use av_clip_int16() where it makes sense
[libav.git] / libavcodec / adpcm.c
1 /*
2 * ADPCM codecs
3 * Copyright (c) 2001-2003 The ffmpeg Project
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21 #include "avcodec.h"
22 #include "bitstream.h"
23 #include "bytestream.h"
24
25 /**
26 * @file adpcm.c
27 * ADPCM codecs.
28 * First version by Francois Revol (revol@free.fr)
29 * Fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
30 * by Mike Melanson (melanson@pcisys.net)
31 * CD-ROM XA ADPCM codec by BERO
32 * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com)
33 * THP ADPCM decoder by Marco Gerards (mgerards@xs4all.nl)
34 *
35 * Features and limitations:
36 *
37 * Reference documents:
38 * http://www.pcisys.net/~melanson/codecs/simpleaudio.html
39 * http://www.geocities.com/SiliconValley/8682/aud3.txt
40 * http://openquicktime.sourceforge.net/plugins.htm
41 * XAnim sources (xa_codec.c) http://www.rasnaimaging.com/people/lapus/download.html
42 * http://www.cs.ucla.edu/~leec/mediabench/applications.html
43 * SoX source code http://home.sprynet.com/~cbagwell/sox.html
44 *
45 * CD-ROM XA:
46 * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html
47 * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html
48 * readstr http://www.geocities.co.jp/Playtown/2004/
49 */
50
51 #define BLKSIZE 1024
52
53 /* step_table[] and index_table[] are from the ADPCM reference source */
54 /* This is the index table: */
55 static const int index_table[16] = {
56 -1, -1, -1, -1, 2, 4, 6, 8,
57 -1, -1, -1, -1, 2, 4, 6, 8,
58 };
59
60 /**
61 * This is the step table. Note that many programs use slight deviations from
62 * this table, but such deviations are negligible:
63 */
64 static const int step_table[89] = {
65 7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
66 19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
67 50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
68 130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
69 337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
70 876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
71 2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
72 5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
73 15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767
74 };
75
76 /* These are for MS-ADPCM */
77 /* AdaptationTable[], AdaptCoeff1[], and AdaptCoeff2[] are from libsndfile */
78 static const int AdaptationTable[] = {
79 230, 230, 230, 230, 307, 409, 512, 614,
80 768, 614, 512, 409, 307, 230, 230, 230
81 };
82
83 static const int AdaptCoeff1[] = {
84 256, 512, 0, 192, 240, 460, 392
85 };
86
87 static const int AdaptCoeff2[] = {
88 0, -256, 0, 64, 0, -208, -232
89 };
90
91 /* These are for CD-ROM XA ADPCM */
92 static const int xa_adpcm_table[5][2] = {
93 { 0, 0 },
94 { 60, 0 },
95 { 115, -52 },
96 { 98, -55 },
97 { 122, -60 }
98 };
99
100 static const int ea_adpcm_table[] = {
101 0, 240, 460, 392, 0, 0, -208, -220, 0, 1,
102 3, 4, 7, 8, 10, 11, 0, -1, -3, -4
103 };
104
105 static const int ct_adpcm_table[8] = {
106 0x00E6, 0x00E6, 0x00E6, 0x00E6,
107 0x0133, 0x0199, 0x0200, 0x0266
108 };
109
110 // padded to zero where table size is less then 16
111 static const int swf_index_tables[4][16] = {
112 /*2*/ { -1, 2 },
113 /*3*/ { -1, -1, 2, 4 },
114 /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 },
115 /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
116 };
117
118 static const int yamaha_indexscale[] = {
119 230, 230, 230, 230, 307, 409, 512, 614,
120 230, 230, 230, 230, 307, 409, 512, 614
121 };
122
123 static const int yamaha_difflookup[] = {
124 1, 3, 5, 7, 9, 11, 13, 15,
125 -1, -3, -5, -7, -9, -11, -13, -15
126 };
127
128 /* end of tables */
129
130 typedef struct ADPCMChannelStatus {
131 int predictor;
132 short int step_index;
133 int step;
134 /* for encoding */
135 int prev_sample;
136
137 /* MS version */
138 short sample1;
139 short sample2;
140 int coeff1;
141 int coeff2;
142 int idelta;
143 } ADPCMChannelStatus;
144
145 typedef struct ADPCMContext {
146 int channel; /* for stereo MOVs, decode left, then decode right, then tell it's decoded */
147 ADPCMChannelStatus status[2];
148 short sample_buffer[32]; /* hold left samples while waiting for right samples */
149 } ADPCMContext;
150
151 /* XXX: implement encoding */
152
153 #ifdef CONFIG_ENCODERS
154 static int adpcm_encode_init(AVCodecContext *avctx)
155 {
156 if (avctx->channels > 2)
157 return -1; /* only stereo or mono =) */
158 switch(avctx->codec->id) {
159 case CODEC_ID_ADPCM_IMA_QT:
160 av_log(avctx, AV_LOG_ERROR, "ADPCM: codec adpcm_ima_qt unsupported for encoding !\n");
161 avctx->frame_size = 64; /* XXX: can multiple of avctx->channels * 64 (left and right blocks are interleaved) */
162 return -1;
163 break;
164 case CODEC_ID_ADPCM_IMA_WAV:
165 avctx->frame_size = (BLKSIZE - 4 * avctx->channels) * 8 / (4 * avctx->channels) + 1; /* each 16 bits sample gives one nibble */
166 /* and we have 4 bytes per channel overhead */
167 avctx->block_align = BLKSIZE;
168 /* seems frame_size isn't taken into account... have to buffer the samples :-( */
169 break;
170 case CODEC_ID_ADPCM_MS:
171 avctx->frame_size = (BLKSIZE - 7 * avctx->channels) * 2 / avctx->channels + 2; /* each 16 bits sample gives one nibble */
172 /* and we have 7 bytes per channel overhead */
173 avctx->block_align = BLKSIZE;
174 break;
175 case CODEC_ID_ADPCM_YAMAHA:
176 avctx->frame_size = BLKSIZE * avctx->channels;
177 avctx->block_align = BLKSIZE;
178 break;
179 case CODEC_ID_ADPCM_SWF:
180 if (avctx->sample_rate != 11025 &&
181 avctx->sample_rate != 22050 &&
182 avctx->sample_rate != 44100) {
183 av_log(avctx, AV_LOG_ERROR, "Sample rate must be 11025, 22050 or 44100\n");
184 return -1;
185 }
186 avctx->frame_size = 512 * (avctx->sample_rate / 11025);
187 break;
188 default:
189 return -1;
190 break;
191 }
192
193 avctx->coded_frame= avcodec_alloc_frame();
194 avctx->coded_frame->key_frame= 1;
195
196 return 0;
197 }
198
199 static int adpcm_encode_close(AVCodecContext *avctx)
200 {
201 av_freep(&avctx->coded_frame);
202
203 return 0;
204 }
205
206
207 static inline unsigned char adpcm_ima_compress_sample(ADPCMChannelStatus *c, short sample)
208 {
209 int delta = sample - c->prev_sample;
210 int nibble = FFMIN(7, abs(delta)*4/step_table[c->step_index]) + (delta<0)*8;
211 c->prev_sample = c->prev_sample + ((step_table[c->step_index] * yamaha_difflookup[nibble]) / 8);
212 c->prev_sample = av_clip_int16(c->prev_sample);
