctx->frame_size / 8;
457 c->status[0].prev_sample = (signed short)samples[0]; /* XXX */
458 /* c->status[0].step_index = 0; *//* XXX: not sure how to init the state machine */
459 bytestream_put_le16(&dst, c->status[0].prev_sample);
460 *dst++ = (unsigned char)c->status[0].step_index;
461 *dst++ = 0; /* unknown */
462 samples++;
463 if (avctx->channels == 2) {
464 c->status[1].prev_sample = (signed short)samples[0];
465 /* c->status[1].step_index = 0; */
466 bytestream_put_le16(&dst, c->status[1].prev_sample);
467 *dst++ = (unsigned char)c->status[1].step_index;
468 *dst++ = 0;
469 samples++;
470 }
471
472 /* stereo: 4 bytes (8 samples) for left, 4 bytes for right, 4 bytes left, ... */
473 if(avctx->trellis > 0) {
474 uint8_t buf[2][n*8];
475 adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n*8);
476 if(avctx->channels == 2)
477 adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n*8);
478 for(i=0; i<n; i++) {
479 *dst++ = buf[0][8*i+0] | (buf[0][8*i+1] << 4);
480 *dst++ = buf[0][8*i+2] | (buf[0][8*i+3] << 4);
481 *dst++ = buf[0][8*i+4] | (buf[0][8*i+5] << 4);
482 *dst++ = buf[0][8*i+6] | (buf[0][8*i+7] << 4);
483 if (avctx->channels == 2) {
484 *dst++ = buf[1][8*i+0] | (buf[1][8*i+1] << 4);
485 *dst++ = buf[1][8*i+2] | (buf[1][8*i+3] << 4);
486 *dst++ = buf[1][8*i+4] | (buf[1][8*i+5] << 4);
487 *dst++ = buf[1][8*i+6] | (buf[1][8*i+7] << 4);
488 }
489 }
490 } else
491 for (; n>0; n--) {
492 *dst = adpcm_ima_compress_sample(&c->status[0], samples[0]);
493 *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels]) << 4;
494 dst++;
495 *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 2]);
496 *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 3]) << 4;
497 dst++;
498 *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 4]);
499 *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 5]) << 4;
500 dst++;
501 *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 6]);
502 *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 7]) << 4;
503 dst++;
504 /* right channel */
505 if (avctx->channels == 2) {
506 *dst = adpcm_ima_compress_sample(&c->status[1], samples[1]);
507 *dst |= adpcm_ima_compress_sample(&c->status[1], samples[3]) << 4;
508 dst++;
509 *dst = adpcm_ima_compress_sample(&c->status[1], samples[5]);
510 *dst |= adpcm_ima_compress_sample(&c->status[1], samples[7]) << 4;
511 dst++;
512 *dst = adpcm_ima_compress_sample(&c->status[1], samples[9]);
513 *dst |= adpcm_ima_compress_sample(&c->status[1], samples[11]) << 4;
514 dst++;
515 *dst = adpcm_ima_compress_sample(&c->status[1], samples[13]);
516 *dst |= adpcm_ima_compress_sample(&c->status[1], samples[15]) << 4;
517 dst++;
518 }
519 samples += 8 * avctx->channels;
520 }
521 break;
522 case CODEC_ID_ADPCM_IMA_QT:
523 {
524 int ch, i;
525 PutBitContext pb;
526 init_put_bits(&pb, dst, buf_size*8);
527
528 for(ch=0; ch<avctx->channels; ch++){
529 put_bits(&pb, 9, (c->status[ch].prev_sample + 0x10000) >> 7);
530 put_bits(&pb, 7, c->status[ch].step_index);
531 if(avctx->trellis > 0) {
532 uint8_t buf[64];
533 adpcm_compress_trellis(avctx, samples+ch, buf, &c->status[ch], 64);
534 for(i=0; i<64; i++)
535 put_bits(&pb, 4, buf[i^1]);
536 c->status[ch].prev_sample = c->status[ch].predictor & ~0x7F;
537 } else {
538 for (i=0; i<64; i+=2){
539 int t1, t2;
540 t1 = adpcm_ima_compress_sample(&c->status[ch], samples[avctx->channels*(i+0)+ch]);
541 t2 = adpcm_ima_compress_sample(&c->status[ch], samples[avctx->channels*(i+1)+ch]);
542 put_bits(&pb, 4, t2);
543 put_bits(&pb, 4, t1);
544 }
545 c->status[ch].prev_sample &= ~0x7F;
546 }
547 }
548
549 dst += put_bits_count(&pb)>>3;
550 break;
551 }
552 case CODEC_ID_ADPCM_SWF:
553 {
554 int i;
555 PutBitContext pb;
556 init_put_bits(&pb, dst, buf_size*8);
557
558 n = avctx->frame_size-1;
559
560 //Store AdpcmCodeSize
561 put_bits(&pb, 2, 2); //Set 4bits flash adpcm format
562
563 //Init the encoder state
564 for(i=0; i<avctx->channels; i++){
565 c->status[i].step_index = av_clip(c->status[i].step_index, 0, 63); // clip step so it fits 6 bits
566 put_bits(&pb, 16, samples[i] & 0xFFFF);
567 put_bits(&pb, 6, c->status[i].step_index);
568 c->status[i].prev_sample = (signed short)samples[i];
569 }
570
571 if(avctx->trellis > 0) {
572 uint8_t buf[2][n];
573 adpcm_compress_trellis(avctx, samples+2, buf[0], &c->status[0], n);
574 if (avctx->channels == 2)
575 adpcm_compress_trellis(avctx, samples+3, buf[1], &c->status[1], n);
576 for(i=0; i<n; i++) {
577 put_bits(&pb, 4, buf[0][i]);
578 if (avctx->channels == 2)
579 put_bits(&pb, 4, buf[1][i]);
580 }
581 } else {
582 for (i=1; i<avctx->frame_size; i++) {
583 put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels*i]));
584 if (avctx->channels == 2)
585 put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[1], samples[2*i+1]));
586 }
587 }
588 flush_put_bits(&pb);
589 dst += put_bits_count(&pb)>>3;
590 break;
591 }
