3 * Copyright (c) 2001-2003 The ffmpeg Project
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation; either
8 * version 2 of the License, or (at your option) any later version.
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Lesser General Public License for more details.
15 * You should have received a copy of the GNU Lesser General Public
16 * License along with this library; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 * First version by Francois Revol (revol@free.fr)
25 * Fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
26 * by Mike Melanson (melanson@pcisys.net)
27 * CD-ROM XA ADPCM codec by BERO
28 * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com)
30 * Features and limitations:
32 * Reference documents:
33 * http://www.pcisys.net/~melanson/codecs/simpleaudio.html
34 * http://www.geocities.com/SiliconValley/8682/aud3.txt
35 * http://openquicktime.sourceforge.net/plugins.htm
36 * XAnim sources (xa_codec.c) http://www.rasnaimaging.com/people/lapus/download.html
37 * http://www.cs.ucla.edu/~leec/mediabench/applications.html
38 * SoX source code http://home.sprynet.com/~cbagwell/sox.html
41 * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html
42 * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html
43 * readstr http://www.geocities.co.jp/Playtown/2004/
48 #define CLAMP_TO_SHORT(value) \
51 else if (value < -32768) \
54 /* step_table[] and index_table[] are from the ADPCM reference source */
55 /* This is the index table: */
56 static const int index_table
[16] = {
57 -1, -1, -1, -1, 2, 4, 6, 8,
58 -1, -1, -1, -1, 2, 4, 6, 8,
62 * This is the step table. Note that many programs use slight deviations from
63 * this table, but such deviations are negligible:
65 static const int step_table
[89] = {
66 7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
67 19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
68 50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
69 130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
70 337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
71 876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
72 2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
73 5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
74 15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767
77 /* These are for MS-ADPCM */
78 /* AdaptationTable[], AdaptCoeff1[], and AdaptCoeff2[] are from libsndfile */
79 static const int AdaptationTable
[] = {
80 230, 230, 230, 230, 307, 409, 512, 614,
81 768, 614, 512, 409, 307, 230, 230, 230
84 static const int AdaptCoeff1
[] = {
85 256, 512, 0, 192, 240, 460, 392
88 static const int AdaptCoeff2
[] = {
89 0, -256, 0, 64, 0, -208, -232
92 /* These are for CD-ROM XA ADPCM */
93 static const int xa_adpcm_table
[5][2] = {
101 static int ea_adpcm_table
[] = {
102 0, 240, 460, 392, 0, 0, -208, -220, 0, 1,
103 3, 4, 7, 8, 10, 11, 0, -1, -3, -4
108 typedef struct ADPCMChannelStatus
{
110 short int step_index
;
121 } ADPCMChannelStatus
;
123 typedef struct ADPCMContext
{
124 int channel
; /* for stereo MOVs, decode left, then decode right, then tell it's decoded */
125 ADPCMChannelStatus status
[2];
126 short sample_buffer
[32]; /* hold left samples while waiting for right samples */
129 /* XXX: implement encoding */
131 #ifdef CONFIG_ENCODERS
132 static int adpcm_encode_init(AVCodecContext
*avctx
)
134 if (avctx
->channels
> 2)
135 return -1; /* only stereo or mono =) */
136 switch(avctx
->codec
->id
) {
137 case CODEC_ID_ADPCM_IMA_QT
:
138 av_log(avctx
, AV_LOG_ERROR
, "ADPCM: codec adpcm_ima_qt unsupported for encoding !\n");
139 avctx
->frame_size
