3 * Copyright (c) 2001-2003 The ffmpeg Project
5 * This file is part of FFmpeg.
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24 #include "bytestream.h"
29 * First version by Francois Revol (revol@free.fr)
30 * Fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
31 * by Mike Melanson (melanson@pcisys.net)
32 * CD-ROM XA ADPCM codec by BERO
33 * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com)
34 * EA ADPCM R1/R2/R3 decoder by Peter Ross (pross@xvid.org)
35 * EA IMA EACS decoder by Peter Ross (pross@xvid.org)
36 * EA IMA SEAD decoder by Peter Ross (pross@xvid.org)
37 * EA ADPCM XAS decoder by Peter Ross (pross@xvid.org)
38 * MAXIS EA ADPCM decoder by Robert Marston (rmarston@gmail.com)
39 * THP ADPCM decoder by Marco Gerards (mgerards@xs4all.nl)
41 * Features and limitations:
43 * Reference documents:
44 * http://www.pcisys.net/~melanson/codecs/simpleaudio.html
45 * http://www.geocities.com/SiliconValley/8682/aud3.txt
46 * http://openquicktime.sourceforge.net/plugins.htm
47 * XAnim sources (xa_codec.c) http://www.rasnaimaging.com/people/lapus/download.html
48 * http://www.cs.ucla.edu/~leec/mediabench/applications.html
49 * SoX source code http://home.sprynet.com/~cbagwell/sox.html
52 * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html
53 * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html
54 * readstr http://www.geocities.co.jp/Playtown/2004/
59 /* step_table[] and index_table[] are from the ADPCM reference source */
60 /* This is the index table: */
61 static const int index_table
[16] = {
62 -1, -1, -1, -1, 2, 4, 6, 8,
63 -1, -1, -1, -1, 2, 4, 6, 8,
67 * This is the step table. Note that many programs use slight deviations from
68 * this table, but such deviations are negligible:
70 static const int step_table
[89] = {
71 7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
72 19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
73 50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
74 130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
75 337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
76 876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
77 2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
78 5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
79 15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767
82 /* These are for MS-ADPCM */
83 /* AdaptationTable[], AdaptCoeff1[], and AdaptCoeff2[] are from libsndfile */
84 static const int AdaptationTable
[] = {
85 230, 230, 230, 230, 307, 409, 512, 614,
86 768, 614, 512, 409, 307, 230, 230, 230
89 /** Divided by 4 to fit in 8-bit integers */
90 static const uint8_t AdaptCoeff1
[] = {
91 64, 128, 0, 48, 60, 115, 98
94 /** Divided by 4 to fit in 8-bit integers */
95 static const int8_t AdaptCoeff2
[] = {
96 0, -64, 0, 16, 0, -52, -58
99 /* These are for CD-ROM XA ADPCM */
100 static const int xa_adpcm_table
[5][2] = {
108 static const int ea_adpcm_table
[] = {
109 0, 240, 460, 392, 0, 0, -208, -220, 0, 1,
110 3, 4, 7, 8, 10, 11, 0, -1, -3, -4
113 // padded to zero where table size is less then 16
114 static const int swf_index_tables
[4][16] = {
116 /*3*/ { -1, -1, 2, 4 },
117 /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 },
118 /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
121 static const int yamaha_indexscale
[] = {
122 230, 230, 230, 230, 307, 409, 512, 614,
123 230, 230, 230, 230, 307, 409, 512, 614
126 static const int yamaha_difflookup
[] = {
127 1, 3, 5, 7, 9, 11, 13, 15,
128 -1, -3, -5, -7, -9, -11, -13, -15
133 typedef struct ADPCMChannelStatus
{
135 short int step_index
;
146 } ADPCMChannelStatus
;
148 typedef struct ADPCMContext
{
149 ADPCMChannelStatus status
[6];
152 /* XXX: implement encoding */
155 static av_cold
int adpcm_encode_init(AVCodecContext
*avctx
)
159 if (avctx
->channels
> 2)
160 return -1; /* only stereo or mono =) */
162 if(avctx
->trellis
&& (unsigned)avctx
->trellis
> 16U){
163 av_log(avctx
, AV_LOG_ERROR
, "invalid trellis size\n");
167 switch(avctx
->codec
->id
) {
168 case CODEC_ID_ADPCM_IMA_WAV
:
169 avctx
->frame_size
= (BLKSIZE
- 4 * avctx
->channels
) * 8 / (4 * avctx
->channels
) + 1; /* each 16 bits sample gives one nibble */
170 /* and we have 4 bytes per channel overhead */
171 avctx
->block_align
= BLKSIZE
;
172 /* seems frame_size isn't taken into account... have to buffer the samples :-( */
174 case CODEC_ID_ADPCM_IMA_QT
:
175 avctx
->frame_size
= 64;
176 avctx
->block_align
= 34 * avctx
->channels
;
178 case CODEC_ID_ADPCM_MS
:
179 avctx
->frame_size
= (BLKSIZE
- 7 * avctx
->channels
) * 2 / avctx
->channels
+ 2; /* each 16 bits sample gives one nibble */
180 /* and we have 7 bytes per channel overhead */
181 avctx
->block_align
= BLKSIZE
;
182 avctx
->extradata_size
= 32;
183 extradata
= avctx
->extradata
= av_malloc(avctx
->extradata_size
);
185 return AVERROR(ENOMEM
);
186 bytestream_put_le16(&extradata
, avctx
->frame_size
);
187 bytestream_put_le16(&extradata
, 7); /* wNumCoef */
188 for (i
= 0; i
< 7; i
++) {
189 bytestream_put_le16(&extradata
, AdaptCoeff1
[i
] * 4);
190 bytestream_put_le16(&extradata
, AdaptCoeff2
[i
] * 4);
193 case CODEC_ID_ADPCM_YAMAHA
:
194 avctx
->frame_size
= BLKSIZE
* avctx
->channels
;
195 avctx
->block_align
= BLKSIZE
;
197 case CODEC_ID_ADPCM_SWF
:
198 if (avctx
->sample_rate
!= 11025 &&
199 avctx
->sample_rate
!= 22050 &&
200 avctx
->sample_rate
!= 44100) {
201 av_log(avctx
, AV_LOG_ERROR
, "Sample rate must be 11025, 22050 or 44100\n");
204 avctx
->frame_size
= 512 * (avctx
->sample_rate
/ 11025);
210 avctx
->coded_frame
= avcodec_alloc_frame();
211 avctx
->coded_frame
->key_frame
= 1;
216 static av_cold
int adpcm_encode_close(AVCodecContext
*avctx
)
218 av_freep(&avctx
->coded_frame
);
224 static inline unsigned char adpcm_ima_compress_sample(ADPCMChannelStatus
*c
, short sample
)
226 int delta
= sample
- c
->prev_sample
;
227 int nibble
= FFMIN(7, abs(delta
)*4/step_table
[c
->step_index
]) + (delta
<0)*8;
228 c
->prev_sample
+= ((step_table
[c
->step_index
] * yamaha_difflookup
[nibble
]) / 8);
229 c
->prev_sample
= av_clip_int16(c
->prev_sample
);
230 c
->step_index
= av_clip(c
->step_index
+ index_table
[nibble
], 0, 88);
234 static inline unsigned char adpcm_ms_compress_sample(ADPCMChannelStatus
*c
, short sample
)
236 int predictor
, nibble
, bias
;
238 predictor
= (((c
->sample1
) * (c
->coeff1
)) + ((c
->sample2
) * (c
->coeff2
))) / 64;
240 nibble
= sample
- predictor
;
241 if(nibble
>=0) bias
= c
->idelta
/2;
242 else bias
=-c
->idelta
/2;
244 nibble
= (nibble
+ bias
) / c
->idelta
;
245 nibble
= av_clip(nibble
, -8, 7)&0x0F;
247 predictor
+= (signed)((nibble
& 0x08)?
