6abe18495cc5ff99c9b1788ec82676c9a2925ea4
[libav.git] / libavcodec / adpcm.c
1 /*
2 * ADPCM codecs
3 * Copyright (c) 2001-2003 The ffmpeg Project
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21 #include "avcodec.h"
22 #include "get_bits.h"
23 #include "put_bits.h"
24 #include "bytestream.h"
25
26 /**
27 * @file libavcodec/adpcm.c
28 * ADPCM codecs.
29 * First version by Francois Revol (revol@free.fr)
30 * Fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
31 * by Mike Melanson (melanson@pcisys.net)
32 * CD-ROM XA ADPCM codec by BERO
33 * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com)
34 * EA ADPCM R1/R2/R3 decoder by Peter Ross (pross@xvid.org)
35 * EA IMA EACS decoder by Peter Ross (pross@xvid.org)
36 * EA IMA SEAD decoder by Peter Ross (pross@xvid.org)
37 * EA ADPCM XAS decoder by Peter Ross (pross@xvid.org)
38 * MAXIS EA ADPCM decoder by Robert Marston (rmarston@gmail.com)
39 * THP ADPCM decoder by Marco Gerards (mgerards@xs4all.nl)
40 *
41 * Features and limitations:
42 *
43 * Reference documents:
44 * http://www.pcisys.net/~melanson/codecs/simpleaudio.html
45 * http://www.geocities.com/SiliconValley/8682/aud3.txt
46 * http://openquicktime.sourceforge.net/plugins.htm
47 * XAnim sources (xa_codec.c) http://www.rasnaimaging.com/people/lapus/download.html
48 * http://www.cs.ucla.edu/~leec/mediabench/applications.html
49 * SoX source code http://home.sprynet.com/~cbagwell/sox.html
50 *
51 * CD-ROM XA:
52 * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html
53 * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html
54 * readstr http://www.geocities.co.jp/Playtown/2004/
55 */
56
57 #define BLKSIZE 1024
58
59 /* step_table[] and index_table[] are from the ADPCM reference source */
60 /* This is the index table: */
61 static const int index_table[16] = {
62 -1, -1, -1, -1, 2, 4, 6, 8,
63 -1, -1, -1, -1, 2, 4, 6, 8,
64 };
65
66 /**
67 * This is the step table. Note that many programs use slight deviations from
68 * this table, but such deviations are negligible:
69 */
70 static const int step_table[89] = {
71 7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
72 19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
73 50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
74 130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
75 337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
76 876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
77 2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
78 5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
79 15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767
80 };
81
82 /* These are for MS-ADPCM */
83 /* AdaptationTable[], AdaptCoeff1[], and AdaptCoeff2[] are from libsndfile */
84 static const int AdaptationTable[] = {
85 230, 230, 230, 230, 307, 409, 512, 614,
86 768, 614, 512, 409, 307, 230, 230, 230
87 };
88
89 /** Divided by 4 to fit in 8-bit integers */
90 static const uint8_t AdaptCoeff1[] = {
91 64, 128, 0, 48, 60, 115, 98
92 };
93
94 /** Divided by 4 to fit in 8-bit integers */
95 static const int8_t AdaptCoeff2[] = {
96 0, -64, 0, 16, 0, -52, -58
97 };
98
99 /* These are for CD-ROM XA ADPCM */
100 static const int xa_adpcm_table[5][2] = {
101 { 0, 0 },
102 { 60, 0 },
103 { 115, -52 },
104 { 98, -55 },
105 { 122, -60 }
106 };
107
108 static const int ea_adpcm_table[] = {
109 0, 240, 460, 392, 0, 0, -208, -220, 0, 1,
110 3, 4, 7, 8, 10, 11, 0, -1, -3, -4
111 };
112
113 // padded to zero where table size is less then 16
114 static const int swf_index_tables[4][16] = {
115 /*2*/ { -1, 2 },
116 /*3*/ { -1, -1, 2, 4 },
117 /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 },
118 /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
119 };
120
121 static const int yamaha_indexscale[] = {
122 230, 230, 230, 230, 307, 409, 512, 614,
123 230, 230, 230, 230, 307, 409, 512, 614
124 };
125
126 static const int yamaha_difflookup[] = {
127 1, 3, 5, 7, 9, 11, 13, 15,
128 -1, -3, -5, -7, -9, -11, -13, -15
129 };
130
131 /* end of tables */
132
133 typedef struct ADPCMChannelStatus {
134 int predictor;
135 short int step_index;
136 int step;
137 /* for encoding */
138 int prev_sample;
139
140 /* MS version */
141 short sample1;
142 short sample2;
143 int coeff1;
144 int coeff2;
145 int idelta;
146 } ADPCMChannelStatus;
147
148 typedef struct ADPCMContext {
149 ADPCMChannelStatus status[6];
150 } ADPCMContext;
151
152 /* XXX: implement encoding */
153
154 #if CONFIG_ENCODERS
155 static av_cold int adpcm_encode_init(AVCodecContext *avctx)
156 {
157 uint8_t *extradata;
158 int i;
159 if (avctx->channels > 2)
160 return -1; /* only stereo or mono =) */
161
162 if(avctx->trellis && (unsigned)avctx->trellis > 16U){
163 av_log(avctx, AV_LOG_ERROR, "invalid trellis size\n");
164 return -1;
165 }
166
167 switch(avctx->codec->id) {
168 case CODEC_ID_ADPCM_IMA_WAV:
169 avctx->frame_size = (BLKSIZE - 4 * avctx->channels) * 8 / (4 * avctx->channels) + 1; /* each 16 bits sample gives one nibble */
170 /* and we have 4 bytes per channel overhead */
171 avctx->block_align = BLKSIZE;
172 /* seems frame_size isn't taken into account... have to buffer the samples :-( */
173 break;
174 case CODEC_ID_ADPCM_IMA_QT:
175 avctx->frame_size = 64;
176 avctx->block_align = 34 * avctx->channels;
177 break;
178 case CODEC_ID_ADPCM_MS:
179 avctx->frame_size = (BLKSIZE - 7 * avctx->channels) * 2 / avctx->channels + 2; /* each 16 bits sample gives one nibble */
180 /* and we have 7 bytes per channel overhead */
181 avctx->block_align = BLKSIZE;
182 avctx->extradata_size = 32;
183 extradata = avctx->extradata = av_malloc(avctx->extradata_size);
184 if (!extradata)
185 return AVERROR(ENOMEM);
186 bytestream_put_le16(&extradata, avctx->frame_size);
187 bytestream_put_le16(&extradata, 7); /* wNumCoef */
188 for (i = 0; i < 7; i++) {
189 bytestream_put_le16(&extradata, AdaptCoeff1[i] * 4);
190 bytestream_put_le16(&extradata, AdaptCoeff2[i] * 4);
191 }
192 break;
193 case CODEC_ID_ADPCM_YAMAHA:
194 avctx->frame_size = BLKSIZE * avctx->channels;
195 avctx->block_align = BLKSIZE;
196 break;
197 case CODEC_ID_ADPCM_SWF:
198 if (avctx->sample_rate != 11025 &&
199 avctx->sample_rate != 22050 &&
200 avctx->sample_rate != 44100) {
201 av_log(avctx, AV_LOG_ERROR, "Sample rate must be 11025, 22050 or 44100\n");
202 return -1;
203 }
204 avctx->frame_size = 512 * (avctx->sample_rate / 11025);
205 break;
206 default:
207 return -1;
208 }
209
210 avctx->coded_frame= avcodec_alloc_frame();
211 avctx->coded_frame->key_frame= 1;
212
213 return 0;
214 }
215
216 static av_cold int adpcm_encode_close(AVCodecContext *avctx)
217 {
218 av_freep(&avctx->coded_frame);
219
220 return 0;
221 }
222
223
224 static inline unsigned char adpcm_ima_compress_sample(ADPCMChannelStatus *c, short sample)
225 {
