activate the XA and ADX ADPCM codecs
[libav.git] / libavcodec / adpcm.c
1 /*
2 * ADPCM codecs
3 * Copyright (c) 2001-2003 The ffmpeg Project
4 *
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation; either
8 * version 2 of the License, or (at your option) any later version.
9 *
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Lesser General Public License for more details.
14 *
15 * You should have received a copy of the GNU Lesser General Public
16 * License along with this library; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19 #include "avcodec.h"
20
21 /**
22 * @file adpcm.c
23 * ADPCM codecs.
24 * First version by Francois Revol (revol@free.fr)
25 * Fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
26 * by Mike Melanson (melanson@pcisys.net)
27 * CD-ROM XA ADPCM codec by BERO
28 *
29 * Features and limitations:
30 *
31 * Reference documents:
32 * http://www.pcisys.net/~melanson/codecs/simpleaudio.html
33 * http://www.geocities.com/SiliconValley/8682/aud3.txt
34 * http://openquicktime.sourceforge.net/plugins.htm
35 * XAnim sources (xa_codec.c) http://www.rasnaimaging.com/people/lapus/download.html
36 * http://www.cs.ucla.edu/~leec/mediabench/applications.html
37 * SoX source code http://home.sprynet.com/~cbagwell/sox.html
38 *
39 * CD-ROM XA:
40 * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html
41 * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html
42 * readstr http://www.geocities.co.jp/Playtown/2004/
43 */
44
45 #define BLKSIZE 1024
46
47 #define CLAMP_TO_SHORT(value) \
48 if (value > 32767) \
49 value = 32767; \
50 else if (value < -32768) \
51 value = -32768; \
52
53 /* step_table[] and index_table[] are from the ADPCM reference source */
54 /* This is the index table: */
55 static const int index_table[16] = {
56 -1, -1, -1, -1, 2, 4, 6, 8,
57 -1, -1, -1, -1, 2, 4, 6, 8,
58 };
59
60 /**
61 * This is the step table. Note that many programs use slight deviations from
62 * this table, but such deviations are negligible:
63 */
64 static const int step_table[89] = {
65 7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
66 19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
67 50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
68 130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
69 337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
70 876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
71 2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
72 5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
73 15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767
74 };
75
76 /* These are for MS-ADPCM */
77 /* AdaptationTable[], AdaptCoeff1[], and AdaptCoeff2[] are from libsndfile */
78 static const int AdaptationTable[] = {
79 230, 230, 230, 230, 307, 409, 512, 614,
80 768, 614, 512, 409, 307, 230, 230, 230
81 };
82
83 static const int AdaptCoeff1[] = {
84 256, 512, 0, 192, 240, 460, 392
85 };
86
87 static const int AdaptCoeff2[] = {
88 0, -256, 0, 64, 0, -208, -232
89 };
90
91 /* These are for CD-ROM XA ADPCM */
92 const static int xa_adpcm_table[5][2] = {
93 { 0, 0 },
94 { 60, 0 },
95 { 115, -52 },
96 { 98, -55 },
97 { 122, -60 }
98 };
99
100 /* end of tables */
101
102 typedef struct ADPCMChannelStatus {
103 int predictor;
104 short int step_index;
105 int step;
106 /* for encoding */
107 int prev_sample;
108
109 /* MS version */
110 short sample1;
111 short sample2;
112 int coeff1;
113 int coeff2;
114 int idelta;
115 } ADPCMChannelStatus;
116
117 typedef struct ADPCMContext {
