3 * Copyright (c) 2001-2003 The ffmpeg Project
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation; either
8 * version 2 of the License, or (at your option) any later version.
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Lesser General Public License for more details.
15 * You should have received a copy of the GNU Lesser General Public
16 * License along with this library; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 * First version by Francois Revol revol@free.fr
25 * Fringe ADPCM codecs (e.g., DK3 and DK4)
26 * by Mike Melanson (melanson@pcisys.net)
28 * Features and limitations:
30 * Reference documents:
31 * http://www.pcisys.net/~melanson/codecs/simpleaudio.html
32 * http://www.geocities.com/SiliconValley/8682/aud3.txt
33 * http://openquicktime.sourceforge.net/plugins.htm
34 * XAnim sources (xa_codec.c) http://www.rasnaimaging.com/people/lapus/download.html
35 * http://www.cs.ucla.edu/~leec/mediabench/applications.html
36 * SoX source code http://home.sprynet.com/~cbagwell/sox.html
41 #define CLAMP_TO_SHORT(value) \
44 else if (value < -32768) \
47 /* step_table[] and index_table[] are from the ADPCM reference source */
48 /* This is the index table: */
49 static const int index_table
[16] = {
50 -1, -1, -1, -1, 2, 4, 6, 8,
51 -1, -1, -1, -1, 2, 4, 6, 8,
55 * This is the step table. Note that many programs use slight deviations from
56 * this table, but such deviations are negligible:
58 static const int step_table
[89] = {
59 7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
60 19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
61 50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
62 130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
63 337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
64 876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
65 2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
66 5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
67 15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767
70 /* Those are for MS-ADPCM */
71 /* AdaptationTable[], AdaptCoeff1[], and AdaptCoeff2[] are from libsndfile */
72 static const int AdaptationTable
[] = {
73 230, 230, 230, 230, 307, 409, 512, 614,
74 768, 614, 512, 409, 307, 230, 230, 230
77 static const int AdaptCoeff1
[] = {
78 256, 512, 0, 192, 240, 460, 392
81 static const int AdaptCoeff2
[] = {
82 0, -256, 0, 64, 0, -208, -232
87 typedef struct ADPCMChannelStatus
{
100 } ADPCMChannelStatus
;
102 typedef struct ADPCMContext
{
103 int channel
; /* for stereo MOVs, decode left, then decode right, then tell it's decoded */
104 ADPCMChannelStatus status
[2];
105 short sample_buffer
[32]; /* hold left samples while waiting for right samples */
108 /* XXX: implement encoding */
110 static int adpcm_encode_init(AVCodecContext
*avctx
)
112 if (avctx
->channels
> 2)
113 return -1; /* only stereo or mono =) */
114 switch(avctx
->codec
->id
) {
115 case CODEC_ID_ADPCM_IMA_QT
:
116 fprintf(stderr
, "ADPCM: codec admcp_ima_qt unsupported for encoding !\n");
117 avctx
->frame_size
= 64; /* XXX: can multiple of avctx->channels * 64 (left and right blocks are interleaved) */