226 int delta = sample - c->prev_sample;
227 int nibble = FFMIN(7, abs(delta)*4/step_table[c->step_index]) + (delta<0)*8;
228 c->prev_sample += ((step_table[c->step_index] * yamaha_difflookup[nibble]) / 8);
229 c->prev_sample = av_clip_int16(c->prev_sample);
230 c->step_index = av_clip(c->step_index + index_table[nibble], 0, 88);
231 return nibble;
232 }
233
234 static inline unsigned char adpcm_ms_compress_sample(ADPCMChannelStatus *c, short sample)
235 {
236 int predictor, nibble, bias;
237
238 predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64;
239
240 nibble= sample - predictor;
241 if(nibble>=0) bias= c->idelta/2;
242 else bias=-c->idelta/2;
243
244 nibble= (nibble + bias) / c->idelta;
245 nibble= av_clip(nibble, -8, 7)&0x0F;
246
247 predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
248
249 c->sample2 = c->sample1;
250 c->sample1 = av_clip_int16(predictor);
251
252 c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
253 if (c->idelta < 16) c->idelta = 16;
254
255 return nibble;
256 }
257
258 static inline unsigned char adpcm_yamaha_compress_sample(ADPCMChannelStatus *c, short sample)
259 {
260 int nibble, delta;
261
262 if(!c->step) {
263 c->predictor = 0;
264 c->step = 127;
265 }
266
267 delta = sample - c->predictor;
268
269 nibble = FFMIN(7, abs(delta)*4/c->step) + (delta<0)*8;
270
271 c->predictor += ((c->step * yamaha_difflookup[nibble]) / 8);
272 c->predictor = av_clip_int16(c->predictor);
273 c->step = (c->step * yamaha_indexscale[nibble]) >> 8;
274 c->step = av_clip(c->step, 127, 24567);
275
276 return nibble;
277 }
278
279 typedef struct TrellisPath {
280 int nibble;
281 int prev;
282 } TrellisPath;
283
284 typedef struct TrellisNode {
285 uint32_t ssd;
286 int path;
287 int sample1;
288 int sample2;
289 int step;
290 } TrellisNode;
291
292 static void adpcm_compress_trellis(AVCodecContext *avctx, const short *samples,
293 uint8_t *dst, ADPCMChannelStatus *c, int n)
294 {
295 #define FREEZE_INTERVAL 128
296 //FIXME 6% faster if frontier is a compile-time constant
297 const int frontier = 1 << avctx->trellis;
298 const int stride = avctx->channels;
299 const int version = avctx->codec->id;
300 const int max_paths = frontier*FREEZE_INTERVAL;
301 TrellisPath paths[max_paths], *p;
302 TrellisNode node_buf[2][frontier];
303 TrellisNode *nodep_buf[2][frontier];
304 TrellisNode **nodes = nodep_buf[0]; // nodes[] is always sorted by .ssd
305 TrellisNode **nodes_next = nodep_buf[1];
306 int pathn = 0, froze = -1, i, j, k;
307
308 assert(!(max_paths&(max_paths-1)));
309
310 memset(nodep_buf, 0, sizeof(nodep_buf));
311 nodes[0] = &node_buf[1][0];
312 nodes[0]->ssd = 0;
313 nodes[0]->path = 0;
314 nodes[0]->step = c->step_index;
315 nodes[0]->sample1 = c->sample1;
316 nodes[0]->sample2 = c->sample2;
317 if((version == CODEC_ID_ADPCM_IMA_WAV) || (version == CODEC_ID_ADPCM_IMA_QT) || (version == CODEC_ID_ADPCM_SWF))
318 nodes[0]->sample1 = c->prev_sample;
319 if(version == CODEC_ID_ADPCM_MS)
320 nodes[0]->step = c->idelta;
321 if(version == CODEC_ID_ADPCM_YAMAHA) {
322 if(c->step == 0) {
323 nodes[0]->step = 127;
324 nodes[0]->sample1 = 0;
325 } else {
326 nodes[0]->step = c->step;
327 nodes[0]->sample1 = c->predictor;
328 }
329 }
330
331 for(i=0; i<n; i++) {
332 TrellisNode *t = node_buf[i&1];
333 TrellisNode **u;
334 int sample = samples[i*stride];
335 memset(nodes_next, 0, frontier*sizeof(TrellisNode*));
336 for(j=0; j<frontier && nodes[j]; j++) {
337 // higher j have higher ssd already, so they're unlikely to use a suboptimal next sample too
338 const int range = (j < frontier/2) ? 1 : 0;
339 const int step = nodes[j]->step;
340 int nidx;
341 if(version == CODEC_ID_ADPCM_MS) {
342 const int predictor = ((nodes[j]->sample1 * c->coeff1) + (nodes[j]->sample2 * c->coeff2)) / 64;
343 const int div = (sample - predictor) / step;
344 const int nmin = av_clip(div-range, -8, 6);
345 const int nmax = av_clip(div+range, -7, 7);
346 for(nidx=nmin; nidx<=nmax; nidx++) {
347 const int nibble = nidx & 0xf;
348 int dec_sample = predictor + nidx * step;
349 #define STORE_NODE(NAME, STEP_INDEX)\
350 int d;\
351 uint32_t ssd;\
352 dec_sample = av_clip_int16(dec_sample);\
353 d = sample - dec_sample;\
354 ssd = nodes[j]->ssd + d*d;\
355 if(nodes_next[frontier-1] && ssd >= nodes_next[frontier-1]->ssd)\
356 continue;\
357 /* Collapse any two states with the same previous sample value. \
358 * One could also distinguish states by step and by 2nd to last
359 * sample, but the effects of that are negligible. */\
360 for(k=0; k<frontier && nodes_next[k]; k++) {\
361 if(dec_sample == nodes_next[k]->sample1) {\
362 assert(ssd >= nodes_next[k]->ssd);\
363 goto next_##NAME;\
364 }\
365 }\
366 for(k=0; k<frontier; k++) {\
367 if(!nodes_next[k] || ssd < nodes_next[k]->ssd) {\
368 TrellisNode *u = nodes_next[frontier-1];\
369 if(!u) {\
370 assert(pathn < max_paths);\
371 u = t++;\
372 u->path = pathn++;\
373 }\
374 u->ssd = ssd;\
375 u->step = STEP_INDEX;\
376 u->sample2 = nodes[j]->sample1;\
377 u->sample1 = dec_sample;\
378 paths[u->path].nibble = nibble;\
379 paths[u->path].prev = nodes[j]->path;\
380 memmove(&nodes_next[k+1], &nodes_next[k], (frontier-k-1)*sizeof(TrellisNode*));\
381 nodes_next[k] = u;\
382 break;\
383 }\
384 }\
385 next_##NAME:;
386 STORE_NODE(ms, FFMAX(16, (AdaptationTable[nibble] * step) >> 8));
387 }
388 } else if((version == CODEC_ID_ADPCM_IMA_WAV)|| (version == CODEC_ID_ADPCM_IMA_QT)|| (version == CODEC_ID_ADPCM_SWF)) {
389 #define LOOP_NODES(NAME, STEP_TABLE, STEP_INDEX)\
390 const int predictor = nodes[j]->sample1;\
391 const int div = (sample - predictor) * 4 / STEP_TABLE;\
392 int nmin = av_clip(div-range, -7, 6);\
393 int nmax = av_clip(div+range, -6, 7);\
394 if(nmin<=0) nmin--; /* distinguish -0 from +0 */\
395 if(nmax<0) nmax--;\
396 for(nidx=nmin; nidx<=nmax; nidx++) {\
397 const int nibble = nidx<0 ? 7-nidx : nidx;\
398 int dec_sample = predictor + (STEP_TABLE * yamaha_difflookup[nibble]) / 8;\
399 STORE_NODE(NAME, STEP_INDEX);\
400 }
401 LOOP_NODES(ima, step_table[step], av_clip(step + index_table[nibble], 0, 88));
402 } else { //CODEC_ID_ADPCM_YAMAHA
403 LOOP_NODES(yamaha, step, av_clip((step * yamaha_indexscale[nibble]) >> 8, 127, 24567));
404 #undef LOOP_NODES
405 #undef STORE_NODE
406 }
407 }
408
409 u = nodes;
410 nodes = nodes_next;
411 nodes_next = u;
412
413 // prevent overflow
414 if(nodes[0]->ssd > (1<<28)) {
415 for(j=1; j<frontier && nodes[j]; j++)
416 nodes[j]->ssd -= nodes[0]->ssd;
417 nodes[0]->ssd = 0;
418 }
419
420 // merge old paths to save memory
421 if(i == froze + FREEZE_INTERVAL) {
422 p = &paths[nodes[0]->path];
423 for(k=i; k>froze; k--) {
424 dst[k] = p->nibble;
425 p = &paths[p->prev];
426 }
427 froze = i;
428 pathn = 0;
429 // other nodes might use paths that don't coincide with the frozen one.