118 int channel; /* for stereo MOVs, decode left, then decode right, then tell it's decoded */
119 ADPCMChannelStatus status[2];
120 short sample_buffer[32]; /* hold left samples while waiting for right samples */
121 } ADPCMContext;
122
123 /* XXX: implement encoding */
124
125 #ifdef CONFIG_ENCODERS
126 static int adpcm_encode_init(AVCodecContext *avctx)
127 {
128 if (avctx->channels > 2)
129 return -1; /* only stereo or mono =) */
130 switch(avctx->codec->id) {
131 case CODEC_ID_ADPCM_IMA_QT:
132 fprintf(stderr, "ADPCM: codec admcp_ima_qt unsupported for encoding !\n");
133 avctx->frame_size = 64; /* XXX: can multiple of avctx->channels * 64 (left and right blocks are interleaved) */
134 return -1;
135 break;
136 case CODEC_ID_ADPCM_IMA_WAV:
137 avctx->frame_size = (BLKSIZE - 4 * avctx->channels) * 8 / (4 * avctx->channels) + 1; /* each 16 bits sample gives one nibble */
138 /* and we have 4 bytes per channel overhead */
139 avctx->block_align = BLKSIZE;
140 /* seems frame_size isn't taken into account... have to buffer the samples :-( */
141 break;
142 case CODEC_ID_ADPCM_MS:
143 fprintf(stderr, "ADPCM: codec admcp_ms unsupported for encoding !\n");
144 return -1;
145 break;
146 default:
147 return -1;
148 break;
149 }
150
151 avctx->coded_frame= avcodec_alloc_frame();
152 avctx->coded_frame->key_frame= 1;
153
154 return 0;
155 }
156
157 static int adpcm_encode_close(AVCodecContext *avctx)
158 {
159 av_freep(&avctx->coded_frame);
160
161 return 0;
162 }
163
164
165 static inline unsigned char adpcm_ima_compress_sample(ADPCMChannelStatus *c, short sample)
166 {
167 int step_index;
168 unsigned char nibble;
169
170 int sign = 0; /* sign bit of the nibble (MSB) */
171 int delta, predicted_delta;
172
173 delta = sample - c->prev_sample;
174
175 if (delta < 0) {
176 sign = 1;
177 delta = -delta;
178 }
179
180 step_index = c->step_index;
181
182 /* nibble = 4 * delta / step_table[step_index]; */
183 nibble = (delta << 2) / step_table[step_index];
184
185 if (nibble > 7)
186 nibble = 7;
187
188 step_index += index_table[nibble];
189 if (step_index < 0)
190 step_index = 0;
191 if (step_index > 88)
192 step_index = 88;
193
194 /* what the decoder will find */
195 predicted_delta = ((step_table[step_index] * nibble) / 4) + (step_table[step_index] / 8);
196
197 if (sign)
198 c->prev_sample -= predicted_delta;
199 else
200 c->prev_sample += predicted_delta;
201
202 CLAMP_TO_SHORT(c->prev_sample);
203
204
205 nibble += sign << 3; /* sign * 8 */
206
207 /* save back */
208 c->step_index = step_index;
209
210 return nibble;
211 }
212
213 static int adpcm_encode_frame(AVCodecContext *avctx,
214 unsigned char *frame, int buf_size, void *data)
215 {
216 int n;
217 short *samples;
218 unsigned char *dst;
219 ADPCMContext *c = avctx->priv_data;
220
221 dst = frame;
222 samples = (short *)data;
223 /* n = (BLKSIZE - 4 * avctx->channels) / (2 * 8 * avctx->channels); */
224
225 switch(avctx->codec->id) {
226 case CODEC_ID_ADPCM_IMA_QT: /* XXX: can't test until we get .mov writer */
227 break;
228 case CODEC_ID_ADPCM_IMA_WAV:
229 n = avctx->frame_size / 8;
230 c->status[0].prev_sample = (signed short)samples[0]; /* XXX */
231 /* c->status[0].step_index = 0; *//* XXX: not sure how to init the state machine */
232 *dst++ = (c->status[0].prev_sample) & 0xFF; /* little endian */
233 *dst++ = (c->status[0].prev_sample >> 8) & 0xFF;
234 *dst++ = (unsigned char)c->status[0].step_index;
235 *dst++ = 0; /* unknown */
236 samples++;
237 if (avctx->channels == 2) {
238 c->status[1].prev_sample = (signed short)samples[0];