= 64; /* XXX: can multiple of avctx->channels * 64 (left and right blocks are interleaved) */
142 case CODEC_ID_ADPCM_IMA_WAV
:
143 avctx
->frame_size
= (BLKSIZE
- 4 * avctx
->channels
) * 8 / (4 * avctx
->channels
) + 1; /* each 16 bits sample gives one nibble */
144 /* and we have 4 bytes per channel overhead */
145 avctx
->block_align
= BLKSIZE
;
146 /* seems frame_size isn't taken into account... have to buffer the samples :-( */
148 case CODEC_ID_ADPCM_MS
:
149 avctx
->frame_size
= (BLKSIZE
- 7 * avctx
->channels
) * 2 / avctx
->channels
+ 2; /* each 16 bits sample gives one nibble */
150 /* and we have 7 bytes per channel overhead */
151 avctx
->block_align
= BLKSIZE
;
158 avctx
->coded_frame
= avcodec_alloc_frame();
159 avctx
->coded_frame
->key_frame
= 1;
164 static int adpcm_encode_close(AVCodecContext
*avctx
)
166 av_freep(&avctx
->coded_frame
);
172 static inline unsigned char adpcm_ima_compress_sample(ADPCMChannelStatus
*c
, short sample
)
175 unsigned char nibble
;
177 int sign
= 0; /* sign bit of the nibble (MSB) */
178 int delta
, predicted_delta
;
180 delta
= sample
- c
->prev_sample
;
187 step_index
= c
->step_index
;
189 /* nibble = 4 * delta / step_table[step_index]; */
190 nibble
= (delta
<< 2) / step_table
[step_index
];
195 step_index
+= index_table
[nibble
];
201 /* what the decoder will find */
202 predicted_delta
= ((step_table
[step_index
] * nibble
) / 4) + (step_table
[step_index
] / 8);
205 c
->prev_sample
-= predicted_delta
;
207 c
->prev_sample
+= predicted_delta
;
209 CLAMP_TO_SHORT(c
->prev_sample
);
212 nibble
+= sign
<< 3; /* sign * 8 */
215 c
->step_index
= step_index
;
220 static inline unsigned char adpcm_ms_compress_sample(ADPCMChannelStatus
*c
, short sample
)
222 int predictor
, nibble
, bias
;
224 predictor
= (((c
->sample1
) * (c
->coeff1
)) + ((c
->sample2
) * (c
->coeff2
))) / 256;
226 nibble
= sample
- predictor
;
227 if(nibble
>=0) bias
= c
->idelta
/2;
228 else bias
=-c
->idelta
/2;
230 nibble
= (nibble
+ bias
) / c
->idelta
;
231 nibble
= clip(nibble
, -8, 7)&0x0F;
233 predictor
+= (signed)((nibble
& 0x08)?
(nibble
- 0x10):(nibble
)) * c
->idelta
;
234 CLAMP_TO_SHORT(predictor
);
236 c
->sample2
= c
->sample1
;
237 c
->sample1
= predictor
;
239 c
->idelta
= (AdaptationTable
[(int)nibble
] * c
->idelta
) >> 8;
240 if (c
->idelta
< 16) c
->idelta
= 16;
245 static int adpcm_encode_frame(AVCodecContext
*avctx
,
246 unsigned char *frame
, int buf_size
, void *data
)
251 ADPCMContext
*c
= avctx
->priv_data
;
254 samples
= (short *)data
;
255 st
= avctx
->channels
== 2;
256 /* n = (BLKSIZE - 4 * avctx->channels) / (2 * 8 * avctx->channels); */
258 switch(avctx
->codec
->id
) {
259 case CODEC_ID_ADPCM_IMA_QT
: /* XXX: can't test until we get .mov writer */
261 case CODEC_ID_ADPCM_IMA_WAV
:
262 n
= avctx
->frame_size
/ 8;
263 c
->status
[0].prev_sample
= (signed short)samples
[0]; /* XXX */
264 /* c->status[0].step_index = 0; *//* XXX: not sure how to init the state machine */
265 *dst
++ = (c
->status
[0].prev_sample
) & 0xFF; /* little endian */
266 *dst
++ = (c
->status
[0].prev_sample
>> 8) & 0xFF;
267 *dst
++ = (unsigned char)c
->status
[0].step_index
;
268 *dst
++ = 0; /* unknown */
270 if (avctx
->channels
== 2) {
271 c
->status
[1].prev_sample
= (signed short)samples
[1];
272 /* c->status[1].step_index = 0; */
273 *dst
++ = (c
->status
[1].prev_sample
) & 0xFF;
274 *dst
++ = (c
->status
[1].prev_sample
>> 8) & 0xFF;
275 *dst
++ = (unsigned char)c
->status
[1].step_index
;
280 /* stereo: 4 bytes (8 samples) for left, 4 bytes for right, 4 bytes left, ... */
282 *dst
= adpcm_ima_compress_sample(&c
->status
