AMV audio decoder
[libav.git] / libavcodec / adpcm.c
1 /*
2 * ADPCM codecs
3 * Copyright (c) 2001-2003 The ffmpeg Project
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21 #include "avcodec.h"
22 #include "bitstream.h"
23 #include "bytestream.h"
24
25 /**
26 * @file adpcm.c
27 * ADPCM codecs.
28 * First version by Francois Revol (revol@free.fr)
29 * Fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
30 * by Mike Melanson (melanson@pcisys.net)
31 * CD-ROM XA ADPCM codec by BERO
32 * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com)
33 * THP ADPCM decoder by Marco Gerards (mgerards@xs4all.nl)
34 *
35 * Features and limitations:
36 *
37 * Reference documents:
38 * http://www.pcisys.net/~melanson/codecs/simpleaudio.html
39 * http://www.geocities.com/SiliconValley/8682/aud3.txt
40 * http://openquicktime.sourceforge.net/plugins.htm
41 * XAnim sources (xa_codec.c) http://www.rasnaimaging.com/people/lapus/download.html
42 * http://www.cs.ucla.edu/~leec/mediabench/applications.html
43 * SoX source code http://home.sprynet.com/~cbagwell/sox.html
44 *
45 * CD-ROM XA:
46 * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html
47 * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html
48 * readstr http://www.geocities.co.jp/Playtown/2004/
49 */
50
51 #define BLKSIZE 1024
52
53 /* step_table[] and index_table[] are from the ADPCM reference source */
54 /* This is the index table: */
55 static const int index_table[16] = {
56 -1, -1, -1, -1, 2, 4, 6, 8,
57 -1, -1, -1, -1, 2, 4, 6, 8,
58 };
59
60 /**
61 * This is the step table. Note that many programs use slight deviations from
62 * this table, but such deviations are negligible:
63 */
64 static const int step_table[89] = {
65 7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
66 19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
67 50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
68 130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
69 337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
70 876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
71 2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
72 5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
73 15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767
74 };
75
76 /* These are for MS-ADPCM */
77 /* AdaptationTable[], AdaptCoeff1[], and AdaptCoeff2[] are from libsndfile */
78 static const int AdaptationTable[] = {
79 230, 230, 230, 230, 307, 409, 512, 614,
80 768, 614, 512, 409, 307, 230, 230, 230
81 };
82
83 static const int AdaptCoeff1[] = {
84 256, 512, 0, 192, 240, 460, 392
85 };
86
87 static const int AdaptCoeff2[] = {
88 0, -256, 0, 64, 0, -208, -232
89 };
90
91 /* These are for CD-ROM XA ADPCM */
92 static const int xa_adpcm_table[5][2] = {
93 { 0, 0 },
94 { 60, 0 },
95 { 115, -52 },
96 { 98, -55 },
97 { 122, -60 }
98 };
99
100 static const int ea_adpcm_table[] = {
101 0, 240, 460, 392, 0, 0, -208, -220, 0, 1,
102 3, 4, 7, 8, 10, 11, 0, -1, -3, -4
103 };
104
105 static const int ct_adpcm_table[8] = {
106 0x00E6, 0x00E6, 0x00E6, 0x00E6,
107 0x0133, 0x0199, 0x0200, 0x0266
108 };
109
110 // padded to zero where table size is less then 16
111 static const int swf_index_tables[4][16] = {
112 /*2*/ { -1, 2 },
113 /*3*/ { -1, -1, 2, 4 },
114 /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 },
115 /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
116 };
117
118 static const int yamaha_indexscale[] = {
119 230, 230, 230, 230, 307, 409, 512, 614,
120 230, 230, 230, 230, 307, 409, 512, 614
121 };
122
123 static const int yamaha_difflookup[] = {
124 1, 3, 5, 7, 9, 11, 13, 15,
125 -1, -3, -5, -7, -9, -11, -13, -15
126 };
127
128 /* end of tables */
129
130 typedef struct ADPCMChannelStatus {
131 int predictor;
132 short int step_index;
133 int step;
134 /* for encoding */
135 int prev_sample;
136
137 /* MS version */
138 short sample1;
139 short sample2;
140 int coeff1;
141 int coeff2;
142 int idelta;
143 } ADPCMChannelStatus;
144
145 typedef struct ADPCMContext {
146 int channel; /* for stereo MOVs, decode left, then decode right, then tell it's decoded */
147 ADPCMChannelStatus status[2];
148 short sample_buffer[32]; /* hold left samples while waiting for right samples */
149 } ADPCMContext;
150
151 /* XXX: implement encoding */
152
153 #ifdef CONFIG_ENCODERS
154 static int adpcm_encode_init(AVCodecContext *avctx)
155 {
156 if (avctx->channels > 2)
157 return -1; /* only stereo or mono =) */
158 switch(avctx->codec->id) {
159 case CODEC_ID_ADPCM_IMA_QT:
160 av_log(avctx, AV_LOG_ERROR, "ADPCM: codec adpcm_ima_qt unsupported for encoding !\n");
161 avctx->frame_size = 64; /* XXX: can multiple of avctx->channels * 64 (left and right blocks are interleaved) */
162 return -1;
163 break;
164 case CODEC_ID_ADPCM_IMA_WAV:
165 avctx->frame_size = (BLKSIZE - 4 * avctx->channels) * 8 / (4 * avctx->channels) + 1; /* each 16 bits sample gives one nibble */
166 /* and we have 4 bytes per channel overhead */
167 avctx->block_align = BLKSIZE;
168 /* seems frame_size isn't taken into account... have to buffer the samples :-( */
169 break;
170 case CODEC_ID_ADPCM_MS:
171 avctx->frame_size = (BLKSIZE - 7 * avctx->channels) * 2 / avctx->channels + 2; /* each 16 bits sample gives one nibble */
172 /* and we have 7 bytes per channel overhead */
173 avctx->block_align = BLKSIZE;
174 break;
175 case CODEC_ID_ADPCM_YAMAHA:
176 avctx->frame_size = BLKSIZE * avctx->channels;
177 avctx->block_align = BLKSIZE;
178 break;
179 case CODEC_ID_ADPCM_SWF:
180 if (avctx->sample_rate != 11025 &&
181 avctx->sample_rate != 22050 &&
182 avctx->sample_rate != 44100) {
183 av_log(avctx, AV_LOG_ERROR, "Sample rate must be 11025, 22050 or 44100\n");
184 return -1;
185 }
186 avctx->frame_size = 512 * (avctx->sample_rate / 11025);
187 break;
188 default:
189 return -1;
190 break;
191 }
192
193 avctx->coded_frame= avcodec_alloc_frame();
194 avctx->coded_frame->key_frame= 1;
195
196 return 0;
197 }
198
199 static int adpcm_encode_close(AVCodecContext *avctx)
200 {
201 av_freep(&avctx->coded_frame);
202
203 return 0;
204 }
205
206
207 static inline unsigned char adpcm_ima_compress_sample(ADPCMChannelStatus *c, short sample)
208 {
209 int delta = sample - c->prev_sample;
210 int nibble = FFMIN(7, abs(delta)*4/step_table[c->step_index]) + (delta<0)*8;
211 c->prev_sample += ((step_table[c->step_index] * yamaha_difflookup[nibble]) / 8);
212 c->prev_sample = av_clip_int16(c->prev_sample);