430 // checking which nodes do so is too slow, so just kill them all.
431 // this also slightly improves quality, but I don't know why.
432 memset(nodes+1, 0, (frontier-1)*sizeof(TrellisNode*));
433 }
434 }
435
436 p = &paths[nodes[0]->path];
437 for(i=n-1; i>froze; i--) {
438 dst[i] = p->nibble;
439 p = &paths[p->prev];
440 }
441
442 c->predictor = nodes[0]->sample1;
443 c->sample1 = nodes[0]->sample1;
444 c->sample2 = nodes[0]->sample2;
445 c->step_index = nodes[0]->step;
446 c->step = nodes[0]->step;
447 c->idelta = nodes[0]->step;
448 }
449
450 static int adpcm_encode_frame(AVCodecContext *avctx,
451 unsigned char *frame, int buf_size, void *data)
452 {
453 int n, i, st;
454 short *samples;
455 unsigned char *dst;
456 ADPCMContext *c = avctx->priv_data;
457
458 dst = frame;
459 samples = (short *)data;
460 st= avctx->channels == 2;
461 /* n = (BLKSIZE - 4 * avctx->channels) / (2 * 8 * avctx->channels); */
462
463 switch(avctx->codec->id) {
464 case CODEC_ID_ADPCM_IMA_WAV:
465 n = avctx->frame_size / 8;
466 c->status[0].prev_sample = (signed short)samples[0]; /* XXX */
467 /* c->status[0].step_index = 0; *//* XXX: not sure how to init the state machine */
468 bytestream_put_le16(&dst, c->status[0].prev_sample);
469 *dst++ = (unsigned char)c->status[0].step_index;
470 *dst++ = 0; /* unknown */
471 samples++;
472 if (avctx->channels == 2) {
473 c->status[1].prev_sample = (signed short)samples[0];
474 /* c->status[1].step_index = 0; */
475 bytestream_put_le16(&dst, c->status[1].prev_sample);
476 *dst++ = (unsigned char)c->status[1].step_index;
477 *dst++ = 0;
478 samples++;
479 }
480
481 /* stereo: 4 bytes (8 samples) for left, 4 bytes for right, 4 bytes left, ... */
482 if(avctx->trellis > 0) {
483 uint8_t buf[2][n*8];
484 adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n*8);
485 if(avctx->channels == 2)
486 adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n*8);
487 for(i=0; i<n; i++) {
488 *dst++ = buf[0][8*i+0] | (buf[0][8*i+1] << 4);
489 *dst++ = buf[0][8*i+2] | (buf[0][8*i+3] << 4);
490 *dst++ = buf[0][8*i+4] | (buf[0][8*i+5] << 4);
491 *dst++ = buf[0][8*i+6] | (buf[0][8*i+7] << 4);
492 if (avctx->channels == 2) {
493 *dst++ = buf[1][8*i+0] | (buf[1][8*i+1] << 4);
494 *dst++ = buf[1][8*i+2] | (buf[1][8*i+3] << 4);
495 *dst++ = buf[1][8*i+4] | (buf[1][8*i+5] << 4);
496 *dst++ = buf[1][8*i+6] | (buf[1][8*i+7] << 4);
497 }
498 }
499 } else
500 for (; n>0; n--) {
501 *dst = adpcm_ima_compress_sample(&c->status[0], samples[0]);
502 *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels]) << 4;
503 dst++;
504 *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 2]);
505 *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 3]) << 4;
506 dst++;
507 *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 4]);
508 *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 5]) << 4;
509 dst++;
510 *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 6]);
511 *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 7]) << 4;
512 dst++;
513 /* right channel */
514 if (avctx->channels == 2) {
515 *dst = adpcm_ima_compress_sample(&c->status[1], samples[1]);
516 *dst |= adpcm_ima_compress_sample(&c->status[1], samples[3]) << 4;
517 dst++;
518 *dst = adpcm_ima_compress_sample(&c->status[1], samples[5]);
519 *dst |= adpcm_ima_compress_sample(&c->status[1], samples[7]) << 4;
520 dst++;
521 *dst = adpcm_ima_compress_sample(&c->status[1], samples[9]);
522 *dst |= adpcm_ima_compress_sample(&c->status[1], samples[11]) << 4;
523 dst++;
524 *dst = adpcm_ima_compress_sample(&c->status[1], samples[13]);
525 *dst |= adpcm_ima_compress_sample(&c->status[1], samples[15]) << 4;
526 dst++;
527 }
528 samples += 8 * avctx->channels;
529 }
530 break;
531 case CODEC_ID_ADPCM_IMA_QT:
532 {
533 int ch, i;
534 PutBitContext pb;
535 init_put_bits(&pb, dst, buf_size*8);
536
537 for(ch=0; ch<avctx->channels; ch++){
538 put_bits(&pb, 9, (c->status[ch].prev_sample + 0x10000) >> 7);
539 put_bits(&pb, 7, c->status[ch].step_index);
540 if(avctx->trellis > 0) {
541 uint8_t buf[64];
542 adpcm_compress_trellis(avctx, samples+ch, buf, &c->status[ch], 64);
543 for(i=0; i<64; i++)
544 put_bits(&pb, 4, buf[i^1]);
545 c->status[ch].prev_sample = c->status[ch].predictor & ~0x7F;
546 } else {
547 for (i=0; i<64; i+=2){
548 int t1, t2;
549 t1 = adpcm_ima_compress_sample(&c->status[ch], samples[avctx->channels*(i+0)+ch]);
550 t2 = adpcm_ima_compress_sample(&c->status[ch], samples[avctx->channels*(i+1)+ch]);
551 put_bits(&pb, 4, t2);
552 put_bits(&pb, 4, t1);
553 }
554 c->status[ch].prev_sample &= ~0x7F;
555 }
556 }
557
558 dst += put_bits_count(&pb)>>3;
559 break;
560 }
561 case CODEC_ID_ADPCM_SWF:
562 {
563 int i;
564 PutBitContext pb;
565 init_put_bits(&pb, dst, buf_size*8);
566
567 n = avctx->frame_size-1;
568
569 //Store AdpcmCodeSize
570 put_bits(&pb, 2, 2); //Set 4bits flash adpcm format
571
572 //Init the encoder state
573 for(i=0; i<avctx->channels; i++){
574 c->status[i].step_index = av_clip(c->status[i].step_index, 0, 63); // clip step so it fits 6 bits
575 put_sbits(&pb, 16, samples[i]);
576 put_bits(&pb, 6, c->status[i].step_index);
577 c->status[i].prev_sample = (signed short)samples[i];
578 }
579
580 if(avctx->trellis > 0) {
581 uint8_t buf[2][n];
582 adpcm_compress_trellis(avctx, samples+2, buf[0], &c->status[0], n);
583 if (avctx->channels == 2)
584 adpcm_compress_trellis(avctx, samples+3, buf[1], &c->status[1], n);
585 for(i=0; i<n; i++) {
586 put_bits(&pb, 4, buf[0][i]);
587 if (avctx->channels == 2)
588 put_bits(&pb, 4, buf[1][i]);
589 }
590 } else {
591 for (i=1; i<avctx->frame_size; i++) {
592 put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels*i]));
593 if (avctx->channels == 2)
594 put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[1], samples[2*i+1]));
595 }
596 }
597 flush_put_bits(&pb);
598 dst += put_bits_count(&pb)>>3;
599 break;
600 }
601 case CODEC_ID_ADPCM_MS:
602 for(i=0; i<avctx->channels; i++){
603 int predictor=0;
604
605 *dst++ = predictor;
606 c->status[i].coeff1 = AdaptCoeff1[predictor];
607 c->status[i].coeff2 = AdaptCoeff2[predictor];
608 }
609 for(i=0; i<avctx->channels; i++){
610 if (c->status[i].idelta < 16)
611 c->status[i].idelta = 16;
612
613 bytestream_put_le16(&dst, c->status[i].idelta);
614 }
615 for(i=0; i<avctx->channels; i++){
616 c->status[i].sample2= *samples++;
617 }
618 for(i=0; i<avctx->channels; i++){
619 c->status[i].sample1= *samples++;
620
621 bytestream_put_le16(&dst, c->status[i].sample1);
622 }
623 for(i=0; i<avctx->channels; i++)
624 bytestream_put_le16(&dst, c->status[i].sample2);
625
626 if(avctx->trellis > 0) {
627 int n = avctx->block_align - 7*avctx->channels;
628 uint8_t buf[2][n];
629 if(avctx->channels == 1) {
630 n *= 2;
631 adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
632 for(i=0; i<n; i+=2)
633 *dst++ = (buf[0][i] << 4) | buf[0][i+1];
634 } else {