120 case CODEC_ID_ADPCM_IMA_WAV
:
121 avctx
->frame_size
= (BLKSIZE
- 4 * avctx
->channels
) * 8 / (4 * avctx
->channels
) + 1; /* each 16 bits sample gives one nibble */
122 /* and we have 4 bytes per channel overhead */
123 avctx
->block_align
= BLKSIZE
;
124 /* seems frame_size isn't taken into account... have to buffer the samples :-( */
126 case CODEC_ID_ADPCM_MS
:
127 fprintf(stderr
, "ADPCM: codec admcp_ms unsupported for encoding !\n");
135 avctx
->coded_frame
= avcodec_alloc_frame();
136 avctx
->coded_frame
->key_frame
= 1;
141 static int adpcm_encode_close(AVCodecContext
*avctx
)
143 av_freep(&avctx
->coded_frame
);
149 static inline unsigned char adpcm_ima_compress_sample(ADPCMChannelStatus
*c
, short sample
)
152 unsigned char nibble
;
154 int sign
= 0; /* sign bit of the nibble (MSB) */
155 int delta
, predicted_delta
;
157 delta
= sample
- c
->prev_sample
;
164 step_index
= c
->step_index
;
166 /* nibble = 4 * delta / step_table[step_index]; */
167 nibble
= (delta
<< 2) / step_table
[step_index
];
172 step_index
+= index_table
[nibble
];
178 /* what the decoder will find */
179 predicted_delta
= ((step_table
[step_index
] * nibble
) / 4) + (step_table
[step_index
] / 8);
182 c
->prev_sample
-= predicted_delta
;
184 c
->prev_sample
+= predicted_delta
;
186 CLAMP_TO_SHORT(c
->prev_sample
);
189 nibble
+= sign
<< 3; /* sign * 8 */
192 c
->step_index
= step_index
;
197 static int adpcm_encode_frame(AVCodecContext
*avctx
,
198 unsigned char *frame
, int buf_size
, void *data
)
203 ADPCMContext
*c
= avctx
->priv_data
;
206 samples
= (short *)data
;
207 /* n = (BLKSIZE - 4 * avctx->channels) / (2 * 8 * avctx->channels); */
209 switch(avctx
->codec
->id
) {
210 case CODEC_ID_ADPCM_IMA_QT
: /* XXX: can't test until we get .mov writer */
212 case CODEC_ID_ADPCM_IMA_WAV
:
213 n
= avctx
->frame_size
/ 8;
214 c
->status
[0].prev_sample
= (signed short)samples
[0]; /* XXX */
215 /* c->status[0].step_index = 0; *//* XXX: not sure how to init the state machine */
216 *dst
++ = (c
->status
[0].prev_sample
) & 0xFF; /* little endian */
217 *dst
++ = (c
->status
[0].prev_sample
>> 8) & 0xFF;
218 *dst
++ = (unsigned char)c
->status
[0].step_index
;
219 *dst
++ = 0; /* unknown */
221 if (avctx
->channels
== 2) {
222 c
->status
[1].prev_sample
= (signed short)samples
[0];
223 /* c->status[1].step_index = 0; */
224 *dst
++ = (c
->status
[1].prev_sample
) & 0xFF;
225 *dst
++ = (c
->status
[1].prev_sample
>> 8) & 0xFF;
226 *dst
++ = (unsigned char)c
->status
[1].step_index
;
231 /* stereo: 4 bytes (8 samples) for left, 4 bytes for right, 4 bytes left, ... */
233 *dst
= adpcm_ima_compress_sample(&c
->status
[0], samples
[0]) & 0x0F;
234 *dst
|= (adpcm_ima_compress_sample(&c
->status
[0], samples
[avctx
->channels
]) << 4) & 0xF0;
236 *dst
= adpcm_ima_compress_sample(&c
->status
[0], samples
[avctx
->channels
* 2]) & 0x0F;
237 *dst
|= (adpcm_ima_compress_sample(&c
->status
[0], samples
[avctx
->channels
* 3]) << 4) & 0xF0;
239 *dst
= adpcm_ima_compress_sample(&c
->status
[0], samples
[avctx
->channels
* 4]) & 0x0F;
240 *dst
|= (adpcm_ima_compress_sample(&c
->status
[0], samples
[avctx
->channels
* 5]) << 4) & 0xF0;