213 c->step_index = av_clip(c->step_index + index_table[nibble], 0, 88);
214 return nibble;
215 }
216
217 static inline unsigned char adpcm_ms_compress_sample(ADPCMChannelStatus *c, short sample)
218 {
219 int predictor, nibble, bias;
220
221 predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 256;
222
223 nibble= sample - predictor;
224 if(nibble>=0) bias= c->idelta/2;
225 else bias=-c->idelta/2;
226
227 nibble= (nibble + bias) / c->idelta;
228 nibble= av_clip(nibble, -8, 7)&0x0F;
229
230 predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
231
232 c->sample2 = c->sample1;
233 c->sample1 = av_clip_int16(predictor);
234
235 c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
236 if (c->idelta < 16) c->idelta = 16;
237
238 return nibble;
239 }
240
241 static inline unsigned char adpcm_yamaha_compress_sample(ADPCMChannelStatus *c, short sample)
242 {
243 int nibble, delta;
244
245 if(!c->step) {
246 c->predictor = 0;
247 c->step = 127;
248 }
249
250 delta = sample - c->predictor;
251
252 nibble = FFMIN(7, abs(delta)*4/c->step) + (delta<0)*8;
253
254 c->predictor += ((c->step * yamaha_difflookup[nibble]) / 8);
255 c->predictor = av_clip_int16(c->predictor);
256 c->step = (c->step * yamaha_indexscale[nibble]) >> 8;
257 c->step = av_clip(c->step, 127, 24567);
258
259 return nibble;
260 }
261
262 typedef struct TrellisPath {
263 int nibble;
264 int prev;
265 } TrellisPath;
266
267 typedef struct TrellisNode {
268 uint32_t ssd;
269 int path;
270 int sample1;
271 int sample2;
272 int step;
273 } TrellisNode;
274
275 static void adpcm_compress_trellis(AVCodecContext *avctx, const short *samples,
276 uint8_t *dst, ADPCMChannelStatus *c, int n)
277 {
278 #define FREEZE_INTERVAL 128
279 //FIXME 6% faster if frontier is a compile-time constant
280 const int frontier = 1 << avctx->trellis;
281 const int stride = avctx->channels;
282 const int version = avctx->codec->id;
283 const int max_paths = frontier*FREEZE_INTERVAL;
284 TrellisPath paths[max_paths], *p;
285 TrellisNode node_buf[2][frontier];
286 TrellisNode *nodep_buf[2][frontier];
287 TrellisNode **nodes = nodep_buf[0]; // nodes[] is always sorted by .ssd
288 TrellisNode **nodes_next = nodep_buf[1];
289 int pathn = 0, froze = -1, i, j, k;
290
291 assert(!(max_paths&(max_paths-1)));
292
293 memset(nodep_buf, 0, sizeof(nodep_buf));
294 nodes[0] = &node_buf[1][0];
295 nodes[0]->ssd = 0;
296 nodes[0]->path = 0;
297 nodes[0]->step = c->step_index;
298 nodes[0]->sample1 = c->sample1;
299 nodes[0]->sample2 = c->sample2;
300 if((version == CODEC_ID_ADPCM_IMA_WAV) || (version == CODEC_ID_ADPCM_SWF))
301 nodes[0]->sample1 = c->prev_sample;
302 if(version == CODEC_ID_ADPCM_MS)
303 nodes[0]->step = c->idelta;
304 if(version == CODEC_ID_ADPCM_YAMAHA) {
305 if(c->step == 0) {
306 nodes[0]->step = 127;
307 nodes[0]->sample1 = 0;
308 } else {
309 nodes[0]->step = c->step;
310 nodes[0]->sample1 = c->predictor;
311 }
312 }
313
314 for(i=0; i<n; i++) {
315 TrellisNode *t = node_buf[i&1];
316 TrellisNode **u;
317 int sample = samples[i*stride];
318 memset(nodes_next, 0, frontier*sizeof(TrellisNode*));
319 for(j=0; j<frontier && nodes[j]; j++) {
320 // higher j have higher ssd already, so they're unlikely to use a suboptimal next sample too
321 const int range = (j < frontier/2) ? 1 : 0;
322 const int step = nodes[j]->step;
323 int nidx;
324 if(version == CODEC_ID_ADPCM_MS) {
325 const int predictor = ((nodes[j]->sample1 * c->coeff1) + (nodes[j]->sample2 * c->coeff2)) / 256;
326 const int div = (sample - predictor) / step;
327 const int nmin = av_clip(div-range, -8, 6);
328 const int nmax = av_clip(div+range, -7, 7);
329 for(nidx=nmin; nidx<=nmax; nidx++) {
330 const int nibble = nidx & 0xf;
331 int dec_sample = predictor + nidx * step;
332 #define STORE_NODE(NAME, STEP_INDEX)\
333 int d;\
334 uint32_t ssd;\
335 dec_sample = av_clip_int16(dec_sample);\
336 d = sample - dec_sample;\
337 ssd = nodes[j]->ssd + d*d;\
338 if(nodes_next[frontier-1] && ssd >= nodes_next[frontier-1]->ssd)\
339 continue;\
340 /* Collapse any two states with the same previous sample value. \
341 * One could also distinguish states by step and by 2nd to last
342 * sample, but the effects of that are negligible. */\
343 for(k=0; k<frontier && nodes_next[k]; k++) {\
344 if(dec_sample == nodes_next[k]->sample1) {\
345 assert(ssd >= nodes_next[k]->ssd);\
346 goto next_##NAME;\
347 }\
348 }\
349 for(k=0; k<frontier; k++) {\
350 if(!nodes_next[k] || ssd < nodes_next[k]->ssd) {\
351 TrellisNode *u = nodes_next[frontier-1];\
352 if(!u) {\
353 assert(pathn < max_paths);\
354 u = t++;\
355 u->path = pathn++;\
356 }\
357 u->ssd = ssd;\
358 u->step = STEP_INDEX;\
359 u->sample2 = nodes[j]->sample1;\
360 u->sample1 = dec_sample;\
361 paths[u->path].nibble = nibble;\
362 paths[u->path].prev = nodes[j]->path;\
363 memmove(&nodes_next[k+1], &nodes_next[k], (frontier-k-1)*sizeof(TrellisNode*));\
364 nodes_next[k] = u;\
365 break;\
366 }\
367 }\
368 next_##NAME:;
369 STORE_NODE(ms, FFMAX(16, (AdaptationTable[nibble] * step) >> 8));
370 }
371 } else if((version == CODEC_ID_ADPCM_IMA_WAV)|| (version == CODEC_ID_ADPCM_SWF)) {
372 #define LOOP_NODES(NAME, STEP_TABLE, STEP_INDEX)\
373 const int predictor = nodes[j]->sample1;\
374 const int div = (sample - predictor) * 4 / STEP_TABLE;\
375 int nmin = av_clip(div-range, -7, 6);\
376 int nmax = av_clip(div+range, -6, 7);\
377 if(nmin<=0) nmin--; /* distinguish -0 from +0 */\
378 if(nmax<0) nmax--;\
379 for(nidx=nmin; nidx<=nmax; nidx++) {\
380 const int nibble = nidx<0 ? 7-nidx : nidx;\
381 int dec_sample = predictor + (STEP_TABLE * yamaha_difflookup[nibble]) / 8;\
382 STORE_NODE(NAME, STEP_INDEX);\
383 }
384 LOOP_NODES(ima, step_table[step], av_clip(step + index_table[nibble], 0, 88));
385 } else { //CODEC_ID_ADPCM_YAMAHA
386 LOOP_NODES(yamaha, step, av_clip((step * yamaha_indexscale[nibble]) >> 8, 127, 24567));
387 #undef LOOP_NODES
388 #undef STORE_NODE
389 }
390 }
391
392 u = nodes;
393 nodes = nodes_next;
394 nodes_next = u;
395
396 // prevent overflow
397 if(nodes[0]->ssd > (1<<28)) {
398 for(j=1; j<frontier && nodes[j]; j++)
399 nodes[j]->ssd -= nodes[0]->ssd;
400 nodes[0]->ssd = 0;
401 }
402
403 // merge old paths to save memory
404 if(i == froze + FREEZE_INTERVAL) {
405 p = &paths[nodes[0]->path];
406 for(k=i; k>froze; k--) {
407 dst[k] = p->nibble;
408 p = &paths[p->prev];
409 }
410 froze = i;
411 pathn = 0;
412 // other nodes might use paths that don't coincide with the frozen one.
