b6a20e2c322012840c12d98c91081d787b6796b0
[libav.git] / libavcodec / adpcm.c
1 /*
2 * Copyright (c) 2001-2003 The ffmpeg Project
3 *
4 * This file is part of Libav.
5 *
6 * Libav is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * Libav is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with Libav; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20 #include "avcodec.h"
21 #include "get_bits.h"
22 #include "put_bits.h"
23 #include "bytestream.h"
24 #include "adpcm.h"
25 #include "adpcm_data.h"
26
27 /**
28 * @file
29 * ADPCM decoders
30 * First version by Francois Revol (revol@free.fr)
31 * Fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
32 * by Mike Melanson (melanson@pcisys.net)
33 * CD-ROM XA ADPCM codec by BERO
34 * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com)
35 * EA ADPCM R1/R2/R3 decoder by Peter Ross (pross@xvid.org)
36 * EA IMA EACS decoder by Peter Ross (pross@xvid.org)
37 * EA IMA SEAD decoder by Peter Ross (pross@xvid.org)
38 * EA ADPCM XAS decoder by Peter Ross (pross@xvid.org)
39 * MAXIS EA ADPCM decoder by Robert Marston (rmarston@gmail.com)
40 * THP ADPCM decoder by Marco Gerards (mgerards@xs4all.nl)
41 *
42 * Features and limitations:
43 *
44 * Reference documents:
45 * http://wiki.multimedia.cx/index.php?title=Category:ADPCM_Audio_Codecs
46 * http://www.pcisys.net/~melanson/codecs/simpleaudio.html [dead]
47 * http://www.geocities.com/SiliconValley/8682/aud3.txt [dead]
48 * http://openquicktime.sourceforge.net/
49 * XAnim sources (xa_codec.c) http://xanim.polter.net/
50 * http://www.cs.ucla.edu/~leec/mediabench/applications.html [dead]
51 * SoX source code http://sox.sourceforge.net/
52 *
53 * CD-ROM XA:
54 * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html [dead]
55 * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html [dead]
56 * readstr http://www.geocities.co.jp/Playtown/2004/
57 */
58
59 /* These are for CD-ROM XA ADPCM */
60 static const int xa_adpcm_table[5][2] = {
61 { 0, 0 },
62 { 60, 0 },
63 { 115, -52 },
64 { 98, -55 },
65 { 122, -60 }
66 };
67
68 static const int ea_adpcm_table[] = {
69 0, 240, 460, 392,
70 0, 0, -208, -220,
71 0, 1, 3, 4,
72 7, 8, 10, 11,
73 0, -1, -3, -4
74 };
75
76 // padded to zero where table size is less then 16
77 static const int swf_index_tables[4][16] = {
78 /*2*/ { -1, 2 },
79 /*3*/ { -1, -1, 2, 4 },
80 /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 },
81 /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
82 };
83
84 /* end of tables */
85
86 typedef struct ADPCMDecodeContext {
87 AVFrame frame;
88 ADPCMChannelStatus status[6];
89 int vqa_version; /**< VQA version. Used for ADPCM_IMA_WS */
90 } ADPCMDecodeContext;
91
92 static av_cold int adpcm_decode_init(AVCodecContext * avctx)
93 {
94 ADPCMDecodeContext *c = avctx->priv_data;
95 unsigned int min_channels = 1;
96 unsigned int max_channels = 2;
97
98 switch(avctx->codec->id) {
99 case AV_CODEC_ID_ADPCM_EA:
100 min_channels = 2;
101 break;
102 case AV_CODEC_ID_ADPCM_EA_R1:
103 case AV_CODEC_ID_ADPCM_EA_R2:
104 case AV_CODEC_ID_ADPCM_EA_R3:
105 case AV_CODEC_ID_ADPCM_EA_XAS:
106 max_channels = 6;
107 break;
108 }
109 if (avctx->channels < min_channels || avctx->channels > max_channels) {
110 av_log(avctx, AV_LOG_ERROR, "Invalid number of channels\n");
111 return AVERROR(EINVAL);
112 }
113
114 switch(avctx->codec->id) {
115 case AV_CODEC_ID_ADPCM_CT:
116 c->status[0].step = c->status[1].step = 511;
117 break;
118 case AV_CODEC_ID_ADPCM_IMA_WAV:
119 if (avctx->bits_per_coded_sample != 4) {
120 av_log(avctx, AV_LOG_ERROR, "Only 4-bit ADPCM IMA WAV files are supported\n");
121 return -1;
122 }
123 break;
124 case AV_CODEC_ID_ADPCM_IMA_APC:
125 if (avctx->extradata && avctx->extradata_size >= 8) {
126 c->status[0].predictor = AV_RL32(avctx->extradata);
127 c->status[1].predictor = AV_RL32(avctx->extradata + 4);
128 }
129 break;
130 case AV_CODEC_ID_ADPCM_IMA_WS:
131 if (avctx->extradata && avctx->extradata_size >= 2)
132 c->vqa_version = AV_RL16(avctx->extradata);
133 break;
134 default:
135 break;
136 }
137
138 switch(avctx->codec->id) {
139 case AV_CODEC_ID_ADPCM_IMA_QT:
140 case AV_CODEC_ID_ADPCM_IMA_WAV:
141 case AV_CODEC_ID_ADPCM_4XM:
142 case AV_CODEC_ID_ADPCM_XA:
143 case AV_CODEC_ID_ADPCM_EA_R1:
144 case AV_CODEC_ID_ADPCM_EA_R2:
145 case AV_CODEC_ID_ADPCM_EA_R3:
146 case AV_CODEC_ID_ADPCM_EA_XAS:
147 case AV_CODEC_ID_ADPCM_THP:
148 avctx->sample_fmt = AV_SAMPLE_FMT_S16P;
149 break;
150 case AV_CODEC_ID_ADPCM_IMA_WS:
151 avctx->sample_fmt = c->vqa_version == 3 ? AV_SAMPLE_FMT_S16P :
152 AV_SAMPLE_FMT_S16;
153 break;
154 default:
155 avctx->sample_fmt = AV_SAMPLE_FMT_S16;
156 }
157
158 avcodec_get_frame_defaults(&c->frame);
159 avctx->coded_frame = &c->frame;
160
161 return 0;
162 }
163
164 static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift)
165 {
166 int step_index;
167 int predictor;
168 int sign, delta, diff, step;
169
170 step = ff_adpcm_step_table[c->step_index];
171 step_index = c->step_index + ff_adpcm_index_table[(unsigned)nibble];
172 step_index = av_clip(step_index, 0, 88);
173
174 sign = nibble & 8;
175 delta = nibble & 7;
176 /* perform direct multiplication instead of series of jumps proposed by
177 * the reference ADPCM implementation since modern CPUs can do the mults
178 * quickly enough */
179 diff = ((2 * delta + 1) * step) >> shift;
180 predictor = c->predictor;
181 if (sign) predictor -= diff;
182 else predictor += diff;
183
184 c->predictor = av_clip_int16(predictor);
185 c->step_index = step_index;
186
187 return (short)c->predictor;
188 }
189
190 static inline int adpcm_ima_qt_expand_nibble(ADPCMChannelStatus *c, int nibble, int shift)
191 {
192 int step_index;
193 int predictor;
194 int diff, step;
195
196 step = ff_adpcm_step_table[c->step_index];
197 step_index = c->step_index + ff_adpcm_index_table[nibble];
198 step_index = av_clip(step_index, 0, 88);
199
200 diff = step >> 3;
201 if (nibble & 4) diff += step;
202 if (nibble & 2) diff += step >> 1;
203 if (nibble & 1) diff += step >> 2;
204