242 *dst
= adpcm_ima_compress_sample(&c
->status
[0], samples
[avctx
->channels
* 6]) & 0x0F;
243 *dst
|= (adpcm_ima_compress_sample(&c
->status
[0], samples
[avctx
->channels
* 7]) << 4) & 0xF0;
246 if (avctx
->channels
== 2) {
247 *dst
= adpcm_ima_compress_sample(&c
->status
[1], samples
[1]);
248 *dst
|= adpcm_ima_compress_sample(&c
->status
[1], samples
[3]) << 4;
250 *dst
= adpcm_ima_compress_sample(&c
->status
[1], samples
[5]);
251 *dst
|= adpcm_ima_compress_sample(&c
->status
[1], samples
[7]) << 4;
253 *dst
= adpcm_ima_compress_sample(&c
->status
[1], samples
[9]);
254 *dst
|= adpcm_ima_compress_sample(&c
->status
[1], samples
[11]) << 4;
256 *dst
= adpcm_ima_compress_sample(&c
->status
[1], samples
[13]);
257 *dst
|= adpcm_ima_compress_sample(&c
->status
[1], samples
[15]) << 4;
260 samples
+= 8 * avctx
->channels
;
269 static int adpcm_decode_init(AVCodecContext
* avctx
)
271 ADPCMContext
*c
= avctx
->priv_data
;
274 c
->status
[0].predictor
= c
->status
[1].predictor
= 0;
275 c
->status
[0].step_index
= c
->status
[1].step_index
= 0;
276 c
->status
[0].step
= c
->status
[1].step
= 0;
278 switch(avctx
->codec
->id
) {
285 static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus
*c
, char nibble
)
289 int sign
, delta
, diff
, step
;
291 step
= step_table
[c
->step_index
];
292 step_index
= c
->step_index
+ index_table
[(unsigned)nibble
];
293 if (step_index
< 0) step_index
= 0;
294 else if (step_index
> 88) step_index
= 88;
298 /* perform direct multiplication instead of series of jumps proposed by
299 * the reference ADPCM implementation since modern CPUs can do the mults
301 diff
= ((2 * delta
+ 1) * step
) >> 3;
302 predictor
= c
->predictor
;
303 if (sign
) predictor
-= diff
;
304 else predictor
+= diff
;
306 CLAMP_TO_SHORT(predictor
);
307 c
->predictor
= predictor
;
308 c
->step_index
= step_index
;
310 return (short)predictor
;
313 static inline short adpcm_4xa_expand_nibble(ADPCMChannelStatus
*c
, char nibble
)
317 int sign
, delta
, diff
, step
;
319 step
= step_table
[c
->step_index
];
320 step_index
= c
->step_index
+ index_table
[(unsigned)nibble
];
321 if (step_index
< 0) step_index
= 0;
322 else if (step_index
> 88) step_index
= 88;
327 diff
= (delta
*step
+ (step
>>1))>>3; // difference to code above
329 predictor
= c
->predictor
;
330 if (sign
) predictor
-= diff
;
331 else predictor
+= diff
;
333 CLAMP_TO_SHORT(predictor
);
334 c
->predictor
= predictor
;
335 c
->step_index
= step_index
;
337 return (short)predictor
;
340 static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus
*c
, char nibble
)
344 predictor
= (((c
->sample1
) * (c
->coeff1
)) + ((c
->sample2
) * (c
->coeff2
))) / 256;
345 predictor
+= (signed)((nibble
& 0x08)?
(nibble
- 0x10):(nibble
)) * c
->idelta
;
346 CLAMP_TO_SHORT(predictor
);
348 c
->sample2
= c
->sample1
;
349 c
->sample1
= predictor
;
350 c
->idelta
= (AdaptationTable
[(int)nibble
] * c
->idelta
) / 256;
351 if (c
->idelta
< 16) c
->idelta
= 16;
353 return (short)predictor
;
356 /* DK3 ADPCM support macro */
357 #define DK3_GET_NEXT_NIBBLE() \
358 if (decode_top_nibble_next) \
360 nibble = (last_byte >> 4) & 0x0F; \