413 // checking which nodes do so is too slow, so just kill them all.
414 // this also slightly improves quality, but I don't know why.
415 memset(nodes+1, 0, (frontier-1)*sizeof(TrellisNode*));
416 }
417 }
418
419 p = &paths[nodes[0]->path];
420 for(i=n-1; i>froze; i--) {
421 dst[i] = p->nibble;
422 p = &paths[p->prev];
423 }
424
425 c->predictor = nodes[0]->sample1;
426 c->sample1 = nodes[0]->sample1;
427 c->sample2 = nodes[0]->sample2;
428 c->step_index = nodes[0]->step;
429 c->step = nodes[0]->step;
430 c->idelta = nodes[0]->step;
431 }
432
433 static int adpcm_encode_frame(AVCodecContext *avctx,
434 unsigned char *frame, int buf_size, void *data)
435 {
436 int n, i, st;
437 short *samples;
438 unsigned char *dst;
439 ADPCMContext *c = avctx->priv_data;
440
441 dst = frame;
442 samples = (short *)data;
443 st= avctx->channels == 2;
444 /* n = (BLKSIZE - 4 * avctx->channels) / (2 * 8 * avctx->channels); */
445
446 switch(avctx->codec->id) {
447 case CODEC_ID_ADPCM_IMA_QT: /* XXX: can't test until we get .mov writer */
448 break;
449 case CODEC_ID_ADPCM_IMA_WAV:
450 n = avctx->frame_size / 8;
451 c->status[0].prev_sample = (signed short)samples[0]; /* XXX */
452 /* c->status[0].step_index = 0; *//* XXX: not sure how to init the state machine */
453 bytestream_put_le16(&dst, c->status[0].prev_sample);
454 *dst++ = (unsigned char)c->status[0].step_index;
455 *dst++ = 0; /* unknown */
456 samples++;
457 if (avctx->channels == 2) {
458 c->status[1].prev_sample = (signed short)samples[1];
459 /* c->status[1].step_index = 0; */
460 bytestream_put_le16(&dst, c->status[1].prev_sample);
461 *dst++ = (unsigned char)c->status[1].step_index;
462 *dst++ = 0;
463 samples++;
464 }
465
466 /* stereo: 4 bytes (8 samples) for left, 4 bytes for right, 4 bytes left, ... */
467 if(avctx->trellis > 0) {
468 uint8_t buf[2][n*8];
469 adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n*8);
470 if(avctx->channels == 2)
471 adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n*8);
472 for(i=0; i<n; i++) {
473 *dst++ = buf[0][8*i+0] | (buf[0][8*i+1] << 4);
474 *dst++ = buf[0][8*i+2] | (buf[0][8*i+3] << 4);
475 *dst++ = buf[0][8*i+4] | (buf[0][8*i+5] << 4);
476 *dst++ = buf[0][8*i+6] | (buf[0][8*i+7] << 4);
477 if (avctx->channels == 2) {
478 *dst++ = buf[1][8*i+0] | (buf[1][8*i+1] << 4);
479 *dst++ = buf[1][8*i+2] | (buf[1][8*i+3] << 4);
480 *dst++ = buf[1][8*i+4] | (buf[1][8*i+5] << 4);
481 *dst++ = buf[1][8*i+6] | (buf[1][8*i+7] << 4);
482 }
483 }
484 } else
485 for (; n>0; n--) {
486 *dst = adpcm_ima_compress_sample(&c->status[0], samples[0]) & 0x0F;
487 *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels]) << 4) & 0xF0;
488 dst++;
489 *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 2]) & 0x0F;
490 *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 3]) << 4) & 0xF0;
491 dst++;
492 *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 4]) & 0x0F;
493 *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 5]) << 4) & 0xF0;
494 dst++;
495 *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 6]) & 0x0F;
496 *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 7]) << 4) & 0xF0;
497 dst++;
498 /* right channel */
499 if (avctx->channels == 2) {
500 *dst = adpcm_ima_compress_sample(&c->status[1], samples[1]);
501 *dst |= adpcm_ima_compress_sample(&c->status[1], samples[3]) << 4;
502 dst++;
503 *dst = adpcm_ima_compress_sample(&c->status[1], samples[5]);
504 *dst |= adpcm_ima_compress_sample(&c->status[1], samples[7]) << 4;
505 dst++;
506 *dst = adpcm_ima_compress_sample(&c->status[1], samples[9]);
507 *dst |= adpcm_ima_compress_sample(&c->status[1], samples[11]) << 4;
508 dst++;
509 *dst = adpcm_ima_compress_sample(&c->status[1], samples[13]);
510 *dst |= adpcm_ima_compress_sample(&c->status[1], samples[15]) << 4;
511 dst++;
512 }
513 samples += 8 * avctx->channels;
514 }
515 break;
516 case CODEC_ID_ADPCM_SWF:
517 {
518 int i;
519 PutBitContext pb;
520 init_put_bits(&pb, dst, buf_size*8);
521
522 n = avctx->frame_size-1;
523
524 //Store AdpcmCodeSize
525 put_bits(&pb, 2, 2); //Set 4bits flash adpcm format
526
527 //Init the encoder state
528 for(i=0; i<avctx->channels; i++){
529 c->status[i].step_index = av_clip(c->status[i].step_index, 0, 63); // clip step so it fits 6 bits
530 put_bits(&pb, 16, samples[i] & 0xFFFF);
531 put_bits(&pb, 6, c->status[i].step_index);
532 c->status[i].prev_sample = (signed short)samples[i];
533 }
534
535 if(avctx->trellis > 0) {
536 uint8_t buf[2][n];
537 adpcm_compress_trellis(avctx, samples+2, buf[0], &c->status[0], n);
538 if (avctx->channels == 2)
539 adpcm_compress_trellis(avctx, samples+3, buf[1], &c->status[1], n);
540 for(i=0; i<n; i++) {
541 put_bits(&pb, 4, buf[0][i]);
542 if (avctx->channels == 2)
543 put_bits(&pb, 4, buf[1][i]);
544 }
545 } else {
546 for (i=1; i<avctx->frame_size; i++) {
547 put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels*i]) & 0xF);
548 if (avctx->channels == 2)
549 put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[1], samples[2*i+1]) & 0xF);
550 }
551 }
552 flush_put_bits(&pb);
553 dst += put_bits_count(&pb)>>3;
554 break;
555 }
556 case CODEC_ID_ADPCM_MS:
557 for(i=0; i<avctx->channels; i++){
558 int predictor=0;
559
560 *dst++ = predictor;
561 c->status[i].coeff1 = AdaptCoeff1[predictor];
562 c->status[i].coeff2 = AdaptCoeff2[predictor];
563 }
564 for(i=0; i<avctx->channels; i++){
565 if (c->status[i].idelta < 16)
566 c->status[i].idelta = 16;
567
568 bytestream_put_le16(&dst, c->status[i].idelta);