239 /* c->status[1].step_index = 0; */
240 *dst++ = (c->status[1].prev_sample) & 0xFF;
241 *dst++ = (c->status[1].prev_sample >> 8) & 0xFF;
242 *dst++ = (unsigned char)c->status[1].step_index;
243 *dst++ = 0;
244 samples++;
245 }
246
247 /* stereo: 4 bytes (8 samples) for left, 4 bytes for right, 4 bytes left, ... */
248 for (; n>0; n--) {
249 *dst = adpcm_ima_compress_sample(&c->status[0], samples[0]) & 0x0F;
250 *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels]) << 4) & 0xF0;
251 dst++;
252 *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 2]) & 0x0F;
253 *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 3]) << 4) & 0xF0;
254 dst++;
255 *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 4]) & 0x0F;
256 *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 5]) << 4) & 0xF0;
257 dst++;
258 *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 6]) & 0x0F;
259 *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 7]) << 4) & 0xF0;
260 dst++;
261 /* right channel */
262 if (avctx->channels == 2) {
263 *dst = adpcm_ima_compress_sample(&c->status[1], samples[1]);
264 *dst |= adpcm_ima_compress_sample(&c->status[1], samples[3]) << 4;
265 dst++;
266 *dst = adpcm_ima_compress_sample(&c->status[1], samples[5]);
267 *dst |= adpcm_ima_compress_sample(&c->status[1], samples[7]) << 4;
268 dst++;
269 *dst = adpcm_ima_compress_sample(&c->status[1], samples[9]);
270 *dst |= adpcm_ima_compress_sample(&c->status[1], samples[11]) << 4;
271 dst++;
272 *dst = adpcm_ima_compress_sample(&c->status[1], samples[13]);
273 *dst |= adpcm_ima_compress_sample(&c->status[1], samples[15]) << 4;
274 dst++;
275 }
276 samples += 8 * avctx->channels;
277 }
278 break;
279 default:
280 return -1;
281 }
282 return dst - frame;
283 }
284 #endif //CONFIG_ENCODERS
285
286 static int adpcm_decode_init(AVCodecContext * avctx)
287 {
288 ADPCMContext *c = avctx->priv_data;
289
290 c->channel = 0;
291 c->status[0].predictor = c->status[1].predictor = 0;
292 c->status[0].step_index = c->status[1].step_index = 0;
293 c->status[0].step = c->status[1].step = 0;
294
295 switch(avctx->codec->id) {
296 default:
297 break;
298 }
299 return 0;
300 }
301
302 static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble)
303 {
304 int step_index;
305 int predictor;
306 int sign, delta, diff, step;
307
308 step = step_table[c->step_index];
309 step_index = c->step_index + index_table[(unsigned)nibble];
310 if (step_index < 0) step_index = 0;
311 else if (step_index > 88) step_index = 88;
312
313 sign = nibble & 8;
314 delta = nibble & 7;
315 /* perform direct multiplication instead of series of jumps proposed by
316 * the reference ADPCM implementation since modern CPUs can do the mults
317 * quickly enough */
318 diff = ((2 * delta + 1) * step) >> 3;
319 predictor = c->predictor;
320 if (sign) predictor -= diff;
321 else predictor += diff;
322
323 CLAMP_TO_SHORT(predictor);
324 c->predictor = predictor;
325 c->step_index = step_index;
326
327 return (short)predictor;
328 }
329
330 static inline short adpcm_4xa_expand_nibble(ADPCMChannelStatus *c, char nibble)
331 {
332 int step_index;
333 int predictor;
334 int sign, delta, diff, step;
335
336 step = step_table[c->step_index];
337 step_index = c->step_index + index_table[(unsigned)nibble];
338 if (step_index < 0) step_index = 0;
339 else if (step_index > 88) step_index = 88;
340
341 sign = nibble & 8;
342 delta = nibble & 7;
343
344 diff = (delta*step + (step>>1))>>3; // difference to code above
345
346 predictor = c->predictor;
347 if (sign) predictor -= diff;