213 c->step_index = av_clip(c->step_index + index_table[nibble], 0, 88);
214 return nibble;
215 }
216
217 static inline unsigned char adpcm_ms_compress_sample(ADPCMChannelStatus *c, short sample)
218 {
219 int predictor, nibble, bias;
220
221 predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 256;
222
223 nibble= sample - predictor;
224 if(nibble>=0) bias= c->idelta/2;
225 else bias=-c->idelta/2;
226
227 nibble= (nibble + bias) / c->idelta;
228 nibble= av_clip(nibble, -8, 7)&0x0F;
229
230 predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
231 predictor = av_clip_int16(predictor);
232
233 c->sample2 = c->sample1;
234 c->sample1 = predictor;
235
236 c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
237 if (c->idelta < 16) c->idelta = 16;
238
239 return nibble;
240 }
241
242 static inline unsigned char adpcm_yamaha_compress_sample(ADPCMChannelStatus *c, short sample)
243 {
244 int nibble, delta;
245
246 if(!c->step) {
247 c->predictor = 0;
248 c->step = 127;
249 }
250
251 delta = sample - c->predictor;
252
253 nibble = FFMIN(7, abs(delta)*4/c->step) + (delta<0)*8;
254
255 c->predictor = c->predictor + ((c->step * yamaha_difflookup[nibble]) / 8);
256 c->predictor = av_clip_int16(c->predictor);
257 c->step = (c->step * yamaha_indexscale[nibble]) >> 8;
258 c->step = av_clip(c->step, 127, 24567);
259
260 return nibble;
261 }
262
263 typedef struct TrellisPath {
264 int nibble;
265 int prev;
266 } TrellisPath;
267
268 typedef struct TrellisNode {
269 uint32_t ssd;
270 int path;
271 int sample1;
272 int sample2;
273 int step;
274 } TrellisNode;
275
276 static void adpcm_compress_trellis(AVCodecContext *avctx, const short *samples,
277 uint8_t *dst, ADPCMChannelStatus *c, int n)
278 {
279 #define FREEZE_INTERVAL 128
280 //FIXME 6% faster if frontier is a compile-time constant
281 const int frontier = 1 << avctx->trellis;
282 const int stride = avctx->channels;
283 const int version = avctx->codec->id;
284 const int max_paths = frontier*FREEZE_INTERVAL;
285 TrellisPath paths[max_paths], *p;
286 TrellisNode node_buf[2][frontier];
287 TrellisNode *nodep_buf[2][frontier];
288 TrellisNode **nodes = nodep_buf[0]; // nodes[] is always sorted by .ssd
289 TrellisNode **nodes_next = nodep_buf[1];
290 int pathn = 0, froze = -1, i, j, k;
291
292 assert(!(max_paths&(max_paths-1)));
293
294 memset(nodep_buf, 0, sizeof(nodep_buf));
295 nodes[0] = &node_buf[1][0];
296 nodes[0]->ssd = 0;
297 nodes[0]->path = 0;
298 nodes[0]->step = c->step_index;
299 nodes[0]->sample1 = c->sample1;
300 nodes[0]->sample2 = c->sample2;
301 if(version == CODEC_ID_ADPCM_IMA_WAV)
302 nodes[0]->sample1 = c->prev_sample;
303 if(version == CODEC_ID_ADPCM_MS)
304 nodes[0]->step = c->idelta;
305 if(version == CODEC_ID_ADPCM_YAMAHA) {
306 if(c->step == 0) {
307 nodes[0]->step = 127;
308 nodes[0]->sample1 = 0;
309 } else {
310 nodes[0]->step = c->step;
311 nodes[0]->sample1 = c->predictor;
312 }
313 }
314
315 for(i=0; i<n; i++) {
316 TrellisNode *t = node_buf[i&1];
317 TrellisNode **u;
318 int sample = samples[i*stride];
319 memset(nodes_next, 0, frontier*sizeof(TrellisNode*));
320 for(j=0; j<frontier && nodes[j]; j++) {
321 // higher j have higher ssd already, so they're unlikely to use a suboptimal next sample too
322 const int range = (j < frontier/2) ? 1 : 0;
323 const int step = nodes[j]->step;
324 int nidx;
325 if(version == CODEC_ID_ADPCM_MS) {
326 const int predictor = ((nodes[j]->sample1 * c->coeff1) + (nodes[j]->sample2 * c->coeff2)) / 256;
327 const int div = (sample - predictor) / step;
328 const int nmin = av_clip(div-range, -8, 6);
329 const int nmax = av_clip(div+range, -7, 7);
330 for(nidx=nmin; nidx<=nmax; nidx++) {
331 const int nibble = nidx & 0xf;
332 int dec_sample = predictor + nidx * step;
333 #define STORE_NODE(NAME, STEP_INDEX)\
334 int d;\
335 uint32_t ssd;\
336 dec_sample = av_clip_int16(dec_sample);\
337 d = sample - dec_sample;\
338 ssd = nodes[j]->ssd + d*d;\
339 if(nodes_next[frontier-1] && ssd >= nodes_next[frontier-1]->ssd)\
340 continue;\
341 /* Collapse any two states with the same previous sample value. \
342 * One could also distinguish states by step and by 2nd to last
343 * sample, but the effects of that are negligible. */\
344 for(k=0; k<frontier && nodes_next[k]; k++) {\
345 if(dec_sample == nodes_next[k]->sample1) {\
346 assert(ssd >= nodes_next[k]->ssd);\
347 goto next_##NAME;\
348 }\
349 }\
350 for(k=0; k<frontier; k++) {\
351 if(!nodes_next[k] || ssd < nodes_next[k]->ssd) {\
352 TrellisNode *u = nodes_next[frontier-1];\
353 if(!u) {\
354 assert(pathn < max_paths);\
355 u = t++;\
356 u->path = pathn++;\
357 }\
358 u->ssd = ssd;\
359 u->step = STEP_INDEX;\
360 u->sample2 = nodes[j]->sample1;\
361 u->sample1 = dec_sample;\
362 paths[u->path].nibble = nibble;\
363 paths[u->path].prev = nodes[j]->path;\
364 memmove(&nodes_next[k+1], &nodes_next[k], (frontier-k-1)*sizeof(TrellisNode*));\
365 nodes_next[k] = u;\
366 break;\
367 }\
368 }\
369 next_##NAME:;
370 STORE_NODE(ms, FFMAX(16, (AdaptationTable[nibble] * step) >> 8));
371 }
372 } else if(version == CODEC_ID_ADPCM_IMA_WAV) {
373 #define LOOP_NODES(NAME, STEP_TABLE, STEP_INDEX)\
374 const int predictor = nodes[j]->sample1;\
375 const int div = (sample - predictor) * 4 / STEP_TABLE;\
376 int nmin = av_clip(div-range, -7, 6);\
377 int nmax = av_clip(div+range, -6, 7);\
378 if(nmin<=0) nmin--; /* distinguish -0 from +0 */\
379 if(nmax<0) nmax--;\
380 for(nidx=nmin; nidx<=nmax; nidx++) {\
381 const int nibble = nidx<0 ? 7-nidx : nidx;\
382 int dec_sample = predictor + (STEP_TABLE * yamaha_difflookup[nibble]) / 8;\
383 STORE_NODE(NAME, STEP_INDEX);\
384 }
385 LOOP_NODES(ima, step_table[step], av_clip(step + index_table[nibble], 0, 88));
386 } else { //CODEC_ID_ADPCM_YAMAHA
387 LOOP_NODES(yamaha, step, av_clip((step * yamaha_indexscale[nibble]) >> 8, 127, 24567));
388 #undef LOOP_NODES
389 #undef STORE_NODE
390 }
391 }
392
393 u = nodes;
394 nodes = nodes_next;
395 nodes_next = u;
396
397 // prevent overflow
398 if(nodes[0]->ssd > (1<<28)) {
399 for(j=1; j<frontier && nodes[j]; j++)
400 nodes[j]->ssd -= nodes[0]->ssd;
401 nodes[0]->ssd = 0;
402 }
403
404 // merge old paths to save memory
405 if(i == froze + FREEZE_INTERVAL) {
406 p = &paths[nodes[0]->path];
407 for(k=i; k>froze; k--) {
408 dst[k] = p->nibble;
409 p = &paths[p->prev];
410 }
411 froze = i;
412 pathn = 0;
413 // other nodes might use paths that don't coincide with the frozen one.