592 case CODEC_ID_ADPCM_MS:
593 for(i=0; i<avctx->channels; i++){
594 int predictor=0;
595
596 *dst++ = predictor;
597 c->status[i].coeff1 = AdaptCoeff1[predictor];
598 c->status[i].coeff2 = AdaptCoeff2[predictor];
599 }
600 for(i=0; i<avctx->channels; i++){
601 if (c->status[i].idelta < 16)
602 c->status[i].idelta = 16;
603
604 bytestream_put_le16(&dst, c->status[i].idelta);
605 }
606 for(i=0; i<avctx->channels; i++){
607 c->status[i].sample2= *samples++;
608 }
609 for(i=0; i<avctx->channels; i++){
610 c->status[i].sample1= *samples++;
611
612 bytestream_put_le16(&dst, c->status[i].sample1);
613 }
614 for(i=0; i<avctx->channels; i++)
615 bytestream_put_le16(&dst, c->status[i].sample2);
616
617 if(avctx->trellis > 0) {
618 int n = avctx->block_align - 7*avctx->channels;
619 uint8_t buf[2][n];
620 if(avctx->channels == 1) {
621 n *= 2;
622 adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
623 for(i=0; i<n; i+=2)
624 *dst++ = (buf[0][i] << 4) | buf[0][i+1];
625 } else {
626 adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
627 adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n);
628 for(i=0; i<n; i++)
629 *dst++ = (buf[0][i] << 4) | buf[1][i];
630 }
631 } else
632 for(i=7*avctx->channels; i<avctx->block_align; i++) {
633 int nibble;
634 nibble = adpcm_ms_compress_sample(&c->status[ 0], *samples++)<<4;
635 nibble|= adpcm_ms_compress_sample(&c->status[st], *samples++);
636 *dst++ = nibble;
637 }
638 break;
639 case CODEC_ID_ADPCM_YAMAHA:
640 n = avctx->frame_size / 2;
641 if(avctx->trellis > 0) {
642 uint8_t buf[2][n*2];
643 n *= 2;
644 if(avctx->channels == 1) {
645 adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
646 for(i=0; i<n; i+=2)
647 *dst++ = buf[0][i] | (buf[0][i+1] << 4);
648 } else {
649 adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
650 adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n);
651 for(i=0; i<n; i++)
652 *dst++ = buf[0][i] | (buf[1][i] << 4);
653 }
654 } else
655 for (; n>0; n--) {
656 for(i = 0; i < avctx->channels; i++) {
657 int nibble;
658 nibble = adpcm_yamaha_compress_sample(&c->status[i], samples[i]);
659 nibble |= adpcm_yamaha_compress_sample(&c->status[i], samples[i+avctx->channels]) << 4;
660 *dst++ = nibble;
661 }
662 samples += 2 * avctx->channels;
663 }
664 break;
665 default:
666 return -1;
667 }
668 return dst - frame;
669 }
670 #endif //CONFIG_ENCODERS
671
672 static av_cold int adpcm_decode_init(AVCodecContext * avctx)
673 {
674 ADPCMContext *c = avctx->priv_data;
675 unsigned int max_channels = 2;
676
677 switch(avctx->codec->id) {
678 case CODEC_ID_ADPCM_EA_R1:
679 case CODEC_ID_ADPCM_EA_R2:
680 case CODEC_ID_ADPCM_EA_R3:
681 max_channels = 6;
682 break;
683 }
684 if(avctx->channels > max_channels){
685 return -1;
686 }
687
688 switch(avctx->codec->id) {
689 case CODEC_ID_ADPCM_CT:
690 c->status[0].step = c->status[1].step = 511;
691 break;
692 case CODEC_ID_ADPCM_IMA_WS:
693 if (avctx->extradata && avctx->extradata_size == 2 * 4) {
694 c->status[0].predictor = AV_RL32(avctx->extradata);
695 c->status[1].predictor = AV_RL32(avctx->extradata + 4);
696 }
697 break;
698 default:
699 break;
700 }
701 return 0;
702 }
703
704 static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift)
705 {
706 int step_index;
707 int predictor;
708 int sign, delta, diff, step;
709
710 step = step_table[c->step_index];
711 step_index = c->step_index + index_table[(unsigned)nibble];
712 if (step_index < 0) step_index = 0;
713 else if (step_index > 88) step_index = 88;
714
715 sign = nibble & 8;
716 delta = nibble & 7;
717 /* perform direct multiplication instead of series of jumps proposed by
718 * the reference ADPCM implementation since modern CPUs can do the mults
719 * quickly enough */
720 diff = ((2 * delta + 1) * step) >> shift;
721 predictor = c->predictor;
722 if (sign) predictor -= diff;
723 else predictor += diff;
724
725 c->predictor = av_clip_int16(predictor);
726 c->step_index = step_index;
727
728 return (short)c->predictor;
729 }
730
731 static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, char nibble)
732 {
733 int predictor;
734
735 predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64;
736 predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
737
738 c->sample2 = c->sample1;
739 c->sample1 = av_clip_int16(predictor);
740 c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
741 if (c->idelta < 16) c->idelta = 16;
742
743 return c->sample1;
744 }
745
746 static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble)
747 {
748 int sign, delta, diff;
749 int new_step;
750
751 sign = nibble & 8;
752 delta = nibble & 7;
753 /* perform direct multiplication instead of series of jumps proposed by
754 * the reference ADPCM implementation since modern CPUs can do the mults
755 * quickly enough */
756 diff = ((2 * delta + 1) * c->step) >> 3;
757 /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */
758 c->predictor = ((c->predictor * 254) >> 8) + (sign ? -diff : diff);
759 c->predictor = av_clip_int16(c->predictor);
760 /* calculate new step and clamp it to range 511..32767 */
761 new_step = (ct_adpcm_table[nibble & 7] * c->step) >> 8;
762 c->step = av_clip(new_step, 511, 32767);
763
764 return (short)c->predictor;
765 }
766
767 static inline short adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, char nibble, int size, int shift)
768 {
769 int sign, delta, diff;
770
771 sign = nibble & (1<<(size-1));
772 delta = nibble & ((1<<(size-1))-1);
773 diff = delta << (7 + c->step + shift);
774
775 /* clamp result */
776 c->predictor = av_clip(c->predictor + (sign ? -diff : diff), -16384,16256);
777
778 /* calculate new step */
779 if (delta >= (2*size - 3) && c->step < 3)
780 c->step++;
781 else if (delta == 0 && c->step > 0)
782 c->step--;
783
784 return (short) c->predictor;
785 }
786
787 static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned char nibble)
788 {
789 if(!c->step) {
790 c->predictor = 0;
791 c->step = 127;
792 }
793
794 c->predictor += (c->step * yamaha_difflookup[nibble]) / 8;
795 c->predictor = av_clip_int16(c->predictor);
796 c->step = (c->step * yamaha_indexscale[nibble]) >> 8;
797 c->step = av_clip(c->step, 127, 24567);
798 return c->predictor;
799 }
800
801 static void xa_decode(short *out, const unsigned char *in,
802 ADPCMChannelStatus *left, ADPCMChannelStatus *right, int inc)
803 {
804 int i, j;
805 int shift,filter,f0,f1;
806 int s_1,s_2;
807 int d,s,t;
808
809 for(i=0;i<4;i++) {
810
811 shift = 12 - (in[4+i*2] & 15);
812 filter = in[4+i*2] >> 4;
813 f0 = xa_adpcm_table[filter][0];
814 f1 = xa_adpcm_table[filter][1];
815
816 s_1 = left->sample1;
817 s_2 = left->sample2;
818
819 for(j=0;j<28;j++) {
820 d = in[16+i+j*4];
821
822 t = (signed char)(d<<4)>>4;
823 s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
824 s_2 = s_1;
825 s_1 = av_clip_int16(s);
826 *out = s_1;
827 out += inc;
828 }
829
830 if (inc==2) { /* stereo */
831 left->sample1 = s_1;
832 left->sample2 = s_2;
833 s_1 = right->sample1;
834 s_2 = right->sample2;
835 out = out + 1 - 28*2;
836 }
837
838 shift = 12 - (in[5+i*2] & 15);
839 filter = in[5+i*2] >> 4;
840
841 f0 = xa_adpcm_table[filter][0];
842 f1 = xa_adpcm_table[filter][1];
843
844 for(j=0;j<28;j++) {
845 d = in[16+i+j*4];
846
847 t = (signed char)d >> 4;
848 s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
849 s_2 = s_1;
850 s_1 = av_clip_int16(s);
851 *out = s_1;
852 out += inc;
853 }
854
855 if (inc==2) { /* stereo */
856 right->sample1 = s_1;
857 right->sample2 = s_2;
858 out -= 1;
859 } else {
860 left->sample1 = s_1;
861 left->sample2 = s_2;
862 }
863 }
864 }
865
866
867 /* DK3 ADPCM support macro */
868 #define DK3_GET_NEXT_NIBBLE() \
869 if (decode_top_nibble_next) \
870 { \
871 nibble = last_byte >> 4; \
872 decode_top_nibble_next = 0; \
873 } \
874 else \
875 { \
876 last_byte = *src++; \
877 if (src >= buf + buf_size) break; \
878 nibble = last_byte & 0x0F; \
879 decode_top_nibble_next = 1; \
880 }
881
882 static int adpcm_decode_frame(AVCodecContext *avctx,
883 void *data, int *data_size,
884 const uint8_t *buf, int buf_size)
885 {
886 ADPCMContext *c = avctx->priv_data;
887 ADPCMChannelStatus *cs;
888 int n, m, channel, i;
889 int block_predictor[2];
890 short *samples;
891 short *samples_end;
892 const uint8_t *src;
893 int st; /* stereo */
894
895 /* DK3 ADPCM accounting variables */
896 unsigned char last_byte = 0;
897 unsigned char nibble;
898 int decode_top_nibble_next = 0;
899 int diff_channel;
900
901 /* EA ADPCM state variables */
902 uint32_t samples_in_chunk;
903 int32_t previous_left_sample, previous_right_sample;
904 int32_t current_left_sample, current_right_sample;
905 int32_t next_left_sample, next_right_sample;
906 int32_t coeff1l, coeff2l, coeff1r, coeff2r;
907 uint8_t shift_left, shift_right;
908 int count1, count2;
909 int coeff[2][2], shift[2];//used in EA MAXIS ADPCM
910
911 if (!buf_size)
912 return 0;
913
914 //should protect all 4bit ADPCM variants
915 //8 is needed for CODEC_ID_ADPCM_IMA_WAV with 2 channels
916 //
917 if(*data_size/4 < buf_size + 8)
918 return -1;
919
920 samples = data;
921 samples_end= samples + *data_size/2;
922 *data_size= 0;
923 src = buf;
924
925 st = avctx->channels == 2 ? 1 : 0;
926
927 switch(avctx->codec->id) {
928 case CODEC_ID_ADPCM_IMA_QT:
929 n = buf_size - 2*avctx->channels;
930 for (channel = 0; channel < avctx->channels; channel++) {
931 cs = &(c->status[channel]);
932 /* (pppppp) (piiiiiii) */
933
934 /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
935 cs->predictor = (*src++) << 8;
936 cs->predictor |= (*src & 0x80);
937 cs->predictor &= 0xFF80;
938
939 /* sign extension */
940 if(cs->predictor & 0x8000)
941 cs->predictor -= 0x10000;
942
943 cs->predictor = av_clip_int16(cs->predictor);
944
945 cs->step_index = (*src++) & 0x7F;
