0755e24fefaf2148ead8df173fb38b6a7ad94f53
[libav.git] / libavcodec / adpcm.c
1 /*
2 * ADPCM codecs
3 * Copyright (c) 2001-2003 The ffmpeg Project
4 *
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation; either
8 * version 2 of the License, or (at your option) any later version.
9 *
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Lesser General Public License for more details.
14 *
15 * You should have received a copy of the GNU Lesser General Public
16 * License along with this library; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19 #include "avcodec.h"
20
21 /**
22 * @file adpcm.c
23 * ADPCM codecs.
24 * First version by Francois Revol (revol@free.fr)
25 * Fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
26 * by Mike Melanson (melanson@pcisys.net)
27 * CD-ROM XA ADPCM codec by BERO
28 * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com)
29 *
30 * Features and limitations:
31 *
32 * Reference documents:
33 * http://www.pcisys.net/~melanson/codecs/simpleaudio.html
34 * http://www.geocities.com/SiliconValley/8682/aud3.txt
35 * http://openquicktime.sourceforge.net/plugins.htm
36 * XAnim sources (xa_codec.c) http://www.rasnaimaging.com/people/lapus/download.html
37 * http://www.cs.ucla.edu/~leec/mediabench/applications.html
38 * SoX source code http://home.sprynet.com/~cbagwell/sox.html
39 *
40 * CD-ROM XA:
41 * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html
42 * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html
43 * readstr http://www.geocities.co.jp/Playtown/2004/
44 */
45
46 #define BLKSIZE 1024
47
48 #define CLAMP_TO_SHORT(value) \
49 if (value > 32767) \
50 value = 32767; \
51 else if (value < -32768) \
52 value = -32768; \
53
54 /* step_table[] and index_table[] are from the ADPCM reference source */
55 /* This is the index table: */
56 static const int index_table[16] = {
57 -1, -1, -1, -1, 2, 4, 6, 8,
58 -1, -1, -1, -1, 2, 4, 6, 8,
59 };
60
61 /**
62 * This is the step table. Note that many programs use slight deviations from
63 * this table, but such deviations are negligible:
64 */
65 static const int step_table[89] = {
66 7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
67 19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
68 50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
69 130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
70 337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
71 876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
72 2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
73 5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
74 15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767
75 };
76
77 /* These are for MS-ADPCM */
78 /* AdaptationTable[], AdaptCoeff1[], and AdaptCoeff2[] are from libsndfile */
79 static const int AdaptationTable[] = {
80 230, 230, 230, 230, 307, 409, 512, 614,
81 768, 614, 512, 409, 307, 230, 230, 230
82 };
83
84 static const int AdaptCoeff1[] = {
85 256, 512, 0, 192, 240, 460, 392
86 };
87
88 static const int AdaptCoeff2[] = {
89 0, -256, 0, 64, 0, -208, -232
90 };
91
92 /* These are for CD-ROM XA ADPCM */
93 static const int xa_adpcm_table[5][2] = {
94 { 0, 0 },
95 { 60, 0 },
96 { 115, -52 },
97 { 98, -55 },
98 { 122, -60 }
99 };
100
101 static int ea_adpcm_table[] = {
102 0, 240, 460, 392, 0, 0, -208, -220, 0, 1,
103 3, 4, 7, 8, 10, 11, 0, -1, -3, -4
104 };
105
106 /* end of tables */
107
