lavc: add a wrapper for AVCodecContext.get_buffer().
[libav.git] / libavcodec / adpcm.c
1 /*
2 * Copyright (c) 2001-2003 The ffmpeg Project
3 *
4 * This file is part of Libav.
5 *
6 * Libav is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * Libav is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with Libav; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20 #include "avcodec.h"
21 #include "get_bits.h"
22 #include "put_bits.h"
23 #include "bytestream.h"
24 #include "adpcm.h"
25 #include "adpcm_data.h"
26 #include "internal.h"
27
28 /**
29 * @file
30 * ADPCM decoders
31 * First version by Francois Revol (revol@free.fr)
32 * Fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
33 * by Mike Melanson (melanson@pcisys.net)
34 * CD-ROM XA ADPCM codec by BERO
35 * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com)
36 * EA ADPCM R1/R2/R3 decoder by Peter Ross (pross@xvid.org)
37 * EA IMA EACS decoder by Peter Ross (pross@xvid.org)
38 * EA IMA SEAD decoder by Peter Ross (pross@xvid.org)
39 * EA ADPCM XAS decoder by Peter Ross (pross@xvid.org)
40 * MAXIS EA ADPCM decoder by Robert Marston (rmarston@gmail.com)
41 * THP ADPCM decoder by Marco Gerards (mgerards@xs4all.nl)
42 *
43 * Features and limitations:
44 *
45 * Reference documents:
46 * http://wiki.multimedia.cx/index.php?title=Category:ADPCM_Audio_Codecs
47 * http://www.pcisys.net/~melanson/codecs/simpleaudio.html [dead]
48 * http://www.geocities.com/SiliconValley/8682/aud3.txt [dead]
49 * http://openquicktime.sourceforge.net/
50 * XAnim sources (xa_codec.c) http://xanim.polter.net/
51 * http://www.cs.ucla.edu/~leec/mediabench/applications.html [dead]
52 * SoX source code http://sox.sourceforge.net/
53 *
54 * CD-ROM XA:
55 * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html [dead]
56 * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html [dead]
57 * readstr http://www.geocities.co.jp/Playtown/2004/
58 */
59
60 /* These are for CD-ROM XA ADPCM */
61 static const int xa_adpcm_table[5][2] = {
62 { 0, 0 },
63 { 60, 0 },
64 { 115, -52 },
65 { 98, -55 },
66 { 122, -60 }
67 };
68
69 static const int ea_adpcm_table[] = {
70 0, 240, 460, 392,
71 0, 0, -208, -220,
72 0, 1, 3, 4,
73 7, 8, 10, 11,
74 0, -1, -3, -4
75 };
76
77 // padded to zero where table size is less then 16
78 static const int swf_index_tables[4][16] = {
79 /*2*/ { -1, 2 },
80 /*3*/ { -1, -1, 2, 4 },
81 /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 },
82 /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
83 };
84
85 /* end of tables */
86
87 typedef struct ADPCMDecodeContext {
88 AVFrame frame;
89 ADPCMChannelStatus status[6];
90 int vqa_version; /**< VQA version. Used for ADPCM_IMA_WS */
91 } ADPCMDecodeContext;
92
93 static av_cold int adpcm_decode_init(AVCodecContext * avctx)
94 {
95 ADPCMDecodeContext *c = avctx->priv_data;
96 unsigned int min_channels = 1;
97 unsigned int max_channels = 2;
98
99 switch(avctx->codec->id) {
100 case AV_CODEC_ID_ADPCM_EA:
101 min_channels = 2;
102 break;
103 case AV_CODEC_ID_ADPCM_EA_R1:
104 case AV_CODEC_ID_ADPCM_EA_R2:
105 case AV_CODEC_ID_ADPCM_EA_R3:
106 case AV_CODEC_ID_ADPCM_EA_XAS:
107 max_channels = 6;
108 break;
109 }
110 if (avctx->channels < min_channels || avctx->channels > max_channels) {
111 av_log(avctx, AV_LOG_ERROR, "Invalid number of channels\n");
112 return AVERROR(EINVAL);
113 }
114
115 switch(avctx->codec->id) {
116 case AV_CODEC_ID_ADPCM_CT:
117 c->status[0].step = c->status[1].step = 511;
118 break;
119 case AV_CODEC_ID_ADPCM_IMA_WAV:
120 if (avctx->bits_per_coded_sample != 4) {
121 av_log(avctx, AV_LOG_ERROR, "Only 4-bit ADPCM IMA WAV files are supported\n");
122 return -1;
123 }
124 break;
125 case AV_CODEC_ID_ADPCM_IMA_APC:
126 if (avctx->extradata && avctx->extradata_size >= 8) {
127 c->status[0].predictor = AV_RL32(avctx->extradata);
128 c->status[1].predictor = AV_RL32(avctx->extradata + 4);
129 }
130 break;
131 case AV_CODEC_ID_ADPCM_IMA_WS:
132 if (avctx->extradata && avctx->extradata_size >= 2)
133 c->vqa_version = AV_RL16(avctx->extradata);
134 break;
135 default:
136 break;
137 }
138
139 switch(avctx->codec->id) {
140 case AV_CODEC_ID_ADPCM_IMA_QT:
141 case AV_CODEC_ID_ADPCM_IMA_WAV:
142 case AV_CODEC_ID_ADPCM_4XM:
143 case AV_CODEC_ID_ADPCM_XA:
144 case AV_CODEC_ID_ADPCM_EA_R1:
145 case AV_CODEC_ID_ADPCM_EA_R2:
146 case AV_CODEC_ID_ADPCM_EA_R3:
147 case AV_CODEC_ID_ADPCM_EA_XAS:
148 case AV_CODEC_ID_ADPCM_THP:
149 avctx->sample_fmt = AV_SAMPLE_FMT_S16P;
150 break;
151 case AV_CODEC_ID_ADPCM_IMA_WS:
152 avctx->sample_fmt = c->vqa_version == 3 ? AV_SAMPLE_FMT_S16P :
153 AV_SAMPLE_FMT_S16;
154 break;
155 default:
156 avctx->sample_fmt = AV_SAMPLE_FMT_S16;
157 }
158
159 avcodec_get_frame_defaults(&c->frame);
160 avctx->coded_frame = &c->frame;
161
162 return 0;
163 }
164
165 static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift)
166 {
167 int step_index;
168 int predictor;
169 int sign, delta, diff, step;
170
171 step = ff_adpcm_step_table[c->step_index];
172 step_index = c->step_index + ff_adpcm_index_table[(unsigned)nibble];
173 step_index = av_clip(step_index, 0, 88);
174
175 sign = nibble & 8;
176 delta = nibble & 7;
177 /* perform direct multiplication instead of series of jumps proposed by
178 * the reference ADPCM implementation since modern CPUs can do the mults
179 * quickly enough */
180 diff = ((2 * delta + 1) * step) >> shift;
181 predictor = c->predictor;
182 if (sign) predictor -= diff;
183 else predictor += diff;
184
185 c->predictor = av_clip_int16(predictor);
186 c->step_index = step_index;
187
188 return (short)c->predictor;
189 }
190
191 static inline int adpcm_ima_qt_expand_nibble(ADPCMChannelStatus *c, int nibble, int shift)
192 {
193 int step_index;
194 int predictor;
195 int diff, step;
196
197 step = ff_adpcm_step_table[c->step_index];
198 step_index = c->step_index + ff_adpcm_index_table[nibble];
199 step_index = av_clip(step_index, 0, 88);
200
201 diff = step >> 3;
202 if (nibble & 4) diff += step;
203 if (nibble & 2) diff += step >> 1;
204 if (nibble & 1) diff += step >> 2;