946
947 if (cs->step_index > 88){
948 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
949 cs->step_index = 88;
950 }
951
952 cs->step = step_table[cs->step_index];
953
954 samples = (short*)data + channel;
955
956 for(m=32; n>0 && m>0; n--, m--) { /* in QuickTime, IMA is encoded by chuncks of 34 bytes (=64 samples) */
957 *samples = adpcm_ima_expand_nibble(cs, src[0] & 0x0F, 3);
958 samples += avctx->channels;
959 *samples = adpcm_ima_expand_nibble(cs, src[0] >> 4 , 3);
960 samples += avctx->channels;
961 src ++;
962 }
963 }
964 if (st)
965 samples--;
966 break;
967 case CODEC_ID_ADPCM_IMA_WAV:
968 if (avctx->block_align != 0 && buf_size > avctx->block_align)
969 buf_size = avctx->block_align;
970
971 // samples_per_block= (block_align-4*chanels)*8 / (bits_per_sample * chanels) + 1;
972
973 for(i=0; i<avctx->channels; i++){
974 cs = &(c->status[i]);
975 cs->predictor = *samples++ = (int16_t)bytestream_get_le16(&src);
976
977 cs->step_index = *src++;
978 if (cs->step_index > 88){
979 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
980 cs->step_index = 88;
981 }
982 if (*src++) av_log(avctx, AV_LOG_ERROR, "unused byte should be null but is %d!!\n", src[-1]); /* unused */
983 }
984
985 while(src < buf + buf_size){
986 for(m=0; m<4; m++){
987 for(i=0; i<=st; i++)
988 *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] & 0x0F, 3);
989 for(i=0; i<=st; i++)
990 *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] >> 4 , 3);
991 src++;
992 }
993 src += 4*st;
994 }
995 break;
996 case CODEC_ID_ADPCM_4XM:
997 cs = &(c->status[0]);
998 c->status[0].predictor= (int16_t)bytestream_get_le16(&src);
999 if(st){
1000 c->status[1].predictor= (int16_t)bytestream_get_le16(&src);
1001 }
1002 c->status[0].step_index= (int16_t)bytestream_get_le16(&src);
1003 if(st){
1004 c->status[1].step_index= (int16_t)bytestream_get_le16(&src);
1005 }
1006 if (cs->step_index < 0) cs->step_index = 0;
1007 if (cs->step_index > 88) cs->step_index = 88;
1008
1009 m= (buf_size - (src - buf))>>st;
1010 for(i=0; i<m; i++) {
1011 *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] & 0x0F, 4);
1012 if (st)
1013 *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] & 0x0F, 4);
1014 *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] >> 4, 4);
1015 if (st)
1016 *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] >> 4, 4);
1017 }
1018
1019 src += m<<st;
1020
1021 break;
1022 case CODEC_ID_ADPCM_MS:
1023 if (avctx->block_align != 0 && buf_size > avctx->block_align)
1024 buf_size = avctx->block_align;
1025 n = buf_size - 7 * avctx->channels;
1026 if (n < 0)
1027 return -1;
1028 block_predictor[0] = av_clip(*src++, 0, 7);
1029 block_predictor[1] = 0;
1030 if (st)
1031 block_predictor[1] = av_clip(*src++, 0, 7);
1032 c->status[0].idelta = (int16_t)bytestream_get_le16(&src);
1033 if (st){
1034 c->status[1].idelta = (int16_t)bytestream_get_le16(&src);
1035 }
1036 c->status[0].coeff1 = AdaptCoeff1[block_predictor[0]];
1037 c->status[0].coeff2 = AdaptCoeff2[block_predictor[0]];
1038 c->status[1].coeff1 = AdaptCoeff1[block_predictor[1]];
1039 c->status[1].coeff2 = AdaptCoeff2[block_predictor[1]];
1040
1041 c->status[0].sample1 = bytestream_get_le16(&src);
1042 if (st) c->status[1].sample1 = bytestream_get_le16(&src);
1043 c->status[0].sample2 = bytestream_get_le16(&src);
1044 if (st) c->status[1].sample2 = bytestream_get_le16(&src);
1045
1046 *samples++ = c->status[0].sample2;
1047 if (st) *samples++ = c->status[1].sample2;
1048 *samples++ = c->status[0].sample1;
1049 if (st) *samples++ = c->status[1].sample1;
1050 for(;n>0;n--) {
1051 *samples++ = adpcm_ms_expand_nibble(&c->status[0 ], src[0] >> 4 );
1052 *samples++ = adpcm_ms_expand_nibble(&c->status[st], src[0] & 0x0F);
1053 src ++;
1054 }
1055 break;
1056 case CODEC_ID_ADPCM_IMA_DK4:
1057 if (avctx->block_align != 0 && buf_size > avctx->block_align)
1058 buf_size = avctx->block_align;
1059
1060 c->status[0].predictor = (int16_t)bytestream_get_le16(&src);
1061 c->status[0].step_index = *src++;
1062 src++;
1063 *samples++ = c->status[0].predictor;
1064 if (st) {
1065 c->status[1].predictor = (int16_t)bytestream_get_le16(&src);
1066 c->status[1].step_index = *src++;
1067 src++;
1068 *samples++ = c->status[1].predictor;
1069 }
1070 while (src < buf + buf_size) {
1071
1072 /* take care of the top nibble (always left or mono channel) */
1073 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1074 src[0] >> 4, 3);
1075
1076 /* take care of the bottom nibble, which is right sample for
1077 * stereo, or another mono sample */
1078 if (st)
1079 *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1080 src[0] & 0x0F, 3);
1081 else
1082 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1083 src[0] & 0x0F, 3);
1084
1085 src++;
1086 }
1087 break;
1088 case CODEC_ID_ADPCM_IMA_DK3:
1089 if (avctx->block_align != 0 && buf_size > avctx->block_align)