108 typedef struct ADPCMChannelStatus {
109 int predictor;
110 short int step_index;
111 int step;
112 /* for encoding */
113 int prev_sample;
114
115 /* MS version */
116 short sample1;
117 short sample2;
118 int coeff1;
119 int coeff2;
120 int idelta;
121 } ADPCMChannelStatus;
122
123 typedef struct ADPCMContext {
124 int channel; /* for stereo MOVs, decode left, then decode right, then tell it's decoded */
125 ADPCMChannelStatus status[2];
126 short sample_buffer[32]; /* hold left samples while waiting for right samples */
127 } ADPCMContext;
128
129 /* XXX: implement encoding */
130
131 #ifdef CONFIG_ENCODERS
132 static int adpcm_encode_init(AVCodecContext *avctx)
133 {
134 if (avctx->channels > 2)
135 return -1; /* only stereo or mono =) */
136 switch(avctx->codec->id) {
137 case CODEC_ID_ADPCM_IMA_QT:
138 av_log(avctx, AV_LOG_ERROR, "ADPCM: codec adpcm_ima_qt unsupported for encoding !\n");
139 avctx->frame_size = 64; /* XXX: can multiple of avctx->channels * 64 (left and right blocks are interleaved) */
140 return -1;
141 break;
142 case CODEC_ID_ADPCM_IMA_WAV:
143 avctx->frame_size = (BLKSIZE - 4 * avctx->channels) * 8 / (4 * avctx->channels) + 1; /* each 16 bits sample gives one nibble */
144 /* and we have 4 bytes per channel overhead */
145 avctx->block_align = BLKSIZE;
146 /* seems frame_size isn't taken into account... have to buffer the samples :-( */
147 break;
148 case CODEC_ID_ADPCM_MS:
149 avctx->frame_size = (BLKSIZE - 7 * avctx->channels) * 2 / avctx->channels + 2; /* each 16 bits sample gives one nibble */
150 /* and we have 7 bytes per channel overhead */
151 avctx->block_align = BLKSIZE;
152 break;
153 default:
154 return -1;
155 break;
156 }
157
158 avctx->coded_frame= avcodec_alloc_frame();
159 avctx->coded_frame->key_frame= 1;
160
161 return 0;
162 }
163
164 static int adpcm_encode_close(AVCodecContext *avctx)
165 {
166 av_freep(&avctx->coded_frame);
167
168 return 0;
169 }
170
171
172 static inline unsigned char adpcm_ima_compress_sample(ADPCMChannelStatus *c, short sample)
173 {
174 int step_index;
175 unsigned char nibble;
176
177 int sign = 0; /* sign bit of the nibble (MSB) */
178 int delta, predicted_delta;
179
180 delta = sample - c->prev_sample;
181
182 if (delta < 0) {
183 sign = 1;
184 delta = -delta;
185 }
186
187 step_index = c->step_index;
188
189 /* nibble = 4 * delta / step_table[step_index]; */
190 nibble = (delta << 2) / step_table[step_index];
191
192 if (nibble > 7)
193 nibble = 7;
194
195 step_index += index_table[nibble];
196 if (step_index < 0)
197 step_index = 0;
198 if (step_index > 88)
199 step_index = 88;
200
201 /* what the decoder will find */
202 predicted_delta = ((step_table[step_index] * nibble) / 4) + (step_table[step_index] / 8);
203
204 if (sign)
205 c->prev_sample -= predicted_delta;
206 else
207 c->prev_sample += predicted_delta;
208
209 CLAMP_TO_SHORT(c->prev_sample);
210
211
212 nibble += sign << 3; /* sign * 8 */
213
214 /* save back */
215 c->step_index = step_index;
216
217 return nibble;
218 }
219
220 static inline unsigned char adpcm_ms_compress_sample(ADPCMChannelStatus *c, short sample)
221 {
222 int predictor, nibble, bias;
223
224 predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 256;
225
226 nibble= sample - predictor;
227 if(nibble>=0) bias= c->idelta/2;
228 else bias=-c->idelta/2;
229
230 nibble= (nibble + bias) / c->idelta;
231 nibble= clip(nibble, -8, 7)&0x0F;
232