635 adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
636 adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n);
637 for(i=0; i<n; i++)
638 *dst++ = (buf[0][i] << 4) | buf[1][i];
639 }
640 } else
641 for(i=7*avctx->channels; i<avctx->block_align; i++) {
642 int nibble;
643 nibble = adpcm_ms_compress_sample(&c->status[ 0], *samples++)<<4;
644 nibble|= adpcm_ms_compress_sample(&c->status[st], *samples++);
645 *dst++ = nibble;
646 }
647 break;
648 case CODEC_ID_ADPCM_YAMAHA:
649 n = avctx->frame_size / 2;
650 if(avctx->trellis > 0) {
651 uint8_t buf[2][n*2];
652 n *= 2;
653 if(avctx->channels == 1) {
654 adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
655 for(i=0; i<n; i+=2)
656 *dst++ = buf[0][i] | (buf[0][i+1] << 4);
657 } else {
658 adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
659 adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n);
660 for(i=0; i<n; i++)
661 *dst++ = buf[0][i] | (buf[1][i] << 4);
662 }
663 } else
664 for (n *= avctx->channels; n>0; n--) {
665 int nibble;
666 nibble = adpcm_yamaha_compress_sample(&c->status[ 0], *samples++);
667 nibble |= adpcm_yamaha_compress_sample(&c->status[st], *samples++) << 4;
668 *dst++ = nibble;
669 }
670 break;
671 default:
672 return -1;
673 }
674 return dst - frame;
675 }
676 #endif //CONFIG_ENCODERS
677
678 static av_cold int adpcm_decode_init(AVCodecContext * avctx)
679 {
680 ADPCMContext *c = avctx->priv_data;
681 unsigned int max_channels = 2;
682
683 switch(avctx->codec->id) {
684 case CODEC_ID_ADPCM_EA_R1:
685 case CODEC_ID_ADPCM_EA_R2:
686 case CODEC_ID_ADPCM_EA_R3:
687 max_channels = 6;
688 break;
689 }
690 if(avctx->channels > max_channels){
691 return -1;
692 }
693
694 switch(avctx->codec->id) {
695 case CODEC_ID_ADPCM_CT:
696 c->status[0].step = c->status[1].step = 511;
697 break;
698 case CODEC_ID_ADPCM_IMA_WS:
699 if (avctx->extradata && avctx->extradata_size == 2 * 4) {
700 c->status[0].predictor = AV_RL32(avctx->extradata);
701 c->status[1].predictor = AV_RL32(avctx->extradata + 4);
702 }
703 break;
704 default:
705 break;
706 }
707 avctx->sample_fmt = SAMPLE_FMT_S16;
708 return 0;
709 }
710
711 static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift)
712 {
713 int step_index;
714 int predictor;
715 int sign, delta, diff, step;
716
717 step = step_table[c->step_index];
718 step_index = c->step_index + index_table[(unsigned)nibble];
719 if (step_index < 0) step_index = 0;
720 else if (step_index > 88) step_index = 88;
721
722 sign = nibble & 8;
723 delta = nibble & 7;
724 /* perform direct multiplication instead of series of jumps proposed by
725 * the reference ADPCM implementation since modern CPUs can do the mults
726 * quickly enough */
727 diff = ((2 * delta + 1) * step) >> shift;
728 predictor = c->predictor;
729 if (sign) predictor -= diff;
730 else predictor += diff;
731
732 c->predictor = av_clip_int16(predictor);
733 c->step_index = step_index;
734
735 return (short)c->predictor;
736 }
737
738 static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, char nibble)
739 {
740 int predictor;
741
742 predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64;
743 predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
744
745 c->sample2 = c->sample1;
746 c->sample1 = av_clip_int16(predictor);
747 c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
748 if (c->idelta < 16) c->idelta = 16;
749
750 return c->sample1;
751 }
752
753 static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble)
754 {
755 int sign, delta, diff;
756 int new_step;
757
758 sign = nibble & 8;
759 delta = nibble & 7;
760 /* perform direct multiplication instead of series of jumps proposed by
761 * the reference ADPCM implementation since modern CPUs can do the mults
762 * quickly enough */
763 diff = ((2 * delta + 1) * c->step) >> 3;
764 /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */
765 c->predictor = ((c->predictor * 254) >> 8) + (sign ? -diff : diff);
766 c->predictor = av_clip_int16(c->predictor);
767 /* calculate new step and clamp it to range 511..32767 */
768 new_step = (AdaptationTable[nibble & 7] * c->step) >> 8;
769 c->step = av_clip(new_step, 511, 32767);
770
771 return (short)c->predictor;
772 }
773
774 static inline short adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, char nibble, int size, int shift)
775 {
776 int sign, delta, diff;
777
778 sign = nibble & (1<<(size-1));
779 delta = nibble & ((1<<(size-1))-1);
780 diff = delta << (7 + c->step + shift);
781
782 /* clamp result */
783 c->predictor = av_clip(c->predictor + (sign ? -diff : diff), -16384,16256);
784
785 /* calculate new step */
786 if (delta >= (2*size - 3) && c->step < 3)
787 c->step++;
788 else if (delta == 0 && c->step > 0)
789 c->step--;
790
791 return (short) c->predictor;
792 }
793
794 static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned char nibble)
795 {
796 if(!c->step) {
797 c->predictor = 0;
798 c->step = 127;
799 }
800
801 c->predictor += (c->step * yamaha_difflookup[nibble]) / 8;
802 c->predictor = av_clip_int16(c->predictor);
803 c->step = (c->step * yamaha_indexscale[nibble]) >> 8;
804 c->step = av_clip(c->step, 127, 24567);
805 return c->predictor;
806 }
807
808 static void xa_decode(short *out, const unsigned char *in,
809 ADPCMChannelStatus *left, ADPCMChannelStatus *right, int inc)
810 {
811 int i, j;
812 int shift,filter,f0,f1;
813 int s_1,s_2;
814 int d,s,t;
815
816 for(i=0;i<4;i++) {
817
818 shift = 12 - (in[4+i*2] & 15);
819 filter = in[4+i*2] >> 4;
820 f0 = xa_adpcm_table[filter][0];
821 f1 = xa_adpcm_table[filter][1];
822
823 s_1 = left->sample1;
824 s_2 = left->sample2;
825
826 for(j=0;j<28;j++) {
827 d = in[16+i+j*4];
828
829 t = (signed char)(d<<4)>>4;
830 s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
831 s_2 = s_1;
832 s_1 = av_clip_int16(s);
833 *out = s_1;
834 out += inc;
835 }
836
837 if (inc==2) { /* stereo */
838 left->sample1 = s_1;
839 left->sample2 = s_2;
840 s_1 = right->sample1;
841 s_2 = right->sample2;
842 out = out + 1 - 28*2;
843 }
844
845 shift = 12 - (in[5+i*2] & 15);
846 filter = in[5+i*2] >> 4;
847
848 f0 = xa_adpcm_table[filter][0];
849 f1 = xa_adpcm_table[filter][1];
850
851 for(j=0;j<28;j++) {
852 d = in[16+i+j*4];
853
854 t = (signed char)d >> 4;
855 s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
856 s_2 = s_1;
857 s_1 = av_clip_int16(s);
858 *out = s_1;
859 out += inc;
860 }
861
862 if (inc==2) { /* stereo */
863 right->sample1 = s_1;
864 right->sample2 = s_2;
865 out -= 1;
866 } else {
867 left->sample1 = s_1;
868 left->sample2 = s_2;
869 }
870 }
871 }
872
873
874 /* DK3 ADPCM support macro */
875 #define DK3_GET_NEXT_NIBBLE() \
876 if (decode_top_nibble_next) \
877 { \
878 nibble = last_byte >> 4; \
879 decode_top_nibble_next = 0; \
880 } \
881 else \
882 { \
883 last_byte = *src++; \
884 if (src >= buf + buf_size) break; \
885 nibble = last_byte & 0x0F; \
886 decode_top_nibble_next = 1; \