414 // checking which nodes do so is too slow, so just kill them all.
415 // this also slightly improves quality, but I don't know why.
416 memset(nodes+1, 0, (frontier-1)*sizeof(TrellisNode*));
417 }
418 }
419
420 p = &paths[nodes[0]->path];
421 for(i=n-1; i>froze; i--) {
422 dst[i] = p->nibble;
423 p = &paths[p->prev];
424 }
425
426 c->predictor = nodes[0]->sample1;
427 c->sample1 = nodes[0]->sample1;
428 c->sample2 = nodes[0]->sample2;
429 c->step_index = nodes[0]->step;
430 c->step = nodes[0]->step;
431 c->idelta = nodes[0]->step;
432 }
433
434 static int adpcm_encode_frame(AVCodecContext *avctx,
435 unsigned char *frame, int buf_size, void *data)
436 {
437 int n, i, st;
438 short *samples;
439 unsigned char *dst;
440 ADPCMContext *c = avctx->priv_data;
441
442 dst = frame;
443 samples = (short *)data;
444 st= avctx->channels == 2;
445 /* n = (BLKSIZE - 4 * avctx->channels) / (2 * 8 * avctx->channels); */
446
447 switch(avctx->codec->id) {
448 case CODEC_ID_ADPCM_IMA_QT: /* XXX: can't test until we get .mov writer */
449 break;
450 case CODEC_ID_ADPCM_IMA_WAV:
451 n = avctx->frame_size / 8;
452 c->status[0].prev_sample = (signed short)samples[0]; /* XXX */
453 /* c->status[0].step_index = 0; *//* XXX: not sure how to init the state machine */
454 bytestream_put_le16(&dst, c->status[0].prev_sample);
455 *dst++ = (unsigned char)c->status[0].step_index;
456 *dst++ = 0; /* unknown */
457 samples++;
458 if (avctx->channels == 2) {
459 c->status[1].prev_sample = (signed short)samples[1];
460 /* c->status[1].step_index = 0; */
461 bytestream_put_le16(&dst, c->status[1].prev_sample);
462 *dst++ = (unsigned char)c->status[1].step_index;
463 *dst++ = 0;
464 samples++;
465 }
466
467 /* stereo: 4 bytes (8 samples) for left, 4 bytes for right, 4 bytes left, ... */
468 if(avctx->trellis > 0) {
469 uint8_t buf[2][n*8];
470 adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n*8);
471 if(avctx->channels == 2)
472 adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n*8);
473 for(i=0; i<n; i++) {
474 *dst++ = buf[0][8*i+0] | (buf[0][8*i+1] << 4);
475 *dst++ = buf[0][8*i+2] | (buf[0][8*i+3] << 4);
476 *dst++ = buf[0][8*i+4] | (buf[0][8*i+5] << 4);
477 *dst++ = buf[0][8*i+6] | (buf[0][8*i+7] << 4);
478 if (avctx->channels == 2) {
479 *dst++ = buf[1][8*i+0] | (buf[1][8*i+1] << 4);
480 *dst++ = buf[1][8*i+2] | (buf[1][8*i+3] << 4);
481 *dst++ = buf[1][8*i+4] | (buf[1][8*i+5] << 4);
482 *dst++ = buf[1][8*i+6] | (buf[1][8*i+7] << 4);
483 }
484 }
485 } else
486 for (; n>0; n--) {
487 *dst = adpcm_ima_compress_sample(&c->status[0], samples[0]) & 0x0F;
488 *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels]) << 4) & 0xF0;
489 dst++;
490 *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 2]) & 0x0F;
491 *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 3]) << 4) & 0xF0;
492 dst++;
493 *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 4]) & 0x0F;
494 *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 5]) << 4) & 0xF0;
495 dst++;
496 *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 6]) & 0x0F;
497 *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 7]) << 4) & 0xF0;
498 dst++;
499 /* right channel */
500 if (avctx->channels == 2) {
501 *dst = adpcm_ima_compress_sample(&c->status[1], samples[1]);
502 *dst |= adpcm_ima_compress_sample(&c->status[1], samples[3]) << 4;
503 dst++;
504 *dst = adpcm_ima_compress_sample(&c->status[1], samples[5]);
505 *dst |= adpcm_ima_compress_sample(&c->status[1], samples[7]) << 4;
506 dst++;
507 *dst = adpcm_ima_compress_sample(&c->status[1], samples[9]);
508 *dst |= adpcm_ima_compress_sample(&c->status[1], samples[11]) << 4;
509 dst++;
510 *dst = adpcm_ima_compress_sample(&c->status[1], samples[13]);
511 *dst |= adpcm_ima_compress_sample(&c->status[1], samples[15]) << 4;
512 dst++;
513 }
514 samples += 8 * avctx->channels;
515 }
516 break;
517 case CODEC_ID_ADPCM_SWF:
518 {
519 int i;
520 PutBitContext pb;
521 init_put_bits(&pb, dst, buf_size*8);
522
523 //Store AdpcmCodeSize
524 put_bits(&pb, 2, 2); //Set 4bits flash adpcm format
525
526 //Init the encoder state
527 for(i=0; i<avctx->channels; i++){
528 c->status[i].step_index = av_clip(c->status[i].step_index, 0, 63); // clip step so it fits 6 bits
529 put_bits(&pb, 16, samples[i] & 0xFFFF);
530 put_bits(&pb, 6, c->status[i].step_index);
531 c->status[i].prev_sample = (signed short)samples[i];
532 }
533
534 for (i=1; i<avctx->frame_size; i++) {
535 put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels*i]) & 0xF);
536 if (avctx->channels == 2)
537 put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[1], samples[2*i+1]) & 0xF);
538 }
539 flush_put_bits(&pb);
540 dst += put_bits_count(&pb)>>3;
541 break;
542 }
543 case CODEC_ID_ADPCM_MS:
544 for(i=0; i<avctx->channels; i++){
545 int predictor=0;
546
547 *dst++ = predictor;
548 c->status[i].coeff1 = AdaptCoeff1[predictor];
549 c->status[i].coeff2 = AdaptCoeff2[predictor];
550 }
551 for(i=0; i<avctx->channels; i++){
552 if (c->status[i].idelta < 16)
553 c->status[i].idelta = 16;
554
555 bytestream_put_le16(&dst, c->status[i].idelta);
556 }
557 for(i=0; i<avctx->channels; i++){
558 c->status[i].sample1= *samples++;
559
560 bytestream_put_le16(&dst, c->status[i].sample1);
561 }
562 for(i=0; i<avctx->channels; i++){
563 c->status[i].sample2= *samples++;
564
565 bytestream_put_le16(&dst, c->status[i].sample2);
566 }
567
568 if(avctx->trellis > 0) {
569 int n = avctx->block_align - 7*avctx->channels;