1090 buf_size = avctx->block_align;
1091
1092 if(buf_size + 16 > (samples_end - samples)*3/8)
1093 return -1;
1094
1095 c->status[0].predictor = (int16_t)AV_RL16(src + 10);
1096 c->status[1].predictor = (int16_t)AV_RL16(src + 12);
1097 c->status[0].step_index = src[14];
1098 c->status[1].step_index = src[15];
1099 /* sign extend the predictors */
1100 src += 16;
1101 diff_channel = c->status[1].predictor;
1102
1103 /* the DK3_GET_NEXT_NIBBLE macro issues the break statement when
1104 * the buffer is consumed */
1105 while (1) {
1106
1107 /* for this algorithm, c->status[0] is the sum channel and
1108 * c->status[1] is the diff channel */
1109
1110 /* process the first predictor of the sum channel */
1111 DK3_GET_NEXT_NIBBLE();
1112 adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1113
1114 /* process the diff channel predictor */
1115 DK3_GET_NEXT_NIBBLE();
1116 adpcm_ima_expand_nibble(&c->status[1], nibble, 3);
1117
1118 /* process the first pair of stereo PCM samples */
1119 diff_channel = (diff_channel + c->status[1].predictor) / 2;
1120 *samples++ = c->status[0].predictor + c->status[1].predictor;
1121 *samples++ = c->status[0].predictor - c->status[1].predictor;
1122
1123 /* process the second predictor of the sum channel */
1124 DK3_GET_NEXT_NIBBLE();
1125 adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1126
1127 /* process the second pair of stereo PCM samples */
1128 diff_channel = (diff_channel + c->status[1].predictor) / 2;
1129 *samples++ = c->status[0].predictor + c->status[1].predictor;
1130 *samples++ = c->status[0].predictor - c->status[1].predictor;
1131 }
1132 break;
1133 case CODEC_ID_ADPCM_IMA_WS:
1134 /* no per-block initialization; just start decoding the data */
1135 while (src < buf + buf_size) {
1136
1137 if (st) {
1138 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1139 src[0] >> 4 , 3);
1140 *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1141 src[0] & 0x0F, 3);
1142 } else {
1143 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1144 src[0] >> 4 , 3);
1145 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1146 src[0] & 0x0F, 3);
1147 }
1148
1149 src++;
1150 }
1151 break;
1152 case CODEC_ID_ADPCM_XA:
1153 while (buf_size >= 128) {
1154 xa_decode(samples, src, &c->status[0], &c->status[1],
1155 avctx->channels);
1156 src += 128;
1157 samples += 28 * 8;
1158 buf_size -= 128;
1159 }
1160 break;
1161 case CODEC_ID_ADPCM_IMA_EA_EACS:
1162 samples_in_chunk = bytestream_get_le32(&src) >> (1-st);
1163
1164 if (samples_in_chunk > buf_size-4-(8<<st)) {
1165 src += buf_size - 4;
1166 break;
1167 }
1168
1169 for (i=0; i<=st; i++)
1170 c->status[i].step_index = bytestream_get_le32(&src);
1171 for (i=0; i<=st; i++)
1172 c->status[i].predictor = bytestream_get_le32(&src);
1173
1174 for (; samples_in_chunk; samples_in_chunk--, src++) {
1175 *samples++ = adpcm_ima_expand_nibble(&c->status[0], *src>>4, 3);
1176 *samples++ = adpcm_ima_expand_nibble(&c->status[st], *src&0x0F, 3);
1177 }
1178 break;
1179 case CODEC_ID_ADPCM_IMA_EA_SEAD:
1180 for (; src < buf+buf_size; src++) {
1181 *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[0] >> 4, 6);
1182 *samples++ = adpcm_ima_expand_nibble(&c->status[st],src[0]&0x0F, 6);
1183 }
1184 break;
1185 case CODEC_ID_ADPCM_EA:
1186 samples_in_chunk = AV_RL32(src);
1187 if (samples_in_chunk >= ((buf_size - 12) * 2)) {
1188 src += buf_size;
1189 break;
1190 }
1191 src += 4;
1192 current_left_sample = (int16_t)bytestream_get_le16(&src);
1193 previous_left_sample = (int16_t)bytestream_get_le16(&src);
1194 current_right_sample = (int16_t)bytestream_get_le16(&src);
1195 previous_right_sample = (int16_t)bytestream_get_le16(&src);
1196
1197 for (count1 = 0; count1 < samples_in_chunk/28;count1++) {
1198 coeff1l = ea_adpcm_table[ *src >> 4 ];
1199 coeff2l = ea_adpcm_table[(*src >> 4 ) + 4];
1200 coeff1r = ea_adpcm_table[*src & 0x0F];
1201 coeff2r = ea_adpcm_table[(*src & 0x0F) + 4];
1202 src++;
1203
1204 shift_left = (*src >> 4 ) + 8;
1205 shift_right = (*src & 0x0F) + 8;
1206 src++;
1207
1208 for (count2 = 0; count2 < 28; count2++) {
1209 next_left_sample = (int32_t)((*src & 0xF0) << 24) >> shift_left;
1210 next_right_sample = (int32_t)((*src & 0x0F) << 28) >> shift_right;
1211 src++;
1212
1213 next_left_sample = (next_left_sample +
1214 (current_left_sample * coeff1l) +
1215 (previous_left_sample * coeff2l) + 0x80) >> 8;
1216 next_right_sample = (next_right_sample +
1217 (current_right_sample * coeff1r) +
1218 (previous_right_sample * coeff2r) + 0x80) >> 8;
1219
1220 previous_left_sample = current_left_sample;
1221 current_left_sample = av_clip_int16(next_left_sample);
1222 previous_right_sample = current_right_sample;
1223 current_right_sample = av_clip_int16(next_right_sample);
1224 *samples++ = (unsigned short)current_left_sample;
1225 *samples++ = (unsigned short)current_right_sample;
1226 }
1227 }