(nibble
- 0x10):(nibble
)) * c
->idelta
;
249 c
->sample2
= c
->sample1
;
250 c
->sample1
= av_clip_int16(predictor
);
252 c
->idelta
= (AdaptationTable
[(int)nibble
] * c
->idelta
) >> 8;
253 if (c
->idelta
< 16) c
->idelta
= 16;
258 static inline unsigned char adpcm_yamaha_compress_sample(ADPCMChannelStatus
*c
, short sample
)
267 delta
= sample
- c
->predictor
;
269 nibble
= FFMIN(7, abs(delta
)*4/c
->step
) + (delta
<0)*8;
271 c
->predictor
+= ((c
->step
* yamaha_difflookup
[nibble
]) / 8);
272 c
->predictor
= av_clip_int16(c
->predictor
);
273 c
->step
= (c
->step
* yamaha_indexscale
[nibble
]) >> 8;
274 c
->step
= av_clip(c
->step
, 127, 24567);
279 typedef struct TrellisPath
{
284 typedef struct TrellisNode
{
292 static void adpcm_compress_trellis(AVCodecContext
*avctx
, const short *samples
,
293 uint8_t *dst
, ADPCMChannelStatus
*c
, int n
)
295 #define FREEZE_INTERVAL 128
296 //FIXME 6% faster if frontier is a compile-time constant
297 const int frontier
= 1 << avctx
->trellis
;
298 const int stride
= avctx
->channels
;
299 const int version
= avctx
->codec
->id
;
300 const int max_paths
= frontier
*FREEZE_INTERVAL
;
301 TrellisPath paths
[max_paths
], *p
;
302 TrellisNode node_buf
[2][frontier
];
303 TrellisNode
*nodep_buf
[2][frontier
];
304 TrellisNode
**nodes
= nodep_buf
[0]; // nodes[] is always sorted by .ssd
305 TrellisNode
**nodes_next
= nodep_buf
[1];
306 int pathn
= 0, froze
= -1, i
, j
, k
;
308 assert(!(max_paths
&(max_paths
-1)));
310 memset(nodep_buf
, 0, sizeof(nodep_buf
));
311 nodes
[0] = &node_buf
[1][0];
314 nodes
[0]->step
= c
->step_index
;
315 nodes
[0]->sample1
= c
->sample1
;
316 nodes
[0]->sample2
= c
->sample2
;
317 if((version
== CODEC_ID_ADPCM_IMA_WAV
) || (version
== CODEC_ID_ADPCM_IMA_QT
) || (version
== CODEC_ID_ADPCM_SWF
))
318 nodes
[0]->sample1
= c
->prev_sample
;
319 if(version
== CODEC_ID_ADPCM_MS
)
320 nodes
[0]->step
= c
->idelta
;
321 if(version
== CODEC_ID_ADPCM_YAMAHA
) {
323 nodes
[0]->step
= 127;
324 nodes
[0]->sample1
= 0;
326 nodes
[0]->step
= c
->step
;
327 nodes
[0]->sample1
= c
->predictor
;
332 TrellisNode
*t
= node_buf
[i
&1];
334 int sample
= samples
[i
*stride
];
335 memset(nodes_next
, 0, frontier
*sizeof(TrellisNode
*));
336 for(j
=0; j
<frontier
&& nodes
[j
]; j
++) {
337 // higher j have higher ssd already, so they're unlikely to use a suboptimal next sample too
338 const int range
= (j
< frontier
/2) ?
1 : 0;
339 const int step
= nodes
[j
]->step
;
341 if(version
== CODEC_ID_ADPCM_MS
) {
342 const int predictor
= ((nodes
[j
]->sample1
* c
->coeff1
) + (nodes
[j
]->sample2
* c
->coeff2
)) / 64;
343 const int div
= (sample
- predictor
) / step
;
344 const int nmin
= av_clip(div
-range
, -8, 6);
345 const int nmax
= av_clip(div
+range
, -7, 7);
346 for(nidx
=nmin
; nidx
<=nmax
; nidx
++) {
347 const int nibble
= nidx
& 0xf;
348 int dec_sample
= predictor
+ nidx
* step
;
349 #define STORE_NODE(NAME, STEP_INDEX)\
352 dec_sample = av_clip_int16(dec_sample);\
353 d = sample - dec_sample;\
354 ssd = nodes[j]->ssd + d*d;\
355 if(nodes_next[frontier-1] && ssd >= nodes_next[frontier-1]->ssd)\
357 /* Collapse any two states with the same previous sample value. \
358 * One could also distinguish states by step and by 2nd to last
359 * sample, but the effects of that are negligible. */\
360 for(k=0; k<frontier && nodes_next[k]; k++) {\
361 if(dec_sample == nodes_next[k]->sample1) {\
362 assert(ssd >= nodes_next[k]->ssd);\
366 for(k=0; k<frontier; k++) {\
367 if(!nodes_next[k] || ssd < nodes_next[k]->ssd) {\
368 TrellisNode *u = nodes_next[frontier-1];\
370 assert(pathn < max_paths);\
375 u->step = STEP_INDEX;\
376 u->sample2 = nodes[j]->sample1;\
377 u->sample1 = dec_sample;\
378 paths[u->path].nibble = nibble;\
379 paths[u->path].prev = nodes[j]->path;\
380 memmove(&nodes_next[k+1], &nodes_next[k], (frontier-k-1)*sizeof(TrellisNode*));\
386 STORE_NODE(ms
, FFMAX(16, (AdaptationTable
[nibble
] * step
) >> 8));
388 } else if((version
== CODEC_ID_ADPCM_IMA_WAV
)|| (version
== CODEC_ID_ADPCM_IMA_QT
)|| (version
== CODEC_ID_ADPCM_SWF
)) {
389 #define LOOP_NODES(NAME, STEP_TABLE, STEP_INDEX)\
390 const int predictor = nodes[j]->sample1;\
391 const int div = (sample - predictor) * 4 / STEP_TABLE;\
392 int nmin = av_clip(div-range, -7, 6);\
393 int nmax = av_clip(div+range, -6, 7);\
394 if(nmin<=0) nmin--; /* distinguish -0 from +0 */\
396 for(nidx=nmin; nidx<=nmax; nidx++) {\
397 const int nibble = nidx<0 ? 7-nidx : nidx;\
398 int dec_sample = predictor + (STEP_TABLE * yamaha_difflookup[nibble]) / 8;\
399 STORE_NODE(NAME, STEP_INDEX);\
401 LOOP_NODES(ima
, step_table
[step
], av_clip(step
+ index_table
[nibble
], 0, 88));
402 } else { //CODEC_ID_ADPCM_YAMAHA
403 LOOP_NODES(yamaha
, step
, av_clip((step
* yamaha_indexscale
[nibble
]) >> 8, 127, 24567));
414 if(nodes
[0]->ssd
> (1<<28)) {
415 for(j
=1; j
<frontier
&& nodes
[j
]; j
++)
416 nodes
[j
]->ssd
-= nodes
[0]->ssd
;
420 // merge old paths to save memory
421 if(i
== froze
+ FREEZE_INTERVAL
) {
422 p
= &paths
[nodes
[0]->path
];
423 for(k
=i
; k
>froze
; k
--) {
429 // other nodes might use paths that don't coincide with the frozen one.
430 // checking which nodes do so is too slow, so just kill them all.
431 // this also slightly improves quality, but I don't know why.