570 uint8_t buf[2][n];
571 if(avctx->channels == 1) {
572 n *= 2;
573 adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
574 for(i=0; i<n; i+=2)
575 *dst++ = (buf[0][i] << 4) | buf[0][i+1];
576 } else {
577 adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
578 adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n);
579 for(i=0; i<n; i++)
580 *dst++ = (buf[0][i] << 4) | buf[1][i];
581 }
582 } else
583 for(i=7*avctx->channels; i<avctx->block_align; i++) {
584 int nibble;
585 nibble = adpcm_ms_compress_sample(&c->status[ 0], *samples++)<<4;
586 nibble|= adpcm_ms_compress_sample(&c->status[st], *samples++);
587 *dst++ = nibble;
588 }
589 break;
590 case CODEC_ID_ADPCM_YAMAHA:
591 n = avctx->frame_size / 2;
592 if(avctx->trellis > 0) {
593 uint8_t buf[2][n*2];
594 n *= 2;
595 if(avctx->channels == 1) {
596 adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
597 for(i=0; i<n; i+=2)
598 *dst++ = buf[0][i] | (buf[0][i+1] << 4);
599 } else {
600 adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
601 adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n);
602 for(i=0; i<n; i++)
603 *dst++ = buf[0][i] | (buf[1][i] << 4);
604 }
605 } else
606 for (; n>0; n--) {
607 for(i = 0; i < avctx->channels; i++) {
608 int nibble;
609 nibble = adpcm_yamaha_compress_sample(&c->status[i], samples[i]);
610 nibble |= adpcm_yamaha_compress_sample(&c->status[i], samples[i+avctx->channels]) << 4;
611 *dst++ = nibble;
612 }
613 samples += 2 * avctx->channels;
614 }
615 break;
616 default:
617 return -1;
618 }
619 return dst - frame;
620 }
621 #endif //CONFIG_ENCODERS
622
623 static int adpcm_decode_init(AVCodecContext * avctx)
624 {
625 ADPCMContext *c = avctx->priv_data;
626
627 if(avctx->channels > 2U){
628 return -1;
629 }
630
631 c->channel = 0;
632 c->status[0].predictor = c->status[1].predictor = 0;
633 c->status[0].step_index = c->status[1].step_index = 0;
634 c->status[0].step = c->status[1].step = 0;
635
636 switch(avctx->codec->id) {
637 case CODEC_ID_ADPCM_CT:
638 c->status[0].step = c->status[1].step = 511;
639 break;
640 case CODEC_ID_ADPCM_IMA_WS:
641 if (avctx->extradata && avctx->extradata_size == 2 * 4) {
642 c->status[0].predictor = AV_RL32(avctx->extradata);
643 c->status[1].predictor = AV_RL32(avctx->extradata + 4);
644 }
645 break;
646 default:
647 break;
648 }
649 return 0;
650 }
651
652 static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift)
653 {
654 int step_index;
655 int predictor;
656 int sign, delta, diff, step;
657
658 step = step_table[c->step_index];
659 step_index = c->step_index + index_table[(unsigned)nibble];
660 if (step_index < 0) step_index = 0;
661 else if (step_index > 88) step_index = 88;
662
663 sign = nibble & 8;
664 delta = nibble & 7;
665 /* perform direct multiplication instead of series of jumps proposed by
666 * the reference ADPCM implementation since modern CPUs can do the mults
667 * quickly enough */
668 diff = ((2 * delta + 1) * step) >> shift;
669 predictor = c->predictor;
670 if (sign) predictor -= diff;
671 else predictor += diff;
672
673 predictor = av_clip_int16(predictor);
674 c->predictor = predictor;
675 c->step_index = step_index;
676
677 return (short)predictor;
678 }
679
680 static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, char nibble)
681 {
682 int predictor;
683
684 predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 256;
685 predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
686 predictor = av_clip_int16(predictor);
687
688 c->sample2 = c->sample1;
689 c->sample1 = predictor;
690 c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
691 if (c->idelta < 16) c->idelta = 16;
692
693 return (short)predictor;
694 }
695
696 static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble)
697 {
698 int predictor;
699 int sign, delta, diff;
700 int new_step;
701
702 sign = nibble & 8;
703 delta = nibble & 7;
704 /* perform direct multiplication instead of series of jumps proposed by
705 * the reference ADPCM implementation since modern CPUs can do the mults
706 * quickly enough */
707 diff = ((2 * delta + 1) * c->step) >> 3;
708 predictor = c->predictor;
709 /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */
710 if(sign)
711 predictor = ((predictor * 254) >> 8) - diff;
712 else
713 predictor = ((predictor * 254) >> 8) + diff;
714 /* calculate new step and clamp it to range 511..32767 */
715 new_step = (ct_adpcm_table[nibble & 7] * c->step) >> 8;
716 c->step = new_step;
717 if(c->step < 511)
718 c->step = 511;
719 if(c->step > 32767)
720 c->step = 32767;
721
722 predictor = av_clip_int16(predictor);
723 c->predictor = predictor;
724 return (short)predictor;
725 }
726
727 static inline short adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, char nibble, int size, int shift)
728 {
729 int sign, delta, diff;
730
731 sign = nibble & (1<<(size-1));
732 delta = nibble & ((1<<(size-1))-1);
733 diff = delta << (7 + c->step + shift);
734
735 if (sign)
736 c->predictor -= diff;
737 else
738 c->predictor += diff;
739
740 /* clamp result */
741 if (c->predictor > 16256)
742 c->predictor = 16256;
743 else if (c->predictor < -16384)
744 c->predictor = -16384;
745
746 /* calculate new step */
747 if (delta >= (2*size - 3) && c->step < 3)
748 c->step++;
749 else if (delta == 0 && c->step > 0)
750 c->step--;
751
752 return (short) c->predictor;
753 }
754
755 static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned char nibble)