1228 break;
1229 case CODEC_ID_ADPCM_EA_MAXIS_XA:
1230 for(channel = 0; channel < avctx->channels; channel++) {
1231 for (i=0; i<2; i++)
1232 coeff[channel][i] = ea_adpcm_table[(*src >> 4) + 4*i];
1233 shift[channel] = (*src & 0x0F) + 8;
1234 src++;
1235 }
1236 for (count1 = 0; count1 < (buf_size - avctx->channels) / avctx->channels; count1++) {
1237 for(i = 4; i >= 0; i-=4) { /* Pairwise samples LL RR (st) or LL LL (mono) */
1238 for(channel = 0; channel < avctx->channels; channel++) {
1239 int32_t sample = (int32_t)(((*(src+channel) >> i) & 0x0F) << 0x1C) >> shift[channel];
1240 sample = (sample +
1241 c->status[channel].sample1 * coeff[channel][0] +
1242 c->status[channel].sample2 * coeff[channel][1] + 0x80) >> 8;
1243 c->status[channel].sample2 = c->status[channel].sample1;
1244 c->status[channel].sample1 = av_clip_int16(sample);
1245 *samples++ = c->status[channel].sample1;
1246 }
1247 }
1248 src+=avctx->channels;
1249 }
1250 break;
1251 case CODEC_ID_ADPCM_EA_R1:
1252 case CODEC_ID_ADPCM_EA_R2:
1253 case CODEC_ID_ADPCM_EA_R3: {
1254 /* channel numbering
1255 2chan: 0=fl, 1=fr
1256 4chan: 0=fl, 1=rl, 2=fr, 3=rr
1257 6chan: 0=fl, 1=c, 2=fr, 3=rl, 4=rr, 5=sub */
1258 const int big_endian = avctx->codec->id == CODEC_ID_ADPCM_EA_R3;
1259 int32_t previous_sample, current_sample, next_sample;
1260 int32_t coeff1, coeff2;
1261 uint8_t shift;
1262 unsigned int channel;
1263 uint16_t *samplesC;
1264 const uint8_t *srcC;
1265
1266 samples_in_chunk = (big_endian ? bytestream_get_be32(&src)
1267 : bytestream_get_le32(&src)) / 28;
1268 if (samples_in_chunk > UINT32_MAX/(28*avctx->channels) ||
1269 28*samples_in_chunk*avctx->channels > samples_end-samples) {
1270 src += buf_size - 4;
1271 break;
1272 }
1273
1274 for (channel=0; channel<avctx->channels; channel++) {
1275 srcC = src + (big_endian ? bytestream_get_be32(&src)
1276 : bytestream_get_le32(&src))
1277 + (avctx->channels-channel-1) * 4;
1278 samplesC = samples + channel;
1279
1280 if (avctx->codec->id == CODEC_ID_ADPCM_EA_R1) {
1281 current_sample = (int16_t)bytestream_get_le16(&srcC);
1282 previous_sample = (int16_t)bytestream_get_le16(&srcC);
1283 } else {
1284 current_sample = c->status[channel].predictor;
1285 previous_sample = c->status[channel].prev_sample;
1286 }
1287
1288 for (count1=0; count1<samples_in_chunk; count1++) {
1289 if (*srcC == 0xEE) { /* only seen in R2 and R3 */
1290 srcC++;
1291 current_sample = (int16_t)bytestream_get_be16(&srcC);
1292 previous_sample = (int16_t)bytestream_get_be16(&srcC);
1293
1294 for (count2=0; count2<28; count2++) {
1295 *samplesC = (int16_t)bytestream_get_be16(&srcC);
1296 samplesC += avctx->channels;
1297 }
1298 } else {
1299 coeff1 = ea_adpcm_table[ *srcC>>4 ];
1300 coeff2 = ea_adpcm_table[(*srcC>>4) + 4];
1301 shift = (*srcC++ & 0x0F) + 8;
1302
1303 for (count2=0; count2<28; count2++) {
1304 if (count2 & 1)
1305 next_sample = (int32_t)((*srcC++ & 0x0F) << 28) >> shift;
1306 else
1307 next_sample = (int32_t)((*srcC & 0xF0) << 24) >> shift;
1308
1309 next_sample += (current_sample * coeff1) +
1310 (previous_sample * coeff2);
1311 next_sample = av_clip_int16(next_sample >> 8);
1312
1313 previous_sample = current_sample;
1314 current_sample = next_sample;
1315 *samplesC = current_sample;
1316 samplesC += avctx->channels;
1317 }
1318 }
1319 }
1320
1321 if (avctx->codec->id != CODEC_ID_ADPCM_EA_R1) {
1322 c->status[channel].predictor = current_sample;
1323 c->status[channel].prev_sample = previous_sample;
1324 }
1325 }
1326
1327 src = src + buf_size - (4 + 4*avctx->channels);
1328 samples += 28 * samples_in_chunk * avctx->channels;
1329 break;
1330 }
1331 case CODEC_ID_ADPCM_EA_XAS:
1332 if (samples_end-samples < 32*4*avctx->channels
1333 || buf_size < (4+15)*4*avctx->channels) {
1334 src += buf_size;
1335 break;
1336 }
1337 for (channel=0; channel<avctx->channels; channel++) {
1338 int coeff[2][4], shift[4];
1339 short *s2, *s = &samples[channel];
1340 for (n=0; n<4; n++, s+=32*avctx->channels) {
1341 for (i=0; i<2; i++)
1342 coeff[i][n] = ea_adpcm_table[(src[0]&0x0F)+4*i];
1343 shift[n] = (src[2]&0x0F) + 8;
1344 for (s2=s, i=0; i<2; i++, src+=2, s2+=avctx->channels)
1345 s2[0] = (src[0]&0xF0) + (src[1]<<8);
1346 }
1347
1348 for (m=2; m<32; m+=2) {
1349 s = &samples[m*avctx->channels + channel];
1350 for (n=0; n<4; n++, src++, s+=32*avctx->channels) {
1351 for (s2=s, i=0; i<8; i+=4, s2+=avctx->channels) {
1352 int level = (int32_t)((*src & (0xF0>>i)) << (24+i)) >> shift[n];
1353 int pred = s2[-1*avctx->channels] * coeff[0][n]
1354 + s2[-2*avctx->channels] * coeff[1][n];
1355 s2[0] = av_clip_int16((level + pred + 0x80) >> 8);
1356 }
1357 }
1358 }
1359 }
1360 samples += 32*4*avctx->channels;
1361 break;
1362 case CODEC_ID_ADPCM_IMA_AMV:
1363 case CODEC_ID_ADPCM_IMA_SMJPEG:
1364 c->status[0].predictor = (int16_t)bytestream_get_le16(&src);
1365 c->status[0].step_index = bytestream_get_le16(&src);