205
206 if (nibble & 8)
207 predictor = c->predictor - diff;
208 else
209 predictor = c->predictor + diff;
210
211 c->predictor = av_clip_int16(predictor);
212 c->step_index = step_index;
213
214 return c->predictor;
215 }
216
217 static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, int nibble)
218 {
219 int predictor;
220
221 predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64;
222 predictor += ((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
223
224 c->sample2 = c->sample1;
225 c->sample1 = av_clip_int16(predictor);
226 c->idelta = (ff_adpcm_AdaptationTable[(int)nibble] * c->idelta) >> 8;
227 if (c->idelta < 16) c->idelta = 16;
228
229 return c->sample1;
230 }
231
232 static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble)
233 {
234 int sign, delta, diff;
235 int new_step;
236
237 sign = nibble & 8;
238 delta = nibble & 7;
239 /* perform direct multiplication instead of series of jumps proposed by
240 * the reference ADPCM implementation since modern CPUs can do the mults
241 * quickly enough */
242 diff = ((2 * delta + 1) * c->step) >> 3;
243 /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */
244 c->predictor = ((c->predictor * 254) >> 8) + (sign ? -diff : diff);
245 c->predictor = av_clip_int16(c->predictor);
246 /* calculate new step and clamp it to range 511..32767 */
247 new_step = (ff_adpcm_AdaptationTable[nibble & 7] * c->step) >> 8;
248 c->step = av_clip(new_step, 511, 32767);
249
250 return (short)c->predictor;
251 }
252
253 static inline short adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, char nibble, int size, int shift)
254 {
255 int sign, delta, diff;
256
257 sign = nibble & (1<<(size-1));
258 delta = nibble & ((1<<(size-1))-1);
259 diff = delta << (7 + c->step + shift);
260
261 /* clamp result */
262 c->predictor = av_clip(c->predictor + (sign ? -diff : diff), -16384,16256);
263
264 /* calculate new step */
265 if (delta >= (2*size - 3) && c->step < 3)
266 c->step++;
267 else if (delta == 0 && c->step > 0)
268 c->step--;
269
270 return (short) c->predictor;
271 }
272
273 static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned char nibble)
274 {
275 if(!c->step) {
276 c->predictor = 0;
277 c->step = 127;
278 }
279
280 c->predictor += (c->step * ff_adpcm_yamaha_difflookup[nibble]) / 8;
281 c->predictor = av_clip_int16(c->predictor);
282 c->step = (c->step * ff_adpcm_yamaha_indexscale[nibble]) >> 8;
283 c->step = av_clip(c->step, 127, 24567);
284 return c->predictor;
285 }
286
287 static int xa_decode(AVCodecContext *avctx, int16_t *out0, int16_t *out1,
288 const uint8_t *in, ADPCMChannelStatus *left,
289 ADPCMChannelStatus *right, int channels, int sample_offset)
290 {
291 int i, j;
292 int shift,filter,f0,f1;
293 int s_1,s_2;
294 int d,s,t;
295
296 out0 += sample_offset;
297 if (channels == 1)
298 out1 = out0 + 28;
299 else
300 out1 += sample_offset;
301
302 for(i=0;i<4;i++) {
303 shift = 12 - (in[4+i*2] & 15);
304 filter = in[4+i*2] >> 4;
305 if (filter > 4) {
306 av_log(avctx, AV_LOG_ERROR,
307 "Invalid XA-ADPCM filter %d (max. allowed is 4)\n",
308 filter);
309 return AVERROR_INVALIDDATA;
310 }
311 f0 = xa_adpcm_table[filter][0];
312 f1 = xa_adpcm_table[filter][1];
313
314 s_1 = left->sample1;
315 s_2 = left->sample2;
316
317 for(j=0;j<28;j++) {
318 d = in[16+i+j*4];
319
320 t = sign_extend(d, 4);
321 s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
322 s_2 = s_1;
323 s_1 = av_clip_int16(s);
324 out0[j] = s_1;
325 }
326
327 if (channels == 2) {
328 left->sample1 = s_1;
329 left->sample2 = s_2;
330 s_1 = right->sample1;
331 s_2 = right->sample2;
332 }
333
334 shift = 12 - (in[5+i*2] & 15);
335 filter = in[5+i*2] >> 4;
336 if (filter > 4) {
337 av_log(avctx, AV_LOG_ERROR,
338 "Invalid XA-ADPCM filter %d (max. allowed is 4)\n",
339 filter);
340 return AVERROR_INVALIDDATA;
341 }
342 f0 = xa_adpcm_table[filter][0];
343 f1 = xa_adpcm_table[filter][1];
344
345 for(j=0;j<28;j++) {
346 d = in[16+i+j*4];
347
348 t = sign_extend(d >> 4, 4);
349 s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
350 s_2 = s_1;
351 s_1 = av_clip_int16(s);
352 out1[j] = s_1;
353 }
354
355 if (channels == 2) {
356 right->sample1 = s_1;
357 right->sample2 = s_2;
358 } else {
359 left->sample1 = s_1;
360 left->sample2 = s_2;
361 }
362
363 out0 += 28 * (3 - channels);
364 out1 += 28 * (3 - channels);
365 }
366
367 return 0;
368 }
369
370 static void adpcm_swf_decode(AVCodecContext *avctx, const uint8_t *buf, int buf_size, int16_t *samples)
371 {
372 ADPCMDecodeContext *c = avctx->priv_data;
373 GetBitContext gb;
374 const int *table;
375 int k0, signmask, nb_bits, count;
376 int size = buf_size*8;
377 int i;
378
379 init_get_bits(&gb, buf, size);
380
381 //read bits & initial values
382 nb_bits = get_bits(&gb, 2)+2;
383 table = swf_index_tables[nb_bits-2];
384 k0 = 1 << (nb_bits-2);
385 signmask = 1 << (nb_bits-1);
386
387 while (get_bits_count(&gb) <= size - 22*avctx->channels) {
388 for (i = 0; i < avctx->channels; i++) {
389 *samples++ = c->status[i].predictor = get_sbits(&gb, 16);
390 c->status[i].step_index = get_bits(&gb, 6);
391 }
392
393 for (count = 0; get_bits_count(&gb) <= size - nb_bits*avctx->channels && count < 4095; count++) {
394 int i;
395
396 for (i = 0; i < avctx->channels; i++) {
397 // similar to IMA adpcm
398 int delta = get_bits(&gb, nb_bits);
399 int step = ff_adpcm_step_table[c->status[i].step_index];
400 long vpdiff = 0; // vpdiff = (delta+0.5)*step/4
401 int k = k0;
402
403 do {
404 if (delta & k)
405 vpdiff += step;
406 step >>= 1;
407 k >>= 1;
408 } while(k);
409 vpdiff += step;
410
411 if (delta & signmask)
412 c->status[i].predictor -= vpdiff;
413 else
414 c->status[i].predictor += vpdiff;
415
416 c->status[i].step_index += table[delta & (~signmask)];
417
418 c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88);
419 c->status[i].predictor = av_clip_int16(c->status[i].predictor);
420
421 *samples++ = c->status[i].predictor;
422 }
423 }
424 }
425 }
426
427 /**
428 * Get the number of samples that will be decoded from the packet.