205 if (nibble & 8)
206 predictor = c->predictor - diff;
207 else
208 predictor = c->predictor + diff;
209
210 c->predictor = av_clip_int16(predictor);
211 c->step_index = step_index;
212
213 return c->predictor;
214 }
215
216 static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, int nibble)
217 {
218 int predictor;
219
220 predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64;
221 predictor += ((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
222
223 c->sample2 = c->sample1;
224 c->sample1 = av_clip_int16(predictor);
225 c->idelta = (ff_adpcm_AdaptationTable[(int)nibble] * c->idelta) >> 8;
226 if (c->idelta < 16) c->idelta = 16;
227
228 return c->sample1;
229 }
230
231 static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble)
232 {
233 int sign, delta, diff;
234 int new_step;
235
236 sign = nibble & 8;
237 delta = nibble & 7;
238 /* perform direct multiplication instead of series of jumps proposed by
239 * the reference ADPCM implementation since modern CPUs can do the mults
240 * quickly enough */
241 diff = ((2 * delta + 1) * c->step) >> 3;
242 /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */
243 c->predictor = ((c->predictor * 254) >> 8) + (sign ? -diff : diff);
244 c->predictor = av_clip_int16(c->predictor);
245 /* calculate new step and clamp it to range 511..32767 */
246 new_step = (ff_adpcm_AdaptationTable[nibble & 7] * c->step) >> 8;
247 c->step = av_clip(new_step, 511, 32767);
248
249 return (short)c->predictor;
250 }
251
252 static inline short adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, char nibble, int size, int shift)
253 {
254 int sign, delta, diff;
255
256 sign = nibble & (1<<(size-1));
257 delta = nibble & ((1<<(size-1))-1);
258 diff = delta << (7 + c->step + shift);
259
260 /* clamp result */
261 c->predictor = av_clip(c->predictor + (sign ? -diff : diff), -16384,16256);
262
263 /* calculate new step */
264 if (delta >= (2*size - 3) && c->step < 3)
265 c->step++;
266 else if (delta == 0 && c->step > 0)
267 c->step--;
268
269 return (short) c->predictor;
270 }
271
272 static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned char nibble)
273 {
274 if(!c->step) {
275 c->predictor = 0;
276 c->step = 127;
277 }
278
279 c->predictor += (c->step * ff_adpcm_yamaha_difflookup[nibble]) / 8;
280 c->predictor = av_clip_int16(c->predictor);
281 c->step = (c->step * ff_adpcm_yamaha_indexscale[nibble]) >> 8;
282 c->step = av_clip(c->step, 127, 24567);
283 return c->predictor;
284 }
285
286 static int xa_decode(AVCodecContext *avctx, int16_t *out0, int16_t *out1,
287 const uint8_t *in, ADPCMChannelStatus *left,
288 ADPCMChannelStatus *right, int channels, int sample_offset)
289 {
290 int i, j;
291 int shift,filter,f0,f1;
292 int s_1,s_2;
293 int d,s,t;
294
295 out0 += sample_offset;
296 if (channels == 1)
297 out1 = out0 + 28;
298 else
299 out1 += sample_offset;
300
301 for(i=0;i<4;i++) {
302 shift = 12 - (in[4+i*2] & 15);
303 filter = in[4+i*2] >> 4;
304 if (filter > 4) {
305 av_log(avctx, AV_LOG_ERROR,
306 "Invalid XA-ADPCM filter %d (max. allowed is 4)\n",
307 filter);
308 return AVERROR_INVALIDDATA;
309 }
310 f0 = xa_adpcm_table[filter][0];
311 f1 = xa_adpcm_table[filter][1];
312
313 s_1 = left->sample1;
314 s_2 = left->sample2;
315
316 for(j=0;j<28;j++) {
317 d = in[16+i+j*4];
318
319 t = sign_extend(d, 4);
320 s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
321 s_2 = s_1;
322 s_1 = av_clip_int16(s);
323 out0[j] = s_1;
324 }
325
326 if (channels == 2) {
327 left->sample1 = s_1;
328 left->sample2 = s_2;
329 s_1 = right->sample1;
330 s_2 = right->sample2;
331 }
332
333 shift = 12 - (in[5+i*2] & 15);
334 filter = in[5+i*2] >> 4;
335 if (filter > 4) {
336 av_log(avctx, AV_LOG_ERROR,
337 "Invalid XA-ADPCM filter %d (max. allowed is 4)\n",
338 filter);
339 return AVERROR_INVALIDDATA;
340 }
341 f0 = xa_adpcm_table[filter][0];
342 f1 = xa_adpcm_table[filter][1];
343
344 for(j=0;j<28;j++) {
345 d = in[16+i+j*4];
346
347 t = sign_extend(d >> 4, 4);
348 s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
349 s_2 = s_1;
350 s_1 = av_clip_int16(s);
351 out1[j] = s_1;
352 }
353
354 if (channels == 2) {
355 right->sample1 = s_1;
356 right->sample2 = s_2;
357 } else {
358 left->sample1 = s_1;
359 left->sample2 = s_2;
360 }
361
362 out0 += 28 * (3 - channels);
363 out1 += 28 * (3 - channels);
364 }
365
366 return 0;
367 }
368
369 static void adpcm_swf_decode(AVCodecContext *avctx, const uint8_t *buf, int buf_size, int16_t *samples)
370 {
371 ADPCMDecodeContext *c = avctx->priv_data;
372 GetBitContext gb;
373 const int *table;
374 int k0, signmask, nb_bits, count;
375 int size = buf_size*8;
376 int i;
377
378 init_get_bits(&gb, buf, size);
379
380 //read bits & initial values
381 nb_bits = get_bits(&gb, 2)+2;
382 table = swf_index_tables[nb_bits-2];
383 k0 = 1 << (nb_bits-2);
384 signmask = 1 << (nb_bits-1);
385
386 while (get_bits_count(&gb) <= size - 22*avctx->channels) {
387 for (i = 0; i < avctx->channels; i++) {
388 *samples++ = c->status[i].predictor = get_sbits(&gb, 16);
389 c->status[i].step_index = get_bits(&gb, 6);
390 }
391
392 for (count = 0; get_bits_count(&gb) <= size - nb_bits*avctx->channels && count < 4095; count++) {
393 int i;
394
395 for (i = 0; i < avctx->channels; i++) {
396 // similar to IMA adpcm
397 int delta = get_bits(&gb, nb_bits);
398 int step = ff_adpcm_step_table[c->status[i].step_index];
399 long vpdiff = 0; // vpdiff = (delta+0.5)*step/4
400 int k = k0;
401
402 do {
403 if (delta & k)
404 vpdiff += step;
405 step >>= 1;
406 k >>= 1;
407 } while(k);
408 vpdiff += step;
409
410 if (delta & signmask)
411 c->status[i].predictor -= vpdiff;
412 else
413 c->status[i].predictor += vpdiff;
414
415 c->status[i].step_index += table[delta & (~signmask)];
416
417 c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88);
418 c->status[i].predictor = av_clip_int16(c->status[i].predictor);
419
420 *samples++ = c->status[i].predictor;
421 }
422 }
423 }
424 }
425
426 /**
427 * Get the number of samples that will be decoded from the packet.