233 predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
234 CLAMP_TO_SHORT(predictor);
235
236 c->sample2 = c->sample1;
237 c->sample1 = predictor;
238
239 c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
240 if (c->idelta < 16) c->idelta = 16;
241
242 return nibble;
243 }
244
245 static int adpcm_encode_frame(AVCodecContext *avctx,
246 unsigned char *frame, int buf_size, void *data)
247 {
248 int n, i, st;
249 short *samples;
250 unsigned char *dst;
251 ADPCMContext *c = avctx->priv_data;
252
253 dst = frame;
254 samples = (short *)data;
255 st= avctx->channels == 2;
256 /* n = (BLKSIZE - 4 * avctx->channels) / (2 * 8 * avctx->channels); */
257
258 switch(avctx->codec->id) {
259 case CODEC_ID_ADPCM_IMA_QT: /* XXX: can't test until we get .mov writer */
260 break;
261 case CODEC_ID_ADPCM_IMA_WAV:
262 n = avctx->frame_size / 8;
263 c->status[0].prev_sample = (signed short)samples[0]; /* XXX */
264 /* c->status[0].step_index = 0; *//* XXX: not sure how to init the state machine */
265 *dst++ = (c->status[0].prev_sample) & 0xFF; /* little endian */
266 *dst++ = (c->status[0].prev_sample >> 8) & 0xFF;
267 *dst++ = (unsigned char)c->status[0].step_index;
268 *dst++ = 0; /* unknown */
269 samples++;
270 if (avctx->channels == 2) {
271 c->status[1].prev_sample = (signed short)samples[1];
272 /* c->status[1].step_index = 0; */
273 *dst++ = (c->status[1].prev_sample) & 0xFF;
274 *dst++ = (c->status[1].prev_sample >> 8) & 0xFF;
275 *dst++ = (unsigned char)c->status[1].step_index;
276 *dst++ = 0;
277 samples++;
278 }
279
280 /* stereo: 4 bytes (8 samples) for left, 4 bytes for right, 4 bytes left, ... */
281 for (; n>0; n--) {
282 *dst = adpcm_ima_compress_sample(&c->status[0], samples[0]) & 0x0F;
283 *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels]) << 4) & 0xF0;
284 dst++;
285 *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 2]) & 0x0F;
286 *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 3]) << 4) & 0xF0;
287 dst++;
288 *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 4]) & 0x0F;
289 *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 5]) << 4) & 0xF0;
290 dst++;
291 *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 6]) & 0x0F;
292 *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 7]) << 4) & 0xF0;
293 dst++;
294 /* right channel */
295 if (avctx->channels == 2) {
296 *dst = adpcm_ima_compress_sample(&c->status[1], samples[1]);
297 *dst |= adpcm_ima_compress_sample(&c->status[1], samples[3]) << 4;
298 dst++;
299 *dst = adpcm_ima_compress_sample(&c->status[1], samples[5]);
300 *dst |= adpcm_ima_compress_sample(&c->status[1], samples[7]) << 4;
301 dst++;
302 *dst = adpcm_ima_compress_sample(&c->status[1], samples[9]);
303 *dst |= adpcm_ima_compress_sample(&c->status[1], samples[11]) << 4;
304 dst++;
305 *dst = adpcm_ima_compress_sample(&c->status[1], samples[13]);
306 *dst |= adpcm_ima_compress_sample(&c->status[1], samples[15]) << 4;
307 dst++;
308 }
309 samples += 8 * avctx->channels;
310 }
311 break;
312 case CODEC_ID_ADPCM_MS:
313 for(i=0; i<avctx->channels; i++){
314 int predictor=0;
315
316 *dst++ = predictor;
317 c->status[i].coeff1 = AdaptCoeff1[predictor];
318 c->status[i].coeff2 = AdaptCoeff2[predictor];
319 }
320 for(i=0; i<avctx->channels; i++){
321 if (c->status[i].idelta < 16)
322 c->status[i].idelta = 16;
323
324 *dst++ = c->status[i].idelta & 0xFF;
325 *dst++ = c->status[i].idelta >> 8;