429 * In one case, this is actually the maximum number of samples possible to
430 * decode with the given buf_size.
431 *
432 * @param[out] coded_samples set to the number of samples as coded in the
433 * packet, or 0 if the codec does not encode the
434 * number of samples in each frame.
435 */
436 static int get_nb_samples(AVCodecContext *avctx, GetByteContext *gb,
437 int buf_size, int *coded_samples)
438 {
439 ADPCMDecodeContext *s = avctx->priv_data;
440 int nb_samples = 0;
441 int ch = avctx->channels;
442 int has_coded_samples = 0;
443 int header_size;
444
445 *coded_samples = 0;
446
447 switch (avctx->codec->id) {
448 /* constant, only check buf_size */
449 case AV_CODEC_ID_ADPCM_EA_XAS:
450 if (buf_size < 76 * ch)
451 return 0;
452 nb_samples = 128;
453 break;
454 case AV_CODEC_ID_ADPCM_IMA_QT:
455 if (buf_size < 34 * ch)
456 return 0;
457 nb_samples = 64;
458 break;
459 /* simple 4-bit adpcm */
460 case AV_CODEC_ID_ADPCM_CT:
461 case AV_CODEC_ID_ADPCM_IMA_APC:
462 case AV_CODEC_ID_ADPCM_IMA_EA_SEAD:
463 case AV_CODEC_ID_ADPCM_IMA_WS:
464 case AV_CODEC_ID_ADPCM_YAMAHA:
465 nb_samples = buf_size * 2 / ch;
466 break;
467 }
468 if (nb_samples)
469 return nb_samples;
470
471 /* simple 4-bit adpcm, with header */
472 header_size = 0;
473 switch (avctx->codec->id) {
474 case AV_CODEC_ID_ADPCM_4XM:
475 case AV_CODEC_ID_ADPCM_IMA_ISS: header_size = 4 * ch; break;
476 case AV_CODEC_ID_ADPCM_IMA_AMV: header_size = 8; break;
477 case AV_CODEC_ID_ADPCM_IMA_SMJPEG: header_size = 4; break;
478 }
479 if (header_size > 0)
480 return (buf_size - header_size) * 2 / ch;
481
482 /* more complex formats */
483 switch (avctx->codec->id) {
484 case AV_CODEC_ID_ADPCM_EA:
485 has_coded_samples = 1;
486 *coded_samples = bytestream2_get_le32(gb);
487 *coded_samples -= *coded_samples % 28;
488 nb_samples = (buf_size - 12) / 30 * 28;
489 break;
490 case AV_CODEC_ID_ADPCM_IMA_EA_EACS:
491 has_coded_samples = 1;
492 *coded_samples = bytestream2_get_le32(gb);
493 nb_samples = (buf_size - (4 + 8 * ch)) * 2 / ch;
494 break;
495 case AV_CODEC_ID_ADPCM_EA_MAXIS_XA:
496 nb_samples = (buf_size - ch) / ch * 2;
497 break;
498 case AV_CODEC_ID_ADPCM_EA_R1:
499 case AV_CODEC_ID_ADPCM_EA_R2:
500 case AV_CODEC_ID_ADPCM_EA_R3:
501 /* maximum number of samples */
502 /* has internal offsets and a per-frame switch to signal raw 16-bit */
503 has_coded_samples = 1;
504 switch (avctx->codec->id) {
505 case AV_CODEC_ID_ADPCM_EA_R1:
506 header_size = 4 + 9 * ch;
507 *coded_samples = bytestream2_get_le32(gb);
508 break;
509 case AV_CODEC_ID_ADPCM_EA_R2:
510 header_size = 4 + 5 * ch;
511 *coded_samples = bytestream2_get_le32(gb);
512 break;
513 case AV_CODEC_ID_ADPCM_EA_R3:
514 header_size = 4 + 5 * ch;
515 *coded_samples = bytestream2_get_be32(gb);
516 break;
517 }
518 *coded_samples -= *coded_samples % 28;
519 nb_samples = (buf_size - header_size) * 2 / ch;
520 nb_samples -= nb_samples % 28;
521 break;
522 case AV_CODEC_ID_ADPCM_IMA_DK3:
523 if (avctx->block_align > 0)
524 buf_size = FFMIN(buf_size, avctx->block_align);
525 nb_samples = ((buf_size - 16) * 2 / 3 * 4) / ch;
526 break;
527 case AV_CODEC_ID_ADPCM_IMA_DK4:
528 if (avctx->block_align > 0)
529 buf_size = FFMIN(buf_size, avctx->block_align);
530 nb_samples = 1 + (buf_size - 4 * ch) * 2 / ch;
531 break;
532 case AV_CODEC_ID_ADPCM_IMA_WAV:
533 if (avctx->block_align > 0)
534 buf_size = FFMIN(buf_size, avctx->block_align);
535 nb_samples = 1 + (buf_size - 4 * ch) / (4 * ch) * 8;
536 break;
537 case AV_CODEC_ID_ADPCM_MS:
538 if (avctx->block_align > 0)
539 buf_size = FFMIN(buf_size, avctx->block_align);
540 nb_samples = 2 + (buf_size - 7 * ch) * 2 / ch;
541 break;
542 case AV_CODEC_ID_ADPCM_SBPRO_2:
543 case AV_CODEC_ID_ADPCM_SBPRO_3:
544 case AV_CODEC_ID_ADPCM_SBPRO_4:
545 {
546 int samples_per_byte;
547 switch (avctx->codec->id) {
548 case AV_CODEC_ID_ADPCM_SBPRO_2: samples_per_byte = 4; break;
549 case AV_CODEC_ID_ADPCM_SBPRO_3: samples_per_byte = 3; break;
550 case AV_CODEC_ID_ADPCM_SBPRO_4: samples_per_byte = 2; break;
551 }
552 if (!s->status[0].step_index) {
553 nb_samples++;
554 buf_size -= ch;
555 }
556 nb_samples += buf_size * samples_per_byte / ch;
557 break;
558 }
559 case AV_CODEC_ID_ADPCM_SWF:
560 {
561 int buf_bits = buf_size * 8 - 2;
562 int nbits = (bytestream2_get_byte(gb) >> 6) + 2;
563 int block_hdr_size = 22 * ch;
564 int block_size = block_hdr_size + nbits * ch * 4095;
565 int nblocks = buf_bits / block_size;
566 int bits_left = buf_bits - nblocks * block_size;
567 nb_samples = nblocks * 4096;
568 if (bits_left >= block_hdr_size)
569 nb_samples += 1 + (bits_left - block_hdr_size) / (nbits * ch);
570 break;
571 }
572 case AV_CODEC_ID_ADPCM_THP:
573 has_coded_samples = 1;
574 bytestream2_skip(gb, 4); // channel size
575 *coded_samples = bytestream2_get_be32(gb);
576 *coded_samples -= *coded_samples % 14;
577 nb_samples = (buf_size - 80) / (8 * ch) * 14;
578 break;
579 case AV_CODEC_ID_ADPCM_XA:
580 nb_samples = (buf_size / 128) * 224 / ch;
581 break;
582 }
583
584 /* validate coded sample count */
585 if (has_coded_samples && (*coded_samples <= 0 || *coded_samples > nb_samples))
586 return AVERROR_INVALIDDATA;
587
588 return nb_samples;
589 }
590
591 static int adpcm_decode_frame(AVCodecContext *avctx, void *data,
592 int *got_frame_ptr, AVPacket *avpkt)
593 {
594 const uint8_t *buf = avpkt->data;
595 int buf_size = avpkt->size;
596 ADPCMDecodeContext *c = avctx->priv_data;
597 ADPCMChannelStatus *cs;
598 int n, m, channel, i;
599 short *samples;