756 {
757 if(!c->step) {
758 c->predictor = 0;
759 c->step = 127;
760 }
761
762 c->predictor += (c->step * yamaha_difflookup[nibble]) / 8;
763 c->predictor = av_clip_int16(c->predictor);
764 c->step = (c->step * yamaha_indexscale[nibble]) >> 8;
765 c->step = av_clip(c->step, 127, 24567);
766 return c->predictor;
767 }
768
769 static void xa_decode(short *out, const unsigned char *in,
770 ADPCMChannelStatus *left, ADPCMChannelStatus *right, int inc)
771 {
772 int i, j;
773 int shift,filter,f0,f1;
774 int s_1,s_2;
775 int d,s,t;
776
777 for(i=0;i<4;i++) {
778
779 shift = 12 - (in[4+i*2] & 15);
780 filter = in[4+i*2] >> 4;
781 f0 = xa_adpcm_table[filter][0];
782 f1 = xa_adpcm_table[filter][1];
783
784 s_1 = left->sample1;
785 s_2 = left->sample2;
786
787 for(j=0;j<28;j++) {
788 d = in[16+i+j*4];
789
790 t = (signed char)(d<<4)>>4;
791 s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
792 s = av_clip_int16(s);
793 *out = s;
794 out += inc;
795 s_2 = s_1;
796 s_1 = s;
797 }
798
799 if (inc==2) { /* stereo */
800 left->sample1 = s_1;
801 left->sample2 = s_2;
802 s_1 = right->sample1;
803 s_2 = right->sample2;
804 out = out + 1 - 28*2;
805 }
806
807 shift = 12 - (in[5+i*2] & 15);
808 filter = in[5+i*2] >> 4;
809
810 f0 = xa_adpcm_table[filter][0];
811 f1 = xa_adpcm_table[filter][1];
812
813 for(j=0;j<28;j++) {
814 d = in[16+i+j*4];
815
816 t = (signed char)d >> 4;
817 s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
818 s = av_clip_int16(s);
819 *out = s;
820 out += inc;
821 s_2 = s_1;
822 s_1 = s;
823 }
824
825 if (inc==2) { /* stereo */
826 right->sample1 = s_1;
827 right->sample2 = s_2;
828 out -= 1;
829 } else {
830 left->sample1 = s_1;
831 left->sample2 = s_2;
832 }
833 }
834 }
835
836
837 /* DK3 ADPCM support macro */
838 #define DK3_GET_NEXT_NIBBLE() \
839 if (decode_top_nibble_next) \
840 { \
841 nibble = (last_byte >> 4) & 0x0F; \
842 decode_top_nibble_next = 0; \
843 } \
844 else \
845 { \
846 last_byte = *src++; \
847 if (src >= buf + buf_size) break; \
848 nibble = last_byte & 0x0F; \
849 decode_top_nibble_next = 1; \
850 }
851
852 static int adpcm_decode_frame(AVCodecContext *avctx,
853 void *data, int *data_size,
854 uint8_t *buf, int buf_size)
855 {
856 ADPCMContext *c = avctx->priv_data;
857 ADPCMChannelStatus *cs;
858 int n, m, channel, i;
859 int block_predictor[2];
860 short *samples;
861 short *samples_end;
862 uint8_t *src;
863 int st; /* stereo */
864
865 /* DK3 ADPCM accounting variables */
866 unsigned char last_byte = 0;
867 unsigned char nibble;
868 int decode_top_nibble_next = 0;
869 int diff_channel;
870
871 /* EA ADPCM state variables */
872 uint32_t samples_in_chunk;
873 int32_t previous_left_sample, previous_right_sample;
874 int32_t current_left_sample, current_right_sample;
875 int32_t next_left_sample, next_right_sample;
876 int32_t coeff1l, coeff2l, coeff1r, coeff2r;
877 uint8_t shift_left, shift_right;
878 int count1, count2;
879
880 if (!buf_size)
881 return 0;
882
883 //should protect all 4bit ADPCM variants
884 //8 is needed for CODEC_ID_ADPCM_IMA_WAV with 2 channels
885 //
886 if(*data_size/4 < buf_size + 8)
887 return -1;
888
889 samples = data;
890 samples_end= samples + *data_size/2;
891 *data_size= 0;
892 src = buf;
893
894 st = avctx->channels == 2 ? 1 : 0;
895
896 switch(avctx->codec->id) {
897 case CODEC_ID_ADPCM_IMA_QT:
898 n = (buf_size - 2);/* >> 2*avctx->channels;*/
899 channel = c->channel;
900 cs = &(c->status[channel]);
901 /* (pppppp) (piiiiiii) */
902
903 /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
904 cs->predictor = (*src++) << 8;
905 cs->predictor |= (*src & 0x80);
906 cs->predictor &= 0xFF80;
907
908 /* sign extension */
909 if(cs->predictor & 0x8000)
910 cs->predictor -= 0x10000;
911
912 cs->predictor = av_clip_int16(cs->predictor);
913
914 cs->step_index = (*src++) & 0x7F;
915
916 if (cs->step_index > 88){
917 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
918 cs->step_index = 88;
919 }
920
921 cs->step = step_table[cs->step_index];
922
923 if (st && channel)
924 samples++;
925
926 for(m=32; n>0 && m>0; n--, m--) { /* in QuickTime, IMA is encoded by chuncks of 34 bytes (=64 samples) */
927 *samples = adpcm_ima_expand_nibble(cs, src[0] & 0x0F, 3);
928 samples += avctx->channels;
929 *samples = adpcm_ima_expand_nibble(cs, (src[0] >> 4) & 0x0F, 3);
930 samples += avctx->channels;
931 src ++;
932 }
933
934 if(st) { /* handle stereo interlacing */
935 c->channel = (channel + 1) % 2; /* we get one packet for left, then one for right data */
936 if(channel == 1) { /* wait for the other packet before outputing anything */
937 return src - buf;
938 }
939 }
940 break;
941 case CODEC_ID_ADPCM_IMA_WAV:
942 if (avctx->block_align != 0 && buf_size > avctx->block_align)
943 buf_size = avctx->block_align;
944
945 // samples_per_block= (block_align-4*chanels)*8 / (bits_per_sample * chanels) + 1;
946
947 for(i=0; i<avctx->channels; i++){
948 cs = &(c->status[i]);
949 cs->predictor = (int16_t)(src[0] + (src[1]<<8));
950 src+=2;
951
952 // XXX: is this correct ??: *samples++ = cs->predictor;
953
954 cs->step_index = *src++;
955 if (cs->step_index > 88){
956 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
957 cs->step_index = 88;
958 }
959 if (*src++) av_log(avctx, AV_LOG_ERROR, "unused byte should be null but is %d!!\n", src[-1]); /* unused */
960 }
961
962 while(src < buf + buf_size){
963 for(m=0; m<4; m++){
964 for(i=0; i<=st; i++)