428 * In one case, this is actually the maximum number of samples possible to
429 * decode with the given buf_size.
430 *
431 * @param[out] coded_samples set to the number of samples as coded in the
432 * packet, or 0 if the codec does not encode the
433 * number of samples in each frame.
434 */
435 static int get_nb_samples(AVCodecContext *avctx, GetByteContext *gb,
436 int buf_size, int *coded_samples)
437 {
438 ADPCMDecodeContext *s = avctx->priv_data;
439 int nb_samples = 0;
440 int ch = avctx->channels;
441 int has_coded_samples = 0;
442 int header_size;
443
444 *coded_samples = 0;
445
446 switch (avctx->codec->id) {
447 /* constant, only check buf_size */
448 case AV_CODEC_ID_ADPCM_EA_XAS:
449 if (buf_size < 76 * ch)
450 return 0;
451 nb_samples = 128;
452 break;
453 case AV_CODEC_ID_ADPCM_IMA_QT:
454 if (buf_size < 34 * ch)
455 return 0;
456 nb_samples = 64;
457 break;
458 /* simple 4-bit adpcm */
459 case AV_CODEC_ID_ADPCM_CT:
460 case AV_CODEC_ID_ADPCM_IMA_APC:
461 case AV_CODEC_ID_ADPCM_IMA_EA_SEAD:
462 case AV_CODEC_ID_ADPCM_IMA_WS:
463 case AV_CODEC_ID_ADPCM_YAMAHA:
464 nb_samples = buf_size * 2 / ch;
465 break;
466 }
467 if (nb_samples)
468 return nb_samples;
469
470 /* simple 4-bit adpcm, with header */
471 header_size = 0;
472 switch (avctx->codec->id) {
473 case AV_CODEC_ID_ADPCM_4XM:
474 case AV_CODEC_ID_ADPCM_IMA_ISS: header_size = 4 * ch; break;
475 case AV_CODEC_ID_ADPCM_IMA_AMV: header_size = 8; break;
476 case AV_CODEC_ID_ADPCM_IMA_SMJPEG: header_size = 4; break;
477 }
478 if (header_size > 0)
479 return (buf_size - header_size) * 2 / ch;
480
481 /* more complex formats */
482 switch (avctx->codec->id) {
483 case AV_CODEC_ID_ADPCM_EA:
484 has_coded_samples = 1;
485 *coded_samples = bytestream2_get_le32(gb);
486 *coded_samples -= *coded_samples % 28;
487 nb_samples = (buf_size - 12) / 30 * 28;
488 break;
489 case AV_CODEC_ID_ADPCM_IMA_EA_EACS:
490 has_coded_samples = 1;
491 *coded_samples = bytestream2_get_le32(gb);
492 nb_samples = (buf_size - (4 + 8 * ch)) * 2 / ch;
493 break;
494 case AV_CODEC_ID_ADPCM_EA_MAXIS_XA:
495 nb_samples = (buf_size - ch) / ch * 2;
496 break;
497 case AV_CODEC_ID_ADPCM_EA_R1:
498 case AV_CODEC_ID_ADPCM_EA_R2:
499 case AV_CODEC_ID_ADPCM_EA_R3:
500 /* maximum number of samples */
501 /* has internal offsets and a per-frame switch to signal raw 16-bit */
502 has_coded_samples = 1;
503 switch (avctx->codec->id) {
504 case AV_CODEC_ID_ADPCM_EA_R1:
505 header_size = 4 + 9 * ch;
506 *coded_samples = bytestream2_get_le32(gb);
507 break;
508 case AV_CODEC_ID_ADPCM_EA_R2:
509 header_size = 4 + 5 * ch;
510 *coded_samples = bytestream2_get_le32(gb);
511 break;
512 case AV_CODEC_ID_ADPCM_EA_R3:
513 header_size = 4 + 5 * ch;
514 *coded_samples = bytestream2_get_be32(gb);
515 break;
516 }
517 *coded_samples -= *coded_samples % 28;
518 nb_samples = (buf_size - header_size) * 2 / ch;
519 nb_samples -= nb_samples % 28;
520 break;
521 case AV_CODEC_ID_ADPCM_IMA_DK3:
522 if (avctx->block_align > 0)
523 buf_size = FFMIN(buf_size, avctx->block_align);
524 nb_samples = ((buf_size - 16) * 2 / 3 * 4) / ch;
525 break;
526 case AV_CODEC_ID_ADPCM_IMA_DK4:
527 if (avctx->block_align > 0)
528 buf_size = FFMIN(buf_size, avctx->block_align);
529 nb_samples = 1 + (buf_size - 4 * ch) * 2 / ch;
530 break;
531 case AV_CODEC_ID_ADPCM_IMA_WAV:
532 if (avctx->block_align > 0)
533 buf_size = FFMIN(buf_size, avctx->block_align);
534 nb_samples = 1 + (buf_size - 4 * ch) / (4 * ch) * 8;
535 break;
536 case AV_CODEC_ID_ADPCM_MS:
537 if (avctx->block_align > 0)
538 buf_size = FFMIN(buf_size, avctx->block_align);
539 nb_samples = 2 + (buf_size - 7 * ch) * 2 / ch;
540 break;
541 case AV_CODEC_ID_ADPCM_SBPRO_2:
542 case AV_CODEC_ID_ADPCM_SBPRO_3:
543 case AV_CODEC_ID_ADPCM_SBPRO_4:
544 {
545 int samples_per_byte;
546 switch (avctx->codec->id) {
547 case AV_CODEC_ID_ADPCM_SBPRO_2: samples_per_byte = 4; break;
548 case AV_CODEC_ID_ADPCM_SBPRO_3: samples_per_byte = 3; break;
549 case AV_CODEC_ID_ADPCM_SBPRO_4: samples_per_byte = 2; break;
550 }
551 if (!s->status[0].step_index) {
552 nb_samples++;
553 buf_size -= ch;
554 }
555 nb_samples += buf_size * samples_per_byte / ch;
556 break;
557 }
558 case AV_CODEC_ID_ADPCM_SWF:
559 {
560 int buf_bits = buf_size * 8 - 2;
561 int nbits = (bytestream2_get_byte(gb) >> 6) + 2;
562 int block_hdr_size = 22 * ch;
563 int block_size = block_hdr_size + nbits * ch * 4095;
564 int nblocks = buf_bits / block_size;
565 int bits_left = buf_bits - nblocks * block_size;
566 nb_samples = nblocks * 4096;
567 if (bits_left >= block_hdr_size)
568 nb_samples += 1 + (bits_left - block_hdr_size) / (nbits * ch);
569 break;
570 }
571 case AV_CODEC_ID_ADPCM_THP:
572 has_coded_samples = 1;
573 bytestream2_skip(gb, 4); // channel size
574 *coded_samples = bytestream2_get_be32(gb);
575 *coded_samples -= *coded_samples % 14;
576 nb_samples = (buf_size - 80) / (8 * ch) * 14;
577 break;
578 case AV_CODEC_ID_ADPCM_XA:
579 nb_samples = (buf_size / 128) * 224 / ch;
580 break;
581 }
582
583 /* validate coded sample count */
584 if (has_coded_samples && (*coded_samples <= 0 || *coded_samples > nb_samples))
585 return AVERROR_INVALIDDATA;
586
587 return nb_samples;
588 }
589
590 static int adpcm_decode_frame(AVCodecContext *avctx, void *data,
591 int *got_frame_ptr, AVPacket *avpkt)
592 {
593 const uint8_t *buf = avpkt->data;
594 int buf_size = avpkt->size;
595 ADPCMDecodeContext *c = avctx->priv_data;
596 ADPCMChannelStatus *cs;
597 int n, m, channel, i;