569 }
570 for(i=0; i<avctx->channels; i++){
571 c->status[i].sample1= *samples++;
572
573 bytestream_put_le16(&dst, c->status[i].sample1);
574 }
575 for(i=0; i<avctx->channels; i++){
576 c->status[i].sample2= *samples++;
577
578 bytestream_put_le16(&dst, c->status[i].sample2);
579 }
580
581 if(avctx->trellis > 0) {
582 int n = avctx->block_align - 7*avctx->channels;
583 uint8_t buf[2][n];
584 if(avctx->channels == 1) {
585 n *= 2;
586 adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
587 for(i=0; i<n; i+=2)
588 *dst++ = (buf[0][i] << 4) | buf[0][i+1];
589 } else {
590 adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
591 adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n);
592 for(i=0; i<n; i++)
593 *dst++ = (buf[0][i] << 4) | buf[1][i];
594 }
595 } else
596 for(i=7*avctx->channels; i<avctx->block_align; i++) {
597 int nibble;
598 nibble = adpcm_ms_compress_sample(&c->status[ 0], *samples++)<<4;
599 nibble|= adpcm_ms_compress_sample(&c->status[st], *samples++);
600 *dst++ = nibble;
601 }
602 break;
603 case CODEC_ID_ADPCM_YAMAHA:
604 n = avctx->frame_size / 2;
605 if(avctx->trellis > 0) {
606 uint8_t buf[2][n*2];
607 n *= 2;
608 if(avctx->channels == 1) {
609 adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
610 for(i=0; i<n; i+=2)
611 *dst++ = buf[0][i] | (buf[0][i+1] << 4);
612 } else {
613 adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
614 adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n);
615 for(i=0; i<n; i++)
616 *dst++ = buf[0][i] | (buf[1][i] << 4);
617 }
618 } else
619 for (; n>0; n--) {
620 for(i = 0; i < avctx->channels; i++) {
621 int nibble;
622 nibble = adpcm_yamaha_compress_sample(&c->status[i], samples[i]);
623 nibble |= adpcm_yamaha_compress_sample(&c->status[i], samples[i+avctx->channels]) << 4;
624 *dst++ = nibble;
625 }
626 samples += 2 * avctx->channels;
627 }
628 break;
629 default:
630 return -1;
631 }
632 return dst - frame;
633 }
634 #endif //CONFIG_ENCODERS
635
636 static int adpcm_decode_init(AVCodecContext * avctx)
637 {
638 ADPCMContext *c = avctx->priv_data;
639
640 if(avctx->channels > 2U){
641 return -1;
642 }
643
644 c->channel = 0;
645 c->status[0].predictor = c->status[1].predictor = 0;
646 c->status[0].step_index = c->status[1].step_index = 0;
647 c->status[0].step = c->status[1].step = 0;
648
649 switch(avctx->codec->id) {
650 case CODEC_ID_ADPCM_CT:
651 c->status[0].step = c->status[1].step = 511;
652 break;
653 case CODEC_ID_ADPCM_IMA_WS:
654 if (avctx->extradata && avctx->extradata_size == 2 * 4) {
655 c->status[0].predictor = AV_RL32(avctx->extradata);
656 c->status[1].predictor = AV_RL32(avctx->extradata + 4);
657 }
658 break;
659 default:
660 break;
661 }
662 return 0;
663 }
664
665 static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift)
666 {
667 int step_index;
668 int predictor;
669 int sign, delta, diff, step;
670
671 step = step_table[c->step_index];
672 step_index = c->step_index + index_table[(unsigned)nibble];
673 if (step_index < 0) step_index = 0;
674 else if (step_index > 88) step_index = 88;
675
676 sign = nibble & 8;
677 delta = nibble & 7;
678 /* perform direct multiplication instead of series of jumps proposed by
679 * the reference ADPCM implementation since modern CPUs can do the mults
680 * quickly enough */
681 diff = ((2 * delta + 1) * step) >> shift;
682 predictor = c->predictor;
683 if (sign) predictor -= diff;
684 else predictor += diff;
685
686 c->predictor = av_clip_int16(predictor);
687 c->step_index = step_index;
688
689 return (short)c->predictor;
690 }
691
692 static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, char nibble)
693 {
694 int predictor;
695
696 predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 256;
697 predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
698
699 c->sample2 = c->sample1;
700 c->sample1 = av_clip_int16(predictor);
701 c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
702 if (c->idelta < 16) c->idelta = 16;
703
704 return c->sample1;
705 }
706
707 static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble)
708 {
709 int sign, delta, diff;
710 int new_step;
711
712 sign = nibble & 8;
713 delta = nibble & 7;
714 /* perform direct multiplication instead of series of jumps proposed by
715 * the reference ADPCM implementation since modern CPUs can do the mults
716 * quickly enough */
717 diff = ((2 * delta + 1) * c->step) >> 3;
718 /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */
719 c->predictor = ((c->predictor * 254) >> 8) + (sign ? -diff : diff);
720 c->predictor = av_clip_int16(c->predictor);
721 /* calculate new step and clamp it to range 511..32767 */
722 new_step = (ct_adpcm_table[nibble & 7] * c->step) >> 8;
723 c->step = av_clip(new_step, 511, 32767);
724
725 return (short)c->predictor;
726 }
727
728 static inline short adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, char nibble, int size, int shift)
729 {
730 int sign, delta, diff;
731
732 sign = nibble & (1<<(size-1));
733 delta = nibble & ((1<<(size-1))-1);
734 diff = delta << (7 + c->step + shift);
735
736 /* clamp result */
737 c->predictor = av_clip(c->predictor + (sign ? -diff : diff), -16384,16256);
738
739 /* calculate new step */
740 if (delta >= (2*size - 3) && c->step < 3)
741 c->step++;
742 else if (delta == 0 && c->step > 0)
743 c->step--;
744
745 return (short) c->predictor;
746 }
747
748 static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned char nibble)
749 {