348 else predictor += diff;
349
350 CLAMP_TO_SHORT(predictor);
351 c->predictor = predictor;
352 c->step_index = step_index;
353
354 return (short)predictor;
355 }
356
357 static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, char nibble)
358 {
359 int predictor;
360
361 predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 256;
362 predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
363 CLAMP_TO_SHORT(predictor);
364
365 c->sample2 = c->sample1;
366 c->sample1 = predictor;
367 c->idelta = (AdaptationTable[(int)nibble] * c->idelta) / 256;
368 if (c->idelta < 16) c->idelta = 16;
369
370 return (short)predictor;
371 }
372
373 static void xa_decode(short *out, const unsigned char *in,
374 ADPCMChannelStatus *left, ADPCMChannelStatus *right, int inc)
375 {
376 int i, j;
377 int shift,filter,f0,f1;
378 int s_1,s_2;
379 int d,s,t;
380
381 for(i=0;i<4;i++) {
382
383 shift = 12 - (in[4+i*2] & 15);
384 filter = in[4+i*2] >> 4;
385 f0 = xa_adpcm_table[filter][0];
386 f1 = xa_adpcm_table[filter][1];
387
388 s_1 = left->sample1;
389 s_2 = left->sample2;
390
391 for(j=0;j<28;j++) {
392 d = in[16+i+j*4];
393
394 t = (signed char)(d<<4)>>4;
395 s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
396 CLAMP_TO_SHORT(s);
397 *out = s;
398 out += inc;
399 s_2 = s_1;
400 s_1 = s;
401 }
402
403 if (inc==2) { /* stereo */
404 left->sample1 = s_1;
405 left->sample2 = s_2;
406 s_1 = right->sample1;
407 s_2 = right->sample2;
408 out = out + 1 - 28*2;
409 }
410
411 shift = 12 - (in[5+i*2] & 15);
412 filter = in[5+i*2] >> 4;
413
414 f0 = xa_adpcm_table[filter][0];
415 f1 = xa_adpcm_table[filter][1];
416
417 for(j=0;j<28;j++) {
418 d = in[16+i+j*4];
419
420 t = (signed char)d >> 4;
421 s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
422 CLAMP_TO_SHORT(s);
423 *out = s;
424 out += inc;
425 s_2 = s_1;
426 s_1 = s;
427 }
428
429 if (inc==2) { /* stereo */
430 right->sample1 = s_1;
431 right->sample2 = s_2;
432 out -= 1;
433 } else {
434 left->sample1 = s_1;
435 left->sample2 = s_2;
436 }
437 }
438 }
439
440
441 /* DK3 ADPCM support macro */
442 #define DK3_GET_NEXT_NIBBLE() \
443 if (decode_top_nibble_next) \
444 { \
445 nibble = (last_byte >> 4) & 0x0F; \
446 decode_top_nibble_next = 0; \
447 } \
448 else \
449 { \
450 last_byte = *src++; \
451 if (src >= buf + buf_size) break; \
452 nibble = last_byte & 0x0F; \
453 decode_top_nibble_next = 1; \
454 }
455
456 static int adpcm_decode_frame(AVCodecContext *avctx,
457 void *data, int *data_size,
458 uint8_t *buf, int buf_size)
459 {
460 ADPCMContext *c = avctx->priv_data;
461 ADPCMChannelStatus *cs;
462 int n, m, channel, i;
463 int block_predictor[2];
464 short *samples;
465 uint8_t *src;
466 int st; /* stereo */
467
468 /* DK3 ADPCM accounting variables */
469 unsigned char last_byte = 0;
470 unsigned char nibble;
471 int decode_top_nibble_next = 0;
472 int diff_channel;
473
474 samples = data;
475 src = buf;
476
477 st = avctx->channels == 2;
478
479 switch(avctx->codec->id) {
480 case CODEC_ID_ADPCM_IMA_QT:
481 n = (buf_size - 2);/* >> 2*avctx->channels;*/
482 channel = c->channel;
483 cs = &(c->status[channel]);
484 /* (pppppp) (piiiiiii) */
485
486 /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
487 cs->predictor = (*src++) << 8;
488 cs->predictor |= (*src & 0x80);
489 cs->predictor &= 0xFF80;
490
491 /* sign extension */
492 if(cs->predictor & 0x8000)
493 cs->predictor -= 0x10000;
494
495 CLAMP_TO_SHORT(cs->predictor);
496
497 cs->step_index = (*src++) & 0x7F;
498
499 if (cs->step_index > 88) fprintf(stderr, "ERROR: step_index = %i\n", cs->step_index);