[0], samples
[0]) & 0x0F;
283 *dst
|= (adpcm_ima_compress_sample(&c
->status
[0], samples
[avctx
->channels
]) << 4) & 0xF0;
285 *dst
= adpcm_ima_compress_sample(&c
->status
[0], samples
[avctx
->channels
* 2]) & 0x0F;
286 *dst
|= (adpcm_ima_compress_sample(&c
->status
[0], samples
[avctx
->channels
* 3]) << 4) & 0xF0;
288 *dst
= adpcm_ima_compress_sample(&c
->status
[0], samples
[avctx
->channels
* 4]) & 0x0F;
289 *dst
|= (adpcm_ima_compress_sample(&c
->status
[0], samples
[avctx
->channels
* 5]) << 4) & 0xF0;
291 *dst
= adpcm_ima_compress_sample(&c
->status
[0], samples
[avctx
->channels
* 6]) & 0x0F;
292 *dst
|= (adpcm_ima_compress_sample(&c
->status
[0], samples
[avctx
->channels
* 7]) << 4) & 0xF0;
295 if (avctx
->channels
== 2) {
296 *dst
= adpcm_ima_compress_sample(&c
->status
[1], samples
[1]);
297 *dst
|= adpcm_ima_compress_sample(&c
->status
[1], samples
[3]) << 4;
299 *dst
= adpcm_ima_compress_sample(&c
->status
[1], samples
[5]);
300 *dst
|= adpcm_ima_compress_sample(&c
->status
[1], samples
[7]) << 4;
302 *dst
= adpcm_ima_compress_sample(&c
->status
[1], samples
[9]);
303 *dst
|= adpcm_ima_compress_sample(&c
->status
[1], samples
[11]) << 4;
305 *dst
= adpcm_ima_compress_sample(&c
->status
[1], samples
[13]);
306 *dst
|= adpcm_ima_compress_sample(&c
->status
[1], samples
[15]) << 4;
309 samples
+= 8 * avctx
->channels
;
312 case CODEC_ID_ADPCM_MS
:
313 for(i
=0; i
<avctx
->channels
; i
++){
317 c
->status
[i
].coeff1
= AdaptCoeff1
[predictor
];
318 c
->status
[i
].coeff2
= AdaptCoeff2
[predictor
];
320 for(i
=0; i
<avctx
->channels
; i
++){
321 if (c
->status
[i
].idelta
< 16)
322 c
->status
[i
].idelta
= 16;
324 *dst
++ = c
->status
[i
].idelta
& 0xFF;
325 *dst
++ = c
->status
[i
].idelta
>> 8;
327 for(i
=0; i
<avctx
->channels
; i
++){
328 c
->status
[i
].sample1
= *samples
++;
330 *dst
++ = c
->status
[i
].sample1
& 0xFF;
331 *dst
++ = c
->status
[i
].sample1
>> 8;
333 for(i
=0; i
<avctx
->channels
; i
++){
334 c
->status
[i
].sample2
= *samples
++;
336 *dst
++ = c
->status
[i
].sample2
& 0xFF;
337 *dst
++ = c
->status
[i
].sample2
>> 8;
340 for(i
=7*avctx
->channels
; i
<avctx
->block_align
; i
++) {
342 nibble
= adpcm_ms_compress_sample(&c
->status
[ 0], *samples
++)<<4;
343 nibble
|= adpcm_ms_compress_sample(&c
->status
[st
], *samples
++);
352 #endif //CONFIG_ENCODERS
354 static int adpcm_decode_init(AVCodecContext
* avctx
)
356 ADPCMContext
*c
= avctx
->priv_data
;
359 c
->status
[0].predictor
= c
->status
[1].predictor
= 0;
360 c
->status
[0].step_index
= c
->status
[1].step_index
= 0;
361 c
->status
[0].step
= c
->status
[1].step
= 0;
363 switch(avctx
->codec
->id
) {
370 static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus
*c
, char nibble
, int shift
)
374 int sign
, delta
, diff
, step
;
376 step
= step_table
[c
->step_index
];
377 step_index
= c
->step_index
+ index_table
[(unsigned)nibble
];
378 if (step_index
< 0) step_index
= 0;
379 else if (step_index
> 88) step_index
= 88;
383 /* perform direct multiplication instead of series of jumps proposed by
384 * the reference ADPCM implementation since modern CPUs can do the mults
386 diff
= ((2 * delta
+ 1) * step
) >> shift
;
387 predictor
= c
->predictor
;
388 if (sign
) predictor
-= diff
;
389 else predictor
+= diff
;
391 CLAMP_TO_SHORT(predictor
);
392 c
->predictor
= predictor
;
393 c
->step_index
= step_index
;
395 return (short)predictor
;
398 static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus
*c
, char nibble
)
402 predictor
= (((c
->sample1
) * (c
->coeff1
)) + ((c
->sample2
) * (c
->coeff2
))) / 256;
403 predictor
+= (signed)((nibble
& 0x08)?