750 if(!c->step) {
751 c->predictor = 0;
752 c->step = 127;
753 }
754
755 c->predictor += (c->step * yamaha_difflookup[nibble]) / 8;
756 c->predictor = av_clip_int16(c->predictor);
757 c->step = (c->step * yamaha_indexscale[nibble]) >> 8;
758 c->step = av_clip(c->step, 127, 24567);
759 return c->predictor;
760 }
761
762 static void xa_decode(short *out, const unsigned char *in,
763 ADPCMChannelStatus *left, ADPCMChannelStatus *right, int inc)
764 {
765 int i, j;
766 int shift,filter,f0,f1;
767 int s_1,s_2;
768 int d,s,t;
769
770 for(i=0;i<4;i++) {
771
772 shift = 12 - (in[4+i*2] & 15);
773 filter = in[4+i*2] >> 4;
774 f0 = xa_adpcm_table[filter][0];
775 f1 = xa_adpcm_table[filter][1];
776
777 s_1 = left->sample1;
778 s_2 = left->sample2;
779
780 for(j=0;j<28;j++) {
781 d = in[16+i+j*4];
782
783 t = (signed char)(d<<4)>>4;
784 s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
785 s_2 = s_1;
786 s_1 = av_clip_int16(s);
787 *out = s_1;
788 out += inc;
789 }
790
791 if (inc==2) { /* stereo */
792 left->sample1 = s_1;
793 left->sample2 = s_2;
794 s_1 = right->sample1;
795 s_2 = right->sample2;
796 out = out + 1 - 28*2;
797 }
798
799 shift = 12 - (in[5+i*2] & 15);
800 filter = in[5+i*2] >> 4;
801
802 f0 = xa_adpcm_table[filter][0];
803 f1 = xa_adpcm_table[filter][1];
804
805 for(j=0;j<28;j++) {
806 d = in[16+i+j*4];
807
808 t = (signed char)d >> 4;
809 s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
810 s_2 = s_1;
811 s_1 = av_clip_int16(s);
812 *out = s_1;
813 out += inc;
814 }
815
816 if (inc==2) { /* stereo */
817 right->sample1 = s_1;
818 right->sample2 = s_2;
819 out -= 1;
820 } else {
821 left->sample1 = s_1;
822 left->sample2 = s_2;
823 }
824 }
825 }
826
827
828 /* DK3 ADPCM support macro */
829 #define DK3_GET_NEXT_NIBBLE() \
830 if (decode_top_nibble_next) \
831 { \
832 nibble = (last_byte >> 4) & 0x0F; \
833 decode_top_nibble_next = 0; \
834 } \
835 else \
836 { \
837 last_byte = *src++; \
838 if (src >= buf + buf_size) break; \
839 nibble = last_byte & 0x0F; \
840 decode_top_nibble_next = 1; \
841 }
842
843 static int adpcm_decode_frame(AVCodecContext *avctx,
844 void *data, int *data_size,
845 uint8_t *buf, int buf_size)
846 {
847 ADPCMContext *c = avctx->priv_data;
848 ADPCMChannelStatus *cs;
849 int n, m, channel, i;
850 int block_predictor[2];
851 short *samples;
852 short *samples_end;
853 uint8_t *src;
854 int st; /* stereo */
855
856 /* DK3 ADPCM accounting variables */
857 unsigned char last_byte = 0;
858 unsigned char nibble;
859 int decode_top_nibble_next = 0;
860 int diff_channel;
861
862 /* EA ADPCM state variables */
863 uint32_t samples_in_chunk;
864 int32_t previous_left_sample, previous_right_sample;
865 int32_t current_left_sample, current_right_sample;
866 int32_t next_left_sample, next_right_sample;
867 int32_t coeff1l, coeff2l, coeff1r, coeff2r;
868 uint8_t shift_left, shift_right;
869 int count1, count2;
870
871 if (!buf_size)
872 return 0;
873
874 //should protect all 4bit ADPCM variants
875 //8 is needed for CODEC_ID_ADPCM_IMA_WAV with 2 channels
876 //
877 if(*data_size/4 < buf_size + 8)
878 return -1;
879
880 samples = data;
881 samples_end= samples + *data_size/2;
882 *data_size= 0;
883 src = buf;
884
885 st = avctx->channels == 2 ? 1 : 0;
886
887 switch(avctx->codec->id) {
888 case CODEC_ID_ADPCM_IMA_QT:
889 n = (buf_size - 2);/* >> 2*avctx->channels;*/
890 channel = c->channel;
891 cs = &(c->status[channel]);
892 /* (pppppp) (piiiiiii) */
893
894 /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
895 cs->predictor = (*src++) << 8;
896 cs->predictor |= (*src & 0x80);
897 cs->predictor &= 0xFF80;
898
899 /* sign extension */
900 if(cs->predictor & 0x8000)
901 cs->predictor -= 0x10000;
902
903 cs->predictor = av_clip_int16(cs->predictor);
904
905 cs->step_index = (*src++) & 0x7F;
906
907 if (cs->step_index > 88){
908 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
909 cs->step_index = 88;
910 }
911
912 cs->step = step_table[cs->step_index];
913
914 if (st && channel)
915 samples++;
916
917 for(m=32; n>0 && m>0; n--, m--) { /* in QuickTime, IMA is encoded by chuncks of 34 bytes (=64 samples) */
918 *samples = adpcm_ima_expand_nibble(cs, src[0] & 0x0F, 3);
919 samples += avctx->channels;
920 *samples = adpcm_ima_expand_nibble(cs, (src[0] >> 4) & 0x0F, 3);
921 samples += avctx->channels;
922 src ++;
923 }
924
925 if(st) { /* handle stereo interlacing */
926 c->channel = (channel + 1) % 2; /* we get one packet for left, then one for right data */
927 if(channel == 1) { /* wait for the other packet before outputing anything */
928 return src - buf;
929 }
930 }
931 break;
932 case CODEC_ID_ADPCM_IMA_WAV:
933 if (avctx->block_align != 0 && buf_size > avctx->block_align)
934 buf_size = avctx->block_align;
935
936 // samples_per_block= (block_align-4*chanels)*8 / (bits_per_sample * chanels) + 1;
937
938 for(i=0; i<avctx->channels; i++){
939 cs = &(c->status[i]);
940 cs->predictor = (int16_t)(src[0] + (src[1]<<8));
941 src+=2;
942
943 // XXX: is this correct ??: *samples++ = cs->predictor;
944
945 cs->step_index = *src++;
946 if (cs->step_index > 88){
947 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
948 cs->step_index = 88;
949 }
950 if (*src++) av_log(avctx, AV_LOG_ERROR, "unused byte should be null but is %d!!\n", src[-1]); /* unused */
951 }
952
953 while(src < buf + buf_size){
954 for(m=0; m<4; m++){
955 for(i=0; i<=st; i++)
956 *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] & 0x0F, 3);
957 for(i=0; i<=st; i++)