600 int16_t **samples_p;
601 int st; /* stereo */
602 int count1, count2;
603 int nb_samples, coded_samples, ret;
604 GetByteContext gb;
605
606 bytestream2_init(&gb, buf, buf_size);
607 nb_samples = get_nb_samples(avctx, &gb, buf_size, &coded_samples);
608 if (nb_samples <= 0) {
609 av_log(avctx, AV_LOG_ERROR, "invalid number of samples in packet\n");
610 return AVERROR_INVALIDDATA;
611 }
612
613 /* get output buffer */
614 c->frame.nb_samples = nb_samples;
615 if ((ret = ff_get_buffer(avctx, &c->frame)) < 0) {
616 av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
617 return ret;
618 }
619 samples = (short *)c->frame.data[0];
620 samples_p = (int16_t **)c->frame.extended_data;
621
622 /* use coded_samples when applicable */
623 /* it is always <= nb_samples, so the output buffer will be large enough */
624 if (coded_samples) {
625 if (coded_samples != nb_samples)
626 av_log(avctx, AV_LOG_WARNING, "mismatch in coded sample count\n");
627 c->frame.nb_samples = nb_samples = coded_samples;
628 }
629
630 st = avctx->channels == 2 ? 1 : 0;
631
632 switch(avctx->codec->id) {
633 case AV_CODEC_ID_ADPCM_IMA_QT:
634 /* In QuickTime, IMA is encoded by chunks of 34 bytes (=64 samples).
635 Channel data is interleaved per-chunk. */
636 for (channel = 0; channel < avctx->channels; channel++) {
637 int predictor;
638 int step_index;
639 cs = &(c->status[channel]);
640 /* (pppppp) (piiiiiii) */
641
642 /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
643 predictor = sign_extend(bytestream2_get_be16u(&gb), 16);
644 step_index = predictor & 0x7F;
645 predictor &= ~0x7F;
646
647 if (cs->step_index == step_index) {
648 int diff = predictor - cs->predictor;
649 if (diff < 0)
650 diff = - diff;
651 if (diff > 0x7f)
652 goto update;
653 } else {
654 update:
655 cs->step_index = step_index;
656 cs->predictor = predictor;
657 }
658
659 if (cs->step_index > 88u){
660 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
661 channel, cs->step_index);
662 return AVERROR_INVALIDDATA;
663 }
664
665 samples = samples_p[channel];
666
667 for (m = 0; m < 64; m += 2) {
668 int byte = bytestream2_get_byteu(&gb);
669 samples[m ] = adpcm_ima_qt_expand_nibble(cs, byte & 0x0F, 3);
670 samples[m + 1] = adpcm_ima_qt_expand_nibble(cs, byte >> 4 , 3);
671 }
672 }
673 break;
674 case AV_CODEC_ID_ADPCM_IMA_WAV:
675 for(i=0; i<avctx->channels; i++){
676 cs = &(c->status[i]);
677 cs->predictor = samples_p[i][0] = sign_extend(bytestream2_get_le16u(&gb), 16);
678
679 cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
680 if (cs->step_index > 88u){
681 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
682 i, cs->step_index);
683 return AVERROR_INVALIDDATA;
684 }
685 }
686
687 for (n = 0; n < (nb_samples - 1) / 8; n++) {
688 for (i = 0; i < avctx->channels; i++) {
689 cs = &c->status[i];
690 samples = &samples_p[i][1 + n * 8];
691 for (m = 0; m < 8; m += 2) {
692 int v = bytestream2_get_byteu(&gb);
693 samples[m ] = adpcm_ima_expand_nibble(cs, v & 0x0F, 3);
694 samples[m + 1] = adpcm_ima_expand_nibble(cs, v >> 4 , 3);
695 }
696 }
697 }
698 break;
699 case AV_CODEC_ID_ADPCM_4XM:
700 for (i = 0; i < avctx->channels; i++)
701 c->status[i].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
702
703 for (i = 0; i < avctx->channels; i++) {
704 c->status[i].step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
705 if (c->status[i].step_index > 88u) {
706 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
707 i, c->status[i].step_index);
708 return AVERROR_INVALIDDATA;
709 }
710 }
711
712 for (i = 0; i < avctx->channels; i++) {
713 samples = (int16_t *)c->frame.data[i];
714 cs = &c->status[i];
715 for (n = nb_samples >> 1; n > 0; n--) {
716 int v = bytestream2_get_byteu(&gb);
717 *samples++ = adpcm_ima_expand_nibble(cs, v & 0x0F, 4);
718 *samples++ = adpcm_ima_expand_nibble(cs, v >> 4 , 4);
719 }
720 }
721 break;
722 case AV_CODEC_ID_ADPCM_MS:
723 {
724 int block_predictor;
725
726 block_predictor = bytestream2_get_byteu(&gb);
727 if (block_predictor > 6) {
728 av_log(avctx, AV_LOG_ERROR, "ERROR: block_predictor[0] = %d\n",
729 block_predictor);
730 return AVERROR_INVALIDDATA;
731 }
732 c->status[0].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor];
733 c->status[0].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor];
734 if (st) {
735 block_predictor = bytestream2_get_byteu(&gb);
736 if (block_predictor > 6) {
737 av_log(avctx, AV_LOG_ERROR, "ERROR: block_predictor[1] = %d\n",
738 block_predictor);
739 return AVERROR_INVALIDDATA;
740 }
741 c->status[1].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor];
742 c->status[1].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor];
743 }
744 c->status[0].idelta = sign_extend(bytestream2_get_le16u(&gb), 16);
745 if (st){
746 c->status[1].idelta = sign_extend(bytestream2_get_le16u(&gb), 16);
747 }
748
749 c->status[0].sample1 = sign_extend(bytestream2_get_le16u(&gb), 16);
750 if (st) c->status[1].sample1 = sign_extend(bytestream2_get_le16u(&gb), 16);
751 c->status[0].sample2 = sign_extend(bytestream2_get_le16u(&gb), 16);
752 if (st) c->status[1].sample2 = sign_extend(bytestream2_get_le16u(&gb), 16);
753
754 *samples++ = c->status[0].sample2;
755 if (st) *samples++ = c->status[1].sample2;
756 *samples++ = c->status[0].sample1;
757 if (st) *samples++ = c->status[1].sample1;
758 for(n = (nb_samples - 2) >> (1 - st); n > 0; n--) {
759 int byte = bytestream2_get_byteu(&gb);
760 *samples++ = adpcm_ms_expand_nibble(&c->status[0 ], byte >> 4 );