(nibble
- 0x10):(nibble
)) * c
->idelta
;
404 CLAMP_TO_SHORT(predictor
);
406 c
->sample2
= c
->sample1
;
407 c
->sample1
= predictor
;
408 c
->idelta
= (AdaptationTable
[(int)nibble
] * c
->idelta
) >> 8;
409 if (c
->idelta
< 16) c
->idelta
= 16;
411 return (short)predictor
;
414 static void xa_decode(short *out
, const unsigned char *in
,
415 ADPCMChannelStatus
*left
, ADPCMChannelStatus
*right
, int inc
)
418 int shift
,filter
,f0
,f1
;
424 shift
= 12 - (in
[4+i
*2] & 15);
425 filter
= in
[4+i
*2] >> 4;
426 f0
= xa_adpcm_table
[filter
][0];
427 f1
= xa_adpcm_table
[filter
][1];
435 t
= (signed char)(d
<<4)>>4;
436 s
= ( t
<<shift
) + ((s_1
*f0
+ s_2
*f1
+32)>>6);
444 if (inc
==2) { /* stereo */
447 s_1
= right
->sample1
;
448 s_2
= right
->sample2
;
449 out
= out
+ 1 - 28*2;
452 shift
= 12 - (in
[5+i
*2] & 15);
453 filter
= in
[5+i
*2] >> 4;
455 f0
= xa_adpcm_table
[filter
][0];
456 f1
= xa_adpcm_table
[filter
][1];
461 t
= (signed char)d
>> 4;
462 s
= ( t
<<shift
) + ((s_1
*f0
+ s_2
*f1
+32)>>6);
470 if (inc
==2) { /* stereo */
471 right
->sample1
= s_1
;
472 right
->sample2
= s_2
;
482 /* DK3 ADPCM support macro */
483 #define DK3_GET_NEXT_NIBBLE() \
484 if (decode_top_nibble_next) \
486 nibble = (last_byte >> 4) & 0x0F; \
487 decode_top_nibble_next = 0; \
491 last_byte = *src++; \
492 if (src >= buf + buf_size) break; \
493 nibble = last_byte & 0x0F; \
494 decode_top_nibble_next = 1; \
497 static int adpcm_decode_frame(AVCodecContext
*avctx
,
498 void *data
, int *data_size
,
499 uint8_t *buf
, int buf_size
)
501 ADPCMContext
*c
= avctx
->priv_data
;
502 ADPCMChannelStatus
*cs
;
503 int n
, m
, channel
, i
;
504 int block_predictor
[2];
509 /* DK3 ADPCM accounting variables */
510 unsigned char last_byte
= 0;
511 unsigned char nibble
;
512 int decode_top_nibble_next
= 0;
515 /* EA ADPCM state variables */
516 uint32_t samples_in_chunk
;
517 int32_t previous_left_sample
, previous_right_sample
;
518 int32_t current_left_sample
, current_right_sample
;
519 int32_t next_left_sample
, next_right_sample
;
520 int32_t coeff1l
, coeff2l
, coeff1r
, coeff2r
;
521 uint8_t shift_left
, shift_right
;
530 st
= avctx
->channels
== 2;
532 switch(avctx
->codec
->id
) {
533 case CODEC_ID_ADPCM_IMA_QT
:
534 n
= (buf_size
- 2);/* >> 2*avctx->channels;*/
535 channel
= c
->channel
;
536 cs
= &(c
->status
[channel
]);
537 /* (pppppp) (piiiiiii) */
539 /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
540 cs
->predictor
= (*src
++) << 8;
541 cs
->predictor
|= (*src
& 0x80);
542 cs
->predictor
&= 0xFF80;
545 if(cs
->predictor
& 0x8000)
546 cs
->predictor
-= 0x10000;
548 CLAMP_TO_SHORT(cs
->predictor
);
550 cs
->step_index
= (*src
++) & 0x7F;
552 if (cs
->step_index
> 88) av_log(avctx
, AV_LOG_ERROR
, "ERROR: step_index = %i\n", cs
->step_index
);
553 if (cs
->step_index
> 88) cs
->step_index
= 88;
555 cs
->step
= step_table
[cs
->step_index
];
560 for(m
=32; n
>0 && m
>0; n
--, m
--) { /* in QuickTime, IMA is encoded by chuncks of 34 bytes (=64 samples) */
561 *samples
= adpcm_ima_expand_nibble(cs
, src
[0] & 0x0F, 3);
562 samples
+= avctx
->channels
;
563 *samples
= adpcm_ima_expand_nibble(cs
, (src
[0] >> 4) & 0x0F, 3);
564 samples
+= avctx
->channels
;
568 if(st