958 *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] >> 4 , 3);
959 src++;
960 }
961 src += 4*st;
962 }
963 break;
964 case CODEC_ID_ADPCM_4XM:
965 cs = &(c->status[0]);
966 c->status[0].predictor= (int16_t)(src[0] + (src[1]<<8)); src+=2;
967 if(st){
968 c->status[1].predictor= (int16_t)(src[0] + (src[1]<<8)); src+=2;
969 }
970 c->status[0].step_index= (int16_t)(src[0] + (src[1]<<8)); src+=2;
971 if(st){
972 c->status[1].step_index= (int16_t)(src[0] + (src[1]<<8)); src+=2;
973 }
974 if (cs->step_index < 0) cs->step_index = 0;
975 if (cs->step_index > 88) cs->step_index = 88;
976
977 m= (buf_size - (src - buf))>>st;
978 for(i=0; i<m; i++) {
979 *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] & 0x0F, 4);
980 if (st)
981 *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] & 0x0F, 4);
982 *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] >> 4, 4);
983 if (st)
984 *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] >> 4, 4);
985 }
986
987 src += m<<st;
988
989 break;
990 case CODEC_ID_ADPCM_MS:
991 if (avctx->block_align != 0 && buf_size > avctx->block_align)
992 buf_size = avctx->block_align;
993 n = buf_size - 7 * avctx->channels;
994 if (n < 0)
995 return -1;
996 block_predictor[0] = av_clip(*src++, 0, 7);
997 block_predictor[1] = 0;
998 if (st)
999 block_predictor[1] = av_clip(*src++, 0, 7);
1000 c->status[0].idelta = (int16_t)((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
1001 src+=2;
1002 if (st){
1003 c->status[1].idelta = (int16_t)((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
1004 src+=2;
1005 }
1006 c->status[0].coeff1 = AdaptCoeff1[block_predictor[0]];
1007 c->status[0].coeff2 = AdaptCoeff2[block_predictor[0]];
1008 c->status[1].coeff1 = AdaptCoeff1[block_predictor[1]];
1009 c->status[1].coeff2 = AdaptCoeff2[block_predictor[1]];
1010
1011 c->status[0].sample1 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
1012 src+=2;
1013 if (st) c->status[1].sample1 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
1014 if (st) src+=2;
1015 c->status[0].sample2 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
1016 src+=2;
1017 if (st) c->status[1].sample2 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
1018 if (st) src+=2;
1019
1020 *samples++ = c->status[0].sample1;
1021 if (st) *samples++ = c->status[1].sample1;
1022 *samples++ = c->status[0].sample2;
1023 if (st) *samples++ = c->status[1].sample2;
1024 for(;n>0;n--) {
1025 *samples++ = adpcm_ms_expand_nibble(&c->status[0], (src[0] >> 4) & 0x0F);
1026 *samples++ = adpcm_ms_expand_nibble(&c->status[st], src[0] & 0x0F);
1027 src ++;
1028 }
1029 break;
1030 case CODEC_ID_ADPCM_IMA_DK4:
1031 if (avctx->block_align != 0 && buf_size > avctx->block_align)
1032 buf_size = avctx->block_align;
1033
1034 c->status[0].predictor = (int16_t)(src[0] | (src[1] << 8));
1035 c->status[0].step_index = src[2];
1036 src += 4;
1037 *samples++ = c->status[0].predictor;
1038 if (st) {
1039 c->status[1].predictor = (int16_t)(src[0] | (src[1] << 8));
1040 c->status[1].step_index = src[2];
1041 src += 4;
1042 *samples++ = c->status[1].predictor;
1043 }
1044 while (src < buf + buf_size) {
1045
1046 /* take care of the top nibble (always left or mono channel) */
1047 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1048 (src[0] >> 4) & 0x0F, 3);
1049
1050 /* take care of the bottom nibble, which is right sample for
1051 * stereo, or another mono sample */
1052 if (st)
1053 *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1054 src[0] & 0x0F, 3);
1055 else
1056 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1057 src[0] & 0x0F, 3);
1058
1059 src++;
1060 }
1061 break;
1062 case CODEC_ID_ADPCM_IMA_DK3:
1063 if (avctx->block_align != 0 && buf_size > avctx->block_align)
1064 buf_size = avctx->block_align;
1065
1066 if(buf_size + 16 > (samples_end - samples)*3/8)
1067 return -1;
1068
1069 c->status[0].predictor = (int16_t)(src[10] | (src[11] << 8));
1070 c->status[1].predictor = (int16_t)(src[12] | (src[13] << 8));
1071 c->status[0].step_index = src[14];
1072 c->status[1].step_index = src[15];
1073 /* sign extend the predictors */
1074 src += 16;
1075 diff_channel = c->status[1].predictor;
1076
1077 /* the DK3_GET_NEXT_NIBBLE macro issues the break statement when
1078 * the buffer is consumed */
1079 while (1) {
1080
1081 /* for this algorithm, c->status[0] is the sum channel and
1082 * c->status[1] is the diff channel */
1083
1084 /* process the first predictor of the sum channel */
1085 DK3_GET_NEXT_NIBBLE();
1086 adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1087
1088 /* process the diff channel predictor */
1089 DK3_GET_NEXT_NIBBLE();
1090 adpcm_ima_expand_nibble(&c->status[1], nibble, 3);
1091
1092 /* process the first pair of stereo PCM samples */
1093 diff_channel = (diff_channel + c->status[1].predictor) / 2;
1094 *samples++ = c->status[0].predictor + c->status[1].predictor;
1095 *samples++ = c->status[0].predictor - c->status[1].predictor;
1096
1097 /* process the second predictor of the sum channel */
1098 DK3_GET_NEXT_NIBBLE();
1099 adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1100
1101 /* process the second pair of stereo PCM samples */
1102 diff_channel = (diff_channel + c->status[1].predictor) / 2;
1103 *samples++ = c->status[0].predictor + c->status[1].predictor;
1104 *samples++ = c->status[0].predictor - c->status[1].predictor;
1105 }
1106 break;
1107 case CODEC_ID_ADPCM_IMA_WS:
1108 /* no per-block initialization; just start decoding the data */