598 short *samples;
599 int16_t **samples_p;
600 int st; /* stereo */
601 int count1, count2;
602 int nb_samples, coded_samples, ret;
603 GetByteContext gb;
604
605 bytestream2_init(&gb, buf, buf_size);
606 nb_samples = get_nb_samples(avctx, &gb, buf_size, &coded_samples);
607 if (nb_samples <= 0) {
608 av_log(avctx, AV_LOG_ERROR, "invalid number of samples in packet\n");
609 return AVERROR_INVALIDDATA;
610 }
611
612 /* get output buffer */
613 c->frame.nb_samples = nb_samples;
614 if ((ret = avctx->get_buffer(avctx, &c->frame)) < 0) {
615 av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
616 return ret;
617 }
618 samples = (short *)c->frame.data[0];
619 samples_p = (int16_t **)c->frame.extended_data;
620
621 /* use coded_samples when applicable */
622 /* it is always <= nb_samples, so the output buffer will be large enough */
623 if (coded_samples) {
624 if (coded_samples != nb_samples)
625 av_log(avctx, AV_LOG_WARNING, "mismatch in coded sample count\n");
626 c->frame.nb_samples = nb_samples = coded_samples;
627 }
628
629 st = avctx->channels == 2 ? 1 : 0;
630
631 switch(avctx->codec->id) {
632 case AV_CODEC_ID_ADPCM_IMA_QT:
633 /* In QuickTime, IMA is encoded by chunks of 34 bytes (=64 samples).
634 Channel data is interleaved per-chunk. */
635 for (channel = 0; channel < avctx->channels; channel++) {
636 int predictor;
637 int step_index;
638 cs = &(c->status[channel]);
639 /* (pppppp) (piiiiiii) */
640
641 /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
642 predictor = sign_extend(bytestream2_get_be16u(&gb), 16);
643 step_index = predictor & 0x7F;
644 predictor &= ~0x7F;
645
646 if (cs->step_index == step_index) {
647 int diff = predictor - cs->predictor;
648 if (diff < 0)
649 diff = - diff;
650 if (diff > 0x7f)
651 goto update;
652 } else {
653 update:
654 cs->step_index = step_index;
655 cs->predictor = predictor;
656 }
657
658 if (cs->step_index > 88u){
659 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
660 channel, cs->step_index);
661 return AVERROR_INVALIDDATA;
662 }
663
664 samples = samples_p[channel];
665
666 for (m = 0; m < 64; m += 2) {
667 int byte = bytestream2_get_byteu(&gb);
668 samples[m ] = adpcm_ima_qt_expand_nibble(cs, byte & 0x0F, 3);
669 samples[m + 1] = adpcm_ima_qt_expand_nibble(cs, byte >> 4 , 3);
670 }
671 }
672 break;
673 case AV_CODEC_ID_ADPCM_IMA_WAV:
674 for(i=0; i<avctx->channels; i++){
675 cs = &(c->status[i]);
676 cs->predictor = samples_p[i][0] = sign_extend(bytestream2_get_le16u(&gb), 16);
677
678 cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
679 if (cs->step_index > 88u){
680 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
681 i, cs->step_index);
682 return AVERROR_INVALIDDATA;
683 }
684 }
685
686 for (n = 0; n < (nb_samples - 1) / 8; n++) {
687 for (i = 0; i < avctx->channels; i++) {
688 cs = &c->status[i];
689 samples = &samples_p[i][1 + n * 8];
690 for (m = 0; m < 8; m += 2) {
691 int v = bytestream2_get_byteu(&gb);
692 samples[m ] = adpcm_ima_expand_nibble(cs, v & 0x0F, 3);
693 samples[m + 1] = adpcm_ima_expand_nibble(cs, v >> 4 , 3);
694 }
695 }
696 }
697 break;
698 case AV_CODEC_ID_ADPCM_4XM:
699 for (i = 0; i < avctx->channels; i++)
700 c->status[i].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
701
702 for (i = 0; i < avctx->channels; i++) {
703 c->status[i].step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
704 if (c->status[i].step_index > 88u) {
705 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
706 i, c->status[i].step_index);
707 return AVERROR_INVALIDDATA;
708 }
709 }
710
711 for (i = 0; i < avctx->channels; i++) {
712 samples = (int16_t *)c->frame.data[i];
713 cs = &c->status[i];
714 for (n = nb_samples >> 1; n > 0; n--) {
715 int v = bytestream2_get_byteu(&gb);
716 *samples++ = adpcm_ima_expand_nibble(cs, v & 0x0F, 4);
717 *samples++ = adpcm_ima_expand_nibble(cs, v >> 4 , 4);
718 }
719 }
720 break;
721 case AV_CODEC_ID_ADPCM_MS:
722 {
723 int block_predictor;
724
725 block_predictor = bytestream2_get_byteu(&gb);
726 if (block_predictor > 6) {
727 av_log(avctx, AV_LOG_ERROR, "ERROR: block_predictor[0] = %d\n",
728 block_predictor);
729 return AVERROR_INVALIDDATA;
730 }
731 c->status[0].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor];
732 c->status[0].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor];
733 if (st) {
734 block_predictor = bytestream2_get_byteu(&gb);
735 if (block_predictor > 6) {
736 av_log(avctx, AV_LOG_ERROR, "ERROR: block_predictor[1] = %d\n",
737 block_predictor);
738 return AVERROR_INVALIDDATA;
739 }
740 c->status[1].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor];
741 c->status[1].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor];
742 }
743 c->status[0].idelta = sign_extend(bytestream2_get_le16u(&gb), 16);
744 if (st){
745 c->status[1].idelta = sign_extend(bytestream2_get_le16u(&gb), 16);
746 }
747
748 c->status[0].sample1 = sign_extend(bytestream2_get_le16u(&gb), 16);
749 if (st) c->status[1].sample1 = sign_extend(bytestream2_get_le16u(&gb), 16);
750 c->status[0].sample2 = sign_extend(bytestream2_get_le16u(&gb), 16);
751 if (st) c->status[1].sample2 = sign_extend(bytestream2_get_le16u(&gb), 16);
752
753 *samples++ = c->status[0].sample2;
754 if (st) *samples++ = c->status[1].sample2;
755 *samples++ = c->status[0].sample1;
756 if (st) *samples++ = c->status[1].sample1;
757 for(n = (nb_samples - 2) >> (1 - st); n > 0; n--) {
758 int byte = bytestream2_get_byteu(&gb);