887 }
888
889 static int adpcm_decode_frame(AVCodecContext *avctx,
890 void *data, int *data_size,
891 AVPacket *avpkt)
892 {
893 const uint8_t *buf = avpkt->data;
894 int buf_size = avpkt->size;
895 ADPCMContext *c = avctx->priv_data;
896 ADPCMChannelStatus *cs;
897 int n, m, channel, i;
898 int block_predictor[2];
899 short *samples;
900 short *samples_end;
901 const uint8_t *src;
902 int st; /* stereo */
903
904 /* DK3 ADPCM accounting variables */
905 unsigned char last_byte = 0;
906 unsigned char nibble;
907 int decode_top_nibble_next = 0;
908 int diff_channel;
909
910 /* EA ADPCM state variables */
911 uint32_t samples_in_chunk;
912 int32_t previous_left_sample, previous_right_sample;
913 int32_t current_left_sample, current_right_sample;
914 int32_t next_left_sample, next_right_sample;
915 int32_t coeff1l, coeff2l, coeff1r, coeff2r;
916 uint8_t shift_left, shift_right;
917 int count1, count2;
918 int coeff[2][2], shift[2];//used in EA MAXIS ADPCM
919
920 if (!buf_size)
921 return 0;
922
923 //should protect all 4bit ADPCM variants
924 //8 is needed for CODEC_ID_ADPCM_IMA_WAV with 2 channels
925 //
926 if(*data_size/4 < buf_size + 8)
927 return -1;
928
929 samples = data;
930 samples_end= samples + *data_size/2;
931 *data_size= 0;
932 src = buf;
933
934 st = avctx->channels == 2 ? 1 : 0;
935
936 switch(avctx->codec->id) {
937 case CODEC_ID_ADPCM_IMA_QT:
938 n = buf_size - 2*avctx->channels;
939 for (channel = 0; channel < avctx->channels; channel++) {
940 cs = &(c->status[channel]);
941 /* (pppppp) (piiiiiii) */
942
943 /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
944 cs->predictor = (*src++) << 8;
945 cs->predictor |= (*src & 0x80);
946 cs->predictor &= 0xFF80;
947
948 /* sign extension */
949 if(cs->predictor & 0x8000)
950 cs->predictor -= 0x10000;
951
952 cs->predictor = av_clip_int16(cs->predictor);
953
954 cs->step_index = (*src++) & 0x7F;
955
956 if (cs->step_index > 88){
957 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
958 cs->step_index = 88;
959 }
960
961 cs->step = step_table[cs->step_index];
962
963 samples = (short*)data + channel;
964
965 for(m=32; n>0 && m>0; n--, m--) { /* in QuickTime, IMA is encoded by chuncks of 34 bytes (=64 samples) */
966 *samples = adpcm_ima_expand_nibble(cs, src[0] & 0x0F, 3);
967 samples += avctx->channels;
968 *samples = adpcm_ima_expand_nibble(cs, src[0] >> 4 , 3);
969 samples += avctx->channels;
970 src ++;
971 }
972 }
973 if (st)
974 samples--;
975 break;
976 case CODEC_ID_ADPCM_IMA_WAV:
977 if (avctx->block_align != 0 && buf_size > avctx->block_align)
978 buf_size = avctx->block_align;
979
980 // samples_per_block= (block_align-4*chanels)*8 / (bits_per_sample * chanels) + 1;
981
982 for(i=0; i<avctx->channels; i++){
983 cs = &(c->status[i]);
984 cs->predictor = *samples++ = (int16_t)bytestream_get_le16(&src);
985
986 cs->step_index = *src++;
987 if (cs->step_index > 88){
988 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
989 cs->step_index = 88;
990 }
991 if (*src++) av_log(avctx, AV_LOG_ERROR, "unused byte should be null but is %d!!\n", src[-1]); /* unused */
992 }
993
994 while(src < buf + buf_size){
995 for(m=0; m<4; m++){
996 for(i=0; i<=st; i++)
997 *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] & 0x0F, 3);
998 for(i=0; i<=st; i++)
999 *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] >> 4 , 3);
1000 src++;
1001 }
1002 src += 4*st;
1003 }
1004 break;
1005 case CODEC_ID_ADPCM_4XM:
1006 cs = &(c->status[0]);
1007 c->status[0].predictor= (int16_t)bytestream_get_le16(&src);
1008 if(st){
1009 c->status[1].predictor= (int16_t)bytestream_get_le16(&src);
1010 }
1011 c->status[0].step_index= (int16_t)bytestream_get_le16(&src);
1012 if(st){
1013 c->status[1].step_index= (int16_t)bytestream_get_le16(&src);
1014 }
1015 if (cs->step_index < 0) cs->step_index = 0;
1016 if (cs->step_index > 88) cs->step_index = 88;
1017
1018 m= (buf_size - (src - buf))>>st;
1019 for(i=0; i<m; i++) {
1020 *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] & 0x0F, 4);
1021 if (st)
1022 *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] & 0x0F, 4);
1023 *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] >> 4, 4);
1024 if (st)
1025 *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] >> 4, 4);
1026 }
1027
1028 src += m<<st;
1029
1030 break;
1031 case CODEC_ID_ADPCM_MS:
1032 if (avctx->block_align != 0 && buf_size > avctx->block_align)
1033 buf_size = avctx->block_align;
1034 n = buf_size - 7 * avctx->channels;
1035 if (n < 0)
1036 return -1;
1037 block_predictor[0] = av_clip(*src++, 0, 6);
1038 block_predictor[1] = 0;
1039 if (st)
1040 block_predictor[1] = av_clip(*src++, 0, 6);
1041 c->status[0].idelta = (int16_t)bytestream_get_le16(&src);
1042 if (st){
1043 c->status[1].idelta = (int16_t)bytestream_get_le16(&src);
1044 }
1045 c->status[0].coeff1 = AdaptCoeff1[block_predictor[0]];
1046 c->status[0].coeff2 = AdaptCoeff2[block_predictor[0]];
1047 c->status[1].coeff1 = AdaptCoeff1[block_predictor[1]];
1048 c->status[1].coeff2 = AdaptCoeff2[block_predictor[1]];
1049
1050 c->status[0].sample1 = bytestream_get_le16(&src);
1051 if (st) c->status[1].sample1 = bytestream_get_le16(&src);
1052 c->status[0].sample2 = bytestream_get_le16(&src);
1053 if (st) c->status[1].sample2 = bytestream_get_le16(&src);
1054
1055 *samples++ = c->status[0].sample2;
1056 if (st) *samples++ = c->status[1].sample2;
1057 *samples++ = c->status[0].sample1;
1058 if (st) *samples++ = c->status[1].sample1;
1059 for(;n>0;n--) {
1060 *samples++ = adpcm_ms_expand_nibble(&c->status[0 ], src[0] >> 4 );
1061 *samples++ = adpcm_ms_expand_nibble(&c->status[st], src[0] & 0x0F);
1062 src ++;
1063 }
1064 break;
1065 case CODEC_ID_ADPCM_IMA_DK4:
1066 if (avctx->block_align != 0 && buf_size > avctx->block_align)
1067 buf_size = avctx->block_align;
1068
1069 c->status[0].predictor = (int16_t)bytestream_get_le16(&src);
1070 c->status[0].step_index = *src++;
1071 src++;
1072 *samples++ = c->status[0].predictor;
1073 if (st) {
1074 c->status[1].predictor = (int16_t)bytestream_get_le16(&src);
1075 c->status[1].step_index = *src++;
1076 src++;
1077 *samples++ = c->status[1].predictor;
1078 }
1079 while (src < buf + buf_size) {
1080
1081 /* take care of the top nibble (always left or mono channel) */
1082 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1083 src[0] >> 4, 3);
1084
1085 /* take care of the bottom nibble, which is right sample for
1086 * stereo, or another mono sample */
1087 if (st)
1088 *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1089 src[0] & 0x0F, 3);
1090 else
1091 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1092 src[0] & 0x0F, 3);
1093
1094 src++;
1095 }
1096 break;
1097 case CODEC_ID_ADPCM_IMA_DK3:
1098 if (avctx->block_align != 0 && buf_size > avctx->block_align)
1099 buf_size = avctx->block_align;
1100
1101 if(buf_size + 16 > (samples_end - samples)*3/8)