965 *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] & 0x0F, 3);
966 for(i=0; i<=st; i++)
967 *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] >> 4 , 3);
968 src++;
969 }
970 src += 4*st;
971 }
972 break;
973 case CODEC_ID_ADPCM_4XM:
974 cs = &(c->status[0]);
975 c->status[0].predictor= (int16_t)(src[0] + (src[1]<<8)); src+=2;
976 if(st){
977 c->status[1].predictor= (int16_t)(src[0] + (src[1]<<8)); src+=2;
978 }
979 c->status[0].step_index= (int16_t)(src[0] + (src[1]<<8)); src+=2;
980 if(st){
981 c->status[1].step_index= (int16_t)(src[0] + (src[1]<<8)); src+=2;
982 }
983 if (cs->step_index < 0) cs->step_index = 0;
984 if (cs->step_index > 88) cs->step_index = 88;
985
986 m= (buf_size - (src - buf))>>st;
987 for(i=0; i<m; i++) {
988 *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] & 0x0F, 4);
989 if (st)
990 *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] & 0x0F, 4);
991 *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] >> 4, 4);
992 if (st)
993 *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] >> 4, 4);
994 }
995
996 src += m<<st;
997
998 break;
999 case CODEC_ID_ADPCM_MS:
1000 if (avctx->block_align != 0 && buf_size > avctx->block_align)
1001 buf_size = avctx->block_align;
1002 n = buf_size - 7 * avctx->channels;
1003 if (n < 0)
1004 return -1;
1005 block_predictor[0] = av_clip(*src++, 0, 7);
1006 block_predictor[1] = 0;
1007 if (st)
1008 block_predictor[1] = av_clip(*src++, 0, 7);
1009 c->status[0].idelta = (int16_t)((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
1010 src+=2;
1011 if (st){
1012 c->status[1].idelta = (int16_t)((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
1013 src+=2;
1014 }
1015 c->status[0].coeff1 = AdaptCoeff1[block_predictor[0]];
1016 c->status[0].coeff2 = AdaptCoeff2[block_predictor[0]];
1017 c->status[1].coeff1 = AdaptCoeff1[block_predictor[1]];
1018 c->status[1].coeff2 = AdaptCoeff2[block_predictor[1]];
1019
1020 c->status[0].sample1 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
1021 src+=2;
1022 if (st) c->status[1].sample1 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
1023 if (st) src+=2;
1024 c->status[0].sample2 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
1025 src+=2;
1026 if (st) c->status[1].sample2 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
1027 if (st) src+=2;
1028
1029 *samples++ = c->status[0].sample1;
1030 if (st) *samples++ = c->status[1].sample1;
1031 *samples++ = c->status[0].sample2;
1032 if (st) *samples++ = c->status[1].sample2;
1033 for(;n>0;n--) {
1034 *samples++ = adpcm_ms_expand_nibble(&c->status[0], (src[0] >> 4) & 0x0F);
1035 *samples++ = adpcm_ms_expand_nibble(&c->status[st], src[0] & 0x0F);
1036 src ++;
1037 }
1038 break;
1039 case CODEC_ID_ADPCM_IMA_DK4:
1040 if (avctx->block_align != 0 && buf_size > avctx->block_align)
1041 buf_size = avctx->block_align;
1042
1043 c->status[0].predictor = (int16_t)(src[0] | (src[1] << 8));
1044 c->status[0].step_index = src[2];
1045 src += 4;
1046 *samples++ = c->status[0].predictor;
1047 if (st) {
1048 c->status[1].predictor = (int16_t)(src[0] | (src[1] << 8));
1049 c->status[1].step_index = src[2];
1050 src += 4;
1051 *samples++ = c->status[1].predictor;
1052 }
1053 while (src < buf + buf_size) {
1054
1055 /* take care of the top nibble (always left or mono channel) */
1056 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1057 (src[0] >> 4) & 0x0F, 3);
1058
1059 /* take care of the bottom nibble, which is right sample for
1060 * stereo, or another mono sample */
1061 if (st)
1062 *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1063 src[0] & 0x0F, 3);
1064 else
1065 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1066 src[0] & 0x0F, 3);
1067
1068 src++;
1069 }
1070 break;
1071 case CODEC_ID_ADPCM_IMA_DK3:
1072 if (avctx->block_align != 0 && buf_size > avctx->block_align)
1073 buf_size = avctx->block_align;
1074
1075 if(buf_size + 16 > (samples_end - samples)*3/8)
1076 return -1;
1077
1078 c->status[0].predictor = (int16_t)(src[10] | (src[11] << 8));
1079 c->status[1].predictor = (int16_t)(src[12] | (src[13] << 8));
1080 c->status[0].step_index = src[14];
1081 c->status[1].step_index = src[15];
1082 /* sign extend the predictors */
1083 src += 16;
1084 diff_channel = c->status[1].predictor;
1085
1086 /* the DK3_GET_NEXT_NIBBLE macro issues the break statement when
1087 * the buffer is consumed */
1088 while (1) {
1089
1090 /* for this algorithm, c->status[0] is the sum channel and
1091 * c->status[1] is the diff channel */
1092
1093 /* process the first predictor of the sum channel */
1094 DK3_GET_NEXT_NIBBLE();
1095 adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1096
1097 /* process the diff channel predictor */
1098 DK3_GET_NEXT_NIBBLE();
1099 adpcm_ima_expand_nibble(&c->status[1], nibble, 3);
1100
1101 /* process the first pair of stereo PCM samples */
1102 diff_channel = (diff_channel + c->status[1].predictor) / 2;
1103 *samples++ = c->status[0].predictor + c->status[1].predictor;
1104 *samples++ = c->status[0].predictor - c->status[1].predictor;
1105
1106 /* process the second predictor of the sum channel */
1107 DK3_GET_NEXT_NIBBLE();
1108 adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1109
1110 /* process the second pair of stereo PCM samples */
1111 diff_channel = (diff_channel + c->status[1].predictor) / 2;
1112 *samples++ = c->status[0].predictor + c->status[1].predictor;
1113 *samples++ = c->status[0].predictor - c->status[1].predictor;