432 memset(nodes
+1, 0, (frontier
-1)*sizeof(TrellisNode
*));
436 p
= &paths
[nodes
[0]->path
];
437 for(i
=n
-1; i
>froze
; i
--) {
442 c
->predictor
= nodes
[0]->sample1
;
443 c
->sample1
= nodes
[0]->sample1
;
444 c
->sample2
= nodes
[0]->sample2
;
445 c
->step_index
= nodes
[0]->step
;
446 c
->step
= nodes
[0]->step
;
447 c
->idelta
= nodes
[0]->step
;
450 static int adpcm_encode_frame(AVCodecContext
*avctx
,
451 unsigned char *frame
, int buf_size
, void *data
)
456 ADPCMContext
*c
= avctx
->priv_data
;
459 samples
= (short *)data
;
460 st
= avctx
->channels
== 2;
461 /* n = (BLKSIZE - 4 * avctx->channels) / (2 * 8 * avctx->channels); */
463 switch(avctx
->codec
->id
) {
464 case CODEC_ID_ADPCM_IMA_WAV
:
465 n
= avctx
->frame_size
/ 8;
466 c
->status
[0].prev_sample
= (signed short)samples
[0]; /* XXX */
467 /* c->status[0].step_index = 0; *//* XXX: not sure how to init the state machine */
468 bytestream_put_le16(&dst
, c
->status
[0].prev_sample
);
469 *dst
++ = (unsigned char)c
->status
[0].step_index
;
470 *dst
++ = 0; /* unknown */
472 if (avctx
->channels
== 2) {
473 c
->status
[1].prev_sample
= (signed short)samples
[0];
474 /* c->status[1].step_index = 0; */
475 bytestream_put_le16(&dst
, c
->status
[1].prev_sample
);
476 *dst
++ = (unsigned char)c
->status
[1].step_index
;
481 /* stereo: 4 bytes (8 samples) for left, 4 bytes for right, 4 bytes left, ... */
482 if(avctx
->trellis
> 0) {
484 adpcm_compress_trellis(avctx
, samples
, buf
[0], &c
->status
[0], n
*8);
485 if(avctx
->channels
== 2)
486 adpcm_compress_trellis(avctx
, samples
+1, buf
[1], &c
->status
[1], n
*8);
488 *dst
++ = buf
[0][8*i
+0] | (buf
[0][8*i
+1] << 4);
489 *dst
++ = buf
[0][8*i
+2] | (buf
[0][8*i
+3] << 4);
490 *dst
++ = buf
[0][8*i
+4] | (buf
[0][8*i
+5] << 4);
491 *dst
++ = buf
[0][8*i
+6] | (buf
[0][8*i
+7] << 4);
492 if (avctx
->channels
== 2) {
493 *dst
++ = buf
[1][8*i
+0] | (buf
[1][8*i
+1] << 4);
494 *dst
++ = buf
[1][8*i
+2] | (buf
[1][8*i
+3] << 4);
495 *dst
++ = buf
[1][8*i
+4] | (buf
[1][8*i
+5] << 4);
496 *dst
++ = buf
[1][8*i
+6] | (buf
[1][8*i
+7] << 4);
501 *dst
= adpcm_ima_compress_sample(&c
->status
[0], samples
[0]);
502 *dst
|= adpcm_ima_compress_sample(&c
->status
[0], samples
[avctx
->channels
]) << 4;
504 *dst
= adpcm_ima_compress_sample(&c
->status
[0], samples
[avctx
->channels
* 2]);
505 *dst
|= adpcm_ima_compress_sample(&c
->status
[0], samples
[avctx
->channels
* 3]) << 4;
507 *dst
= adpcm_ima_compress_sample(&c
->status
[0], samples
[avctx
->channels
* 4]);
508 *dst
|= adpcm_ima_compress_sample(&c
->status
[0], samples
[avctx
->channels
* 5]) << 4;
510 *dst
= adpcm_ima_compress_sample(&c
->status
[0], samples
[avctx
->channels
* 6]);
511 *dst
|= adpcm_ima_compress_sample(&c
->status
[0], samples
[avctx
->channels
* 7]) << 4;
514 if (avctx
->channels
== 2) {
515 *dst
= adpcm_ima_compress_sample(&c
->status
[1], samples
[1]);
516 *dst
|= adpcm_ima_compress_sample(&c
->status
[1], samples
[3]) << 4;
518 *dst
= adpcm_ima_compress_sample(&c
->status
[1], samples
[5]);
519 *dst
|= adpcm_ima_compress_sample(&c
->status
[1], samples
[7]) << 4;
521 *dst
= adpcm_ima_compress_sample(&c
->status
[1], samples
[9]);
522 *dst
|= adpcm_ima_compress_sample(&c
->status
[1], samples
[11]) << 4;
524 *dst
= adpcm_ima_compress_sample(&c
->status
[1], samples
[13]);
525 *dst
|= adpcm_ima_compress_sample(&c
->status
[1], samples
[15]) << 4;
528 samples
+= 8 * avctx
->channels
;
531 case CODEC_ID_ADPCM_IMA_QT
:
535 init_put_bits(&pb
, dst
, buf_size
*8);
537 for(ch
=0; ch
<avctx
->channels
; ch
++){
538 put_bits(&pb
, 9, (c
->status
[ch
].prev_sample
+ 0x10000) >> 7);
539 put_bits(&pb
, 7, c
->status
[ch
].step_index
);
540 if(avctx
->trellis
> 0) {
542 adpcm_compress_trellis(avctx
, samples
+ch
, buf
, &c
->status
[ch
], 64);
544 put_bits(&pb
, 4, buf
[i
^1]);
545 c
->status
[ch
].prev_sample
= c
->status
[ch
].predictor
& ~0x7F;
547 for (i
=0; i
<64; i
+=2){
549 t1
= adpcm_ima_compress_sample(&c
->status
[ch
], samples
[avctx
->channels
*(i
+0)+ch
]);
550 t2
= adpcm_ima_compress_sample(&c
->status
[ch
], samples
[avctx
->channels
*(i
+1)+ch
]);
551 put_bits(&pb
, 4, t2
);
552 put_bits(&pb
, 4, t1
);
554 c
->status
[ch
].prev_sample
&= ~0x7F;
558 dst
+= put_bits_count(&pb
)>>3;
561 case CODEC_ID_ADPCM_SWF
:
565 init_put_bits(&pb
, dst
, buf_size
*8);
567 n
= avctx
->frame_size
-1;
569 //Store AdpcmCodeSize
570 put_bits(&pb
, 2, 2); //Set 4bits flash adpcm format
572 //Init the encoder state
573 for(i
=0; i
<avctx
->channels
; i
++){
574 c
->status
[i
].step_index
= av_clip(c
->status
[i
].step_index
, 0, 63); // clip step so it fits 6 bits
575 put_sbits(&pb
, 16, samples
[i
]);
576 put_bits(&pb
, 6, c
->status
[i
].step_index
);
577 c
->status
[i
].prev_sample
= (signed short)samples
[i
];
580 if(avctx
->trellis
> 0) {
582 adpcm_compress_trellis(avctx
, samples
+2, buf
[0], &c
->status
[0], n
);
583 if (avctx
->channels
== 2)
584 adpcm_compress_trellis(avctx
, samples
+3, buf
[1], &c
->status
[1], n
);
586 put_bits(&pb
, 4, buf
[0][i
]);
587 if (avctx
->channels
== 2)
588 put_bits(&pb
, 4, buf
[1][i
]);
591 for (i
=1; i
<avctx
->frame_size
; i
++) {
592 put_bits(&pb
, 4, adpcm_ima_compress_sample(&c
->status
[0], samples
[avctx
->channels
*i
]));
593 if (avctx
->channels
== 2)
594 put_bits(&pb
, 4, adpcm_ima_compress_sample(&c
->status
[1], samples
[2*i
+1]));
598 dst
+= put_bits_count(&pb
)>>3;
601 case CODEC_ID_ADPCM_MS
:
602 for(i
=0; i
<avctx
->channels
; i
++){
606 c
->status
[i
].coeff1
= AdaptCoeff1
[predictor
];
607 c
->status
[i
].coeff2
= AdaptCoeff2
[predictor
];
609 for(i
=0; i
<avctx
->channels
; i
++){
610 if (c
->status
[i
].idelta
< 16)
611 c
->status
[i
].idelta
= 16;
613 bytestream_put_le16(&dst
, c
->status
[i
].idelta
);
615 for(i
=0; i
<avctx
->channels
; i
++){
616 c
->status
[i
].sample2
= *samples
++;
618 for(i
=0; i
<avctx
->channels
; i
++){
619 c
->status
[i
].sample1
= *samples
++;
621 bytestream_put_le16(&dst
, c
->status
[i
].sample1
);
623 for(i
=0; i
<avctx
->channels
; i
++)
624 bytestream_put_le16(&dst
, c
->status
[i
].sample2
);
626 if(avctx
->trellis
> 0) {
627 int n
= avctx
->block_align
- 7*avctx
->channels
;
629 if(avctx
->channels
== 1) {
631 adpcm_compress_trellis(avctx
, samples
, buf
[0], &c
->status
[0], n
);
633 *dst
++ = (buf
[0][i
] << 4) | buf
[0][i
+1];
635 adpcm_compress_trellis(avctx
, samples
, buf
[0], &c
->status
[0], n
);
636 adpcm_compress_trellis(avctx
, samples
+1, buf
[1], &c
->status
[1], n
);
638 *dst
++ = (buf
[0][i
] << 4) | buf
[1][i
];
641 for(i