1366
1367 if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV)
1368 src+=4;
1369
1370 while (src < buf + buf_size) {
1371 char hi, lo;
1372 lo = *src & 0x0F;
1373 hi = *src >> 4;
1374
1375 if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV)
1376 FFSWAP(char, hi, lo);
1377
1378 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1379 lo, 3);
1380 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1381 hi, 3);
1382 src++;
1383 }
1384 break;
1385 case CODEC_ID_ADPCM_CT:
1386 while (src < buf + buf_size) {
1387 if (st) {
1388 *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1389 src[0] >> 4);
1390 *samples++ = adpcm_ct_expand_nibble(&c->status[1],
1391 src[0] & 0x0F);
1392 } else {
1393 *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1394 src[0] >> 4);
1395 *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1396 src[0] & 0x0F);
1397 }
1398 src++;
1399 }
1400 break;
1401 case CODEC_ID_ADPCM_SBPRO_4:
1402 case CODEC_ID_ADPCM_SBPRO_3:
1403 case CODEC_ID_ADPCM_SBPRO_2:
1404 if (!c->status[0].step_index) {
1405 /* the first byte is a raw sample */
1406 *samples++ = 128 * (*src++ - 0x80);
1407 if (st)
1408 *samples++ = 128 * (*src++ - 0x80);
1409 c->status[0].step_index = 1;
1410 }
1411 if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_4) {
1412 while (src < buf + buf_size) {
1413 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1414 src[0] >> 4, 4, 0);
1415 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1416 src[0] & 0x0F, 4, 0);
1417 src++;
1418 }
1419 } else if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_3) {
1420 while (src < buf + buf_size && samples + 2 < samples_end) {
1421 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1422 src[0] >> 5 , 3, 0);
1423 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1424 (src[0] >> 2) & 0x07, 3, 0);
1425 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1426 src[0] & 0x03, 2, 0);
1427 src++;
1428 }
1429 } else {
1430 while (src < buf + buf_size && samples + 3 < samples_end) {
1431 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1432 src[0] >> 6 , 2, 2);
1433 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1434 (src[0] >> 4) & 0x03, 2, 2);
1435 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1436 (src[0] >> 2) & 0x03, 2, 2);
1437 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1438 src[0] & 0x03, 2, 2);
1439 src++;
1440 }
1441 }
1442 break;
1443 case CODEC_ID_ADPCM_SWF:
1444 {
1445 GetBitContext gb;
1446 const int *table;
1447 int k0, signmask, nb_bits, count;
1448 int size = buf_size*8;
1449
1450 init_get_bits(&gb, buf, size);
1451
1452 //read bits & initial values
1453 nb_bits = get_bits(&gb, 2)+2;
1454 //av_log(NULL,AV_LOG_INFO,"nb_bits: %d\n", nb_bits);
1455 table = swf_index_tables[nb_bits-2];
1456 k0 = 1 << (nb_bits-2);
1457 signmask = 1 << (nb_bits-1);
1458
1459 while (get_bits_count(&gb) <= size - 22*avctx->channels) {
1460 for (i = 0; i < avctx->channels; i++) {
1461 *samples++ = c->status[i].predictor = get_sbits(&gb, 16);
1462 c->status[i].step_index = get_bits(&gb, 6);
1463 }
1464
1465 for (count = 0; get_bits_count(&gb) <= size - nb_bits*avctx->channels && count < 4095; count++) {
1466 int i;
1467
1468 for (i = 0; i < avctx->channels; i++) {
1469 // similar to IMA adpcm
1470 int delta = get_bits(&gb, nb_bits);
1471 int step = step_table[c->status[i].step_index];
1472 long vpdiff = 0; // vpdiff = (delta+0.5)*step/4
1473 int k = k0;
1474
1475 do {
1476 if (delta & k)
1477 vpdiff += step;
1478 step >>= 1;
1479 k >>= 1;
1480 } while(k);
1481 vpdiff += step;
1482
1483 if (delta & signmask)
1484 c->status[i].predictor -= vpdiff;
1485 else
1486 c->status[i].predictor += vpdiff;
1487
1488 c->status[i].step_index += table[delta & (~signmask)];
1489
1490 c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88);
1491 c->status[i].predictor = av_clip_int16(c->status[i].predictor);
1492
1493 *samples++ = c->status[i].predictor;
1494 if (samples >= samples_end) {
1495 av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n");
1496 return -1;
1497 }
1498 }
1499 }
1500 }
1501 src += buf_size;
1502 break;
1503 }
1504 case CODEC_ID_ADPCM_YAMAHA:
1505 while (src < buf + buf_size) {
1506 if (st) {
1507 *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1508 src[0] & 0x0F);
1509 *samples++ = adpcm_yamaha_expand_nibble(&c->status[1],
1510 src[0] >> 4 );
1511 } else {
1512 *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1513 src[0] & 0x0F);
1514 *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1515 src[0] >> 4 );
1516 }
1517 src++;
1518 }
1519 break;
1520 case CODEC_ID_ADPCM_THP:
1521 {
1522 int table[2][16];
1523 unsigned int samplecnt;
1524 int prev[2][2];
1525 int ch;
1526
1527 if (buf_size < 80) {
1528 av_log(avctx, AV_LOG_ERROR, "frame too small\n");
1529 return -1;
1530 }
1531
1532 src+=4;
1533 samplecnt = bytestream_get_be32(&src);
1534