361 decode_top_nibble_next = 0; \
365 last_byte = *src++; \
366 if (src >= buf + buf_size) break; \
367 nibble = last_byte & 0x0F; \
368 decode_top_nibble_next = 1; \
371 static int adpcm_decode_frame(AVCodecContext
*avctx
,
372 void *data
, int *data_size
,
373 uint8_t *buf
, int buf_size
)
375 ADPCMContext
*c
= avctx
->priv_data
;
376 ADPCMChannelStatus
*cs
;
377 int n
, m
, channel
, i
;
378 int block_predictor
[2];
383 /* DK3 ADPCM accounting variables */
384 unsigned char last_byte
= 0;
385 unsigned char nibble
;
386 int decode_top_nibble_next
= 0;
392 st
= avctx
->channels
== 2;
394 switch(avctx
->codec
->id
) {
395 case CODEC_ID_ADPCM_IMA_QT
:
396 n
= (buf_size
- 2);/* >> 2*avctx->channels;*/
397 channel
= c
->channel
;
398 cs
= &(c
->status
[channel
]);
399 /* (pppppp) (piiiiiii) */
401 /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
402 cs
->predictor
= (*src
++) << 8;
403 cs
->predictor
|= (*src
& 0x80);
404 cs
->predictor
&= 0xFF80;
407 if(cs
->predictor
& 0x8000)
408 cs
->predictor
-= 0x10000;
410 CLAMP_TO_SHORT(cs
->predictor
);
412 cs
->step_index
= (*src
++) & 0x7F;
414 if (cs
->step_index
> 88) fprintf(stderr
, "ERROR: step_index = %i\n", cs
->step_index
);
415 if (cs
->step_index
> 88) cs
->step_index
= 88;
417 cs
->step
= step_table
[cs
->step_index
];
422 *samples
++ = cs
->predictor
;
425 for(m
=32; n
>0 && m
>0; n
--, m
--) { /* in QuickTime, IMA is encoded by chuncks of 34 bytes (=64 samples) */
426 *samples
= adpcm_ima_expand_nibble(cs
, src
[0] & 0x0F);
427 samples
+= avctx
->channels
;
428 *samples
= adpcm_ima_expand_nibble(cs
, (src
[0] >> 4) & 0x0F);
429 samples
+= avctx
->channels
;
433 if(st
) { /* handle stereo interlacing */
434 c
->channel
= (channel
+ 1) % 2; /* we get one packet for left, then one for right data */
435 if(channel
== 0) { /* wait for the other packet before outputing anything */
441 case CODEC_ID_ADPCM_IMA_WAV
:
442 if (buf_size
> BLKSIZE
) {
443 if (avctx
->block_align
!= 0)
444 buf_size
= avctx
->block_align
;
448 // XXX: do as per-channel loop
449 cs
= &(c
->status
[0]);
450 cs
->predictor
= (*src
++) & 0x0FF;
451 cs
->predictor
|= ((*src
++) << 8) & 0x0FF00;
452 if(cs
->predictor
& 0x8000)
453 cs
->predictor
-= 0x10000;
454 CLAMP_TO_SHORT(cs
->predictor
);
456 // XXX: is this correct ??: *samples++ = cs->predictor;
458 cs
->step_index
= *src
++;
459 if (cs
->step_index
< 0) cs
->step_index
= 0;
460 if (cs
->step_index
> 88) cs
->step_index
= 88;
461 if (*src
++) fprintf(stderr
, "unused byte should be null !!\n"); /* unused */
464 cs
= &(c
->status
[1]);
465 cs
->predictor
= (*src
++) & 0x0FF;
466 cs
->predictor
|= ((*src
++) << 8) & 0x0FF00;
467 if(cs
->predictor
& 0x8000)
468 cs
->predictor
-= 0x10000;
469 CLAMP_TO_SHORT(cs
->predictor
);
471 // XXX: is this correct ??: *samples++ = cs->predictor;
473 cs
->step_index
= *src
++;
474 if (cs
->step_index
< 0) cs
->step_index
= 0;
475 if (cs
->step_index
> 88) cs
->step_index
= 88;
476 src
++; /* if != 0 -> out-of-sync */
479 for(m
=4; src
< (buf
+ buf_size
);) {
480 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0], src
[0] & 0x0F);
482 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[1], src