500 if (cs->step_index > 88) cs->step_index = 88;
501
502 cs->step = step_table[cs->step_index];
503
504 if (st && channel)
505 samples++;
506
507 *samples++ = cs->predictor;
508 samples += st;
509
510 for(m=32; n>0 && m>0; n--, m--) { /* in QuickTime, IMA is encoded by chuncks of 34 bytes (=64 samples) */
511 *samples = adpcm_ima_expand_nibble(cs, src[0] & 0x0F);
512 samples += avctx->channels;
513 *samples = adpcm_ima_expand_nibble(cs, (src[0] >> 4) & 0x0F);
514 samples += avctx->channels;
515 src ++;
516 }
517
518 if(st) { /* handle stereo interlacing */
519 c->channel = (channel + 1) % 2; /* we get one packet for left, then one for right data */
520 if(channel == 0) { /* wait for the other packet before outputing anything */
521 *data_size = 0;
522 return src - buf;
523 }
524 }
525 break;
526 case CODEC_ID_ADPCM_IMA_WAV:
527 if (buf_size > BLKSIZE) {
528 if (avctx->block_align != 0)
529 buf_size = avctx->block_align;
530 else
531 buf_size = BLKSIZE;
532 }
533 // XXX: do as per-channel loop
534 cs = &(c->status[0]);
535 cs->predictor = (*src++) & 0x0FF;
536 cs->predictor |= ((*src++) << 8) & 0x0FF00;
537 if(cs->predictor & 0x8000)
538 cs->predictor -= 0x10000;
539 CLAMP_TO_SHORT(cs->predictor);
540
541 // XXX: is this correct ??: *samples++ = cs->predictor;
542
543 cs->step_index = *src++;
544 if (cs->step_index < 0) cs->step_index = 0;
545 if (cs->step_index > 88) cs->step_index = 88;
546 if (*src++) fprintf(stderr, "unused byte should be null !!\n"); /* unused */
547
548 if (st) {
549 cs = &(c->status[1]);
550 cs->predictor = (*src++) & 0x0FF;
551 cs->predictor |= ((*src++) << 8) & 0x0FF00;
552 if(cs->predictor & 0x8000)
553 cs->predictor -= 0x10000;
554 CLAMP_TO_SHORT(cs->predictor);
555
556 // XXX: is this correct ??: *samples++ = cs->predictor;
557
558 cs->step_index = *src++;
559 if (cs->step_index < 0) cs->step_index = 0;
560 if (cs->step_index > 88) cs->step_index = 88;
561 src++; /* if != 0 -> out-of-sync */
562 }
563
564 for(m=4; src < (buf + buf_size);) {
565 *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[0] & 0x0F);
566 if (st)
567 *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[4] & 0x0F);
568 *samples++ = adpcm_ima_expand_nibble(&c->status[0], (src[0] >> 4) & 0x0F);
569 if (st) {
570 *samples++ = adpcm_ima_expand_nibble(&c->status[1], (src[4] >> 4) & 0x0F);
571 if (!--m) {
572 m=4;
573 src+=4;
574 }
575 }
576 src++;
577 }
578 break;
579 case CODEC_ID_ADPCM_4XM:
580 cs = &(c->status[0]);
581 c->status[0].predictor= (int16_t)(src[0] + (src[1]<<8)); src+=2;
582 if(st){
583 c->status[1].predictor= (int16_t)(src[0] + (src[1]<<8)); src+=2;
584 }
585 c->status[0].step_index= (int16_t)(src[0] + (src[1]<<8)); src+=2;
586 if(st){
587 c->status[1].step_index= (int16_t)(src[0] + (src[1]<<8)); src+=2;
588 }
589 // if (cs->step_index < 0) cs->step_index = 0;
590 // if (cs->step_index > 88) cs->step_index = 88;
591
592 m= (buf_size - (src - buf))>>st;
593 //printf("%d %d %d %d\n", st, m, c->status[0].predictor, c->status[0].step_index);
594 //FIXME / XXX decode chanels individual & interleave samples
595 for(i=0; i<m; i++) {
596 *samples++ = adpcm_4xa_expand_nibble(&c->status[0], src[i] & 0x0F);
597 if (st)
598 *samples++ = adpcm_4xa_expand_nibble(&c->status[1], src[i+m] & 0x0F);
599 *samples++ = adpcm_4xa_expand_nibble(&c->status[0], src[i] >> 4);
600 if (st)
601 *samples++ = adpcm_4xa_expand_nibble(&c->status[1], src[i+m] >> 4);
602 }
603
604 src += m<<st;
605
606 break;
607 case CODEC_ID_ADPCM_MS:
608
609 if (buf_size > BLKSIZE) {