761 *samples++ = adpcm_ms_expand_nibble(&c->status[st], byte & 0x0F);
762 }
763 break;
764 }
765 case AV_CODEC_ID_ADPCM_IMA_DK4:
766 for (channel = 0; channel < avctx->channels; channel++) {
767 cs = &c->status[channel];
768 cs->predictor = *samples++ = sign_extend(bytestream2_get_le16u(&gb), 16);
769 cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
770 if (cs->step_index > 88u){
771 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
772 channel, cs->step_index);
773 return AVERROR_INVALIDDATA;
774 }
775 }
776 for (n = nb_samples >> (1 - st); n > 0; n--) {
777 int v = bytestream2_get_byteu(&gb);
778 *samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v >> 4 , 3);
779 *samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3);
780 }
781 break;
782 case AV_CODEC_ID_ADPCM_IMA_DK3:
783 {
784 int last_byte = 0;
785 int nibble;
786 int decode_top_nibble_next = 0;
787 int diff_channel;
788 const int16_t *samples_end = samples + avctx->channels * nb_samples;
789
790 bytestream2_skipu(&gb, 10);
791 c->status[0].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
792 c->status[1].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
793 c->status[0].step_index = bytestream2_get_byteu(&gb);
794 c->status[1].step_index = bytestream2_get_byteu(&gb);
795 if (c->status[0].step_index > 88u || c->status[1].step_index > 88u){
796 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i/%i\n",
797 c->status[0].step_index, c->status[1].step_index);
798 return AVERROR_INVALIDDATA;
799 }
800 /* sign extend the predictors */
801 diff_channel = c->status[1].predictor;
802
803 /* DK3 ADPCM support macro */
804 #define DK3_GET_NEXT_NIBBLE() \
805 if (decode_top_nibble_next) { \
806 nibble = last_byte >> 4; \
807 decode_top_nibble_next = 0; \
808 } else { \
809 last_byte = bytestream2_get_byteu(&gb); \
810 nibble = last_byte & 0x0F; \
811 decode_top_nibble_next = 1; \
812 }
813
814 while (samples < samples_end) {
815
816 /* for this algorithm, c->status[0] is the sum channel and
817 * c->status[1] is the diff channel */
818
819 /* process the first predictor of the sum channel */
820 DK3_GET_NEXT_NIBBLE();
821 adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
822
823 /* process the diff channel predictor */
824 DK3_GET_NEXT_NIBBLE();
825 adpcm_ima_expand_nibble(&c->status[1], nibble, 3);
826
827 /* process the first pair of stereo PCM samples */
828 diff_channel = (diff_channel + c->status[1].predictor) / 2;
829 *samples++ = c->status[0].predictor + c->status[1].predictor;
830 *samples++ = c->status[0].predictor - c->status[1].predictor;
831
832 /* process the second predictor of the sum channel */
833 DK3_GET_NEXT_NIBBLE();
834 adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
835
836 /* process the second pair of stereo PCM samples */
837 diff_channel = (diff_channel + c->status[1].predictor) / 2;
838 *samples++ = c->status[0].predictor + c->status[1].predictor;
839 *samples++ = c->status[0].predictor - c->status[1].predictor;
840 }
841 break;
842 }
843 case AV_CODEC_ID_ADPCM_IMA_ISS:
844 for (channel = 0; channel < avctx->channels; channel++) {
845 cs = &c->status[channel];
846 cs->predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
847 cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
848 if (cs->step_index > 88u){
849 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
850 channel, cs->step_index);
851 return AVERROR_INVALIDDATA;
852 }
853 }
854
855 for (n = nb_samples >> (1 - st); n > 0; n--) {
856 int v1, v2;
857 int v = bytestream2_get_byteu(&gb);
858 /* nibbles are swapped for mono */
859 if (st) {
860 v1 = v >> 4;
861 v2 = v & 0x0F;
862 } else {
863 v2 = v >> 4;
864 v1 = v & 0x0F;
865 }
866 *samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v1, 3);
867 *samples++ = adpcm_ima_expand_nibble(&c->status[st], v2, 3);
868 }
869 break;
870 case AV_CODEC_ID_ADPCM_IMA_APC:
871 while (bytestream2_get_bytes_left(&gb) > 0) {
872 int v = bytestream2_get_byteu(&gb);
873 *samples++ = adpcm_ima_expand_nibble(&c->status[0], v >> 4 , 3);
874 *samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3);
875 }
876 break;
877 case AV_CODEC_ID_ADPCM_IMA_WS:
878 if (c->vqa_version == 3) {
879 for (channel = 0; channel < avctx->channels; channel++) {
880 int16_t *smp = samples_p[channel];
881
882 for (n = nb_samples / 2; n > 0; n--) {
883 int v = bytestream2_get_byteu(&gb);
884 *smp++ = adpcm_ima_expand_nibble(&c->status[channel], v >> 4 , 3);
885 *smp++ = adpcm_ima_expand_nibble(&c->status[channel], v & 0x0F, 3);
886 }
887 }
888 } else {
889 for (n = nb_samples / 2; n > 0; n--) {
890 for (channel = 0; channel < avctx->channels; channel++) {
891 int v = bytestream2_get_byteu(&gb);
892 *samples++ = adpcm_ima_expand_nibble(&c->status[channel], v >> 4 , 3);
893 samples[st] = adpcm_ima_expand_nibble(&c->status[channel], v & 0x0F, 3);
894 }
895 samples += avctx->channels;
896 }
897 }
898 bytestream2_seek(&gb, 0, SEEK_END);
899 break;
900 case AV_CODEC_ID_ADPCM_XA:
901 {
902 int16_t *out0 = samples_p[0];
903 int16_t *out1 = samples_p[1];
904 int samples_per_block = 28 * (3 - avctx->channels) * 4;
905 int sample_offset = 0;
906 while (bytestream2_get_bytes_left(&gb) >= 128) {
907 if ((ret = xa_decode(avctx, out0, out1, buf + bytestream2_tell(&gb),
908 &c->status[0], &c->status[1],
909 avctx->channels, sample_offset)) < 0)
910 return ret;
911 bytestream2_skipu(&gb, 128);
912 sample_offset += samples_per_block;
913 }
914 break;
915 }
916 case AV_CODEC_ID_ADPCM_IMA_EA_EACS:
917 for (i=0; i<=st; i++) {