=7*avctx
->channels
; i
<avctx
->block_align
; i
++) {
643 nibble
= adpcm_ms_compress_sample(&c
->status
[ 0], *samples
++)<<4;
644 nibble
|= adpcm_ms_compress_sample(&c
->status
[st
], *samples
++);
648 case CODEC_ID_ADPCM_YAMAHA
:
649 n
= avctx
->frame_size
/ 2;
650 if(avctx
->trellis
> 0) {
653 if(avctx
->channels
== 1) {
654 adpcm_compress_trellis(avctx
, samples
, buf
[0], &c
->status
[0], n
);
656 *dst
++ = buf
[0][i
] | (buf
[0][i
+1] << 4);
658 adpcm_compress_trellis(avctx
, samples
, buf
[0], &c
->status
[0], n
);
659 adpcm_compress_trellis(avctx
, samples
+1, buf
[1], &c
->status
[1], n
);
661 *dst
++ = buf
[0][i
] | (buf
[1][i
] << 4);
664 for (n
*= avctx
->channels
; n
>0; n
--) {
666 nibble
= adpcm_yamaha_compress_sample(&c
->status
[ 0], *samples
++);
667 nibble
|= adpcm_yamaha_compress_sample(&c
->status
[st
], *samples
++) << 4;
676 #endif //CONFIG_ENCODERS
678 static av_cold
int adpcm_decode_init(AVCodecContext
* avctx
)
680 ADPCMContext
*c
= avctx
->priv_data
;
681 unsigned int max_channels
= 2;
683 switch(avctx
->codec
->id
) {
684 case CODEC_ID_ADPCM_EA_R1
:
685 case CODEC_ID_ADPCM_EA_R2
:
686 case CODEC_ID_ADPCM_EA_R3
:
690 if(avctx
->channels
> max_channels
){
694 switch(avctx
->codec
->id
) {
695 case CODEC_ID_ADPCM_CT
:
696 c
->status
[0].step
= c
->status
[1].step
= 511;
698 case CODEC_ID_ADPCM_IMA_WS
:
699 if (avctx
->extradata
&& avctx
->extradata_size
== 2 * 4) {
700 c
->status
[0].predictor
= AV_RL32(avctx
->extradata
);
701 c
->status
[1].predictor
= AV_RL32(avctx
->extradata
+ 4);
707 avctx
->sample_fmt
= SAMPLE_FMT_S16
;
711 static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus
*c
, char nibble
, int shift
)
715 int sign
, delta
, diff
, step
;
717 step
= step_table
[c
->step_index
];
718 step_index
= c
->step_index
+ index_table
[(unsigned)nibble
];
719 if (step_index
< 0) step_index
= 0;
720 else if (step_index
> 88) step_index
= 88;
724 /* perform direct multiplication instead of series of jumps proposed by
725 * the reference ADPCM implementation since modern CPUs can do the mults
727 diff
= ((2 * delta
+ 1) * step
) >> shift
;
728 predictor
= c
->predictor
;
729 if (sign
) predictor
-= diff
;
730 else predictor
+= diff
;
732 c
->predictor
= av_clip_int16(predictor
);
733 c
->step_index
= step_index
;
735 return (short)c
->predictor
;
738 static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus
*c
, char nibble
)
742 predictor
= (((c
->sample1
) * (c
->coeff1
)) + ((c
->sample2
) * (c
->coeff2
))) / 64;
743 predictor
+= (signed)((nibble
& 0x08)?
(nibble
- 0x10):(nibble
)) * c
->idelta
;
745 c
->sample2
= c
->sample1
;
746 c
->sample1
= av_clip_int16(predictor
);
747 c
->idelta
= (AdaptationTable
[(int)nibble
] * c
->idelta
) >> 8;
748 if (c
->idelta
< 16) c
->idelta
= 16;
753 static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus
*c
, char nibble
)
755 int sign
, delta
, diff
;
760 /* perform direct multiplication instead of series of jumps proposed by
761 * the reference ADPCM implementation since modern CPUs can do the mults
763 diff
= ((2 * delta
+ 1) * c
->step
) >> 3;
764 /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */
765 c
->predictor
= ((c
->predictor
* 254) >> 8) + (sign ?
-diff
: diff
);
766 c
->predictor
= av_clip_int16(c
->predictor
);
767 /* calculate new step and clamp it to range 511..32767 */
768 new_step
= (AdaptationTable
[nibble
& 7] * c
->step
) >> 8;
769 c
->step
= av_clip(new_step
, 511, 32767);
771 return (short)c
->predictor
;
774 static inline short adpcm_sbpro_expand_nibble(ADPCMChannelStatus
*c
, char nibble
, int size
, int shift
)
776 int sign
, delta
, diff
;
778 sign
= nibble
& (1<<(size
-1));
779 delta
= nibble
& ((1<<(size
-1))-1);
780 diff
= delta
<< (7 + c
->step
+ shift
);
783 c
->predictor
= av_clip(c
->predictor
+ (sign ?
-diff
: diff
), -16384,16256);
785 /* calculate new step */
786 if (delta
>= (2*size
- 3) && c
->step
< 3)
788 else if (delta
== 0 && c
->step
> 0)
791 return (short) c
->predictor
;
794 static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus
*c
, unsigned char nibble
)
801 c
->predictor
+= (c
->step
* yamaha_difflookup
[nibble
]) / 8;
802 c
->predictor
= av_clip_int16(c
->predictor
);
803 c
->step
= (c
->step
* yamaha_indexscale
[nibble
]) >> 8;
804 c
->step
= av_clip(c
->step
, 127, 24567);
808 static void xa_decode(short *out
, const unsigned char *in
,
809 ADPCMChannelStatus
*left
, ADPCMChannelStatus
*right
, int inc
)
812 int shift
,filter
,f0
,f1
;
818 shift
= 12 - (in
[4+i
*2] & 15);
819 filter
= in
[4+i
*2] >> 4;
820 f0
= xa_adpcm_table
[filter
][0];
821 f1
= xa_adpcm_table
[filter
][1];
829 t
= (signed char)(d
<<4)>>4;
830 s
= ( t
<<shift
) + ((s_1
*f0
+ s_2
*f1
+32)>>6);
832 s_1
= av_clip_int16(s
);
837 if (inc
==2) { /* stereo */
840 s_1
= right
->sample1
;
841 s_2
= right
->sample2
;
842 out
= out
+ 1 - 28*2;
845 shift
= 12 - (in
[5+i
*2] & 15);
846 filter
= in
[5+i
*2] >> 4;
848 f0
= xa_adpcm_table
[filter
][0];
849 f1
= xa_adpcm_table
[filter
][1];
854 t
= (signed char)d
>> 4;
855 s
= ( t
<<shift
) + ((s_1
*f0
+ s_2
*f1
+32)>>6);
857 s_1
= av_clip_int16(s
);
862 if (inc
==2) { /* stereo */
863 right
->sample1
= s_1
;
864 right
->sample2
= s_2
;
874 /* DK3 ADPCM support macro */
875 #define DK3_GET_NEXT_NIBBLE() \
876 if (decode_top_nibble_next) \
878 nibble = last_byte >> 4; \
879 decode_top_nibble_next = 0; \
883 last_byte = *src++; \
884 if (src >= buf + buf_size) break; \
885 nibble = last_byte & 0x0F; \
886 decode_top_nibble_next = 1; \
889 static int adpcm_decode_frame(AVCodecContext
*avctx
,
890 void *data
, int *data_size
,
893 const uint8_t *buf
= avpkt
->data
;
894 int buf_size
= avpkt
->size
;
895 ADPCMContext
*c
= avctx
->priv_data
;
896 ADPCMChannelStatus
*cs
;
897 int n
, m
, channel
, i
;
898 int block_predictor
[2];
904 /* DK3 ADPCM accounting variables */
905 unsigned char last_byte
= 0;
906 unsigned char nibble
;
907 int decode_top_nibble_next
= 0;
910 /* EA ADPCM state variables */
911 uint32_t samples_in_chunk
;
912 int32_t previous_left_sample
, previous_right_sample
;
913 int32_t current_left_sample
, current_right_sample
;
914 int32_t next_left_sample
, next_right_sample
;
915 int32_t coeff1l
, coeff2l
, coeff1r
, coeff2r
;
916 uint8_t shift_left
, shift_right
;
918 int coeff
[2][2], shift
[2];//used in EA MAXIS ADPCM
923 //should protect all 4bit ADPCM variants
924 //8 is needed for CODEC_ID_ADPCM_IMA_WAV with 2 channels
926 if(*data_size
/4 < buf_size
+ 8)
930 samples_end
= samples
+ *data_size
/2;
934 st
= avctx
->channels
== 2 ?