1102 return -1;
1103
1104 c->status[0].predictor = (int16_t)AV_RL16(src + 10);
1105 c->status[1].predictor = (int16_t)AV_RL16(src + 12);
1106 c->status[0].step_index = src[14];
1107 c->status[1].step_index = src[15];
1108 /* sign extend the predictors */
1109 src += 16;
1110 diff_channel = c->status[1].predictor;
1111
1112 /* the DK3_GET_NEXT_NIBBLE macro issues the break statement when
1113 * the buffer is consumed */
1114 while (1) {
1115
1116 /* for this algorithm, c->status[0] is the sum channel and
1117 * c->status[1] is the diff channel */
1118
1119 /* process the first predictor of the sum channel */
1120 DK3_GET_NEXT_NIBBLE();
1121 adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1122
1123 /* process the diff channel predictor */
1124 DK3_GET_NEXT_NIBBLE();
1125 adpcm_ima_expand_nibble(&c->status[1], nibble, 3);
1126
1127 /* process the first pair of stereo PCM samples */
1128 diff_channel = (diff_channel + c->status[1].predictor) / 2;
1129 *samples++ = c->status[0].predictor + c->status[1].predictor;
1130 *samples++ = c->status[0].predictor - c->status[1].predictor;
1131
1132 /* process the second predictor of the sum channel */
1133 DK3_GET_NEXT_NIBBLE();
1134 adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1135
1136 /* process the second pair of stereo PCM samples */
1137 diff_channel = (diff_channel + c->status[1].predictor) / 2;
1138 *samples++ = c->status[0].predictor + c->status[1].predictor;
1139 *samples++ = c->status[0].predictor - c->status[1].predictor;
1140 }
1141 break;
1142 case CODEC_ID_ADPCM_IMA_ISS:
1143 c->status[0].predictor = (int16_t)AV_RL16(src + 0);
1144 c->status[0].step_index = src[2];
1145 src += 4;
1146 if(st) {
1147 c->status[1].predictor = (int16_t)AV_RL16(src + 0);
1148 c->status[1].step_index = src[2];
1149 src += 4;
1150 }
1151
1152 while (src < buf + buf_size) {
1153
1154 if (st) {
1155 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1156 src[0] >> 4 , 3);
1157 *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1158 src[0] & 0x0F, 3);
1159 } else {
1160 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1161 src[0] & 0x0F, 3);
1162 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1163 src[0] >> 4 , 3);
1164 }
1165
1166 src++;
1167 }
1168 break;
1169 case CODEC_ID_ADPCM_IMA_WS:
1170 /* no per-block initialization; just start decoding the data */
1171 while (src < buf + buf_size) {
1172
1173 if (st) {
1174 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1175 src[0] >> 4 , 3);
1176 *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1177 src[0] & 0x0F, 3);
1178 } else {
1179 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1180 src[0] >> 4 , 3);
1181 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1182 src[0] & 0x0F, 3);
1183 }
1184
1185 src++;
1186 }
1187 break;
1188 case CODEC_ID_ADPCM_XA:
1189 while (buf_size >= 128) {
1190 xa_decode(samples, src, &c->status[0], &c->status[1],
1191 avctx->channels);
1192 src += 128;
1193 samples += 28 * 8;
1194 buf_size -= 128;
1195 }
1196 break;
1197 case CODEC_ID_ADPCM_IMA_EA_EACS:
1198 samples_in_chunk = bytestream_get_le32(&src) >> (1-st);
1199
1200 if (samples_in_chunk > buf_size-4-(8<<st)) {
1201 src += buf_size - 4;
1202 break;
1203 }
1204
1205 for (i=0; i<=st; i++)
1206 c->status[i].step_index = bytestream_get_le32(&src);
1207 for (i=0; i<=st; i++)
1208 c->status[i].predictor = bytestream_get_le32(&src);
1209
1210 for (; samples_in_chunk; samples_in_chunk--, src++) {
1211 *samples++ = adpcm_ima_expand_nibble(&c->status[0], *src>>4, 3);
1212 *samples++ = adpcm_ima_expand_nibble(&c->status[st], *src&0x0F, 3);
1213 }
1214 break;
1215 case CODEC_ID_ADPCM_IMA_EA_SEAD:
1216 for (; src < buf+buf_size; src++) {
1217 *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[0] >> 4, 6);
1218 *samples++ = adpcm_ima_expand_nibble(&c->status[st],src[0]&0x0F, 6);
1219 }
1220 break;
1221 case CODEC_ID_ADPCM_EA:
1222 if (buf_size < 4 || AV_RL32(src) >= ((buf_size - 12) * 2)) {
1223 src += buf_size;
1224 break;
1225 }
1226 samples_in_chunk = AV_RL32(src);
1227 src += 4;
1228 current_left_sample = (int16_t)bytestream_get_le16(&src);
1229 previous_left_sample = (int16_t)bytestream_get_le16(&src);
1230 current_right_sample = (int16_t)bytestream_get_le16(&src);
1231 previous_right_sample = (int16_t)bytestream_get_le16(&src);
1232
1233 for (count1 = 0; count1 < samples_in_chunk/28;count1++) {
1234 coeff1l = ea_adpcm_table[ *src >> 4 ];
1235 coeff2l = ea_adpcm_table[(*src >> 4 ) + 4];
1236 coeff1r = ea_adpcm_table[*src & 0x0F];
1237 coeff2r = ea_adpcm_table[(*src & 0x0F) + 4];
1238 src++;
1239
1240 shift_left = (*src >> 4 ) + 8;
1241 shift_right = (*src & 0x0F) + 8;
1242 src++;
1243
1244 for (count2 = 0; count2 < 28; count2++) {
1245 next_left_sample = (int32_t)((*src & 0xF0) << 24) >> shift_left;
1246 next_right_sample = (int32_t)((*src & 0x0F) << 28) >> shift_right;
1247 src++;
1248
1249 next_left_sample = (next_left_sample +
1250 (current_left_sample * coeff1l) +
1251 (previous_left_sample * coeff2l) + 0x80) >> 8;
1252 next_right_sample = (next_right_sample +
1253 (current_right_sample * coeff1r) +
1254 (previous_right_sample * coeff2r) + 0x80) >> 8;
1255
1256 previous_left_sample = current_left_sample;
1257 current_left_sample = av_clip_int16(next_left_sample);
1258 previous_right_sample = current_right_sample;
1259 current_right_sample = av_clip_int16(next_right_sample);
1260 *samples++ = (unsigned short)current_left_sample;
1261 *samples++ = (unsigned short)current_right_sample;
1262 }
1263 }
1264
1265 if (src - buf == buf_size - 2)
1266 src += 2; // Skip terminating 0x0000
1267
1268 break;
1269 case CODEC_ID_ADPCM_EA_MAXIS_XA:
1270 for(channel = 0; channel < avctx->channels; channel++) {
1271 for (i=0; i<2; i++)
1272 coeff[channel][i] = ea_adpcm_table[(*src >> 4) + 4*i];
1273 shift[channel] = (*src & 0x0F) + 8;
1274 src++;
1275 }
1276 for (count1 = 0; count1 < (buf_size - avctx->channels) / avctx->channels; count1++) {
1277 for(i = 4; i >= 0; i-=4) { /* Pairwise samples LL RR (st) or LL LL (mono) */
1278 for(channel = 0; channel < avctx->channels; channel++) {
1279 int32_t sample = (int32_t)(((*(src+channel) >> i) & 0x0F) << 0x1C) >> shift[channel];
1280 sample = (sample +
1281 c->status[channel].sample1 * coeff[channel][0] +
1282 c->status[channel].sample2 * coeff[channel][1] + 0x80) >> 8;
1283 c->status[channel].sample2 = c->status[channel].sample1;
1284 c->status[channel].sample1 = av_clip_int16(sample);
1285 *samples++ = c->status[channel].sample1;
1286 }
1287 }
1288 src+=avctx->channels;
1289 }
1290 break;
1291 case CODEC_ID_ADPCM_EA_R1:
1292 case CODEC_ID_ADPCM_EA_R2:
1293 case CODEC_ID_ADPCM_EA_R3: {
1294 /* channel numbering
1295 2chan: 0=fl, 1=fr
1296 4chan: 0=fl, 1=rl, 2=fr, 3=rr
1297 6chan: 0=fl, 1=c, 2=fr, 3=rl, 4=rr, 5=sub */
1298 const int big_endian = avctx->codec->id == CODEC_ID_ADPCM_EA_R3;