759 *samples++ = adpcm_ms_expand_nibble(&c->status[0 ], byte >> 4 );
760 *samples++ = adpcm_ms_expand_nibble(&c->status[st], byte & 0x0F);
761 }
762 break;
763 }
764 case AV_CODEC_ID_ADPCM_IMA_DK4:
765 for (channel = 0; channel < avctx->channels; channel++) {
766 cs = &c->status[channel];
767 cs->predictor = *samples++ = sign_extend(bytestream2_get_le16u(&gb), 16);
768 cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
769 if (cs->step_index > 88u){
770 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
771 channel, cs->step_index);
772 return AVERROR_INVALIDDATA;
773 }
774 }
775 for (n = nb_samples >> (1 - st); n > 0; n--) {
776 int v = bytestream2_get_byteu(&gb);
777 *samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v >> 4 , 3);
778 *samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3);
779 }
780 break;
781 case AV_CODEC_ID_ADPCM_IMA_DK3:
782 {
783 int last_byte = 0;
784 int nibble;
785 int decode_top_nibble_next = 0;
786 int diff_channel;
787 const int16_t *samples_end = samples + avctx->channels * nb_samples;
788
789 bytestream2_skipu(&gb, 10);
790 c->status[0].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
791 c->status[1].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
792 c->status[0].step_index = bytestream2_get_byteu(&gb);
793 c->status[1].step_index = bytestream2_get_byteu(&gb);
794 if (c->status[0].step_index > 88u || c->status[1].step_index > 88u){
795 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i/%i\n",
796 c->status[0].step_index, c->status[1].step_index);
797 return AVERROR_INVALIDDATA;
798 }
799 /* sign extend the predictors */
800 diff_channel = c->status[1].predictor;
801
802 /* DK3 ADPCM support macro */
803 #define DK3_GET_NEXT_NIBBLE() \
804 if (decode_top_nibble_next) { \
805 nibble = last_byte >> 4; \
806 decode_top_nibble_next = 0; \
807 } else { \
808 last_byte = bytestream2_get_byteu(&gb); \
809 nibble = last_byte & 0x0F; \
810 decode_top_nibble_next = 1; \
811 }
812
813 while (samples < samples_end) {
814
815 /* for this algorithm, c->status[0] is the sum channel and
816 * c->status[1] is the diff channel */
817
818 /* process the first predictor of the sum channel */
819 DK3_GET_NEXT_NIBBLE();
820 adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
821
822 /* process the diff channel predictor */
823 DK3_GET_NEXT_NIBBLE();
824 adpcm_ima_expand_nibble(&c->status[1], nibble, 3);
825
826 /* process the first pair of stereo PCM samples */
827 diff_channel = (diff_channel + c->status[1].predictor) / 2;
828 *samples++ = c->status[0].predictor + c->status[1].predictor;
829 *samples++ = c->status[0].predictor - c->status[1].predictor;
830
831 /* process the second predictor of the sum channel */
832 DK3_GET_NEXT_NIBBLE();
833 adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
834
835 /* process the second pair of stereo PCM samples */
836 diff_channel = (diff_channel + c->status[1].predictor) / 2;
837 *samples++ = c->status[0].predictor + c->status[1].predictor;
838 *samples++ = c->status[0].predictor - c->status[1].predictor;
839 }
840 break;
841 }
842 case AV_CODEC_ID_ADPCM_IMA_ISS:
843 for (channel = 0; channel < avctx->channels; channel++) {
844 cs = &c->status[channel];
845 cs->predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
846 cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
847 if (cs->step_index > 88u){
848 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
849 channel, cs->step_index);
850 return AVERROR_INVALIDDATA;
851 }
852 }
853
854 for (n = nb_samples >> (1 - st); n > 0; n--) {
855 int v1, v2;
856 int v = bytestream2_get_byteu(&gb);
857 /* nibbles are swapped for mono */
858 if (st) {
859 v1 = v >> 4;
860 v2 = v & 0x0F;
861 } else {
862 v2 = v >> 4;
863 v1 = v & 0x0F;
864 }
865 *samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v1, 3);
866 *samples++ = adpcm_ima_expand_nibble(&c->status[st], v2, 3);
867 }
868 break;
869 case AV_CODEC_ID_ADPCM_IMA_APC:
870 while (bytestream2_get_bytes_left(&gb) > 0) {
871 int v = bytestream2_get_byteu(&gb);
872 *samples++ = adpcm_ima_expand_nibble(&c->status[0], v >> 4 , 3);
873 *samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3);
874 }
875 break;
876 case AV_CODEC_ID_ADPCM_IMA_WS:
877 if (c->vqa_version == 3) {
878 for (channel = 0; channel < avctx->channels; channel++) {
879 int16_t *smp = samples_p[channel];
880
881 for (n = nb_samples / 2; n > 0; n--) {
882 int v = bytestream2_get_byteu(&gb);
883 *smp++ = adpcm_ima_expand_nibble(&c->status[channel], v >> 4 , 3);
884 *smp++ = adpcm_ima_expand_nibble(&c->status[channel], v & 0x0F, 3);
885 }
886 }
887 } else {
888 for (n = nb_samples / 2; n > 0; n--) {
889 for (channel = 0; channel < avctx->channels; channel++) {
890 int v = bytestream2_get_byteu(&gb);
891 *samples++ = adpcm_ima_expand_nibble(&c->status[channel], v >> 4 , 3);
892 samples[st] = adpcm_ima_expand_nibble(&c->status[channel], v & 0x0F, 3);
893 }
894 samples += avctx->channels;
895 }
896 }
897 bytestream2_seek(&gb, 0, SEEK_END);
898 break;
899 case AV_CODEC_ID_ADPCM_XA:
900 {
901 int16_t *out0 = samples_p[0];
902 int16_t *out1 = samples_p[1];
903 int samples_per_block = 28 * (3 - avctx->channels) * 4;
904 int sample_offset = 0;
905 while (bytestream2_get_bytes_left(&gb) >= 128) {
906 if ((ret = xa_decode(avctx, out0, out1, buf + bytestream2_tell(&gb),
907 &c->status[0], &c->status[1],
908 avctx->channels, sample_offset)) < 0)
909 return ret;
910 bytestream2_skipu(&gb, 128);
911 sample_offset += samples_per_block;