326 }
327 for(i=0; i<avctx->channels; i++){
328 c->status[i].sample1= *samples++;
329
330 *dst++ = c->status[i].sample1 & 0xFF;
331 *dst++ = c->status[i].sample1 >> 8;
332 }
333 for(i=0; i<avctx->channels; i++){
334 c->status[i].sample2= *samples++;
335
336 *dst++ = c->status[i].sample2 & 0xFF;
337 *dst++ = c->status[i].sample2 >> 8;
338 }
339
340 for(i=7*avctx->channels; i<avctx->block_align; i++) {
341 int nibble;
342 nibble = adpcm_ms_compress_sample(&c->status[ 0], *samples++)<<4;
343 nibble|= adpcm_ms_compress_sample(&c->status[st], *samples++);
344 *dst++ = nibble;
345 }
346 break;
347 default:
348 return -1;
349 }
350 return dst - frame;
351 }
352 #endif //CONFIG_ENCODERS
353
354 static int adpcm_decode_init(AVCodecContext * avctx)
355 {
356 ADPCMContext *c = avctx->priv_data;
357
358 c->channel = 0;
359 c->status[0].predictor = c->status[1].predictor = 0;
360 c->status[0].step_index = c->status[1].step_index = 0;
361 c->status[0].step = c->status[1].step = 0;
362
363 switch(avctx->codec->id) {
364 default:
365 break;
366 }
367 return 0;
368 }
369
370 static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift)
371 {
372 int step_index;
373 int predictor;
374 int sign, delta, diff, step;
375
376 step = step_table[c->step_index];
377 step_index = c->step_index + index_table[(unsigned)nibble];
378 if (step_index < 0) step_index = 0;
379 else if (step_index > 88) step_index = 88;
380
381 sign = nibble & 8;
382 delta = nibble & 7;
383 /* perform direct multiplication instead of series of jumps proposed by
384 * the reference ADPCM implementation since modern CPUs can do the mults
385 * quickly enough */
386 diff = ((2 * delta + 1) * step) >> shift;
387 predictor = c->predictor;
388 if (sign) predictor -= diff;
389 else predictor += diff;
390
391 CLAMP_TO_SHORT(predictor);
392 c->predictor = predictor;
393 c->step_index = step_index;
394
395 return (short)predictor;
396 }
397
398 static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, char nibble)
399 {
400 int predictor;
401
402 predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 256;
403 predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
404 CLAMP_TO_SHORT(predictor);
405
406 c->sample2 = c->sample1;
407 c->sample1 = predictor;
408 c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
409 if (c->idelta < 16) c->idelta = 16;
410
411 return (short)predictor;
412 }
413
414 static void xa_decode(short *out, const unsigned char *in,
415 ADPCMChannelStatus *left, ADPCMChannelStatus *right, int inc)
416 {
417 int i, j;
418 int shift,filter,f0,f1;
419 int s_1,s_2;
420 int d,s,t;
421
422 for(i=0;i<4;i++) {
423
424 shift = 12 - (in[4+i*2] & 15);
425 filter = in[4+i*2] >> 4;
426 f0 = xa_adpcm_table[filter][0];
427 f1 = xa_adpcm_table[filter][1];
428
429 s_1 = left->sample1;
430 s_2 = left->sample2;
431
432 for(j=0;j<28;j++) {
433 d = in[16+i+j*4];
434
435 t = (signed char)(d<<4)>>4;
436 s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
437 CLAMP_TO_SHORT(s);
438 *out = s;
439 out += inc;
440 s_2 = s_1;
441 s_1 = s;
442 }
443
444 if (inc==2) { /* stereo */
445 left->sample1 = s_1;
446 left->sample2 = s_2;
447 s_1 = right->sample1;
448 s_2 = right->sample2;
449 out = out + 1 - 28*2;
450 }
451
452 shift = 12 - (in[5+i*2] & 15);
453 filter = in[5+i*2] >> 4;
454
455 f0 = xa_adpcm_table[filter][0];
456 f1 = xa_adpcm_table[filter][1];
457
458 for(j=0;j<28;j++) {
459 d = in[16+i+j*4];