610 if (avctx->block_align != 0)
611 buf_size = avctx->block_align;
612 else
613 buf_size = BLKSIZE;
614 }
615 n = buf_size - 7 * avctx->channels;
616 if (n < 0)
617 return -1;
618 block_predictor[0] = (*src++); /* should be bound */
619 block_predictor[0] = (block_predictor[0] < 0)?(0):((block_predictor[0] > 7)?(7):(block_predictor[0]));
620 block_predictor[1] = 0;
621 if (st)
622 block_predictor[1] = (*src++);
623 block_predictor[1] = (block_predictor[1] < 0)?(0):((block_predictor[1] > 7)?(7):(block_predictor[1]));
624 c->status[0].idelta = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
625 if (c->status[0].idelta & 0x08000)
626 c->status[0].idelta -= 0x10000;
627 src+=2;
628 if (st)
629 c->status[1].idelta = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
630 if (st && c->status[1].idelta & 0x08000)
631 c->status[1].idelta |= 0xFFFF0000;
632 if (st)
633 src+=2;
634 c->status[0].coeff1 = AdaptCoeff1[block_predictor[0]];
635 c->status[0].coeff2 = AdaptCoeff2[block_predictor[0]];
636 c->status[1].coeff1 = AdaptCoeff1[block_predictor[1]];
637 c->status[1].coeff2 = AdaptCoeff2[block_predictor[1]];
638
639 c->status[0].sample1 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
640 src+=2;
641 if (st) c->status[1].sample1 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
642 if (st) src+=2;
643 c->status[0].sample2 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
644 src+=2;
645 if (st) c->status[1].sample2 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
646 if (st) src+=2;
647
648 *samples++ = c->status[0].sample1;
649 if (st) *samples++ = c->status[1].sample1;
650 *samples++ = c->status[0].sample2;
651 if (st) *samples++ = c->status[1].sample2;
652 for(;n>0;n--) {
653 *samples++ = adpcm_ms_expand_nibble(&c->status[0], (src[0] >> 4) & 0x0F);
654 *samples++ = adpcm_ms_expand_nibble(&c->status[st], src[0] & 0x0F);
655 src ++;
656 }
657 break;
658 case CODEC_ID_ADPCM_IMA_DK4:
659 if (buf_size > BLKSIZE) {
660 if (avctx->block_align != 0)
661 buf_size = avctx->block_align;
662 else
663 buf_size = BLKSIZE;
664 }
665 c->status[0].predictor = (src[0] | (src[1] << 8));
666 c->status[0].step_index = src[2];
667 src += 4;
668 if(c->status[0].predictor & 0x8000)
669 c->status[0].predictor -= 0x10000;
670 *samples++ = c->status[0].predictor;
671 if (st) {
672 c->status[1].predictor = (src[0] | (src[1] << 8));
673 c->status[1].step_index = src[2];
674 src += 4;
675 if(c->status[1].predictor & 0x8000)
676 c->status[1].predictor -= 0x10000;
677 *samples++ = c->status[1].predictor;
678 }
679 while (src < buf + buf_size) {
680
681 /* take care of the top nibble (always left or mono channel) */
682 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
683 (src[0] >> 4) & 0x0F);
684
685 /* take care of the bottom nibble, which is right sample for
686 * stereo, or another mono sample */
687 if (st)
688 *samples++ = adpcm_ima_expand_nibble(&c->status[1],
689 src[0] & 0x0F);
690 else
691 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
692 src[0] & 0x0F);
693
694 src++;
695 }
696 break;
697 case CODEC_ID_ADPCM_IMA_DK3:
698 if (buf_size > BLKSIZE) {
699 if (avctx->block_align != 0)
700 buf_size = avctx->block_align;
701 else
702 buf_size = BLKSIZE;
703 }
704 c->status[0].predictor = (src[10] | (src[11] << 8));
705 c->status[1].predictor = (src[12] | (src[13] << 8));
706 c->status[0].step_index = src[14];
707 c->status[1].step_index = src[15];
708 /* sign extend the predictors */
709 if(c->status[0].predictor & 0x8000)
710 c->status[0].predictor -= 0x10000;
711 if(c->status[1].predictor & 0x8000)