[4] & 0x0F);
483 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0], (src
[0] >> 4) & 0x0F);
485 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[1], (src
[4] >> 4) & 0x0F);
494 case CODEC_ID_ADPCM_4XM
:
495 cs
= &(c
->status
[0]);
496 c
->status
[0].predictor
= (int16_t)(src
[0] + (src
[1]<<8)); src
+=2;
498 c
->status
[1].predictor
= (int16_t)(src
[0] + (src
[1]<<8)); src
+=2;
500 c
->status
[0].step_index
= (int16_t)(src
[0] + (src
[1]<<8)); src
+=2;
502 c
->status
[1].step_index
= (int16_t)(src
[0] + (src
[1]<<8)); src
+=2;
504 // if (cs->step_index < 0) cs->step_index = 0;
505 // if (cs->step_index > 88) cs->step_index = 88;
507 m
= (buf_size
- (src
- buf
))>>st
;
508 //printf("%d %d %d %d\n", st, m, c->status[0].predictor, c->status[0].step_index);
509 //FIXME / XXX decode chanels individual & interleave samples
511 *samples
++ = adpcm_4xa_expand_nibble(&c
->status
[0], src
[i
] & 0x0F);
513 *samples
++ = adpcm_4xa_expand_nibble(&c
->status
[1], src
[i
+m
] & 0x0F);
514 *samples
++ = adpcm_4xa_expand_nibble(&c
->status
[0], src
[i
] >> 4);
516 *samples
++ = adpcm_4xa_expand_nibble(&c
->status
[1], src
[i
+m
] >> 4);
522 case CODEC_ID_ADPCM_MS
:
524 if (buf_size
> BLKSIZE
) {
525 if (avctx
->block_align
!= 0)
526 buf_size
= avctx
->block_align
;
530 n
= buf_size
- 7 * avctx
->channels
;
533 block_predictor
[0] = (*src
++); /* should be bound */
534 block_predictor
[0] = (block_predictor
[0] < 0)?
(0):((block_predictor
[0] > 7)?
(7):(block_predictor
[0]));
535 block_predictor
[1] = 0;
537 block_predictor
[1] = (*src
++);
538 block_predictor
[1] = (block_predictor
[1] < 0)?
(0):((block_predictor
[1] > 7)?
(7):(block_predictor
[1]));
539 c
->status
[0].idelta
= ((*src
& 0xFF) | ((src
[1] << 8) & 0xFF00));
540 if (c
->status
[0].idelta
& 0x08000)
541 c
->status
[0].idelta
-= 0x10000;
544 c
->status
[1].idelta
= ((*src
& 0xFF) | ((src
[1] << 8) & 0xFF00));
545 if (st
&& c
->status
[1].idelta
& 0x08000)
546 c
->status
[1].idelta
|= 0xFFFF0000;
549 c
->status
[0].coeff1
= AdaptCoeff1
[block_predictor
[0]];
550 c
->status
[0].coeff2
= AdaptCoeff2
[block_predictor
[0]];
551 c
->status
[1].coeff1
= AdaptCoeff1
[block_predictor
[1]];
552 c
->status
[1].coeff2
= AdaptCoeff2
[block_predictor
[1]];
554 c
->status
[0].sample1
= ((*src
& 0xFF) | ((src
[1] << 8) & 0xFF00));
556 if (st
) c
->status
[1].sample1
= ((*src
& 0xFF) | ((src
[1] << 8) & 0xFF00));
558 c
->status
[0].sample2
= ((*src
& 0xFF) | ((src
[1] << 8) & 0xFF00));
560 if (st
) c
->status
[1].sample2
= ((*src
& 0xFF) | ((src
[1] << 8) & 0xFF00));
563 *samples
++ = c
->status
[0].sample1
;
564 if (st
) *samples
++ = c
->status
[1].sample1
;
565 *samples
++ = c
->status
[0].sample2
;
566 if (st
) *samples
++ = c
->status
[1].sample2
;
568 *samples
++ = adpcm_ms_expand_nibble(&c
->status
[0], (src
[0] >> 4) & 0x0F);
569 *samples
++ = adpcm_ms_expand_nibble(&c
->status
[st
], src
[0] & 0x0F);
573 case CODEC_ID_ADPCM_IMA_DK4
:
574 if (buf_size
> BLKSIZE
) {
575 if (avctx
->block_align
!= 0)
576 buf_size
= avctx
->block_align
;
580 c
->status
[0].predictor
= (src
[0] | (src
[1] << 8));
581 c
->status
[0].step_index