918 c->status[i].step_index = bytestream2_get_le32u(&gb);
919 if (c->status[i].step_index > 88u) {
920 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
921 i, c->status[i].step_index);
922 return AVERROR_INVALIDDATA;
923 }
924 }
925 for (i=0; i<=st; i++)
926 c->status[i].predictor = bytestream2_get_le32u(&gb);
927
928 for (n = nb_samples >> (1 - st); n > 0; n--) {
929 int byte = bytestream2_get_byteu(&gb);
930 *samples++ = adpcm_ima_expand_nibble(&c->status[0], byte >> 4, 3);
931 *samples++ = adpcm_ima_expand_nibble(&c->status[st], byte & 0x0F, 3);
932 }
933 break;
934 case AV_CODEC_ID_ADPCM_IMA_EA_SEAD:
935 for (n = nb_samples >> (1 - st); n > 0; n--) {
936 int byte = bytestream2_get_byteu(&gb);
937 *samples++ = adpcm_ima_expand_nibble(&c->status[0], byte >> 4, 6);
938 *samples++ = adpcm_ima_expand_nibble(&c->status[st], byte & 0x0F, 6);
939 }
940 break;
941 case AV_CODEC_ID_ADPCM_EA:
942 {
943 int previous_left_sample, previous_right_sample;
944 int current_left_sample, current_right_sample;
945 int next_left_sample, next_right_sample;
946 int coeff1l, coeff2l, coeff1r, coeff2r;
947 int shift_left, shift_right;
948
949 /* Each EA ADPCM frame has a 12-byte header followed by 30-byte pieces,
950 each coding 28 stereo samples. */
951
952 current_left_sample = sign_extend(bytestream2_get_le16u(&gb), 16);
953 previous_left_sample = sign_extend(bytestream2_get_le16u(&gb), 16);
954 current_right_sample = sign_extend(bytestream2_get_le16u(&gb), 16);
955 previous_right_sample = sign_extend(bytestream2_get_le16u(&gb), 16);
956
957 for (count1 = 0; count1 < nb_samples / 28; count1++) {
958 int byte = bytestream2_get_byteu(&gb);
959 coeff1l = ea_adpcm_table[ byte >> 4 ];
960 coeff2l = ea_adpcm_table[(byte >> 4 ) + 4];
961 coeff1r = ea_adpcm_table[ byte & 0x0F];
962 coeff2r = ea_adpcm_table[(byte & 0x0F) + 4];
963
964 byte = bytestream2_get_byteu(&gb);
965 shift_left = 20 - (byte >> 4);
966 shift_right = 20 - (byte & 0x0F);
967
968 for (count2 = 0; count2 < 28; count2++) {
969 byte = bytestream2_get_byteu(&gb);
970 next_left_sample = sign_extend(byte >> 4, 4) << shift_left;
971 next_right_sample = sign_extend(byte, 4) << shift_right;
972
973 next_left_sample = (next_left_sample +
974 (current_left_sample * coeff1l) +
975 (previous_left_sample * coeff2l) + 0x80) >> 8;
976 next_right_sample = (next_right_sample +
977 (current_right_sample * coeff1r) +
978 (previous_right_sample * coeff2r) + 0x80) >> 8;
979
980 previous_left_sample = current_left_sample;
981 current_left_sample = av_clip_int16(next_left_sample);
982 previous_right_sample = current_right_sample;
983 current_right_sample = av_clip_int16(next_right_sample);
984 *samples++ = current_left_sample;
985 *samples++ = current_right_sample;
986 }
987 }
988
989 bytestream2_skip(&gb, 2); // Skip terminating 0x0000
990
991 break;
992 }
993 case AV_CODEC_ID_ADPCM_EA_MAXIS_XA:
994 {
995 int coeff[2][2], shift[2];
996
997 for(channel = 0; channel < avctx->channels; channel++) {
998 int byte = bytestream2_get_byteu(&gb);
999 for (i=0; i<2; i++)
1000 coeff[channel][i] = ea_adpcm_table[(byte >> 4) + 4*i];
1001 shift[channel] = 20 - (byte & 0x0F);
1002 }
1003 for (count1 = 0; count1 < nb_samples / 2; count1++) {
1004 int byte[2];
1005
1006 byte[0] = bytestream2_get_byteu(&gb);
1007 if (st) byte[1] = bytestream2_get_byteu(&gb);
1008 for(i = 4; i >= 0; i-=4) { /* Pairwise samples LL RR (st) or LL LL (mono) */
1009 for(channel = 0; channel < avctx->channels; channel++) {
1010 int sample = sign_extend(byte[channel] >> i, 4) << shift[channel];
1011 sample = (sample +
1012 c->status[channel].sample1 * coeff[channel][0] +
1013 c->status[channel].sample2 * coeff[channel][1] + 0x80) >> 8;
1014 c->status[channel].sample2 = c->status[channel].sample1;
1015 c->status[channel].sample1 = av_clip_int16(sample);
1016 *samples++ = c->status[channel].sample1;
1017 }
1018 }
1019 }
1020 bytestream2_seek(&gb, 0, SEEK_END);
1021 break;
1022 }
1023 case AV_CODEC_ID_ADPCM_EA_R1:
1024 case AV_CODEC_ID_ADPCM_EA_R2:
1025 case AV_CODEC_ID_ADPCM_EA_R3: {
1026 /* channel numbering
1027 2chan: 0=fl, 1=fr
1028 4chan: 0=fl, 1=rl, 2=fr, 3=rr
1029 6chan: 0=fl, 1=c, 2=fr, 3=rl, 4=rr, 5=sub */
1030 const int big_endian = avctx->codec->id == AV_CODEC_ID_ADPCM_EA_R3;
1031 int previous_sample, current_sample, next_sample;
1032 int coeff1, coeff2;
1033 int shift;
1034 unsigned int channel;
1035 uint16_t *samplesC;
1036 int count = 0;
1037 int offsets[6];
1038
1039 for (channel=0; channel<avctx->channels; channel++)
1040 offsets[channel] = (big_endian ? bytestream2_get_be32(&gb) :
1041 bytestream2_get_le32(&gb)) +
1042 (avctx->channels + 1) * 4;
1043
1044 for (channel=0; channel<avctx->channels; channel++) {
1045 bytestream2_seek(&gb, offsets[channel], SEEK_SET);
1046 samplesC = samples_p[channel];
1047
1048 if (avctx->codec->id == AV_CODEC_ID_ADPCM_EA_R1) {
1049 current_sample = sign_extend(bytestream2_get_le16(&gb), 16);
1050 previous_sample = sign_extend(bytestream2_get_le16(&gb), 16);
1051 } else {
1052 current_sample = c->status[channel].predictor;
1053 previous_sample = c->status[channel].prev_sample;
1054 }
1055
1056 for (count1 = 0; count1 < nb_samples / 28; count1++) {
1057 int byte = bytestream2_get_byte(&gb);
1058 if (byte == 0xEE) { /* only seen in R2 and R3 */
1059 current_sample = sign_extend(bytestream2_get_be16(&gb), 16);
1060 previous_sample = sign_extend(bytestream2_get_be16(&gb), 16);
1061
1062 for (count2=0; count2<28; count2++)
1063 *samplesC++ = sign_extend(bytestream2_get_be16(&gb), 16);