1109 while (src < buf + buf_size) {
1110
1111 if (st) {
1112 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1113 (src[0] >> 4) & 0x0F, 3);
1114 *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1115 src[0] & 0x0F, 3);
1116 } else {
1117 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1118 (src[0] >> 4) & 0x0F, 3);
1119 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1120 src[0] & 0x0F, 3);
1121 }
1122
1123 src++;
1124 }
1125 break;
1126 case CODEC_ID_ADPCM_XA:
1127 c->status[0].sample1 = c->status[0].sample2 =
1128 c->status[1].sample1 = c->status[1].sample2 = 0;
1129 while (buf_size >= 128) {
1130 xa_decode(samples, src, &c->status[0], &c->status[1],
1131 avctx->channels);
1132 src += 128;
1133 samples += 28 * 8;
1134 buf_size -= 128;
1135 }
1136 break;
1137 case CODEC_ID_ADPCM_EA:
1138 samples_in_chunk = AV_RL32(src);
1139 if (samples_in_chunk >= ((buf_size - 12) * 2)) {
1140 src += buf_size;
1141 break;
1142 }
1143 src += 4;
1144 current_left_sample = (int16_t)AV_RL16(src);
1145 src += 2;
1146 previous_left_sample = (int16_t)AV_RL16(src);
1147 src += 2;
1148 current_right_sample = (int16_t)AV_RL16(src);
1149 src += 2;
1150 previous_right_sample = (int16_t)AV_RL16(src);
1151 src += 2;
1152
1153 for (count1 = 0; count1 < samples_in_chunk/28;count1++) {
1154 coeff1l = ea_adpcm_table[(*src >> 4) & 0x0F];
1155 coeff2l = ea_adpcm_table[((*src >> 4) & 0x0F) + 4];
1156 coeff1r = ea_adpcm_table[*src & 0x0F];
1157 coeff2r = ea_adpcm_table[(*src & 0x0F) + 4];
1158 src++;
1159
1160 shift_left = ((*src >> 4) & 0x0F) + 8;
1161 shift_right = (*src & 0x0F) + 8;
1162 src++;
1163
1164 for (count2 = 0; count2 < 28; count2++) {
1165 next_left_sample = (((*src & 0xF0) << 24) >> shift_left);
1166 next_right_sample = (((*src & 0x0F) << 28) >> shift_right);
1167 src++;
1168
1169 next_left_sample = (next_left_sample +
1170 (current_left_sample * coeff1l) +
1171 (previous_left_sample * coeff2l) + 0x80) >> 8;
1172 next_right_sample = (next_right_sample +
1173 (current_right_sample * coeff1r) +
1174 (previous_right_sample * coeff2r) + 0x80) >> 8;
1175
1176 previous_left_sample = current_left_sample;
1177 current_left_sample = av_clip_int16(next_left_sample);
1178 previous_right_sample = current_right_sample;
1179 current_right_sample = av_clip_int16(next_right_sample);
1180 *samples++ = (unsigned short)current_left_sample;
1181 *samples++ = (unsigned short)current_right_sample;
1182 }
1183 }
1184 break;
1185 case CODEC_ID_ADPCM_IMA_AMV:
1186 case CODEC_ID_ADPCM_IMA_SMJPEG:
1187 c->status[0].predictor = *src;
1188 src += 2;
1189 c->status[0].step_index = *src++;
1190 src++; /* skip another byte before getting to the meat */
1191
1192 if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV)
1193 src+=4;
1194
1195 while (src < buf + buf_size) {
1196 char hi, lo;
1197 lo = *src & 0x0F;
1198 hi = (*src >> 4) & 0x0F;
1199
1200 if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV)
1201 FFSWAP(char, hi, lo);
1202
1203 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1204 lo, 3);
1205 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1206 hi, 3);
1207 src++;
1208 }
1209 break;
1210 case CODEC_ID_ADPCM_CT:
1211 while (src < buf + buf_size) {
1212 if (st) {
1213 *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1214 (src[0] >> 4) & 0x0F);
1215 *samples++ = adpcm_ct_expand_nibble(&c->status[1],
1216 src[0] & 0x0F);
1217 } else {
1218 *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1219 (src[0] >> 4) & 0x0F);
1220 *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1221 src[0] & 0x0F);
1222 }
1223 src++;
1224 }
1225 break;
1226 case CODEC_ID_ADPCM_SBPRO_4:
1227 case CODEC_ID_ADPCM_SBPRO_3:
1228 case CODEC_ID_ADPCM_SBPRO_2:
1229 if (!c->status[0].step_index) {
1230 /* the first byte is a raw sample */
1231 *samples++ = 128 * (*src++ - 0x80);
1232 if (st)
1233 *samples++ = 128 * (*src++ - 0x80);
1234 c->status[0].step_index = 1;
1235 }
1236 if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_4) {
1237 while (src < buf + buf_size) {
1238 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1239 (src[0] >> 4) & 0x0F, 4, 0);
1240 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1241 src[0] & 0x0F, 4, 0);
1242 src++;
1243 }
1244 } else if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_3) {
1245 while (src < buf + buf_size && samples + 2 < samples_end) {
1246 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1247 (src[0] >> 5) & 0x07, 3, 0);
1248 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1249 (src[0] >> 2) & 0x07, 3, 0);
1250 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1251 src[0] & 0x03, 2, 0);
1252 src++;
1253 }
1254 } else {
1255 while (src < buf + buf_size && samples + 3 < samples_end) {
1256 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1257 (src[0] >> 6) & 0x03, 2, 2);
1258 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1259 (src[0] >> 4) & 0x03, 2, 2);
1260 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1261 (src[0] >> 2) & 0x03, 2, 2);
1262 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1263 src[0] & 0x03, 2, 2);
1264 src++;
1265 }
1266 }
1267 break;
1268 case CODEC_ID_ADPCM_SWF:
1269 {
1270 GetBitContext gb;
1271 const int *table;
1272 int k0, signmask, nb_bits, count;
1273 int size = buf_size*8;
1274
1275 init_get_bits(&gb, buf, size);
1276
1277 //read bits & initial values
1278 nb_bits = get_bits(&gb, 2)+2;
1279 //av_log(NULL,AV_LOG_INFO,"nb_bits: %d\n", nb_bits);