1299 int32_t previous_sample, current_sample, next_sample;
1300 int32_t coeff1, coeff2;
1301 uint8_t shift;
1302 unsigned int channel;
1303 uint16_t *samplesC;
1304 const uint8_t *srcC;
1305 const uint8_t *src_end = buf + buf_size;
1306
1307 samples_in_chunk = (big_endian ? bytestream_get_be32(&src)
1308 : bytestream_get_le32(&src)) / 28;
1309 if (samples_in_chunk > UINT32_MAX/(28*avctx->channels) ||
1310 28*samples_in_chunk*avctx->channels > samples_end-samples) {
1311 src += buf_size - 4;
1312 break;
1313 }
1314
1315 for (channel=0; channel<avctx->channels; channel++) {
1316 int32_t offset = (big_endian ? bytestream_get_be32(&src)
1317 : bytestream_get_le32(&src))
1318 + (avctx->channels-channel-1) * 4;
1319
1320 if ((offset < 0) || (offset >= src_end - src - 4)) break;
1321 srcC = src + offset;
1322 samplesC = samples + channel;
1323
1324 if (avctx->codec->id == CODEC_ID_ADPCM_EA_R1) {
1325 current_sample = (int16_t)bytestream_get_le16(&srcC);
1326 previous_sample = (int16_t)bytestream_get_le16(&srcC);
1327 } else {
1328 current_sample = c->status[channel].predictor;
1329 previous_sample = c->status[channel].prev_sample;
1330 }
1331
1332 for (count1=0; count1<samples_in_chunk; count1++) {
1333 if (*srcC == 0xEE) { /* only seen in R2 and R3 */
1334 srcC++;
1335 if (srcC > src_end - 30*2) break;
1336 current_sample = (int16_t)bytestream_get_be16(&srcC);
1337 previous_sample = (int16_t)bytestream_get_be16(&srcC);
1338
1339 for (count2=0; count2<28; count2++) {
1340 *samplesC = (int16_t)bytestream_get_be16(&srcC);
1341 samplesC += avctx->channels;
1342 }
1343 } else {
1344 coeff1 = ea_adpcm_table[ *srcC>>4 ];
1345 coeff2 = ea_adpcm_table[(*srcC>>4) + 4];
1346 shift = (*srcC++ & 0x0F) + 8;
1347
1348 if (srcC > src_end - 14) break;
1349 for (count2=0; count2<28; count2++) {
1350 if (count2 & 1)
1351 next_sample = (int32_t)((*srcC++ & 0x0F) << 28) >> shift;
1352 else
1353 next_sample = (int32_t)((*srcC & 0xF0) << 24) >> shift;
1354
1355 next_sample += (current_sample * coeff1) +
1356 (previous_sample * coeff2);
1357 next_sample = av_clip_int16(next_sample >> 8);
1358
1359 previous_sample = current_sample;
1360 current_sample = next_sample;
1361 *samplesC = current_sample;
1362 samplesC += avctx->channels;
1363 }
1364 }
1365 }
1366
1367 if (avctx->codec->id != CODEC_ID_ADPCM_EA_R1) {
1368 c->status[channel].predictor = current_sample;
1369 c->status[channel].prev_sample = previous_sample;
1370 }
1371 }
1372
1373 src = src + buf_size - (4 + 4*avctx->channels);
1374 samples += 28 * samples_in_chunk * avctx->channels;
1375 break;
1376 }
1377 case CODEC_ID_ADPCM_EA_XAS:
1378 if (samples_end-samples < 32*4*avctx->channels
1379 || buf_size < (4+15)*4*avctx->channels) {
1380 src += buf_size;
1381 break;
1382 }
1383 for (channel=0; channel<avctx->channels; channel++) {
1384 int coeff[2][4], shift[4];
1385 short *s2, *s = &samples[channel];
1386 for (n=0; n<4; n++, s+=32*avctx->channels) {
1387 for (i=0; i<2; i++)
1388 coeff[i][n] = ea_adpcm_table[(src[0]&0x0F)+4*i];
1389 shift[n] = (src[2]&0x0F) + 8;
1390 for (s2=s, i=0; i<2; i++, src+=2, s2+=avctx->channels)
1391 s2[0] = (src[0]&0xF0) + (src[1]<<8);
1392 }
1393
1394 for (m=2; m<32; m+=2) {
1395 s = &samples[m*avctx->channels + channel];
1396 for (n=0; n<4; n++, src++, s+=32*avctx->channels) {
1397 for (s2=s, i=0; i<8; i+=4, s2+=avctx->channels) {
1398 int level = (int32_t)((*src & (0xF0>>i)) << (24+i)) >> shift[n];
1399 int pred = s2[-1*avctx->channels] * coeff[0][n]
1400 + s2[-2*avctx->channels] * coeff[1][n];
1401 s2[0] = av_clip_int16((level + pred + 0x80) >> 8);
1402 }
1403 }
1404 }
1405 }
1406 samples += 32*4*avctx->channels;
1407 break;
1408 case CODEC_ID_ADPCM_IMA_AMV:
1409 case CODEC_ID_ADPCM_IMA_SMJPEG:
1410 c->status[0].predictor = (int16_t)bytestream_get_le16(&src);
1411 c->status[0].step_index = bytestream_get_le16(&src);
1412
1413 if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV)
1414 src+=4;
1415
1416 while (src < buf + buf_size) {
1417 char hi, lo;
1418 lo = *src & 0x0F;
1419 hi = *src >> 4;
1420
1421 if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV)
1422 FFSWAP(char, hi, lo);
1423
1424 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1425 lo, 3);
1426 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1427 hi, 3);
1428 src++;
1429 }
1430 break;
1431 case CODEC_ID_ADPCM_CT:
1432 while (src < buf + buf_size) {
1433 if (st) {
1434 *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1435 src[0] >> 4);
1436 *samples++ = adpcm_ct_expand_nibble(&c->status[1],
1437 src[0] & 0x0F);
1438 } else {
1439 *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1440 src[0] >> 4);
1441 *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1442 src[0] & 0x0F);
1443 }
1444 src++;
1445 }
1446 break;
1447 case CODEC_ID_ADPCM_SBPRO_4:
1448 case CODEC_ID_ADPCM_SBPRO_3:
1449 case CODEC_ID_ADPCM_SBPRO_2:
1450 if (!c->status[0].step_index) {
1451 /* the first byte is a raw sample */
1452 *samples++ = 128 * (*src++ - 0x80);
1453 if (st)
1454 *samples++ = 128 * (*src++ - 0x80);
1455 c->status[0].step_index = 1;
1456 }
1457 if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_4) {
1458 while (src < buf + buf_size) {
1459 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1460 src[0] >> 4, 4, 0);
1461 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1462 src[0] & 0x0F, 4, 0);
1463 src++;
1464 }
1465 } else if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_3) {
1466 while (src < buf + buf_size && samples + 2 < samples_end) {
1467 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1468 src[0] >> 5 , 3, 0);
1469 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1470 (src[0] >> 2) & 0x07, 3, 0);
1471 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1472 src[0] & 0x03, 2, 0);
1473 src++;
1474 }
1475 } else {
1476 while (src < buf + buf_size && samples + 3 < samples_end) {
1477 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1478 src[0] >> 6 , 2, 2);
1479 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1480 (src[0] >> 4) & 0x03, 2, 2);
1481 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1482 (src[0] >> 2) & 0x03, 2, 2);
1483 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1484 src[0] & 0x03, 2, 2);
1485 src++;
1486 }
1487 }
1488 break;
1489 case CODEC_ID_ADPCM_SWF:
1490 {
1491 GetBitContext gb;
1492 const int *table;
1493 int k0, signmask, nb_bits, count;
1494 int size = buf_size*8;
1495
1496 init_get_bits(&gb, buf, size);
1497
1498 //read bits & initial values
1499 nb_bits = get_bits(&gb, 2)+2;
1500 //av_log(NULL,AV_LOG_INFO,"nb_bits: %d\n", nb_bits);
1501 table = swf_index_tables[nb_bits-2];
1502 k0 = 1 << (nb_bits-2);
1503 signmask = 1 << (nb_bits-1);
1504
1505 while (get_bits_count(&gb) <= size - 22*avctx->channels) {
1506 for (i = 0; i < avctx->channels; i++) {
1507 *samples++ = c->status[i].predictor = get_sbits(&gb, 16);
1508 c->status[i].step_index = get_bits(&gb, 6);