912 }
913 break;
914 }
915 case AV_CODEC_ID_ADPCM_IMA_EA_EACS:
916 for (i=0; i<=st; i++) {
917 c->status[i].step_index = bytestream2_get_le32u(&gb);
918 if (c->status[i].step_index > 88u) {
919 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
920 i, c->status[i].step_index);
921 return AVERROR_INVALIDDATA;
922 }
923 }
924 for (i=0; i<=st; i++)
925 c->status[i].predictor = bytestream2_get_le32u(&gb);
926
927 for (n = nb_samples >> (1 - st); n > 0; n--) {
928 int byte = bytestream2_get_byteu(&gb);
929 *samples++ = adpcm_ima_expand_nibble(&c->status[0], byte >> 4, 3);
930 *samples++ = adpcm_ima_expand_nibble(&c->status[st], byte & 0x0F, 3);
931 }
932 break;
933 case AV_CODEC_ID_ADPCM_IMA_EA_SEAD:
934 for (n = nb_samples >> (1 - st); n > 0; n--) {
935 int byte = bytestream2_get_byteu(&gb);
936 *samples++ = adpcm_ima_expand_nibble(&c->status[0], byte >> 4, 6);
937 *samples++ = adpcm_ima_expand_nibble(&c->status[st], byte & 0x0F, 6);
938 }
939 break;
940 case AV_CODEC_ID_ADPCM_EA:
941 {
942 int previous_left_sample, previous_right_sample;
943 int current_left_sample, current_right_sample;
944 int next_left_sample, next_right_sample;
945 int coeff1l, coeff2l, coeff1r, coeff2r;
946 int shift_left, shift_right;
947
948 /* Each EA ADPCM frame has a 12-byte header followed by 30-byte pieces,
949 each coding 28 stereo samples. */
950
951 current_left_sample = sign_extend(bytestream2_get_le16u(&gb), 16);
952 previous_left_sample = sign_extend(bytestream2_get_le16u(&gb), 16);
953 current_right_sample = sign_extend(bytestream2_get_le16u(&gb), 16);
954 previous_right_sample = sign_extend(bytestream2_get_le16u(&gb), 16);
955
956 for (count1 = 0; count1 < nb_samples / 28; count1++) {
957 int byte = bytestream2_get_byteu(&gb);
958 coeff1l = ea_adpcm_table[ byte >> 4 ];
959 coeff2l = ea_adpcm_table[(byte >> 4 ) + 4];
960 coeff1r = ea_adpcm_table[ byte & 0x0F];
961 coeff2r = ea_adpcm_table[(byte & 0x0F) + 4];
962
963 byte = bytestream2_get_byteu(&gb);
964 shift_left = 20 - (byte >> 4);
965 shift_right = 20 - (byte & 0x0F);
966
967 for (count2 = 0; count2 < 28; count2++) {
968 byte = bytestream2_get_byteu(&gb);
969 next_left_sample = sign_extend(byte >> 4, 4) << shift_left;
970 next_right_sample = sign_extend(byte, 4) << shift_right;
971
972 next_left_sample = (next_left_sample +
973 (current_left_sample * coeff1l) +
974 (previous_left_sample * coeff2l) + 0x80) >> 8;
975 next_right_sample = (next_right_sample +
976 (current_right_sample * coeff1r) +
977 (previous_right_sample * coeff2r) + 0x80) >> 8;
978
979 previous_left_sample = current_left_sample;
980 current_left_sample = av_clip_int16(next_left_sample);
981 previous_right_sample = current_right_sample;
982 current_right_sample = av_clip_int16(next_right_sample);
983 *samples++ = current_left_sample;
984 *samples++ = current_right_sample;
985 }
986 }
987
988 bytestream2_skip(&gb, 2); // Skip terminating 0x0000
989
990 break;
991 }
992 case AV_CODEC_ID_ADPCM_EA_MAXIS_XA:
993 {
994 int coeff[2][2], shift[2];
995
996 for(channel = 0; channel < avctx->channels; channel++) {
997 int byte = bytestream2_get_byteu(&gb);
998 for (i=0; i<2; i++)
999 coeff[channel][i] = ea_adpcm_table[(byte >> 4) + 4*i];
1000 shift[channel] = 20 - (byte & 0x0F);
1001 }
1002 for (count1 = 0; count1 < nb_samples / 2; count1++) {
1003 int byte[2];
1004
1005 byte[0] = bytestream2_get_byteu(&gb);
1006 if (st) byte[1] = bytestream2_get_byteu(&gb);
1007 for(i = 4; i >= 0; i-=4) { /* Pairwise samples LL RR (st) or LL LL (mono) */
1008 for(channel = 0; channel < avctx->channels; channel++) {
1009 int sample = sign_extend(byte[channel] >> i, 4) << shift[channel];
1010 sample = (sample +
1011 c->status[channel].sample1 * coeff[channel][0] +
1012 c->status[channel].sample2 * coeff[channel][1] + 0x80) >> 8;
1013 c->status[channel].sample2 = c->status[channel].sample1;
1014 c->status[channel].sample1 = av_clip_int16(sample);
1015 *samples++ = c->status[channel].sample1;
1016 }
1017 }
1018 }
1019 bytestream2_seek(&gb, 0, SEEK_END);
1020 break;
1021 }
1022 case AV_CODEC_ID_ADPCM_EA_R1:
1023 case AV_CODEC_ID_ADPCM_EA_R2:
1024 case AV_CODEC_ID_ADPCM_EA_R3: {
1025 /* channel numbering
1026 2chan: 0=fl, 1=fr
1027 4chan: 0=fl, 1=rl, 2=fr, 3=rr
1028 6chan: 0=fl, 1=c, 2=fr, 3=rl, 4=rr, 5=sub */
1029 const int big_endian = avctx->codec->id == AV_CODEC_ID_ADPCM_EA_R3;
1030 int previous_sample, current_sample, next_sample;
1031 int coeff1, coeff2;
1032 int shift;
1033 unsigned int channel;
1034 uint16_t *samplesC;
1035 int count = 0;
1036 int offsets[6];
1037
1038 for (channel=0; channel<avctx->channels; channel++)
1039 offsets[channel] = (big_endian ? bytestream2_get_be32(&gb) :
1040 bytestream2_get_le32(&gb)) +
1041 (avctx->channels + 1) * 4;
1042
1043 for (channel=0; channel<avctx->channels; channel++) {
1044 bytestream2_seek(&gb, offsets[channel], SEEK_SET);
1045 samplesC = samples_p[channel];
1046
1047 if (avctx->codec->id == AV_CODEC_ID_ADPCM_EA_R1) {
1048 current_sample = sign_extend(bytestream2_get_le16(&gb), 16);
1049 previous_sample = sign_extend(bytestream2_get_le16(&gb), 16);
1050 } else {
1051 current_sample = c->status[channel].predictor;
1052 previous_sample = c->status[channel].prev_sample;
1053 }
1054
1055 for (count1 = 0; count1 < nb_samples / 28; count1++) {
1056 int byte = bytestream2_get_byte(&gb);
1057 if (byte == 0xEE) { /* only seen in R2 and R3 */
1058 current_sample = sign_extend(bytestream2_get_be16(&gb), 16);