1064 } else {
1065 coeff1 = ea_adpcm_table[ byte >> 4 ];
1066 coeff2 = ea_adpcm_table[(byte >> 4) + 4];
1067 shift = 20 - (byte & 0x0F);
1068
1069 for (count2=0; count2<28; count2++) {
1070 if (count2 & 1)
1071 next_sample = sign_extend(byte, 4) << shift;
1072 else {
1073 byte = bytestream2_get_byte(&gb);
1074 next_sample = sign_extend(byte >> 4, 4) << shift;
1075 }
1076
1077 next_sample += (current_sample * coeff1) +
1078 (previous_sample * coeff2);
1079 next_sample = av_clip_int16(next_sample >> 8);
1080
1081 previous_sample = current_sample;
1082 current_sample = next_sample;
1083 *samplesC++ = current_sample;
1084 }
1085 }
1086 }
1087 if (!count) {
1088 count = count1;
1089 } else if (count != count1) {
1090 av_log(avctx, AV_LOG_WARNING, "per-channel sample count mismatch\n");
1091 count = FFMAX(count, count1);
1092 }
1093
1094 if (avctx->codec->id != AV_CODEC_ID_ADPCM_EA_R1) {
1095 c->status[channel].predictor = current_sample;
1096 c->status[channel].prev_sample = previous_sample;
1097 }
1098 }
1099
1100 c->frame.nb_samples = count * 28;
1101 bytestream2_seek(&gb, 0, SEEK_END);
1102 break;
1103 }
1104 case AV_CODEC_ID_ADPCM_EA_XAS:
1105 for (channel=0; channel<avctx->channels; channel++) {
1106 int coeff[2][4], shift[4];
1107 int16_t *s = samples_p[channel];
1108 for (n = 0; n < 4; n++, s += 32) {
1109 int val = sign_extend(bytestream2_get_le16u(&gb), 16);
1110 for (i=0; i<2; i++)
1111 coeff[i][n] = ea_adpcm_table[(val&0x0F)+4*i];
1112 s[0] = val & ~0x0F;
1113
1114 val = sign_extend(bytestream2_get_le16u(&gb), 16);
1115 shift[n] = 20 - (val & 0x0F);
1116 s[1] = val & ~0x0F;
1117 }
1118
1119 for (m=2; m<32; m+=2) {
1120 s = &samples_p[channel][m];
1121 for (n = 0; n < 4; n++, s += 32) {
1122 int level, pred;
1123 int byte = bytestream2_get_byteu(&gb);
1124
1125 level = sign_extend(byte >> 4, 4) << shift[n];
1126 pred = s[-1] * coeff[0][n] + s[-2] * coeff[1][n];
1127 s[0] = av_clip_int16((level + pred + 0x80) >> 8);
1128
1129 level = sign_extend(byte, 4) << shift[n];
1130 pred = s[0] * coeff[0][n] + s[-1] * coeff[1][n];
1131 s[1] = av_clip_int16((level + pred + 0x80) >> 8);
1132 }
1133 }
1134 }
1135 break;
1136 case AV_CODEC_ID_ADPCM_IMA_AMV:
1137 case AV_CODEC_ID_ADPCM_IMA_SMJPEG:
1138 if (avctx->codec->id == AV_CODEC_ID_ADPCM_IMA_AMV) {
1139 c->status[0].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
1140 c->status[0].step_index = bytestream2_get_le16u(&gb);
1141 bytestream2_skipu(&gb, 4);
1142 } else {
1143 c->status[0].predictor = sign_extend(bytestream2_get_be16u(&gb), 16);
1144 c->status[0].step_index = bytestream2_get_byteu(&gb);
1145 bytestream2_skipu(&gb, 1);
1146 }
1147 if (c->status[0].step_index > 88u) {
1148 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n",
1149 c->status[0].step_index);
1150 return AVERROR_INVALIDDATA;
1151 }
1152
1153 for (n = nb_samples >> (1 - st); n > 0; n--) {
1154 int hi, lo, v = bytestream2_get_byteu(&gb);
1155
1156 if (avctx->codec->id == AV_CODEC_ID_ADPCM_IMA_AMV) {
1157 hi = v & 0x0F;
1158 lo = v >> 4;
1159 } else {
1160 lo = v & 0x0F;
1161 hi = v >> 4;
1162 }
1163
1164 *samples++ = adpcm_ima_expand_nibble(&c->status[0], lo, 3);
1165 *samples++ = adpcm_ima_expand_nibble(&c->status[0], hi, 3);
1166 }
1167 break;
1168 case AV_CODEC_ID_ADPCM_CT:
1169 for (n = nb_samples >> (1 - st); n > 0; n--) {
1170 int v = bytestream2_get_byteu(&gb);
1171 *samples++ = adpcm_ct_expand_nibble(&c->status[0 ], v >> 4 );
1172 *samples++ = adpcm_ct_expand_nibble(&c->status[st], v & 0x0F);
1173 }
1174 break;
1175 case AV_CODEC_ID_ADPCM_SBPRO_4:
1176 case AV_CODEC_ID_ADPCM_SBPRO_3:
1177 case AV_CODEC_ID_ADPCM_SBPRO_2:
1178 if (!c->status[0].step_index) {
1179 /* the first byte is a raw sample */
1180 *samples++ = 128 * (bytestream2_get_byteu(&gb) - 0x80);
1181 if (st)
1182 *samples++ = 128 * (bytestream2_get_byteu(&gb) - 0x80);
1183 c->status[0].step_index = 1;
1184 nb_samples--;
1185 }
1186 if (avctx->codec->id == AV_CODEC_ID_ADPCM_SBPRO_4) {
1187 for (n = nb_samples >> (1 - st); n > 0; n--) {
1188 int byte = bytestream2_get_byteu(&gb);
1189 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1190 byte >> 4, 4, 0);
1191 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1192 byte & 0x0F, 4, 0);
1193 }
1194 } else if (avctx->codec->id == AV_CODEC_ID_ADPCM_SBPRO_3) {
1195 for (n = nb_samples / 3; n > 0; n--) {
1196 int byte = bytestream2_get_byteu(&gb);
1197 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1198 byte >> 5 , 3, 0);
1199 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1200 (byte >> 2) & 0x07, 3, 0);
1201 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1202 byte & 0x03, 2, 0);
1203 }
1204 } else {
1205 for (n = nb_samples >> (2 - st); n > 0; n--) {
1206 int byte = bytestream2_get_byteu(&gb);
1207 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1208 byte >> 6 , 2, 2);
1209 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1210 (byte >> 4) & 0x03, 2, 2);
1211 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1212 (byte >> 2) & 0x03, 2, 2);
1213 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1214 byte & 0x03, 2, 2);
1215 }
1216 }
1217 break;
1218 case AV_CODEC_ID_ADPCM_SWF:
1219 adpcm_swf_decode(avctx, buf, buf_size, samples);
1220 bytestream2_seek(&gb, 0, SEEK_END);
1221 break;
1222 case AV_CODEC_ID_ADPCM_YAMAHA:
1223 for (n = nb_samples >> (1 - st); n > 0; n--) {
1224 int v = bytestream2_get_byteu(&gb);
1225 *samples++ = adpcm_yamaha_expand_nibble(&c->status[0 ], v & 0x0F);