1 : 0;
936 switch(avctx
->codec
->id
) {
937 case CODEC_ID_ADPCM_IMA_QT
:
938 n
= buf_size
- 2*avctx
->channels
;
939 for (channel
= 0; channel
< avctx
->channels
; channel
++) {
940 cs
= &(c
->status
[channel
]);
941 /* (pppppp) (piiiiiii) */
943 /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
944 cs
->predictor
= (*src
++) << 8;
945 cs
->predictor
|= (*src
& 0x80);
946 cs
->predictor
&= 0xFF80;
949 if(cs
->predictor
& 0x8000)
950 cs
->predictor
-= 0x10000;
952 cs
->predictor
= av_clip_int16(cs
->predictor
);
954 cs
->step_index
= (*src
++) & 0x7F;
956 if (cs
->step_index
> 88){
957 av_log(avctx
, AV_LOG_ERROR
, "ERROR: step_index = %i\n", cs
->step_index
);
961 cs
->step
= step_table
[cs
->step_index
];
963 samples
= (short*)data
+ channel
;
965 for(m
=32; n
>0 && m
>0; n
--, m
--) { /* in QuickTime, IMA is encoded by chuncks of 34 bytes (=64 samples) */
966 *samples
= adpcm_ima_expand_nibble(cs
, src
[0] & 0x0F, 3);
967 samples
+= avctx
->channels
;
968 *samples
= adpcm_ima_expand_nibble(cs
, src
[0] >> 4 , 3);
969 samples
+= avctx
->channels
;
976 case CODEC_ID_ADPCM_IMA_WAV
:
977 if (avctx
->block_align
!= 0 && buf_size
> avctx
->block_align
)
978 buf_size
= avctx
->block_align
;
980 // samples_per_block= (block_align-4*chanels)*8 / (bits_per_sample * chanels) + 1;
982 for(i
=0; i
<avctx
->channels
; i
++){
983 cs
= &(c
->status
[i
]);
984 cs
->predictor
= *samples
++ = (int16_t)bytestream_get_le16(&src
);
986 cs
->step_index
= *src
++;
987 if (cs
->step_index
> 88){
988 av_log(avctx
, AV_LOG_ERROR
, "ERROR: step_index = %i\n", cs
->step_index
);
991 if (*src
++) av_log(avctx
, AV_LOG_ERROR
, "unused byte should be null but is %d!!\n", src
[-1]); /* unused */
994 while(src
< buf
+ buf_size
){
997 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[i
], src
[4*i
] & 0x0F, 3);
999 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[i
], src
[4*i
] >> 4 , 3);
1005 case CODEC_ID_ADPCM_4XM
:
1006 cs
= &(c
->status
[0]);
1007 c
->status
[0].predictor
= (int16_t)bytestream_get_le16(&src
);
1009 c
->status
[1].predictor
= (int16_t)bytestream_get_le16(&src
);
1011 c
->status
[0].step_index
= (int16_t)bytestream_get_le16(&src
);
1013 c
->status
[1].step_index
= (int16_t)bytestream_get_le16(&src
);
1015 if (cs
->step_index
< 0) cs
->step_index
= 0;
1016 if (cs
->step_index
> 88) cs
->step_index
= 88;
1018 m
= (buf_size
- (src
- buf
))>>st
;
1019 for(i
=0; i
<m
; i
++) {
1020 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0], src
[i
] & 0x0F, 4);
1022 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[1], src
[i
+m
] & 0x0F, 4);
1023 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0], src
[i
] >> 4, 4);
1025 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[1], src
[i
+m
] >> 4, 4);
1031 case CODEC_ID_ADPCM_MS
:
1032 if (avctx
->block_align
!= 0 && buf_size
> avctx
->block_align
)
1033 buf_size
= avctx
->block_align
;
1034 n
= buf_size
- 7 * avctx
->channels
;
1037 block_predictor
[0] = av_clip(*src
++, 0, 6);
1038 block_predictor
[1] = 0;
1040 block_predictor
[1] = av_clip(*src
++, 0, 6);
1041 c
->status
[0].idelta
= (int16_t)bytestream_get_le16(&src
);
1043 c
->status
[1].idelta
= (int16_t)bytestream_get_le16(&src
);
1045 c
->status
[0].coeff1
= AdaptCoeff1
[block_predictor
[0]];
1046 c
->status
[0].coeff2
= AdaptCoeff2
[block_predictor
[0]];
1047 c
->status
[1].coeff1
= AdaptCoeff1
[block_predictor
[1]];
1048 c
->status
[1].coeff2
= AdaptCoeff2
[block_predictor
[1]];
1050 c
->status
[0].sample1
= bytestream_get_le16(&src
);
1051 if (st
) c
->status
[1].sample1
= bytestream_get_le16(&src
);
1052 c
->status
[0].sample2
= bytestream_get_le16(&src
);
1053 if (st
) c
->status
[1].sample2
= bytestream_get_le16(&src
);
1055 *samples
++ = c
->status
[0].sample2
;
1056 if (st
) *samples
++ = c
->status
[1].sample2
;
1057 *samples
++ = c
->status
[0].sample1
;
1058 if (st
) *samples
++ = c
->status
[1].sample1
;
1060 *samples
++ = adpcm_ms_expand_nibble(&c
->status
[0 ], src
[0] >> 4 );
1061 *samples
++ = adpcm_ms_expand_nibble(&c
->status
[st
], src
[0] & 0x0F);
1065 case CODEC_ID_ADPCM_IMA_DK4
:
1066 if (avctx
->block_align
!= 0 && buf_size
> avctx
->block_align
)
1067 buf_size
= avctx
->block_align
;
1069 c
->status
[0].predictor
= (int16_t)bytestream_get_le16(&src
);
1070 c
->status
[0].step_index
= *src
++;
1072 *samples
++ = c
->status
[0].predictor
;
1074 c
->status
[1].predictor
= (int16_t)bytestream_get_le16(&src
);
1075 c
->status
[1].step_index
= *src
++;
1077 *samples
++ = c
->status
[1].predictor
;
1079 while (src
< buf
+ buf_size
) {
1081 /* take care of the top nibble (always left or mono channel) */
1082 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0],
1085 /* take care of the bottom nibble, which is right sample for
1086 * stereo, or another mono sample */
1088 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[1],
1091 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0],
1097 case CODEC_ID_ADPCM_IMA_DK3
:
1098 if (avctx
->block_align
!= 0 && buf_size
> avctx
->block_align
)
1099 buf_size
= avctx
->block_align
;
1101 if(buf_size
+ 16 > (samples_end
- samples
)*3/8)
1104 c
->status
[0].predictor
= (int16_t)AV_RL16(src
+ 10);
1105 c
->status
[1].predictor
= (int16_t)AV_RL16(src
+ 12);
1106 c
->status
[0].step_index
= src
[14];
1107 c
->status
[1].step_index
= src
[15];
1108 /* sign extend the predictors */
1110 diff_channel
= c
->status
[1].predictor
;
1112 /* the DK3_GET_NEXT_NIBBLE macro issues the break statement when
1113 * the buffer is consumed */
1116 /* for this algorithm, c->status[0] is the sum channel and
1117 * c->status[1] is the diff channel */
1119 /* process the first predictor of the sum channel */
1120 DK3_GET_NEXT_NIBBLE();
1121 adpcm_ima_expand_nibble(&c
->status
[0], nibble
, 3);
1123 /* process the diff channel predictor */
1124 DK3_GET_NEXT_NIBBLE();
1125 adpcm_ima_expand_nibble(&c
->status
[1], nibble
, 3);