) { /* handle stereo interlacing */
569 c
->channel
= (channel
+ 1) % 2; /* we get one packet for left, then one for right data */
570 if(channel
== 1) { /* wait for the other packet before outputing anything */
575 case CODEC_ID_ADPCM_IMA_WAV
:
576 if (avctx
->block_align
!= 0 && buf_size
> avctx
->block_align
)
577 buf_size
= avctx
->block_align
;
579 for(i
=0; i
<avctx
->channels
; i
++){
580 cs
= &(c
->status
[i
]);
581 cs
->predictor
= *src
++;
582 cs
->predictor
|= (*src
++) << 8;
583 if(cs
->predictor
& 0x8000)
584 cs
->predictor
-= 0x10000;
585 CLAMP_TO_SHORT(cs
->predictor
);
587 // XXX: is this correct ??: *samples++ = cs->predictor;
589 cs
->step_index
= *src
++;
590 if (cs
->step_index
< 0) cs
->step_index
= 0;
591 if (cs
->step_index
> 88) cs
->step_index
= 88;
592 if (*src
++) av_log(avctx
, AV_LOG_ERROR
, "unused byte should be null !!\n"); /* unused */
595 for(m
=4; src
< (buf
+ buf_size
);) {
596 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0], src
[0] & 0x0F, 3);
598 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[1], src
[4] & 0x0F, 3);
599 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0], (src
[0] >> 4) & 0x0F, 3);
601 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[1], (src
[4] >> 4) & 0x0F, 3);
610 case CODEC_ID_ADPCM_4XM
:
611 cs
= &(c
->status
[0]);
612 c
->status
[0].predictor
= (int16_t)(src
[0] + (src
[1]<<8)); src
+=2;
614 c
->status
[1].predictor
= (int16_t)(src
[0] + (src
[1]<<8)); src
+=2;
616 c
->status
[0].step_index
= (int16_t)(src
[0] + (src
[1]<<8)); src
+=2;
618 c
->status
[1].step_index
= (int16_t)(src
[0] + (src
[1]<<8)); src
+=2;
620 if (cs
->step_index
< 0) cs
->step_index
= 0;
621 if (cs
->step_index
> 88) cs
->step_index
= 88;
623 m
= (buf_size
- (src
- buf
))>>st
;
625 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0], src
[i
] & 0x0F, 4);
627 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[1], src
[i
+m
] & 0x0F, 4);
628 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0], src
[i
] >> 4, 4);
630 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[1], src
[i
+m
] >> 4, 4);
636 case CODEC_ID_ADPCM_MS
:
637 if (avctx
->block_align
!= 0 && buf_size
> avctx
->block_align
)
638 buf_size
= avctx
->block_align
;
639 n
= buf_size
- 7 * avctx
->channels
;
642 block_predictor
[0] = clip(*src
++, 0, 7);
643 block_predictor
[1] = 0;
645 block_predictor
[1] = clip(*src
++, 0, 7);
646 c
->status
[0].idelta
= (int16_t)((*src
& 0xFF) | ((src
[1] << 8) & 0xFF00));
649 c
->status
[1].idelta
= (int16_t)((*src
& 0xFF) | ((src
[1] << 8) & 0xFF00));
652 c
->status
[0].coeff1
= AdaptCoeff1
[block_predictor
[0]];
653 c
->status
[0].coeff2
= AdaptCoeff2
[block_predictor
[0]];
654 c
->status
[1].coeff1
= AdaptCoeff1
[block_predictor
[1]];
655 c
->status
[1].coeff2
= AdaptCoeff2
[block_predictor
[1]];
657 c
->status
[0].sample1
= ((*src
& 0xFF) | ((src
[1] << 8) & 0xFF00));
659 if (st
) c
->status
[1].sample1
= ((*src
& 0xFF) | ((src
[1] << 8) & 0xFF00));
661 c
->status
[0].sample2
= ((*src
& 0xFF) | ((src
[1] << 8) & 0xFF00));
663 if (st
) c
->status
[1].sample2
= ((*src
& 0xFF) | ((src
[1] << 8) & 0xFF00));
666 *samples
++ = c
->status
[0].sample1
;
667 if (st
) *samples
++ = c
->status