1226 *samples++ = adpcm_yamaha_expand_nibble(&c->status[st], v >> 4 );
1227 }
1228 break;
1229 case AV_CODEC_ID_ADPCM_THP:
1230 {
1231 int table[2][16];
1232 int prev[2][2];
1233 int ch;
1234
1235 for (i = 0; i < 2; i++)
1236 for (n = 0; n < 16; n++)
1237 table[i][n] = sign_extend(bytestream2_get_be16u(&gb), 16);
1238
1239 /* Initialize the previous sample. */
1240 for (i = 0; i < 2; i++)
1241 for (n = 0; n < 2; n++)
1242 prev[i][n] = sign_extend(bytestream2_get_be16u(&gb), 16);
1243
1244 for (ch = 0; ch <= st; ch++) {
1245 samples = samples_p[ch];
1246
1247 /* Read in every sample for this channel. */
1248 for (i = 0; i < nb_samples / 14; i++) {
1249 int byte = bytestream2_get_byteu(&gb);
1250 int index = (byte >> 4) & 7;
1251 unsigned int exp = byte & 0x0F;
1252 int factor1 = table[ch][index * 2];
1253 int factor2 = table[ch][index * 2 + 1];
1254
1255 /* Decode 14 samples. */
1256 for (n = 0; n < 14; n++) {
1257 int32_t sampledat;
1258
1259 if (n & 1) {
1260 sampledat = sign_extend(byte, 4);
1261 } else {
1262 byte = bytestream2_get_byteu(&gb);
1263 sampledat = sign_extend(byte >> 4, 4);
1264 }
1265
1266 sampledat = ((prev[ch][0]*factor1
1267 + prev[ch][1]*factor2) >> 11) + (sampledat << exp);
1268 *samples = av_clip_int16(sampledat);
1269 prev[ch][1] = prev[ch][0];
1270 prev[ch][0] = *samples++;
1271 }
1272 }
1273 }
1274 break;
1275 }
1276
1277 default:
1278 return -1;
1279 }
1280
1281 *got_frame_ptr = 1;
1282 *(AVFrame *)data = c->frame;
1283
1284 return bytestream2_tell(&gb);
1285 }
1286
1287
1288 static const enum AVSampleFormat sample_fmts_s16[] = { AV_SAMPLE_FMT_S16,
1289 AV_SAMPLE_FMT_NONE };
1290 static const enum AVSampleFormat sample_fmts_s16p[] = { AV_SAMPLE_FMT_S16,
1291 AV_SAMPLE_FMT_NONE };
1292 static const enum AVSampleFormat sample_fmts_both[] = { AV_SAMPLE_FMT_S16,
1293 AV_SAMPLE_FMT_S16P,
1294 AV_SAMPLE_FMT_NONE };
1295
1296 #define ADPCM_DECODER(id_, sample_fmts_, name_, long_name_) \
1297 AVCodec ff_ ## name_ ## _decoder = { \
1298 .name = #name_, \
1299 .type = AVMEDIA_TYPE_AUDIO, \
1300 .id = id_, \
1301 .priv_data_size = sizeof(ADPCMDecodeContext), \
1302 .init = adpcm_decode_init, \
1303 .decode = adpcm_decode_frame, \
1304 .capabilities = CODEC_CAP_DR1, \
1305 .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
1306 .sample_fmts = sample_fmts_, \
1307 }
1308
1309 /* Note: Do not forget to add new entries to the Makefile as well. */
1310 ADPCM_DECODER(AV_CODEC_ID_ADPCM_4XM, sample_fmts_s16p, adpcm_4xm, "ADPCM 4X Movie");
1311 ADPCM_DECODER(AV_CODEC_ID_ADPCM_CT, sample_fmts_s16, adpcm_ct, "ADPCM Creative Technology");
1312 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA, sample_fmts_s16, adpcm_ea, "ADPCM Electronic Arts");
1313 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_MAXIS_XA, sample_fmts_s16, adpcm_ea_maxis_xa, "ADPCM Electronic Arts Maxis CDROM XA");
1314 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_R1, sample_fmts_s16p, adpcm_ea_r1, "ADPCM Electronic Arts R1");
1315 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_R2, sample_fmts_s16p, adpcm_ea_r2, "ADPCM Electronic Arts R2");
1316 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_R3, sample_fmts_s16p, adpcm_ea_r3, "ADPCM Electronic Arts R3");
1317 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_XAS, sample_fmts_s16p, adpcm_ea_xas, "ADPCM Electronic Arts XAS");
1318 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_AMV, sample_fmts_s16, adpcm_ima_amv, "ADPCM IMA AMV");
1319 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_APC, sample_fmts_s16, adpcm_ima_apc, "ADPCM IMA CRYO APC");
1320 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_DK3, sample_fmts_s16, adpcm_ima_dk3, "ADPCM IMA Duck DK3");
1321 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_DK4, sample_fmts_s16, adpcm_ima_dk4, "ADPCM IMA Duck DK4");
1322 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_EA_EACS, sample_fmts_s16, adpcm_ima_ea_eacs, "ADPCM IMA Electronic Arts EACS");
1323 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_EA_SEAD, sample_fmts_s16, adpcm_ima_ea_sead, "ADPCM IMA Electronic Arts SEAD");
1324 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_ISS, sample_fmts_s16, adpcm_ima_iss, "ADPCM IMA Funcom ISS");
1325 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_QT, sample_fmts_s16p, adpcm_ima_qt, "ADPCM IMA QuickTime");
1326 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_SMJPEG, sample_fmts_s16, adpcm_ima_smjpeg, "ADPCM IMA Loki SDL MJPEG");
1327 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_WAV, sample_fmts_s16p, adpcm_ima_wav, "ADPCM IMA WAV");
1328 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_WS, sample_fmts_both, adpcm_ima_ws, "ADPCM IMA Westwood");
1329 ADPCM_DECODER(AV_CODEC_ID_ADPCM_MS, sample_fmts_s16, adpcm_ms, "ADPCM Microsoft");
1330 ADPCM_DECODER(AV_CODEC_ID_ADPCM_SBPRO_2, sample_fmts_s16, adpcm_sbpro_2, "ADPCM Sound Blaster Pro 2-bit");
1331 ADPCM_DECODER(AV_CODEC_ID_ADPCM_SBPRO_3, sample_fmts_s16, adpcm_sbpro_3, "ADPCM Sound Blaster Pro 2.6-bit");
1332 ADPCM_DECODER(AV_CODEC_ID_ADPCM_SBPRO_4, sample_fmts_s16, adpcm_sbpro_4, "ADPCM Sound Blaster Pro 4-bit");
1333 ADPCM_DECODER(AV_CODEC_ID_ADPCM_SWF, sample_fmts_s16, adpcm_swf, "ADPCM Shockwave Flash");
1334 ADPCM_DECODER(AV_CODEC_ID_ADPCM_THP, sample_fmts_s16p, adpcm_thp, "ADPCM Nintendo Gamecube THP");
1335 ADPCM_DECODER(AV_CODEC_ID_ADPCM_XA, sample_fmts_s16p, adpcm_xa, "ADPCM CDROM XA");
1336 ADPCM_DECODER(AV_CODEC_ID_ADPCM_YAMAHA, sample_fmts_s16, adpcm_yamaha, "ADPCM Yamaha");