712 c->status[1].predictor -= 0x10000;
713 src += 16;
714 diff_channel = c->status[1].predictor;
715
716 /* the DK3_GET_NEXT_NIBBLE macro issues the break statement when
717 * the buffer is consumed */
718 while (1) {
719
720 /* for this algorithm, c->status[0] is the sum channel and
721 * c->status[1] is the diff channel */
722
723 /* process the first predictor of the sum channel */
724 DK3_GET_NEXT_NIBBLE();
725 adpcm_ima_expand_nibble(&c->status[0], nibble);
726
727 /* process the diff channel predictor */
728 DK3_GET_NEXT_NIBBLE();
729 adpcm_ima_expand_nibble(&c->status[1], nibble);
730
731 /* process the first pair of stereo PCM samples */
732 diff_channel = (diff_channel + c->status[1].predictor) / 2;
733 *samples++ = c->status[0].predictor + c->status[1].predictor;
734 *samples++ = c->status[0].predictor - c->status[1].predictor;
735
736 /* process the second predictor of the sum channel */
737 DK3_GET_NEXT_NIBBLE();
738 adpcm_ima_expand_nibble(&c->status[0], nibble);
739
740 /* process the second pair of stereo PCM samples */
741 diff_channel = (diff_channel + c->status[1].predictor) / 2;
742 *samples++ = c->status[0].predictor + c->status[1].predictor;
743 *samples++ = c->status[0].predictor - c->status[1].predictor;
744 }
745 break;
746 case CODEC_ID_ADPCM_IMA_WS:
747 /* no per-block initialization; just start decoding the data */
748 while (src < buf + buf_size) {
749
750 if (st) {
751 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
752 (src[0] >> 4) & 0x0F);
753 *samples++ = adpcm_ima_expand_nibble(&c->status[1],
754 src[0] & 0x0F);
755 } else {
756 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
757 (src[0] >> 4) & 0x0F);
758 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
759 src[0] & 0x0F);
760 }
761
762 src++;
763 }
764 break;
765 case CODEC_ID_ADPCM_XA:
766 c->status[0].sample1 = c->status[0].sample2 =
767 c->status[1].sample1 = c->status[1].sample2 = 0;
768 while (buf_size >= 128) {
769 xa_decode(samples, src, &c->status[0], &c->status[1],
770 avctx->channels);
771 src += 128;
772 samples += 28 * 8;
773 buf_size -= 128;
774 }
775 break;
776 default:
777 *data_size = 0;
778 return -1;
779 }
780 *data_size = (uint8_t *)samples - (uint8_t *)data;
781 return src - buf;
782 }
783
784
785
786 #ifdef CONFIG_ENCODERS
787 #define ADPCM_ENCODER(id,name) \
788 AVCodec name ## _encoder = { \
789 #name, \
790 CODEC_TYPE_AUDIO, \
791 id, \
792 sizeof(ADPCMContext), \
793 adpcm_encode_init, \
794 adpcm_encode_frame, \
795 adpcm_encode_close, \
796 NULL, \
797 };
798 #else
799 #define ADPCM_ENCODER(id,name)
800 #endif
801
802 #ifdef CONFIG_DECODERS
803 #define ADPCM_DECODER(id,name) \
804 AVCodec name ## _decoder = { \
805 #name, \
806 CODEC_TYPE_AUDIO, \
807 id, \
808 sizeof(ADPCMContext), \
809 adpcm_decode_init, \
810 NULL, \
811 NULL, \
812 adpcm_decode_frame, \
813 };
814 #else
815 #define ADPCM_DECODER(id,name)
816 #endif
817
818 #define ADPCM_CODEC(id, name) \
819 ADPCM_ENCODER(id,name) ADPCM_DECODER(id,name)
820
821 ADPCM_CODEC(CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt);
822 ADPCM_CODEC(CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav);
823 ADPCM_CODEC(CODEC_ID_ADPCM_IMA_DK3, adpcm_ima_dk3);
824 ADPCM_CODEC(CODEC_ID_ADPCM_IMA_DK4, adpcm_ima_dk4);
825 ADPCM_CODEC(CODEC_ID_ADPCM_IMA_WS, adpcm_ima_ws);
826 ADPCM_CODEC(CODEC_ID_ADPCM_MS, adpcm_ms);
827 ADPCM_CODEC(CODEC_ID_ADPCM_4XM, adpcm_4xm);
828 ADPCM_CODEC(CODEC_ID_ADPCM_XA, adpcm_xa);
829 ADPCM_CODEC(CODEC_ID_ADPCM_ADX, adpcm_adx);
830
831 #undef ADPCM_CODEC