[1].sample1
;
668 *samples
++ = c
->status
[0].sample2
;
669 if (st
) *samples
++ = c
->status
[1].sample2
;
671 *samples
++ = adpcm_ms_expand_nibble(&c
->status
[0], (src
[0] >> 4) & 0x0F);
672 *samples
++ = adpcm_ms_expand_nibble(&c
->status
[st
], src
[0] & 0x0F);
676 case CODEC_ID_ADPCM_IMA_DK4
:
677 if (avctx
->block_align
!= 0 && buf_size
> avctx
->block_align
)
678 buf_size
= avctx
->block_align
;
680 c
->status
[0].predictor
= (int16_t)(src
[0] | (src
[1] << 8));
681 c
->status
[0].step_index
= src
[2];
683 *samples
++ = c
->status
[0].predictor
;
685 c
->status
[1].predictor
= (int16_t)(src
[0] | (src
[1] << 8));
686 c
->status
[1].step_index
= src
[2];
688 *samples
++ = c
->status
[1].predictor
;
690 while (src
< buf
+ buf_size
) {
692 /* take care of the top nibble (always left or mono channel) */
693 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0],
694 (src
[0] >> 4) & 0x0F, 3);
696 /* take care of the bottom nibble, which is right sample for
697 * stereo, or another mono sample */
699 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[1],
702 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0],
708 case CODEC_ID_ADPCM_IMA_DK3
:
709 if (avctx
->block_align
!= 0 && buf_size
> avctx
->block_align
)
710 buf_size
= avctx
->block_align
;
712 c
->status
[0].predictor
= (int16_t)(src
[10] | (src
[11] << 8));
713 c
->status
[1].predictor
= (int16_t)(src
[12] | (src
[13] << 8));
714 c
->status
[0].step_index
= src
[14];
715 c
->status
[1].step_index
= src
[15];
716 /* sign extend the predictors */
718 diff_channel
= c
->status
[1].predictor
;
720 /* the DK3_GET_NEXT_NIBBLE macro issues the break statement when
721 * the buffer is consumed */
724 /* for this algorithm, c->status[0] is the sum channel and
725 * c->status[1] is the diff channel */
727 /* process the first predictor of the sum channel */
728 DK3_GET_NEXT_NIBBLE();
729 adpcm_ima_expand_nibble(&c
->status
[0], nibble
, 3);
731 /* process the diff channel predictor */
732 DK3_GET_NEXT_NIBBLE();
733 adpcm_ima_expand_nibble(&c
->status
[1], nibble
, 3);
735 /* process the first pair of stereo PCM samples */
736 diff_channel
= (diff_channel
+ c
->status
[1].predictor
) / 2;
737 *samples
++ = c
->status
[0].predictor
+ c
->status
[1].predictor
;
738 *samples
++ = c
->status
[0].predictor
- c
->status
[1].predictor
;
740 /* process the second predictor of the sum channel */
741 DK3_GET_NEXT_NIBBLE();
742 adpcm_ima_expand_nibble(&c
->status
[0], nibble
, 3);
744 /* process the second pair of stereo PCM samples */
745 diff_channel
= (diff_channel
+ c
->status
[1].predictor
) / 2;
746 *samples
++ = c
->status
[0].predictor
+ c
->status
[1].predictor
;
747 *samples
++ = c
->status
[0].predictor
- c
->status
[1].predictor
;
750 case CODEC_ID_ADPCM_IMA_WS
:
751 /* no per-block initialization; just start decoding the data */
752 while (src
< buf
+ buf_size
) {
755 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0],
756 (src
[0] >> 4) & 0x0F, 3);
757 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[1],
760 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0],
761 (src
[0] >> 4) & 0x0F, 3);
762 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0],
769 case CODEC_ID_ADPCM_XA