1114 }
1115 break;
1116 case CODEC_ID_ADPCM_IMA_WS:
1117 /* no per-block initialization; just start decoding the data */
1118 while (src < buf + buf_size) {
1119
1120 if (st) {
1121 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1122 (src[0] >> 4) & 0x0F, 3);
1123 *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1124 src[0] & 0x0F, 3);
1125 } else {
1126 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1127 (src[0] >> 4) & 0x0F, 3);
1128 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1129 src[0] & 0x0F, 3);
1130 }
1131
1132 src++;
1133 }
1134 break;
1135 case CODEC_ID_ADPCM_XA:
1136 c->status[0].sample1 = c->status[0].sample2 =
1137 c->status[1].sample1 = c->status[1].sample2 = 0;
1138 while (buf_size >= 128) {
1139 xa_decode(samples, src, &c->status[0], &c->status[1],
1140 avctx->channels);
1141 src += 128;
1142 samples += 28 * 8;
1143 buf_size -= 128;
1144 }
1145 break;
1146 case CODEC_ID_ADPCM_EA:
1147 samples_in_chunk = AV_RL32(src);
1148 if (samples_in_chunk >= ((buf_size - 12) * 2)) {
1149 src += buf_size;
1150 break;
1151 }
1152 src += 4;
1153 current_left_sample = (int16_t)AV_RL16(src);
1154 src += 2;
1155 previous_left_sample = (int16_t)AV_RL16(src);
1156 src += 2;
1157 current_right_sample = (int16_t)AV_RL16(src);
1158 src += 2;
1159 previous_right_sample = (int16_t)AV_RL16(src);
1160 src += 2;
1161
1162 for (count1 = 0; count1 < samples_in_chunk/28;count1++) {
1163 coeff1l = ea_adpcm_table[(*src >> 4) & 0x0F];
1164 coeff2l = ea_adpcm_table[((*src >> 4) & 0x0F) + 4];
1165 coeff1r = ea_adpcm_table[*src & 0x0F];
1166 coeff2r = ea_adpcm_table[(*src & 0x0F) + 4];
1167 src++;
1168
1169 shift_left = ((*src >> 4) & 0x0F) + 8;
1170 shift_right = (*src & 0x0F) + 8;
1171 src++;
1172
1173 for (count2 = 0; count2 < 28; count2++) {
1174 next_left_sample = (((*src & 0xF0) << 24) >> shift_left);
1175 next_right_sample = (((*src & 0x0F) << 28) >> shift_right);
1176 src++;
1177
1178 next_left_sample = (next_left_sample +
1179 (current_left_sample * coeff1l) +
1180 (previous_left_sample * coeff2l) + 0x80) >> 8;
1181 next_right_sample = (next_right_sample +
1182 (current_right_sample * coeff1r) +
1183 (previous_right_sample * coeff2r) + 0x80) >> 8;
1184 next_left_sample = av_clip_int16(next_left_sample);
1185 next_right_sample = av_clip_int16(next_right_sample);
1186
1187 previous_left_sample = current_left_sample;
1188 current_left_sample = next_left_sample;
1189 previous_right_sample = current_right_sample;
1190 current_right_sample = next_right_sample;
1191 *samples++ = (unsigned short)current_left_sample;
1192 *samples++ = (unsigned short)current_right_sample;
1193 }
1194 }
1195 break;
1196 case CODEC_ID_ADPCM_IMA_SMJPEG:
1197 c->status[0].predictor = *src;
1198 src += 2;
1199 c->status[0].step_index = *src++;
1200 src++; /* skip another byte before getting to the meat */
1201 while (src < buf + buf_size) {
1202 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1203 *src & 0x0F, 3);
1204 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1205 (*src >> 4) & 0x0F, 3);
1206 src++;
1207 }
1208 break;
1209 case CODEC_ID_ADPCM_CT:
1210 while (src < buf + buf_size) {
1211 if (st) {
1212 *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1213 (src[0] >> 4) & 0x0F);
1214 *samples++ = adpcm_ct_expand_nibble(&c->status[1],
1215 src[0] & 0x0F);
1216 } else {
1217 *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1218 (src[0] >> 4) & 0x0F);
1219 *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1220 src[0] & 0x0F);
1221 }
1222 src++;
1223 }
1224 break;
1225 case CODEC_ID_ADPCM_SBPRO_4:
1226 case CODEC_ID_ADPCM_SBPRO_3:
1227 case CODEC_ID_ADPCM_SBPRO_2:
1228 if (!c->status[0].step_index) {
1229 /* the first byte is a raw sample */
1230 *samples++ = 128 * (*src++ - 0x80);
1231 if (st)
1232 *samples++ = 128 * (*src++ - 0x80);
1233 c->status[0].step_index = 1;
1234 }
1235 if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_4) {
1236 while (src < buf + buf_size) {
1237 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1238 (src[0] >> 4) & 0x0F, 4, 0);
1239 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1240 src[0] & 0x0F, 4, 0);
1241 src++;
1242 }
1243 } else if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_3) {
1244 while (src < buf + buf_size && samples + 2 < samples_end) {
1245 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1246 (src[0] >> 5) & 0x07, 3, 0);
1247 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1248 (src[0] >> 2) & 0x07, 3, 0);
1249 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1250 src[0] & 0x03, 2, 0);
1251 src++;
1252 }
1253 } else {
1254 while (src < buf + buf_size && samples + 3 < samples_end) {
1255 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1256 (src[0] >> 6) & 0x03, 2, 2);
1257 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1258 (src[0] >> 4) & 0x03, 2, 2);
1259 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1260 (src[0] >> 2) & 0x03, 2, 2);
1261 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1262 src[0] & 0x03, 2, 2);
1263 src++;
1264 }
1265 }
1266 break;
1267 case CODEC_ID_ADPCM_SWF:
1268 {
1269 GetBitContext gb;
1270 const int *table;
1271 int k0, signmask, nb_bits, count;
1272 int size = buf_size*8;
1273
1274 init_get_bits(&gb, buf, size);
1275
1276 //read bits & initial values
1277 nb_bits = get_bits(&gb, 2)+2;
1278 //av_log(NULL,AV_LOG_INFO,"nb_bits: %d\n", nb_bits);