= src
[2];
583 if(c
->status
[0].predictor
& 0x8000)
584 c
->status
[0].predictor
-= 0x10000;
585 *samples
++ = c
->status
[0].predictor
;
587 c
->status
[1].predictor
= (src
[0] | (src
[1] << 8));
588 c
->status
[1].step_index
= src
[2];
590 if(c
->status
[1].predictor
& 0x8000)
591 c
->status
[1].predictor
-= 0x10000;
592 *samples
++ = c
->status
[1].predictor
;
594 while (src
< buf
+ buf_size
) {
596 /* take care of the top nibble (always left or mono channel) */
597 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0],
598 (src
[0] >> 4) & 0x0F);
600 /* take care of the bottom nibble, which is right sample for
601 * stereo, or another mono sample */
603 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[1],
606 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0],
612 case CODEC_ID_ADPCM_IMA_DK3
:
613 if (buf_size
> BLKSIZE
) {
614 if (avctx
->block_align
!= 0)
615 buf_size
= avctx
->block_align
;
619 c
->status
[0].predictor
= (src
[10] | (src
[11] << 8));
620 c
->status
[1].predictor
= (src
[12] | (src
[13] << 8));
621 c
->status
[0].step_index
= src
[14];
622 c
->status
[1].step_index
= src
[15];
623 /* sign extend the predictors */
624 if(c
->status
[0].predictor
& 0x8000)
625 c
->status
[0].predictor
-= 0x10000;
626 if(c
->status
[1].predictor
& 0x8000)
627 c
->status
[1].predictor
-= 0x10000;
629 diff_channel
= c
->status
[1].predictor
;
631 /* the DK3_GET_NEXT_NIBBLE macro issues the break statement when
632 * the buffer is consumed */
635 /* for this algorithm, c->status[0] is the sum channel and
636 * c->status[1] is the diff channel */
638 /* process the first predictor of the sum channel */
639 DK3_GET_NEXT_NIBBLE();
640 adpcm_ima_expand_nibble(&c
->status
[0], nibble
);
642 /* process the diff channel predictor */
643 DK3_GET_NEXT_NIBBLE();
644 adpcm_ima_expand_nibble(&c
->status
[1], nibble
);
646 /* process the first pair of stereo PCM samples */
647 diff_channel
= (diff_channel
+ c
->status
[1].predictor
) / 2;
648 *samples
++ = c
->status
[0].predictor
+ c
->status
[1].predictor
;
649 *samples
++ = c
->status
[0].predictor
- c
->status
[1].predictor
;
651 /* process the second predictor of the sum channel */
652 DK3_GET_NEXT_NIBBLE();
653 adpcm_ima_expand_nibble(&c
->status
[0], nibble
);
655 /* process the second pair of stereo PCM samples */
656 diff_channel
= (diff_channel
+ c
->status
[1].predictor
) / 2;
657 *samples
++ = c
->status
[0].predictor
+ c
->status
[1].predictor
;
658 *samples
++ = c
->status
[0].predictor
- c
->status
[1].predictor
;
665 *data_size
= (uint8_t *)samples
- (uint8_t *)data
;
669 #define ADPCM_CODEC(id, name) \
670 AVCodec name ## _encoder = { \
674 sizeof(ADPCMContext), \
676 adpcm_encode_frame, \
677 adpcm_encode_close, \
680 AVCodec name ## _decoder = { \
684 sizeof(ADPCMContext), \
688 adpcm_decode_frame, \
691 ADPCM_CODEC(CODEC_ID_ADPCM_IMA_QT
, adpcm_ima_qt
);
692 ADPCM_CODEC(CODEC_ID_ADPCM_IMA_WAV
, adpcm_ima_wav
);
693 ADPCM_CODEC(CODEC_ID_ADPCM_IMA_DK3
, adpcm_ima_dk3
);
694 ADPCM_CODEC(CODEC_ID_ADPCM_IMA_DK4
, adpcm_ima_dk4
);
695 ADPCM_CODEC(CODEC_ID_ADPCM_MS
, adpcm_ms
);
696 ADPCM_CODEC(CODEC_ID_ADPCM_4XM
, adpcm_4xm
);