1535 for (i = 0; i < 32; i++)
1536 table[0][i] = (int16_t)bytestream_get_be16(&src);
1537
1538 /* Initialize the previous sample. */
1539 for (i = 0; i < 4; i++)
1540 prev[0][i] = (int16_t)bytestream_get_be16(&src);
1541
1542 if (samplecnt >= (samples_end - samples) / (st + 1)) {
1543 av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n");
1544 return -1;
1545 }
1546
1547 for (ch = 0; ch <= st; ch++) {
1548 samples = (unsigned short *) data + ch;
1549
1550 /* Read in every sample for this channel. */
1551 for (i = 0; i < samplecnt / 14; i++) {
1552 int index = (*src >> 4) & 7;
1553 unsigned int exp = 28 - (*src++ & 15);
1554 int factor1 = table[ch][index * 2];
1555 int factor2 = table[ch][index * 2 + 1];
1556
1557 /* Decode 14 samples. */
1558 for (n = 0; n < 14; n++) {
1559 int32_t sampledat;
1560 if(n&1) sampledat= *src++ <<28;
1561 else sampledat= (*src&0xF0)<<24;
1562
1563 sampledat = ((prev[ch][0]*factor1
1564 + prev[ch][1]*factor2) >> 11) + (sampledat>>exp);
1565 *samples = av_clip_int16(sampledat);
1566 prev[ch][1] = prev[ch][0];
1567 prev[ch][0] = *samples++;
1568
1569 /* In case of stereo, skip one sample, this sample
1570 is for the other channel. */
1571 samples += st;
1572 }
1573 }
1574 }
1575
1576 /* In the previous loop, in case stereo is used, samples is
1577 increased exactly one time too often. */
1578 samples -= st;
1579 break;
1580 }
1581
1582 default:
1583 return -1;
1584 }
1585 *data_size = (uint8_t *)samples - (uint8_t *)data;
1586 return src - buf;
1587 }
1588
1589
1590
1591 #ifdef CONFIG_ENCODERS
1592 #define ADPCM_ENCODER(id,name,long_name_) \
1593 AVCodec name ## _encoder = { \
1594 #name, \
1595 CODEC_TYPE_AUDIO, \
1596 id, \
1597 sizeof(ADPCMContext), \
1598 adpcm_encode_init, \
1599 adpcm_encode_frame, \
1600 adpcm_encode_close, \
1601 NULL, \
1602 .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
1603 };
1604 #else
1605 #define ADPCM_ENCODER(id,name,long_name_)
1606 #endif
1607
1608 #ifdef CONFIG_DECODERS
1609 #define ADPCM_DECODER(id,name,long_name_) \
1610 AVCodec name ## _decoder = { \
1611 #name, \
1612 CODEC_TYPE_AUDIO, \
1613 id, \
1614 sizeof(ADPCMContext), \
1615 adpcm_decode_init, \
1616 NULL, \
1617 NULL, \
1618 adpcm_decode_frame, \
1619 .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
1620 };
1621 #else
1622 #define ADPCM_DECODER(id,name,long_name_)
1623 #endif
1624
1625 #define ADPCM_CODEC(id,name,long_name_) \
1626 ADPCM_ENCODER(id,name,long_name_) ADPCM_DECODER(id,name,long_name_)
1627
1628 /* Note: Do not forget to add new entries to the Makefile as well. */
1629 ADPCM_DECODER(CODEC_ID_ADPCM_4XM, adpcm_4xm, "4X Movie ADPCM");
1630 ADPCM_DECODER(CODEC_ID_ADPCM_CT, adpcm_ct, "Creative Technology ADPCM");
1631 ADPCM_DECODER(CODEC_ID_ADPCM_EA, adpcm_ea, "Electronic Arts ADPCM");
1632 ADPCM_DECODER(CODEC_ID_ADPCM_EA_MAXIS_XA, adpcm_ea_maxis_xa, "Electronic Arts Maxis CDROM XA ADPCM");
1633 ADPCM_DECODER(CODEC_ID_ADPCM_EA_R1, adpcm_ea_r1, "Electronic Arts R1 ADPCM");
1634 ADPCM_DECODER(CODEC_ID_ADPCM_EA_R2, adpcm_ea_r2, "Electronic Arts R2 ADPCM");
1635 ADPCM_DECODER(CODEC_ID_ADPCM_EA_R3, adpcm_ea_r3, "Electronic Arts R3 ADPCM");
1636 ADPCM_DECODER(CODEC_ID_ADPCM_EA_XAS, adpcm_ea_xas, "Electronic Arts XAS ADPCM");
1637 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_AMV, adpcm_ima_amv, "IMA AMV ADPCM");
1638 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK3, adpcm_ima_dk3, "IMA Duck DK3 ADPCM");
1639 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK4, adpcm_ima_dk4, "IMA Duck DK4 ADPCM");
1640 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_EACS, adpcm_ima_ea_eacs, "IMA Electronic Arts EACS ADPCM");
1641 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_SEAD, adpcm_ima_ea_sead, "IMA Electronic Arts SEAD ADPCM");
1642 ADPCM_CODEC (CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt, "IMA QuickTime ADPCM");
1643 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_SMJPEG, adpcm_ima_smjpeg, "IMA Loki SDL MJPEG ADPCM");
1644 ADPCM_CODEC (CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav, "IMA Wav ADPCM");
1645 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_WS, adpcm_ima_ws, "IMA Westwood ADPCM");
1646 ADPCM_CODEC (CODEC_ID_ADPCM_MS, adpcm_ms, "Microsoft ADPCM");
1647 ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_2, adpcm_sbpro_2, "Sound Blaster Pro 2-bit ADPCM");
1648 ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_3, adpcm_sbpro_3, "Sound Blaster Pro 2.6-bit ADPCM");
1649 ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_4, adpcm_sbpro_4, "Sound Blaster Pro 4-bit ADPCM");
1650 ADPCM_CODEC (CODEC_ID_ADPCM_SWF, adpcm_swf, "Shockwave Flash ADPCM");
1651 ADPCM_DECODER(CODEC_ID_ADPCM_THP, adpcm_thp, "Nintendo Gamecube THP ADPCM");
1652 ADPCM_DECODER(CODEC_ID_ADPCM_XA, adpcm_xa, "CDROM XA ADPCM");
1653 ADPCM_CODEC (CODEC_ID_ADPCM_YAMAHA, adpcm_yamaha, "Yamaha ADPCM");