460
461 t = (signed char)d >> 4;
462 s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
463 CLAMP_TO_SHORT(s);
464 *out = s;
465 out += inc;
466 s_2 = s_1;
467 s_1 = s;
468 }
469
470 if (inc==2) { /* stereo */
471 right->sample1 = s_1;
472 right->sample2 = s_2;
473 out -= 1;
474 } else {
475 left->sample1 = s_1;
476 left->sample2 = s_2;
477 }
478 }
479 }
480
481
482 /* DK3 ADPCM support macro */
483 #define DK3_GET_NEXT_NIBBLE() \
484 if (decode_top_nibble_next) \
485 { \
486 nibble = (last_byte >> 4) & 0x0F; \
487 decode_top_nibble_next = 0; \
488 } \
489 else \
490 { \
491 last_byte = *src++; \
492 if (src >= buf + buf_size) break; \
493 nibble = last_byte & 0x0F; \
494 decode_top_nibble_next = 1; \
495 }
496
497 static int adpcm_decode_frame(AVCodecContext *avctx,
498 void *data, int *data_size,
499 uint8_t *buf, int buf_size)
500 {
501 ADPCMContext *c = avctx->priv_data;
502 ADPCMChannelStatus *cs;
503 int n, m, channel, i;
504 int block_predictor[2];
505 short *samples;
506 uint8_t *src;
507 int st; /* stereo */
508
509 /* DK3 ADPCM accounting variables */
510 unsigned char last_byte = 0;
511 unsigned char nibble;
512 int decode_top_nibble_next = 0;
513 int diff_channel;
514
515 /* EA ADPCM state variables */
516 uint32_t samples_in_chunk;
517 int32_t previous_left_sample, previous_right_sample;
518 int32_t current_left_sample, current_right_sample;
519 int32_t next_left_sample, next_right_sample;
520 int32_t coeff1l, coeff2l, coeff1r, coeff2r;
521 uint8_t shift_left, shift_right;
522 int count1, count2;
523
524 if (!buf_size)
525 return 0;
526
527 samples = data;
528 src = buf;
529
530 st = avctx->channels == 2;
531
532 switch(avctx->codec->id) {
533 case CODEC_ID_ADPCM_IMA_QT:
534 n = (buf_size - 2);/* >> 2*avctx->channels;*/
535 channel = c->channel;
536 cs = &(c->status[channel]);
537 /* (pppppp) (piiiiiii) */
538
539 /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
540 cs->predictor = (*src++) << 8;
541 cs->predictor |= (*src & 0x80);
542 cs->predictor &= 0xFF80;
543
544 /* sign extension */
545 if(cs->predictor & 0x8000)
546 cs->predictor -= 0x10000;
547
548 CLAMP_TO_SHORT(cs->predictor);
549
550 cs->step_index = (*src++) & 0x7F;
551
552 if (cs->step_index > 88) av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
553 if (cs->step_index > 88) cs->step_index = 88;
554
555 cs->step = step_table[cs->step_index];
556
557 if (st && channel)
558 samples++;
559
560 for(m=32; n>0 && m>0; n--, m--) { /* in QuickTime, IMA is encoded by chuncks of 34 bytes (=64 samples) */
561 *samples = adpcm_ima_expand_nibble(cs, src[0] & 0x0F, 3);
562 samples += avctx->channels;
563 *samples = adpcm_ima_expand_nibble(cs, (src[0] >> 4) & 0x0F, 3);
564 samples += avctx->channels;
565 src ++;
566 }
567
568 if(st) { /* handle stereo interlacing */
569 c->channel = (channel + 1) % 2; /* we get one packet for left, then one for right data */
570 if(channel == 1) { /* wait for the other packet before outputing anything */
571 return src - buf;
572 }
573 }
574 break;
575 case CODEC_ID_ADPCM_IMA_WAV:
576 if (avctx->block_align != 0 && buf_size > avctx->block_align)
577 buf_size = avctx->block_align;
578
579 for(i=0; i<avctx->channels; i++){
580 cs = &(c->status[i]);
581 cs->predictor = *src++;
582 cs->predictor |= (*src++) << 8;
583 if(cs->predictor & 0x8000)
584 cs->predictor -= 0x10000;
585 CLAMP_TO_SHORT(cs->predictor);
586