:
770 c
->status
[0].sample1
= c
->status
[0].sample2
=
771 c
->status
[1].sample1
= c
->status
[1].sample2
= 0;
772 while (buf_size
>= 128) {
773 xa_decode(samples
, src
, &c
->status
[0], &c
->status
[1],
780 case CODEC_ID_ADPCM_EA
:
781 samples_in_chunk
= LE_32(src
);
782 if (samples_in_chunk
>= ((buf_size
- 12) * 2)) {
787 current_left_sample
= (int16_t)LE_16(src
);
789 previous_left_sample
= (int16_t)LE_16(src
);
791 current_right_sample
= (int16_t)LE_16(src
);
793 previous_right_sample
= (int16_t)LE_16(src
);
796 for (count1
= 0; count1
< samples_in_chunk
/28;count1
++) {
797 coeff1l
= ea_adpcm_table
[(*src
>> 4) & 0x0F];
798 coeff2l
= ea_adpcm_table
[((*src
>> 4) & 0x0F) + 4];
799 coeff1r
= ea_adpcm_table
[*src
& 0x0F];
800 coeff2r
= ea_adpcm_table
[(*src
& 0x0F) + 4];
803 shift_left
= ((*src
>> 4) & 0x0F) + 8;
804 shift_right
= (*src
& 0x0F) + 8;
807 for (count2
= 0; count2
< 28; count2
++) {
808 next_left_sample
= (((*src
& 0xF0) << 24) >> shift_left
);
809 next_right_sample
= (((*src
& 0x0F) << 28) >> shift_right
);
812 next_left_sample
= (next_left_sample
+
813 (current_left_sample
* coeff1l
) +
814 (previous_left_sample
* coeff2l
) + 0x80) >> 8;
815 next_right_sample
= (next_right_sample
+
816 (current_right_sample
* coeff1r
) +
817 (previous_right_sample
* coeff2r
) + 0x80) >> 8;
818 CLAMP_TO_SHORT(next_left_sample
);
819 CLAMP_TO_SHORT(next_right_sample
);
821 previous_left_sample
= current_left_sample
;
822 current_left_sample
= next_left_sample
;
823 previous_right_sample
= current_right_sample
;
824 current_right_sample
= next_right_sample
;
825 *samples
++ = (unsigned short)current_left_sample
;
826 *samples
++ = (unsigned short)current_right_sample
;
830 case CODEC_ID_ADPCM_IMA_SMJPEG
:
831 c
->status
[0].predictor
= *src
;
833 c
->status
[0].step_index
= *src
++;
834 src
++; /* skip another byte before getting to the meat */
835 while (src
< buf
+ buf_size
) {
836 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0],
838 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0],
839 (*src
>> 4) & 0x0F, 3);
846 *data_size
= (uint8_t *)samples
- (uint8_t *)data
;
852 #ifdef CONFIG_ENCODERS
853 #define ADPCM_ENCODER(id,name) \
854 AVCodec name ## _encoder = { \
858 sizeof(ADPCMContext), \
860 adpcm_encode_frame, \
861 adpcm_encode_close, \
865 #define ADPCM_ENCODER(id,name)
868 #ifdef CONFIG_DECODERS
869 #define ADPCM_DECODER(id,name) \
870 AVCodec name ## _decoder = { \
874 sizeof(ADPCMContext), \
878 adpcm_decode_frame, \
881 #define ADPCM_DECODER(id,name)
884 #define ADPCM_CODEC(id, name) \
885 ADPCM_ENCODER(id,name) ADPCM_DECODER(id,name)
887 ADPCM_CODEC(CODEC_ID_ADPCM_IMA_QT
, adpcm_ima_qt
);
888 ADPCM_CODEC(CODEC_ID_ADPCM_IMA_WAV
, adpcm_ima_wav
);
889 ADPCM_CODEC(CODEC_ID_ADPCM_IMA_DK3
, adpcm_ima_dk3
);
890 ADPCM_CODEC(CODEC_ID_ADPCM_IMA_DK4
, adpcm_ima_dk4
);
891 ADPCM_CODEC(CODEC_ID_ADPCM_IMA_WS
, adpcm_ima_ws
);
892 ADPCM_CODEC(CODEC_ID_ADPCM_IMA_SMJPEG
, adpcm_ima_smjpeg
);
893 ADPCM_CODEC(CODEC_ID_ADPCM_MS
, adpcm_ms
);
894 ADPCM_CODEC(CODEC_ID_ADPCM_4XM
, adpcm_4xm
);
895 ADPCM_CODEC(CODEC_ID_ADPCM_XA
, adpcm_xa
);
896 ADPCM_CODEC(CODEC_ID_ADPCM_ADX
, adpcm_adx
);
897 ADPCM_CODEC(CODEC_ID_ADPCM_EA
, adpcm_ea
);