1509 }
1510
1511 for (count = 0; get_bits_count(&gb) <= size - nb_bits*avctx->channels && count < 4095; count++) {
1512 int i;
1513
1514 for (i = 0; i < avctx->channels; i++) {
1515 // similar to IMA adpcm
1516 int delta = get_bits(&gb, nb_bits);
1517 int step = step_table[c->status[i].step_index];
1518 long vpdiff = 0; // vpdiff = (delta+0.5)*step/4
1519 int k = k0;
1520
1521 do {
1522 if (delta & k)
1523 vpdiff += step;
1524 step >>= 1;
1525 k >>= 1;
1526 } while(k);
1527 vpdiff += step;
1528
1529 if (delta & signmask)
1530 c->status[i].predictor -= vpdiff;
1531 else
1532 c->status[i].predictor += vpdiff;
1533
1534 c->status[i].step_index += table[delta & (~signmask)];
1535
1536 c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88);
1537 c->status[i].predictor = av_clip_int16(c->status[i].predictor);
1538
1539 *samples++ = c->status[i].predictor;
1540 if (samples >= samples_end) {
1541 av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n");
1542 return -1;
1543 }
1544 }
1545 }
1546 }
1547 src += buf_size;
1548 break;
1549 }
1550 case CODEC_ID_ADPCM_YAMAHA:
1551 while (src < buf + buf_size) {
1552 if (st) {
1553 *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1554 src[0] & 0x0F);
1555 *samples++ = adpcm_yamaha_expand_nibble(&c->status[1],
1556 src[0] >> 4 );
1557 } else {
1558 *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1559 src[0] & 0x0F);
1560 *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1561 src[0] >> 4 );
1562 }
1563 src++;
1564 }
1565 break;
1566 case CODEC_ID_ADPCM_THP:
1567 {
1568 int table[2][16];
1569 unsigned int samplecnt;
1570 int prev[2][2];
1571 int ch;
1572
1573 if (buf_size < 80) {
1574 av_log(avctx, AV_LOG_ERROR, "frame too small\n");
1575 return -1;
1576 }
1577
1578 src+=4;
1579 samplecnt = bytestream_get_be32(&src);
1580
1581 for (i = 0; i < 32; i++)
1582 table[0][i] = (int16_t)bytestream_get_be16(&src);
1583
1584 /* Initialize the previous sample. */
1585 for (i = 0; i < 4; i++)
1586 prev[0][i] = (int16_t)bytestream_get_be16(&src);
1587
1588 if (samplecnt >= (samples_end - samples) / (st + 1)) {
1589 av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n");
1590 return -1;
1591 }
1592
1593 for (ch = 0; ch <= st; ch++) {
1594 samples = (unsigned short *) data + ch;
1595
1596 /* Read in every sample for this channel. */
1597 for (i = 0; i < samplecnt / 14; i++) {
1598 int index = (*src >> 4) & 7;
1599 unsigned int exp = 28 - (*src++ & 15);
1600 int factor1 = table[ch][index * 2];
1601 int factor2 = table[ch][index * 2 + 1];
1602
1603 /* Decode 14 samples. */
1604 for (n = 0; n < 14; n++) {
1605 int32_t sampledat;
1606 if(n&1) sampledat= *src++ <<28;
1607 else sampledat= (*src&0xF0)<<24;
1608
1609 sampledat = ((prev[ch][0]*factor1
1610 + prev[ch][1]*factor2) >> 11) + (sampledat>>exp);
1611 *samples = av_clip_int16(sampledat);
1612 prev[ch][1] = prev[ch][0];
1613 prev[ch][0] = *samples++;
1614
1615 /* In case of stereo, skip one sample, this sample
1616 is for the other channel. */
1617 samples += st;
1618 }
1619 }
1620 }
1621
1622 /* In the previous loop, in case stereo is used, samples is
1623 increased exactly one time too often. */
1624 samples -= st;
1625 break;
1626 }
1627
1628 default:
1629 return -1;
1630 }
1631 *data_size = (uint8_t *)samples - (uint8_t *)data;
1632 return src - buf;
1633 }
1634
1635
1636
1637 #if CONFIG_ENCODERS
1638 #define ADPCM_ENCODER(id,name,long_name_) \
1639 AVCodec name ## _encoder = { \
1640 #name, \
1641 CODEC_TYPE_AUDIO, \
1642 id, \
1643 sizeof(ADPCMContext), \
1644 adpcm_encode_init, \
1645 adpcm_encode_frame, \
1646 adpcm_encode_close, \
1647 NULL, \
1648 .sample_fmts = (const enum SampleFormat[]){SAMPLE_FMT_S16,SAMPLE_FMT_NONE}, \
1649 .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
1650 };
1651 #else
1652 #define ADPCM_ENCODER(id,name,long_name_)
1653 #endif
1654
1655 #if CONFIG_DECODERS
1656 #define ADPCM_DECODER(id,name,long_name_) \
1657 AVCodec name ## _decoder = { \
1658 #name, \
1659 CODEC_TYPE_AUDIO, \
1660 id, \
1661 sizeof(ADPCMContext), \
1662 adpcm_decode_init, \
1663 NULL, \
1664 NULL, \
1665 adpcm_decode_frame, \
1666 .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
1667 };
1668 #else
1669 #define ADPCM_DECODER(id,name,long_name_)
1670 #endif
1671
1672 #define ADPCM_CODEC(id,name,long_name_) \
1673 ADPCM_ENCODER(id,name,long_name_) ADPCM_DECODER(id,name,long_name_)
1674
1675 /* Note: Do not forget to add new entries to the Makefile as well. */
1676 ADPCM_DECODER(CODEC_ID_ADPCM_4XM, adpcm_4xm, "ADPCM 4X Movie");
1677 ADPCM_DECODER(CODEC_ID_ADPCM_CT, adpcm_ct, "ADPCM Creative Technology");
1678 ADPCM_DECODER(CODEC_ID_ADPCM_EA, adpcm_ea, "ADPCM Electronic Arts");
1679 ADPCM_DECODER(CODEC_ID_ADPCM_EA_MAXIS_XA, adpcm_ea_maxis_xa, "ADPCM Electronic Arts Maxis CDROM XA");
1680 ADPCM_DECODER(CODEC_ID_ADPCM_EA_R1, adpcm_ea_r1, "ADPCM Electronic Arts R1");
1681 ADPCM_DECODER(CODEC_ID_ADPCM_EA_R2, adpcm_ea_r2, "ADPCM Electronic Arts R2");
1682 ADPCM_DECODER(CODEC_ID_ADPCM_EA_R3, adpcm_ea_r3, "ADPCM Electronic Arts R3");
1683 ADPCM_DECODER(CODEC_ID_ADPCM_EA_XAS, adpcm_ea_xas, "ADPCM Electronic Arts XAS");
1684 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_AMV, adpcm_ima_amv, "ADPCM IMA AMV");
1685 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK3, adpcm_ima_dk3, "ADPCM IMA Duck DK3");
1686 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK4, adpcm_ima_dk4, "ADPCM IMA Duck DK4");
1687 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_EACS, adpcm_ima_ea_eacs, "ADPCM IMA Electronic Arts EACS");
1688 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_SEAD, adpcm_ima_ea_sead, "ADPCM IMA Electronic Arts SEAD");
1689 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_ISS, adpcm_ima_iss, "ADPCM IMA Funcom ISS");
1690 ADPCM_CODEC (CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt, "ADPCM IMA QuickTime");
1691 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_SMJPEG, adpcm_ima_smjpeg, "ADPCM IMA Loki SDL MJPEG");
1692 ADPCM_CODEC (CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav, "ADPCM IMA WAV");
1693 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_WS, adpcm_ima_ws, "ADPCM IMA Westwood");
1694 ADPCM_CODEC (CODEC_ID_ADPCM_MS, adpcm_ms, "ADPCM Microsoft");
1695 ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_2, adpcm_sbpro_2, "ADPCM Sound Blaster Pro 2-bit");
1696 ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_3, adpcm_sbpro_3, "ADPCM Sound Blaster Pro 2.6-bit");
1697 ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_4, adpcm_sbpro_4, "ADPCM Sound Blaster Pro 4-bit");
1698 ADPCM_CODEC (CODEC_ID_ADPCM_SWF, adpcm_swf, "ADPCM Shockwave Flash");
1699 ADPCM_DECODER(CODEC_ID_ADPCM_THP, adpcm_thp, "ADPCM Nintendo Gamecube THP");
1700 ADPCM_DECODER(CODEC_ID_ADPCM_XA, adpcm_xa, "ADPCM CDROM XA");
1701 ADPCM_CODEC (CODEC_ID_ADPCM_YAMAHA, adpcm_yamaha, "ADPCM Yamaha");