587 // XXX: is this correct ??: *samples++ = cs->predictor;
588
589 cs->step_index = *src++;
590 if (cs->step_index < 0) cs->step_index = 0;
591 if (cs->step_index > 88) cs->step_index = 88;
592 if (*src++) av_log(avctx, AV_LOG_ERROR, "unused byte should be null !!\n"); /* unused */
593 }
594
595 for(m=4; src < (buf + buf_size);) {
596 *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[0] & 0x0F, 3);
597 if (st)
598 *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[4] & 0x0F, 3);
599 *samples++ = adpcm_ima_expand_nibble(&c->status[0], (src[0] >> 4) & 0x0F, 3);
600 if (st) {
601 *samples++ = adpcm_ima_expand_nibble(&c->status[1], (src[4] >> 4) & 0x0F, 3);
602 if (!--m) {
603 m=4;
604 src+=4;
605 }
606 }
607 src++;
608 }
609 break;
610 case CODEC_ID_ADPCM_4XM:
611 cs = &(c->status[0]);
612 c->status[0].predictor= (int16_t)(src[0] + (src[1]<<8)); src+=2;
613 if(st){
614 c->status[1].predictor= (int16_t)(src[0] + (src[1]<<8)); src+=2;
615 }
616 c->status[0].step_index= (int16_t)(src[0] + (src[1]<<8)); src+=2;
617 if(st){
618 c->status[1].step_index= (int16_t)(src[0] + (src[1]<<8)); src+=2;
619 }
620 if (cs->step_index < 0) cs->step_index = 0;
621 if (cs->step_index > 88) cs->step_index = 88;
622
623 m= (buf_size - (src - buf))>>st;
624 for(i=0; i<m; i++) {
625 *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] & 0x0F, 4);
626 if (st)
627 *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] & 0x0F, 4);
628 *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] >> 4, 4);
629 if (st)
630 *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] >> 4, 4);
631 }
632
633 src += m<<st;
634
635 break;
636 case CODEC_ID_ADPCM_MS:
637 if (avctx->block_align != 0 && buf_size > avctx->block_align)
638 buf_size = avctx->block_align;
639 n = buf_size - 7 * avctx->channels;
640 if (n < 0)
641 return -1;
642 block_predictor[0] = clip(*src++, 0, 7);
643 block_predictor[1] = 0;
644 if (st)
645 block_predictor[1] = clip(*src++, 0, 7);
646 c->status[0].idelta = (int16_t)((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
647 src+=2;
648 if (st){
649 c->status[1].idelta = (int16_t)((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
650 src+=2;
651 }
652 c->status[0].coeff1 = AdaptCoeff1[block_predictor[0]];
653 c->status[0].coeff2 = AdaptCoeff2[block_predictor[0]];
654 c->status[1].coeff1 = AdaptCoeff1[block_predictor[1]];
655 c->status[1].coeff2 = AdaptCoeff2[block_predictor[1]];
656
657 c->status[0].sample1 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
658 src+=2;
659 if (st) c->status[1].sample1 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
660 if (st) src+=2;
661 c->status[0].sample2 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
662 src+=2;
663 if (st) c->status[1].sample2 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
664 if (st) src+=2;
665
666 *samples++ = c->status[0].sample1;
667 if (st) *samples++ = c->status[1].sample1;
668 *samples++ = c->status[0].sample2;
669 if (st) *samples++ = c->status[1].sample2;
670 for(;n>0;n--) {
671 *samples++ = adpcm_ms_expand_nibble(&c->status[0], (src[0] >> 4) & 0x0F);
672 *samples++ = adpcm_ms_expand_nibble(&c->status[st], src[0] & 0x0F);
673 src ++;
674 }
675 break;
676 case CODEC_ID_ADPCM_IMA_DK4:
677 if (avctx->block_align != 0 && buf_size > avctx->block_align)
678 buf_size = avctx->block_align;
679
680 c->status[0].predictor = (int16_t)(src[0] | (src[1] << 8));
681 c->status[0].step_index = src[2];