1279 table = swf_index_tables[nb_bits-2];
1280 k0 = 1 << (nb_bits-2);
1281 signmask = 1 << (nb_bits-1);
1282
1283 while (get_bits_count(&gb) <= size - 22*avctx->channels) {
1284 for (i = 0; i < avctx->channels; i++) {
1285 *samples++ = c->status[i].predictor = get_sbits(&gb, 16);
1286 c->status[i].step_index = get_bits(&gb, 6);
1287 }
1288
1289 for (count = 0; get_bits_count(&gb) <= size - nb_bits*avctx->channels && count < 4095; count++) {
1290 int i;
1291
1292 for (i = 0; i < avctx->channels; i++) {
1293 // similar to IMA adpcm
1294 int delta = get_bits(&gb, nb_bits);
1295 int step = step_table[c->status[i].step_index];
1296 long vpdiff = 0; // vpdiff = (delta+0.5)*step/4
1297 int k = k0;
1298
1299 do {
1300 if (delta & k)
1301 vpdiff += step;
1302 step >>= 1;
1303 k >>= 1;
1304 } while(k);
1305 vpdiff += step;
1306
1307 if (delta & signmask)
1308 c->status[i].predictor -= vpdiff;
1309 else
1310 c->status[i].predictor += vpdiff;
1311
1312 c->status[i].step_index += table[delta & (~signmask)];
1313
1314 c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88);
1315 c->status[i].predictor = av_clip_int16(c->status[i].predictor);
1316
1317 *samples++ = c->status[i].predictor;
1318 if (samples >= samples_end) {
1319 av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n");
1320 return -1;
1321 }
1322 }
1323 }
1324 }
1325 src += buf_size;
1326 break;
1327 }
1328 case CODEC_ID_ADPCM_YAMAHA:
1329 while (src < buf + buf_size) {
1330 if (st) {
1331 *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1332 src[0] & 0x0F);
1333 *samples++ = adpcm_yamaha_expand_nibble(&c->status[1],
1334 (src[0] >> 4) & 0x0F);
1335 } else {
1336 *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1337 src[0] & 0x0F);
1338 *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1339 (src[0] >> 4) & 0x0F);
1340 }
1341 src++;
1342 }
1343 break;
1344 case CODEC_ID_ADPCM_THP:
1345 {
1346 int table[2][16];
1347 unsigned int samplecnt;
1348 int prev[2][2];
1349 int ch;
1350
1351 if (buf_size < 80) {
1352 av_log(avctx, AV_LOG_ERROR, "frame too small\n");
1353 return -1;
1354 }
1355
1356 src+=4;
1357 samplecnt = bytestream_get_be32(&src);
1358
1359 for (i = 0; i < 32; i++)
1360 table[0][i] = (int16_t)bytestream_get_be16(&src);
1361
1362 /* Initialize the previous sample. */
1363 for (i = 0; i < 4; i++)
1364 prev[0][i] = (int16_t)bytestream_get_be16(&src);
1365
1366 if (samplecnt >= (samples_end - samples) / (st + 1)) {
1367 av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n");
1368 return -1;
1369 }
1370
1371 for (ch = 0; ch <= st; ch++) {
1372 samples = (unsigned short *) data + ch;
1373
1374 /* Read in every sample for this channel. */
1375 for (i = 0; i < samplecnt / 14; i++) {
1376 int index = (*src >> 4) & 7;
1377 unsigned int exp = 28 - (*src++ & 15);
1378 int factor1 = table[ch][index * 2];
1379 int factor2 = table[ch][index * 2 + 1];
1380
1381 /* Decode 14 samples. */
1382 for (n = 0; n < 14; n++) {
1383 int32_t sampledat;
1384 if(n&1) sampledat= *src++ <<28;
1385 else sampledat= (*src&0xF0)<<24;
1386
1387 sampledat = ((prev[ch][0]*factor1
1388 + prev[ch][1]*factor2) >> 11) + (sampledat>>exp);
1389 sampledat = av_clip_int16(sampledat);
1390 *samples = sampledat;
1391 prev[ch][1] = prev[ch][0];
1392 prev[ch][0] = *samples++;
1393
1394 /* In case of stereo, skip one sample, this sample
1395 is for the other channel. */
1396 samples += st;
1397 }
1398 }
1399 }
1400
1401 /* In the previous loop, in case stereo is used, samples is
1402 increased exactly one time too often. */
1403 samples -= st;
1404 break;
1405 }
1406
1407 default:
1408 return -1;
1409 }
1410 *data_size = (uint8_t *)samples - (uint8_t *)data;
1411 return src - buf;
1412 }
1413
1414
1415
1416 #ifdef CONFIG_ENCODERS
1417 #define ADPCM_ENCODER(id,name) \
1418 AVCodec name ## _encoder = { \
1419 #name, \
1420 CODEC_TYPE_AUDIO, \
1421 id, \
1422 sizeof(ADPCMContext), \
1423 adpcm_encode_init, \
1424 adpcm_encode_frame, \
1425 adpcm_encode_close, \
1426 NULL, \
1427 };
1428 #else
1429 #define ADPCM_ENCODER(id,name)
1430 #endif
1431
1432 #ifdef CONFIG_DECODERS
1433 #define ADPCM_DECODER(id,name) \
1434 AVCodec name ## _decoder = { \
1435 #name, \
1436 CODEC_TYPE_AUDIO, \
1437 id, \
1438 sizeof(ADPCMContext), \
1439 adpcm_decode_init, \
1440 NULL, \
1441 NULL, \
1442 adpcm_decode_frame, \
1443 };
1444 #else
1445 #define ADPCM_DECODER(id,name)
1446 #endif
1447
1448 #define ADPCM_CODEC(id, name) \
1449 ADPCM_ENCODER(id,name) ADPCM_DECODER(id,name)
1450
1451 ADPCM_CODEC(CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt);
1452 ADPCM_CODEC(CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav);
1453 ADPCM_CODEC(CODEC_ID_ADPCM_IMA_DK3, adpcm_ima_dk3);
1454 ADPCM_CODEC(CODEC_ID_ADPCM_IMA_DK4, adpcm_ima_dk4);
1455 ADPCM_CODEC(CODEC_ID_ADPCM_IMA_WS, adpcm_ima_ws);
1456 ADPCM_CODEC(CODEC_ID_ADPCM_IMA_SMJPEG, adpcm_ima_smjpeg);
1457 ADPCM_CODEC(CODEC_ID_ADPCM_MS, adpcm_ms);
1458 ADPCM_CODEC(CODEC_ID_ADPCM_4XM, adpcm_4xm);
1459 ADPCM_CODEC(CODEC_ID_ADPCM_XA, adpcm_xa);
1460 ADPCM_CODEC(CODEC_ID_ADPCM_EA, adpcm_ea);
1461 ADPCM_CODEC(CODEC_ID_ADPCM_CT, adpcm_ct);
1462 ADPCM_CODEC(CODEC_ID_ADPCM_SWF, adpcm_swf);
1463 ADPCM_CODEC(CODEC_ID_ADPCM_YAMAHA, adpcm_yamaha);
1464 ADPCM_CODEC(CODEC_ID_ADPCM_SBPRO_4, adpcm_sbpro_4);
1465 ADPCM_CODEC(CODEC_ID_ADPCM_SBPRO_3, adpcm_sbpro_3);
1466 ADPCM_CODEC(CODEC_ID_ADPCM_SBPRO_2, adpcm_sbpro_2);
1467 ADPCM_CODEC(CODEC_ID_ADPCM_THP, adpcm_thp);
1468
1469 #undef ADPCM_CODEC