1127 /* process the first pair of stereo PCM samples */
1128 diff_channel
= (diff_channel
+ c
->status
[1].predictor
) / 2;
1129 *samples
++ = c
->status
[0].predictor
+ c
->status
[1].predictor
;
1130 *samples
++ = c
->status
[0].predictor
- c
->status
[1].predictor
;
1132 /* process the second predictor of the sum channel */
1133 DK3_GET_NEXT_NIBBLE();
1134 adpcm_ima_expand_nibble(&c
->status
[0], nibble
, 3);
1136 /* process the second pair of stereo PCM samples */
1137 diff_channel
= (diff_channel
+ c
->status
[1].predictor
) / 2;
1138 *samples
++ = c
->status
[0].predictor
+ c
->status
[1].predictor
;
1139 *samples
++ = c
->status
[0].predictor
- c
->status
[1].predictor
;
1142 case CODEC_ID_ADPCM_IMA_ISS
:
1143 c
->status
[0].predictor
= (int16_t)AV_RL16(src
+ 0);
1144 c
->status
[0].step_index
= src
[2];
1147 c
->status
[1].predictor
= (int16_t)AV_RL16(src
+ 0);
1148 c
->status
[1].step_index
= src
[2];
1152 while (src
< buf
+ buf_size
) {
1155 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0],
1157 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[1],
1160 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0],
1162 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0],
1169 case CODEC_ID_ADPCM_IMA_WS
:
1170 /* no per-block initialization; just start decoding the data */
1171 while (src
< buf
+ buf_size
) {
1174 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0],
1176 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[1],
1179 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0],
1181 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0],
1188 case CODEC_ID_ADPCM_XA
:
1189 while (buf_size
>= 128) {
1190 xa_decode(samples
, src
, &c
->status
[0], &c
->status
[1],
1197 case CODEC_ID_ADPCM_IMA_EA_EACS
:
1198 samples_in_chunk
= bytestream_get_le32(&src
) >> (1-st
);
1200 if (samples_in_chunk
> buf_size
-4-(8<<st
)) {
1201 src
+= buf_size
- 4;
1205 for (i
=0; i
<=st
; i
++)
1206 c
->status
[i
].step_index
= bytestream_get_le32(&src
);
1207 for (i
=0; i
<=st
; i
++)
1208 c
->status
[i
].predictor
= bytestream_get_le32(&src
);
1210 for (; samples_in_chunk
; samples_in_chunk
--, src
++) {
1211 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0], *src
>>4, 3);
1212 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[st
], *src
&0x0F, 3);
1215 case CODEC_ID_ADPCM_IMA_EA_SEAD
:
1216 for (; src
< buf
+buf_size
; src
++) {
1217 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0], src
[0] >> 4, 6);
1218 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[st
],src
[0]&0x0F, 6);
1221 case CODEC_ID_ADPCM_EA
:
1222 if (buf_size
< 4 || AV_RL32(src
) >= ((buf_size
- 12) * 2)) {
1226 samples_in_chunk
= AV_RL32(src
);
1228 current_left_sample
= (int16_t)bytestream_get_le16(&src
);
1229 previous_left_sample
= (int16_t)bytestream_get_le16(&src
);
1230 current_right_sample
= (int16_t)bytestream_get_le16(&src
);
1231 previous_right_sample
= (int16_t)bytestream_get_le16(&src
);
1233 for (count1
= 0; count1
< samples_in_chunk
/28;count1
++) {
1234 coeff1l
= ea_adpcm_table
[ *src
>> 4 ];
1235 coeff2l
= ea_adpcm_table
[(*src
>> 4 ) + 4];
1236 coeff1r
= ea_adpcm_table
[*src
& 0x0F];
1237 coeff2r
= ea_adpcm_table
[(*src
& 0x0F) + 4];
1240 shift_left
= (*src
>> 4 ) + 8;
1241 shift_right
= (*src
& 0x0F) + 8;
1244 for (count2
= 0; count2
< 28; count2
++) {
1245 next_left_sample
= (int32_t)((*src
& 0xF0) << 24) >> shift_left
;
1246 next_right_sample
= (int32_t)((*src
& 0x0F) << 28) >> shift_right
;
1249 next_left_sample
= (next_left_sample
+
1250 (current_left_sample
* coeff1l
) +
1251 (previous_left_sample
* coeff2l
) + 0x80) >> 8;
1252 next_right_sample
= (next_right_sample
+
1253 (current_right_sample
* coeff1r
) +
1254 (previous_right_sample
* coeff2r
) + 0x80) >> 8;
1256 previous_left_sample
= current_left_sample
;
1257 current_left_sample
= av_clip_int16(next_left_sample
);
1258 previous_right_sample
= current_right_sample
;
1259 current_right_sample
= av_clip_int16(next_right_sample
);
1260 *samples
++ = (unsigned short)current_left_sample
;
1261 *samples
++ = (unsigned short)current_right_sample
;
1265 if (src
- buf
== buf_size
- 2)
1266 src
+= 2; // Skip terminating 0x0000
1269 case CODEC_ID_ADPCM_EA_MAXIS_XA
:
1270 for(channel
= 0; channel
< avctx
->channels
; channel
++) {
1272 coeff
[channel
][i
] = ea_adpcm_table
[(*src
>> 4) + 4*i
];
1273 shift
[channel
] = (*src
& 0x0F) + 8;
1276 for (count1
= 0; count1
< (buf_size
- avctx
->channels
) / avctx
->channels
; count1
++) {
1277 for(i
= 4; i
>= 0; i
-=4) { /* Pairwise samples LL RR (st) or LL LL (mono) */
1278 for(channel
= 0; channel
< avctx
->channels
; channel
++) {
1279 int32_t sample
= (int32_t)(((*(src
+channel
) >> i
) & 0x0F) << 0x1C) >> shift
[channel
];
1281 c
->status
[channel
].sample1
* coeff
[channel
][0] +
1282 c
->status
[channel
].sample2
* coeff
[channel
][1] + 0x80) >> 8;
1283 c
->status
[channel
].sample2
= c
->status
[channel
].sample1
;
1284 c
->status
[channel
].sample1
= av_clip_int16(sample
);
1285 *samples
++ = c
->status
[channel
].sample1
;
1288 src
+=avctx
->channels
;
1291 case CODEC_ID_ADPCM_EA_R1
:
1292 case CODEC_ID_ADPCM_EA_R2
:
1293 case CODEC_ID_ADPCM_EA_R3
: {
1294 /* channel numbering
1296 4chan: 0=fl, 1=rl, 2=fr, 3=rr
1297 6chan: 0=fl, 1=c, 2=fr, 3=rl, 4=rr, 5=sub */
1298 const int big_endian
= avctx
->codec
->id
== CODEC_ID_ADPCM_EA_R3
;
1299 int32_t previous_sample
, current_sample
, next_sample
;
1300 int32_t coeff1
, coeff2
;
1302 unsigned int channel
;
1304 const uint8_t *srcC
;
1305 const uint8_t *src_end
= buf
+ buf_size
;
1307 samples_in_chunk
= (big_endian ?
bytestream_get_be32(&src
)
1308 : bytestream_get_le32(&src
)) / 28;
1309 if (samples_in_chunk
> UINT32_MAX
/(28*avctx
->channels
) ||
1310 28*samples_in_chunk
*avctx
->channels
> samples_end
-samples
) {
1311 src
+= buf_size
- 4;
1315 for (channel
=0; channel
<avctx
->channels
; channel
++) {
1316 int32_t offset
= (big_endian ?