1280 table = swf_index_tables[nb_bits-2];
1281 k0 = 1 << (nb_bits-2);
1282 signmask = 1 << (nb_bits-1);
1283
1284 while (get_bits_count(&gb) <= size - 22*avctx->channels) {
1285 for (i = 0; i < avctx->channels; i++) {
1286 *samples++ = c->status[i].predictor = get_sbits(&gb, 16);
1287 c->status[i].step_index = get_bits(&gb, 6);
1288 }
1289
1290 for (count = 0; get_bits_count(&gb) <= size - nb_bits*avctx->channels && count < 4095; count++) {
1291 int i;
1292
1293 for (i = 0; i < avctx->channels; i++) {
1294 // similar to IMA adpcm
1295 int delta = get_bits(&gb, nb_bits);
1296 int step = step_table[c->status[i].step_index];
1297 long vpdiff = 0; // vpdiff = (delta+0.5)*step/4
1298 int k = k0;
1299
1300 do {
1301 if (delta & k)
1302 vpdiff += step;
1303 step >>= 1;
1304 k >>= 1;
1305 } while(k);
1306 vpdiff += step;
1307
1308 if (delta & signmask)
1309 c->status[i].predictor -= vpdiff;
1310 else
1311 c->status[i].predictor += vpdiff;
1312
1313 c->status[i].step_index += table[delta & (~signmask)];
1314
1315 c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88);
1316 c->status[i].predictor = av_clip_int16(c->status[i].predictor);
1317
1318 *samples++ = c->status[i].predictor;
1319 if (samples >= samples_end) {
1320 av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n");
1321 return -1;
1322 }
1323 }
1324 }
1325 }
1326 src += buf_size;
1327 break;
1328 }
1329 case CODEC_ID_ADPCM_YAMAHA:
1330 while (src < buf + buf_size) {
1331 if (st) {
1332 *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1333 src[0] & 0x0F);
1334 *samples++ = adpcm_yamaha_expand_nibble(&c->status[1],
1335 (src[0] >> 4) & 0x0F);
1336 } else {
1337 *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1338 src[0] & 0x0F);
1339 *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1340 (src[0] >> 4) & 0x0F);
1341 }
1342 src++;
1343 }
1344 break;
1345 case CODEC_ID_ADPCM_THP:
1346 {
1347 int table[2][16];
1348 unsigned int samplecnt;
1349 int prev[2][2];
1350 int ch;
1351
1352 if (buf_size < 80) {
1353 av_log(avctx, AV_LOG_ERROR, "frame too small\n");
1354 return -1;
1355 }
1356
1357 src+=4;
1358 samplecnt = bytestream_get_be32(&src);
1359
1360 for (i = 0; i < 32; i++)
1361 table[0][i] = (int16_t)bytestream_get_be16(&src);
1362
1363 /* Initialize the previous sample. */
1364 for (i = 0; i < 4; i++)
1365 prev[0][i] = (int16_t)bytestream_get_be16(&src);
1366
1367 if (samplecnt >= (samples_end - samples) / (st + 1)) {
1368 av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n");
1369 return -1;
1370 }
1371
1372 for (ch = 0; ch <= st; ch++) {
1373 samples = (unsigned short *) data + ch;
1374
1375 /* Read in every sample for this channel. */
1376 for (i = 0; i < samplecnt / 14; i++) {
1377 int index = (*src >> 4) & 7;
1378 unsigned int exp = 28 - (*src++ & 15);
1379 int factor1 = table[ch][index * 2];
1380 int factor2 = table[ch][index * 2 + 1];
1381
1382 /* Decode 14 samples. */
1383 for (n = 0; n < 14; n++) {
1384 int32_t sampledat;
1385 if(n&1) sampledat= *src++ <<28;
1386 else sampledat= (*src&0xF0)<<24;
1387
1388 sampledat = ((prev[ch][0]*factor1
1389 + prev[ch][1]*factor2) >> 11) + (sampledat>>exp);
1390 *samples = av_clip_int16(sampledat);
1391 prev[ch][1] = prev[ch][0];
1392 prev[ch][0] = *samples++;
1393
1394 /* In case of stereo, skip one sample, this sample
1395 is for the other channel. */
1396 samples += st;
1397 }
1398 }
1399 }
1400
1401 /* In the previous loop, in case stereo is used, samples is
1402 increased exactly one time too often. */
1403 samples -= st;
1404 break;
1405 }
1406
1407 default:
1408 return -1;
1409 }
1410 *data_size = (uint8_t *)samples - (uint8_t *)data;
1411 return src - buf;
1412 }
1413
1414
1415
1416 #ifdef CONFIG_ENCODERS
1417 #define ADPCM_ENCODER(id,name) \
1418 AVCodec name ## _encoder = { \
1419 #name, \
1420 CODEC_TYPE_AUDIO, \
1421 id, \
1422 sizeof(ADPCMContext), \
1423 adpcm_encode_init, \
1424 adpcm_encode_frame, \
1425 adpcm_encode_close, \
1426 NULL, \
1427 };
1428 #else
1429 #define ADPCM_ENCODER(id,name)
1430 #endif
1431
1432 #ifdef CONFIG_DECODERS
1433 #define ADPCM_DECODER(id,name) \
1434 AVCodec name ## _decoder = { \
1435 #name, \
1436 CODEC_TYPE_AUDIO, \
1437 id, \
1438 sizeof(ADPCMContext), \
1439 adpcm_decode_init, \
1440 NULL, \
1441 NULL, \
1442 adpcm_decode_frame, \
1443 };
1444 #else
1445 #define ADPCM_DECODER(id,name)
1446 #endif
1447
1448 #define ADPCM_CODEC(id, name) \
1449 ADPCM_ENCODER(id,name) ADPCM_DECODER(id,name)
1450
1451 ADPCM_CODEC(CODEC_ID_ADPCM_4XM, adpcm_4xm);
1452 ADPCM_CODEC(CODEC_ID_ADPCM_CT, adpcm_ct);
1453 ADPCM_CODEC(CODEC_ID_ADPCM_EA, adpcm_ea);
1454 ADPCM_CODEC(CODEC_ID_ADPCM_IMA_AMV, adpcm_ima_amv);
1455 ADPCM_CODEC(CODEC_ID_ADPCM_IMA_DK3, adpcm_ima_dk3);
1456 ADPCM_CODEC(CODEC_ID_ADPCM_IMA_DK4, adpcm_ima_dk4);
1457 ADPCM_CODEC(CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt);
1458 ADPCM_CODEC(CODEC_ID_ADPCM_IMA_SMJPEG, adpcm_ima_smjpeg);
1459 ADPCM_CODEC(CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav);
1460 ADPCM_CODEC(CODEC_ID_ADPCM_IMA_WS, adpcm_ima_ws);
1461 ADPCM_CODEC(CODEC_ID_ADPCM_MS, adpcm_ms);
1462 ADPCM_CODEC(CODEC_ID_ADPCM_SBPRO_4, adpcm_sbpro_4);
1463 ADPCM_CODEC(CODEC_ID_ADPCM_SBPRO_3, adpcm_sbpro_3);
1464 ADPCM_CODEC(CODEC_ID_ADPCM_SBPRO_2, adpcm_sbpro_2);
1465 ADPCM_CODEC(CODEC_ID_ADPCM_SWF, adpcm_swf);
1466 ADPCM_CODEC(CODEC_ID_ADPCM_THP, adpcm_thp);
1467 ADPCM_CODEC(CODEC_ID_ADPCM_XA, adpcm_xa);
1468 ADPCM_CODEC(CODEC_ID_ADPCM_YAMAHA, adpcm_yamaha);
1469
1470 #undef ADPCM_CODEC