682 src += 4;
683 *samples++ = c->status[0].predictor;
684 if (st) {
685 c->status[1].predictor = (int16_t)(src[0] | (src[1] << 8));
686 c->status[1].step_index = src[2];
687 src += 4;
688 *samples++ = c->status[1].predictor;
689 }
690 while (src < buf + buf_size) {
691
692 /* take care of the top nibble (always left or mono channel) */
693 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
694 (src[0] >> 4) & 0x0F, 3);
695
696 /* take care of the bottom nibble, which is right sample for
697 * stereo, or another mono sample */
698 if (st)
699 *samples++ = adpcm_ima_expand_nibble(&c->status[1],
700 src[0] & 0x0F, 3);
701 else
702 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
703 src[0] & 0x0F, 3);
704
705 src++;
706 }
707 break;
708 case CODEC_ID_ADPCM_IMA_DK3:
709 if (avctx->block_align != 0 && buf_size > avctx->block_align)
710 buf_size = avctx->block_align;
711
712 c->status[0].predictor = (int16_t)(src[10] | (src[11] << 8));
713 c->status[1].predictor = (int16_t)(src[12] | (src[13] << 8));
714 c->status[0].step_index = src[14];
715 c->status[1].step_index = src[15];
716 /* sign extend the predictors */
717 src += 16;
718 diff_channel = c->status[1].predictor;
719
720 /* the DK3_GET_NEXT_NIBBLE macro issues the break statement when
721 * the buffer is consumed */
722 while (1) {
723
724 /* for this algorithm, c->status[0] is the sum channel and
725 * c->status[1] is the diff channel */
726
727 /* process the first predictor of the sum channel */
728 DK3_GET_NEXT_NIBBLE();
729 adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
730
731 /* process the diff channel predictor */
732 DK3_GET_NEXT_NIBBLE();
733 adpcm_ima_expand_nibble(&c->status[1], nibble, 3);
734
735 /* process the first pair of stereo PCM samples */
736 diff_channel = (diff_channel + c->status[1].predictor) / 2;
737 *samples++ = c->status[0].predictor + c->status[1].predictor;
738 *samples++ = c->status[0].predictor - c->status[1].predictor;
739
740 /* process the second predictor of the sum channel */
741 DK3_GET_NEXT_NIBBLE();
742 adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
743
744 /* process the second pair of stereo PCM samples */
745 diff_channel = (diff_channel + c->status[1].predictor) / 2;
746 *samples++ = c->status[0].predictor + c->status[1].predictor;
747 *samples++ = c->status[0].predictor - c->status[1].predictor;
748 }
749 break;
750 case CODEC_ID_ADPCM_IMA_WS:
751 /* no per-block initialization; just start decoding the data */
752 while (src < buf + buf_size) {
753
754 if (st) {
755 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
756 (src[0] >> 4) & 0x0F, 3);
757 *samples++ = adpcm_ima_expand_nibble(&c->status[1],
758 src[0] & 0x0F, 3);
759 } else {
760 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
761 (src[0] >> 4) & 0x0F, 3);
762 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
763 src[0] & 0x0F, 3);
764 }
765
766 src++;
767 }
768 break;
769 case CODEC_ID_ADPCM_XA:
770 c->status[0].sample1 = c->status[0].sample2 =
771 c->status[1].sample1 = c->status[1].sample2 = 0;
772 while (buf_size >= 128) {
773 xa_decode(samples, src, &c->status[0], &c->status[1],
774 avctx->channels);
775 src += 128;
776 samples += 28 * 8;
777 buf_size -= 128;
778 }
779 break;
780 case CODEC_ID_ADPCM_EA:
781 samples_in_chunk = LE_32(src);
782 if (samples_in_chunk >= ((buf_size - 12) * 2)) {
783 src += buf_size;
784 break;
785 }