bytestream_get_be32(&src
)
1317 : bytestream_get_le32(&src
))
1318 + (avctx
->channels
-channel
-1) * 4;
1320 if ((offset
< 0) || (offset
>= src_end
- src
- 4)) break;
1321 srcC
= src
+ offset
;
1322 samplesC
= samples
+ channel
;
1324 if (avctx
->codec
->id
== CODEC_ID_ADPCM_EA_R1
) {
1325 current_sample
= (int16_t)bytestream_get_le16(&srcC
);
1326 previous_sample
= (int16_t)bytestream_get_le16(&srcC
);
1328 current_sample
= c
->status
[channel
].predictor
;
1329 previous_sample
= c
->status
[channel
].prev_sample
;
1332 for (count1
=0; count1
<samples_in_chunk
; count1
++) {
1333 if (*srcC
== 0xEE) { /* only seen in R2 and R3 */
1335 if (srcC
> src_end
- 30*2) break;
1336 current_sample
= (int16_t)bytestream_get_be16(&srcC
);
1337 previous_sample
= (int16_t)bytestream_get_be16(&srcC
);
1339 for (count2
=0; count2
<28; count2
++) {
1340 *samplesC
= (int16_t)bytestream_get_be16(&srcC
);
1341 samplesC
+= avctx
->channels
;
1344 coeff1
= ea_adpcm_table
[ *srcC
>>4 ];
1345 coeff2
= ea_adpcm_table
[(*srcC
>>4) + 4];
1346 shift
= (*srcC
++ & 0x0F) + 8;
1348 if (srcC
> src_end
- 14) break;
1349 for (count2
=0; count2
<28; count2
++) {
1351 next_sample
= (int32_t)((*srcC
++ & 0x0F) << 28) >> shift
;
1353 next_sample
= (int32_t)((*srcC
& 0xF0) << 24) >> shift
;
1355 next_sample
+= (current_sample
* coeff1
) +
1356 (previous_sample
* coeff2
);
1357 next_sample
= av_clip_int16(next_sample
>> 8);
1359 previous_sample
= current_sample
;
1360 current_sample
= next_sample
;
1361 *samplesC
= current_sample
;
1362 samplesC
+= avctx
->channels
;
1367 if (avctx
->codec
->id
!= CODEC_ID_ADPCM_EA_R1
) {
1368 c
->status
[channel
].predictor
= current_sample
;
1369 c
->status
[channel
].prev_sample
= previous_sample
;
1373 src
= src
+ buf_size
- (4 + 4*avctx
->channels
);
1374 samples
+= 28 * samples_in_chunk
* avctx
->channels
;
1377 case CODEC_ID_ADPCM_EA_XAS
:
1378 if (samples_end
-samples
< 32*4*avctx
->channels
1379 || buf_size
< (4+15)*4*avctx
->channels
) {
1383 for (channel
=0; channel
<avctx
->channels
; channel
++) {
1384 int coeff
[2][4], shift
[4];
1385 short *s2
, *s
= &samples
[channel
];
1386 for (n
=0; n
<4; n
++, s
+=32*avctx
->channels
) {
1388 coeff
[i
][n
] = ea_adpcm_table
[(src
[0]&0x0F)+4*i
];
1389 shift
[n
] = (src
[2]&0x0F) + 8;
1390 for (s2
=s
, i
=0; i
<2; i
++, src
+=2, s2
+=avctx
->channels
)
1391 s2
[0] = (src
[0]&0xF0) + (src
[1]<<8);
1394 for (m
=2; m
<32; m
+=2) {
1395 s
= &samples
[m
*avctx
->channels
+ channel
];
1396 for (n
=0; n
<4; n
++, src
++, s
+=32*avctx
->channels
) {
1397 for (s2
=s
, i
=0; i
<8; i
+=4, s2
+=avctx
->channels
) {
1398 int level
= (int32_t)((*src
& (0xF0>>i
)) << (24+i
)) >> shift
[n
];
1399 int pred
= s2
[-1*avctx
->channels
] * coeff
[0][n
]
1400 + s2
[-2*avctx
->channels
] * coeff
[1][n
];
1401 s2
[0] = av_clip_int16((level
+ pred
+ 0x80) >> 8);
1406 samples
+= 32*4*avctx
->channels
;
1408 case CODEC_ID_ADPCM_IMA_AMV
:
1409 case CODEC_ID_ADPCM_IMA_SMJPEG
:
1410 c
->status
[0].predictor
= (int16_t)bytestream_get_le16(&src
);
1411 c
->status
[0].step_index
= bytestream_get_le16(&src
);
1413 if (avctx
->codec
->id
== CODEC_ID_ADPCM_IMA_AMV
)
1416 while (src
< buf
+ buf_size
) {
1421 if (avctx
->codec
->id
== CODEC_ID_ADPCM_IMA_AMV
)
1422 FFSWAP(char, hi
, lo
);
1424 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0],
1426 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0],
1431 case CODEC_ID_ADPCM_CT
:
1432 while (src
< buf
+ buf_size
) {
1434 *samples
++ = adpcm_ct_expand_nibble(&c
->status
[0],
1436 *samples
++ = adpcm_ct_expand_nibble(&c
->status
[1],
1439 *samples
++ = adpcm_ct_expand_nibble(&c
->status
[0],
1441 *samples
++ = adpcm_ct_expand_nibble(&c
->status
[0],
1447 case CODEC_ID_ADPCM_SBPRO_4
:
1448 case CODEC_ID_ADPCM_SBPRO_3
:
1449 case CODEC_ID_ADPCM_SBPRO_2
:
1450 if (!c
->status
[0].step_index
) {
1451 /* the first byte is a raw sample */
1452 *samples
++ = 128 * (*src
++ - 0x80);
1454 *samples
++ = 128 * (*src
++ - 0x80);
1455 c
->status
[0].step_index
= 1;
1457 if (avctx
->codec
->id
== CODEC_ID_ADPCM_SBPRO_4
) {
1458 while (src
< buf
+ buf_size
) {
1459 *samples
++ = adpcm_sbpro_expand_nibble(&c
->status
[0],
1461 *samples
++ = adpcm_sbpro_expand_nibble(&c
->status
[st
],
1462 src
[0] & 0x0F, 4, 0);
1465 } else if (avctx
->codec
->id
== CODEC_ID_ADPCM_SBPRO_3
) {
1466 while (src
< buf
+ buf_size
&& samples
+ 2 < samples_end
) {
1467 *samples
++ = adpcm_sbpro_expand_nibble(&c
->status
[0],
1468 src
[0] >> 5 , 3, 0);
1469 *samples
++ = adpcm_sbpro_expand_nibble(&c
->status
[0],
1470 (src
[0] >> 2) & 0x07, 3, 0);
1471 *samples
++ = adpcm_sbpro_expand_nibble(&c
->status
[0],
1472 src
[0] & 0x03, 2, 0);
1476 while (src
< buf
+ buf_size
&& samples
+ 3 < samples_end
) {
1477 *samples
++ = adpcm_sbpro_expand_nibble(&c
->status
[0],
1478 src
[0] >> 6 , 2, 2);
1479 *samples
++ = adpcm_sbpro_expand_nibble(&c
->status
[st
],
1480 (src
[0] >> 4) & 0x03, 2, 2);
1481 *samples
++ = adpcm_sbpro_expand_nibble(&c
->status
[0],
1482 (src
[0] >> 2) & 0x03, 2, 2);
1483 *samples
++ = adpcm_sbpro_expand_nibble(&c
->status
[st
],
1484 src
[0] & 0x03, 2, 2);
1489 case CODEC_ID_ADPCM_SWF
:
1493 int k0
, signmask
, nb_bits
, count
;
1494 int size
= buf_size
*8;
1496 init_get_bits(&gb
, buf
, size
);
1498 //read bits & initial values
1499 nb_bits
= get_bits(&gb
, 2)+2;
1500 //av_log(NULL,AV_LOG_INFO,"nb_bits: %d\n", nb_bits);
1501 table
= swf_index_tables
[nb_bits
-2];
1502 k0
= 1 << (nb_bits
-2);
1503 signmask
= 1 << (nb_bits
-1);
1505 while (get_bits_count(&gb
) <= size
- 22*avctx
->channels
) {
1506 for (i
= 0; i
< avctx
->channels
; i
++) {
1507 *samples
++ = c
->status
[i
].predictor
= get_sbits(&gb
, 16);
1508 c
->status
[i
].step_index
= get_bits(&gb
, 6);
1511 for (count
= 0; get_bits_count(&gb
) <= size
- nb_bits
*avctx
->channels
&& count
< 4095; count
++) {
1514 for (i
= 0; i
< avctx
->channels
; i
++) {
1515 // similar to IMA adpcm
1516 int delta
= get_bits(&gb
, nb_bits
);
1517 int step
= step_table
[c
->status
[i
].step_index
];
1518 long vpdiff
= 0; // vpdiff = (delta+0.5)*step/4
1529 if (delta
& signmask
)
1530 c
->status
[i
].predictor
-= vpdiff
;
1532 c
->status
[i
].predictor
+= vpdiff
;
1534 c
->status
[i
].step_index
+= table
[delta
& (~signmask
)];
1536 c
->status
[i
].step_index
= av_clip(c
->status
[i
].step_index
, 0, 88);
1537 c
->status
[i
].predictor
= av_clip_int16(c
->status
[i
].predictor
);
1539 *samples
++ = c
->status
[i
].predictor
;
1540 if (samples
>= samples_end
) {
1541 av_log(avctx
, AV_LOG_ERROR
, "allocated output buffer is too small\n");
1550 case CODEC_ID_ADPCM_YAMAHA
:
1551 while (src
< buf
+ buf_size
) {
1553 *samples
++ = adpcm_yamaha_expand_nibble(&c
->status
[0],
1555 *samples
++ = adpcm_yamaha_expand_nibble(&c
->status
[1],
1558 *samples
++ = adpcm_yamaha_expand_nibble(&c
->status
[0],
1560 *samples
++ = adpcm_yamaha_expand_nibble(&c
->status
[0],
1566 case CODEC_ID_ADPCM_THP
:
1569 unsigned int samplecnt
;
1573 if (buf_size
< 80) {
1574 av_log(avctx
, AV_LOG_ERROR
, "frame too small\n");
1579 samplecnt
= bytestream_get_be32(&src
);
1581 for (i
= 0; i
< 32; i
++)
1582 table
[0][i
] = (int16_t)bytestream_get_be16(&src
);
1584 /* Initialize the previous sample. */
1585 for (i
= 0; i
< 4; i
++)
1586 prev
[0][i
] = (int16_t)bytestream_get_be16(&src
);
1588 if (samplecnt
>= (samples_end
- samples
) / (st
+ 1)) {
1589 av_log(avctx
, AV_LOG_ERROR
, "allocated output buffer is too small\n");
1593 for (ch
= 0; ch
<= st
; ch
++) {
1594 samples
= (unsigned short *) data
+ ch
;
1596 /* Read in every sample for this channel. */
1597 for (i
= 0; i
< samplecnt
/ 14; i
++) {
1598 int index
= (*src
>> 4) & 7;
1599 unsigned int exp
= 28 - (*src
++ & 15);
1600 int factor1
= table
[ch
][index
* 2];
1601 int factor2
= table
[ch
][index
* 2 + 1];
1603 /* Decode 14 samples. */
1604 for (n
= 0; n
< 14; n
++) {
1606 if(n
&1) sampledat
= *src
++ <<28;
1607 else sampledat
= (*src
&0xF0)<<24;
1609 sampledat
= ((prev
[ch
][0]*factor1
1610 + prev
[ch
][1]*factor2
) >> 11) + (sampledat
>>exp
);
1611 *samples
= av_clip_int16(sampledat
);
1612 prev
[ch
][1] = prev
[ch
][0];
1613 prev
[ch
][0] = *samples
++;
1615 /* In case of stereo, skip one sample, this sample
1616 is for the other channel. */
1622 /* In the previous loop, in case stereo is used, samples is
1623 increased exactly one time too often. */
1631 *data_size
= (uint8_t *)samples
- (uint8_t *)data
;
1638 #define ADPCM_ENCODER(id,name,long_name_) \
1639 AVCodec name ## _encoder = { \
1641 AVMEDIA_TYPE_AUDIO, \
1643 sizeof(ADPCMContext), \
1644 adpcm_encode_init, \
1645 adpcm_encode_frame, \
1646 adpcm_encode_close, \
1648 .sample_fmts = (const enum SampleFormat[]){SAMPLE_FMT_S16,SAMPLE_FMT_NONE}, \
1649 .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
1652 #define ADPCM_ENCODER(id,name,long_name_)
1656 #define ADPCM_DECODER(id,name,long_name_) \
1657 AVCodec name ## _decoder = { \
1659 AVMEDIA_TYPE_AUDIO, \
1661 sizeof(ADPCMContext), \
1662 adpcm_decode_init, \
1665 adpcm_decode_frame, \
1666 .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
1669 #define ADPCM_DECODER(id,name,long_name_)
1672 #define ADPCM_CODEC(id,name,long_name_) \
1673 ADPCM_ENCODER(id,name,long_name_) ADPCM_DECODER(id,name,long_name_)
1675 /* Note: Do not forget to add new entries to the Makefile as well. */
1676 ADPCM_DECODER(CODEC_ID_ADPCM_4XM
, adpcm_4xm
, "ADPCM 4X Movie");
1677 ADPCM_DECODER(CODEC_ID_ADPCM_CT
, adpcm_ct
, "ADPCM Creative Technology");
1678 ADPCM_DECODER(CODEC_ID_ADPCM_EA
, adpcm_ea
, "ADPCM Electronic Arts");
1679 ADPCM_DECODER(CODEC_ID_ADPCM_EA_MAXIS_XA
, adpcm_ea_maxis_xa
, "ADPCM Electronic Arts Maxis CDROM XA");
1680 ADPCM_DECODER(CODEC_ID_ADPCM_EA_R1
, adpcm_ea_r1
, "ADPCM Electronic Arts R1");
1681 ADPCM_DECODER(CODEC_ID_ADPCM_EA_R2
, adpcm_ea_r2
, "ADPCM Electronic Arts R2");
1682 ADPCM_DECODER(CODEC_ID_ADPCM_EA_R3
, adpcm_ea_r3
, "ADPCM Electronic Arts R3");
1683 ADPCM_DECODER(CODEC_ID_ADPCM_EA_XAS
, adpcm_ea_xas
, "ADPCM Electronic Arts XAS");
1684 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_AMV
, adpcm_ima_amv
, "ADPCM IMA AMV");
1685 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK3
, adpcm_ima_dk3
, "ADPCM IMA Duck DK3");
1686 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK4
, adpcm_ima_dk4
, "ADPCM IMA Duck DK4");
1687 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_EACS
, adpcm_ima_ea_eacs
, "ADPCM IMA Electronic Arts EACS");
1688 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_SEAD
, adpcm_ima_ea_sead
, "ADPCM IMA Electronic Arts SEAD");
1689 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_ISS
, adpcm_ima_iss
, "ADPCM IMA Funcom ISS");
1690 ADPCM_CODEC (CODEC_ID_ADPCM_IMA_QT
, adpcm_ima_qt
, "ADPCM IMA QuickTime");
1691 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_SMJPEG
, adpcm_ima_smjpeg
, "ADPCM IMA Loki SDL MJPEG");
1692 ADPCM_CODEC (CODEC_ID_ADPCM_IMA_WAV
, adpcm_ima_wav
, "ADPCM IMA WAV");
1693 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_WS
, adpcm_ima_ws
, "ADPCM IMA Westwood");
1694 ADPCM_CODEC (CODEC_ID_ADPCM_MS
, adpcm_ms
, "ADPCM Microsoft");
1695 ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_2
, adpcm_sbpro_2
, "ADPCM Sound Blaster Pro 2-bit");
1696 ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_3
, adpcm_sbpro_3
, "ADPCM Sound Blaster Pro 2.6-bit");
1697 ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_4
, adpcm_sbpro_4
, "ADPCM Sound Blaster Pro 4-bit");
1698 ADPCM_CODEC (CODEC_ID_ADPCM_SWF
, adpcm_swf
, "ADPCM Shockwave Flash");
1699 ADPCM_DECODER(CODEC_ID_ADPCM_THP
, adpcm_thp
, "ADPCM Nintendo Gamecube THP");
1700 ADPCM_DECODER(CODEC_ID_ADPCM_XA
, adpcm_xa
, "ADPCM CDROM XA");
1701 ADPCM_CODEC (CODEC_ID_ADPCM_YAMAHA
, adpcm_yamaha
, "ADPCM Yamaha");