786 src += 4;
787 current_left_sample = (int16_t)LE_16(src);
788 src += 2;
789 previous_left_sample = (int16_t)LE_16(src);
790 src += 2;
791 current_right_sample = (int16_t)LE_16(src);
792 src += 2;
793 previous_right_sample = (int16_t)LE_16(src);
794 src += 2;
795
796 for (count1 = 0; count1 < samples_in_chunk/28;count1++) {
797 coeff1l = ea_adpcm_table[(*src >> 4) & 0x0F];
798 coeff2l = ea_adpcm_table[((*src >> 4) & 0x0F) + 4];
799 coeff1r = ea_adpcm_table[*src & 0x0F];
800 coeff2r = ea_adpcm_table[(*src & 0x0F) + 4];
801 src++;
802
803 shift_left = ((*src >> 4) & 0x0F) + 8;
804 shift_right = (*src & 0x0F) + 8;
805 src++;
806
807 for (count2 = 0; count2 < 28; count2++) {
808 next_left_sample = (((*src & 0xF0) << 24) >> shift_left);
809 next_right_sample = (((*src & 0x0F) << 28) >> shift_right);
810 src++;
811
812 next_left_sample = (next_left_sample +
813 (current_left_sample * coeff1l) +
814 (previous_left_sample * coeff2l) + 0x80) >> 8;
815 next_right_sample = (next_right_sample +
816 (current_right_sample * coeff1r) +
817 (previous_right_sample * coeff2r) + 0x80) >> 8;
818 CLAMP_TO_SHORT(next_left_sample);
819 CLAMP_TO_SHORT(next_right_sample);
820
821 previous_left_sample = current_left_sample;
822 current_left_sample = next_left_sample;
823 previous_right_sample = current_right_sample;
824 current_right_sample = next_right_sample;
825 *samples++ = (unsigned short)current_left_sample;
826 *samples++ = (unsigned short)current_right_sample;
827 }
828 }
829 break;
830 case CODEC_ID_ADPCM_IMA_SMJPEG:
831 c->status[0].predictor = *src;
832 src += 2;
833 c->status[0].step_index = *src++;
834 src++; /* skip another byte before getting to the meat */
835 while (src < buf + buf_size) {
836 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
837 *src & 0x0F, 3);
838 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
839 (*src >> 4) & 0x0F, 3);
840 src++;
841 }
842 break;
843 default:
844 return -1;
845 }
846 *data_size = (uint8_t *)samples - (uint8_t *)data;
847 return src - buf;
848 }
849
850
851
852 #ifdef CONFIG_ENCODERS
853 #define ADPCM_ENCODER(id,name) \
854 AVCodec name ## _encoder = { \
855 #name, \
856 CODEC_TYPE_AUDIO, \
857 id, \
858 sizeof(ADPCMContext), \
859 adpcm_encode_init, \
860 adpcm_encode_frame, \
861 adpcm_encode_close, \
862 NULL, \
863 };
864 #else
865 #define ADPCM_ENCODER(id,name)
866 #endif
867
868 #ifdef CONFIG_DECODERS
869 #define ADPCM_DECODER(id,name) \
870 AVCodec name ## _decoder = { \
871 #name, \
872 CODEC_TYPE_AUDIO, \
873 id, \
874 sizeof(ADPCMContext), \
875 adpcm_decode_init, \
876 NULL, \
877 NULL, \
878 adpcm_decode_frame, \
879 };
880 #else
881 #define ADPCM_DECODER(id,name)
882 #endif
883
884 #define ADPCM_CODEC(id, name) \
885 ADPCM_ENCODER(id,name) ADPCM_DECODER(id,name)
886
887 ADPCM_CODEC(CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt);
888 ADPCM_CODEC(CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav);
889 ADPCM_CODEC(CODEC_ID_ADPCM_IMA_DK3, adpcm_ima_dk3);
890 ADPCM_CODEC(CODEC_ID_ADPCM_IMA_DK4, adpcm_ima_dk4);
891 ADPCM_CODEC(CODEC_ID_ADPCM_IMA_WS, adpcm_ima_ws);
892 ADPCM_CODEC(CODEC_ID_ADPCM_IMA_SMJPEG, adpcm_ima_smjpeg);
893 ADPCM_CODEC(CODEC_ID_ADPCM_MS, adpcm_ms);
894 ADPCM_CODEC(CODEC_ID_ADPCM_4XM, adpcm_4xm);
895 ADPCM_CODEC(CODEC_ID_ADPCM_XA, adpcm_xa);
896 ADPCM_CODEC(CODEC_ID_ADPCM_ADX, adpcm_adx);
897 ADPCM_CODEC(CODEC_ID_ADPCM_EA, adpcm_ea);
898
899 #undef ADPCM_CODEC