1059 previous_sample = sign_extend(bytestream2_get_be16(&gb), 16);
1060
1061 for (count2=0; count2<28; count2++)
1062 *samplesC++ = sign_extend(bytestream2_get_be16(&gb), 16);
1063 } else {
1064 coeff1 = ea_adpcm_table[ byte >> 4 ];
1065 coeff2 = ea_adpcm_table[(byte >> 4) + 4];
1066 shift = 20 - (byte & 0x0F);
1067
1068 for (count2=0; count2<28; count2++) {
1069 if (count2 & 1)
1070 next_sample = sign_extend(byte, 4) << shift;
1071 else {
1072 byte = bytestream2_get_byte(&gb);
1073 next_sample = sign_extend(byte >> 4, 4) << shift;
1074 }
1075
1076 next_sample += (current_sample * coeff1) +
1077 (previous_sample * coeff2);
1078 next_sample = av_clip_int16(next_sample >> 8);
1079
1080 previous_sample = current_sample;
1081 current_sample = next_sample;
1082 *samplesC++ = current_sample;
1083 }
1084 }
1085 }
1086 if (!count) {
1087 count = count1;
1088 } else if (count != count1) {
1089 av_log(avctx, AV_LOG_WARNING, "per-channel sample count mismatch\n");
1090 count = FFMAX(count, count1);
1091 }
1092
1093 if (avctx->codec->id != AV_CODEC_ID_ADPCM_EA_R1) {
1094 c->status[channel].predictor = current_sample;
1095 c->status[channel].prev_sample = previous_sample;
1096 }
1097 }
1098
1099 c->frame.nb_samples = count * 28;
1100 bytestream2_seek(&gb, 0, SEEK_END);
1101 break;
1102 }
1103 case AV_CODEC_ID_ADPCM_EA_XAS:
1104 for (channel=0; channel<avctx->channels; channel++) {
1105 int coeff[2][4], shift[4];
1106 int16_t *s = samples_p[channel];
1107 for (n = 0; n < 4; n++, s += 32) {
1108 int val = sign_extend(bytestream2_get_le16u(&gb), 16);
1109 for (i=0; i<2; i++)
1110 coeff[i][n] = ea_adpcm_table[(val&0x0F)+4*i];
1111 s[0] = val & ~0x0F;
1112
1113 val = sign_extend(bytestream2_get_le16u(&gb), 16);
1114 shift[n] = 20 - (val & 0x0F);
1115 s[1] = val & ~0x0F;
1116 }
1117
1118 for (m=2; m<32; m+=2) {
1119 s = &samples_p[channel][m];
1120 for (n = 0; n < 4; n++, s += 32) {
1121 int level, pred;
1122 int byte = bytestream2_get_byteu(&gb);
1123
1124 level = sign_extend(byte >> 4, 4) << shift[n];
1125 pred = s[-1] * coeff[0][n] + s[-2] * coeff[1][n];
1126 s[0] = av_clip_int16((level + pred + 0x80) >> 8);
1127
1128 level = sign_extend(byte, 4) << shift[n];
1129 pred = s[0] * coeff[0][n] + s[-1] * coeff[1][n];
1130 s[1] = av_clip_int16((level + pred + 0x80) >> 8);
1131 }
1132 }
1133 }
1134 break;
1135 case AV_CODEC_ID_ADPCM_IMA_AMV:
1136 case AV_CODEC_ID_ADPCM_IMA_SMJPEG:
1137 if (avctx->codec->id == AV_CODEC_ID_ADPCM_IMA_AMV) {
1138 c->status[0].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
1139 c->status[0].step_index = bytestream2_get_le16u(&gb);
1140 bytestream2_skipu(&gb, 4);
1141 } else {
1142 c->status[0].predictor = sign_extend(bytestream2_get_be16u(&gb), 16);
1143 c->status[0].step_index = bytestream2_get_byteu(&gb);
1144 bytestream2_skipu(&gb, 1);
1145 }
1146 if (c->status[0].step_index > 88u) {
1147 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n",
1148 c->status[0].step_index);
1149 return AVERROR_INVALIDDATA;
1150 }
1151
1152 for (n = nb_samples >> (1 - st); n > 0; n--) {
1153 int hi, lo, v = bytestream2_get_byteu(&gb);
1154
1155 if (avctx->codec->id == AV_CODEC_ID_ADPCM_IMA_AMV) {
1156 hi = v & 0x0F;
1157 lo = v >> 4;
1158 } else {
1159 lo = v & 0x0F;
1160 hi = v >> 4;
1161 }
1162
1163 *samples++ = adpcm_ima_expand_nibble(&c->status[0], lo, 3);
1164 *samples++ = adpcm_ima_expand_nibble(&c->status[0], hi, 3);
1165 }
1166 break;
1167 case AV_CODEC_ID_ADPCM_CT:
1168 for (n = nb_samples >> (1 - st); n > 0; n--) {
1169 int v = bytestream2_get_byteu(&gb);
1170 *samples++ = adpcm_ct_expand_nibble(&c->status[0 ], v >> 4 );
1171 *samples++ = adpcm_ct_expand_nibble(&c->status[st], v & 0x0F);
1172 }
1173 break;
1174 case AV_CODEC_ID_ADPCM_SBPRO_4:
1175 case AV_CODEC_ID_ADPCM_SBPRO_3:
1176 case AV_CODEC_ID_ADPCM_SBPRO_2:
1177 if (!c->status[0].step_index) {
1178 /* the first byte is a raw sample */
1179 *samples++ = 128 * (bytestream2_get_byteu(&gb) - 0x80);
1180 if (st)
1181 *samples++ = 128 * (bytestream2_get_byteu(&gb) - 0x80);
1182 c->status[0].step_index = 1;
1183 nb_samples--;
1184 }
1185 if (avctx->codec->id == AV_CODEC_ID_ADPCM_SBPRO_4) {
1186 for (n = nb_samples >> (1 - st); n > 0; n--) {
1187 int byte = bytestream2_get_byteu(&gb);
1188 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1189 byte >> 4, 4, 0);
1190 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1191 byte & 0x0F, 4, 0);
1192 }
1193 } else if (avctx->codec->id == AV_CODEC_ID_ADPCM_SBPRO_3) {
1194 for (n = nb_samples / 3; n > 0; n--) {
1195 int byte = bytestream2_get_byteu(&gb);
1196 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1197 byte >> 5 , 3, 0);
1198 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1199 (byte >> 2) & 0x07, 3, 0);
1200 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1201 byte & 0x03, 2, 0);
1202 }
1203 } else {
1204 for (n = nb_samples >> (2 - st); n > 0; n--) {
1205 int byte = bytestream2_get_byteu(&gb);
1206 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1207 byte >> 6 , 2, 2);
1208 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1209 (byte >> 4) & 0x03, 2, 2);
1210 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1211 (byte >> 2) & 0x03, 2, 2);
1212 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1213 byte & 0x03, 2, 2);
1214 }
1215 }
1216 break;
1217 case AV_CODEC_ID_ADPCM_SWF:
1218 adpcm_swf_decode(avctx, buf, buf_size, samples);
1219 bytestream2_seek(&gb, 0, SEEK_END);
1220 break;
1221 case AV_CODEC_ID_ADPCM_YAMAHA:
1222 for (n = nb_samples >> (1 - st); n > 0; n--) {
1223 int v = bytestream2_get_byteu(&gb);
1224 *samples++ = adpcm_yamaha_expand_nibble(&c->status[0 ], v & 0x0F);
1225 *samples++ = adpcm_yamaha_expand_nibble(&c->status[st], v >> 4 );
1226 }
1227 break;
1228 case AV_CODEC_ID_ADPCM_THP:
1229 {
1230 int table[2][16];
1231 int prev[2][2];
1232 int ch;
1233
1234 for (i = 0; i < 2; i++)
1235 for (n = 0; n < 16; n++)
1236 table[i][n] = sign_extend(bytestream2_get_be16u(&gb), 16);
1237
1238 /* Initialize the previous sample. */
1239 for (i = 0; i < 2; i++)
1240 for (n = 0; n < 2; n++)
1241 prev[i][n] = sign_extend(bytestream2_get_be16u(&gb), 16);
1242
1243 for (ch = 0; ch <= st; ch++) {
1244 samples = samples_p[ch];
1245
1246 /* Read in every sample for this channel. */
1247 for (i = 0; i < nb_samples / 14; i++) {
1248 int byte = bytestream2_get_byteu(&gb);
1249 int index = (byte >> 4) & 7;
1250 unsigned int exp = byte & 0x0F;
1251 int factor1 = table[ch][index * 2];
1252 int factor2 = table[ch][index * 2 + 1];
1253
1254 /* Decode 14 samples. */
1255 for (n = 0; n < 14; n++) {
1256 int32_t sampledat;
1257
1258 if (n & 1) {
1259 sampledat = sign_extend(byte, 4);
1260 } else {
1261 byte = bytestream2_get_byteu(&gb);
1262 sampledat = sign_extend(byte >> 4, 4);
1263 }
1264
1265 sampledat = ((prev[ch][0]*factor1
1266 + prev[ch][1]*factor2) >> 11) + (sampledat << exp);
1267 *samples = av_clip_int16(sampledat);
1268 prev[ch][1] = prev[ch][0];
1269 prev[ch][0] = *samples++;
1270 }
1271 }
1272 }
1273 break;
1274 }
1275
1276 default:
1277 return -1;
1278 }
1279
1280 *got_frame_ptr = 1;
1281 *(AVFrame *)data = c->frame;
1282
1283 return bytestream2_tell(&gb);
1284 }
1285
1286
1287 static const enum AVSampleFormat sample_fmts_s16[] = { AV_SAMPLE_FMT_S16,
1288 AV_SAMPLE_FMT_NONE };
1289 static const enum AVSampleFormat sample_fmts_s16p[] = { AV_SAMPLE_FMT_S16,
1290 AV_SAMPLE_FMT_NONE };
1291 static const enum AVSampleFormat sample_fmts_both[] = { AV_SAMPLE_FMT_S16,
1292 AV_SAMPLE_FMT_S16P,
1293 AV_SAMPLE_FMT_NONE };
1294
1295 #define ADPCM_DECODER(id_, sample_fmts_, name_, long_name_) \
1296 AVCodec ff_ ## name_ ## _decoder = { \
1297 .name = #name_, \
1298 .type = AVMEDIA_TYPE_AUDIO, \
1299 .id = id_, \
1300 .priv_data_size = sizeof(ADPCMDecodeContext), \
1301 .init = adpcm_decode_init, \
1302 .decode = adpcm_decode_frame, \
1303 .capabilities = CODEC_CAP_DR1, \
1304 .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
1305 .sample_fmts = sample_fmts_, \
1306 }
1307
1308 /* Note: Do not forget to add new entries to the Makefile as well. */
1309 ADPCM_DECODER(AV_CODEC_ID_ADPCM_4XM, sample_fmts_s16p, adpcm_4xm, "ADPCM 4X Movie");
1310 ADPCM_DECODER(AV_CODEC_ID_ADPCM_CT, sample_fmts_s16, adpcm_ct, "ADPCM Creative Technology");
1311 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA, sample_fmts_s16, adpcm_ea, "ADPCM Electronic Arts");
1312 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_MAXIS_XA, sample_fmts_s16, adpcm_ea_maxis_xa, "ADPCM Electronic Arts Maxis CDROM XA");
1313 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_R1, sample_fmts_s16p, adpcm_ea_r1, "ADPCM Electronic Arts R1");
1314 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_R2, sample_fmts_s16p, adpcm_ea_r2, "ADPCM Electronic Arts R2");
1315 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_R3, sample_fmts_s16p, adpcm_ea_r3, "ADPCM Electronic Arts R3");
1316 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_XAS, sample_fmts_s16p, adpcm_ea_xas, "ADPCM Electronic Arts XAS");
1317 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_AMV, sample_fmts_s16, adpcm_ima_amv, "ADPCM IMA AMV");
1318 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_APC, sample_fmts_s16, adpcm_ima_apc, "ADPCM IMA CRYO APC");
1319 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_DK3, sample_fmts_s16, adpcm_ima_dk3, "ADPCM IMA Duck DK3");
1320 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_DK4, sample_fmts_s16, adpcm_ima_dk4, "ADPCM IMA Duck DK4");
1321 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_EA_EACS, sample_fmts_s16, adpcm_ima_ea_eacs, "ADPCM IMA Electronic Arts EACS");
1322 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_EA_SEAD, sample_fmts_s16, adpcm_ima_ea_sead, "ADPCM IMA Electronic Arts SEAD");
1323 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_ISS, sample_fmts_s16, adpcm_ima_iss, "ADPCM IMA Funcom ISS");
1324 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_QT, sample_fmts_s16p, adpcm_ima_qt, "ADPCM IMA QuickTime");
1325 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_SMJPEG, sample_fmts_s16, adpcm_ima_smjpeg, "ADPCM IMA Loki SDL MJPEG");
1326 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_WAV, sample_fmts_s16p, adpcm_ima_wav, "ADPCM IMA WAV");
1327 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_WS, sample_fmts_both, adpcm_ima_ws, "ADPCM IMA Westwood");
1328 ADPCM_DECODER(AV_CODEC_ID_ADPCM_MS, sample_fmts_s16, adpcm_ms, "ADPCM Microsoft");
1329 ADPCM_DECODER(AV_CODEC_ID_ADPCM_SBPRO_2, sample_fmts_s16, adpcm_sbpro_2, "ADPCM Sound Blaster Pro 2-bit");
1330 ADPCM_DECODER(AV_CODEC_ID_ADPCM_SBPRO_3, sample_fmts_s16, adpcm_sbpro_3, "ADPCM Sound Blaster Pro 2.6-bit");
1331 ADPCM_DECODER(AV_CODEC_ID_ADPCM_SBPRO_4, sample_fmts_s16, adpcm_sbpro_4, "ADPCM Sound Blaster Pro 4-bit");
1332 ADPCM_DECODER(AV_CODEC_ID_ADPCM_SWF, sample_fmts_s16, adpcm_swf, "ADPCM Shockwave Flash");
1333 ADPCM_DECODER(AV_CODEC_ID_ADPCM_THP, sample_fmts_s16p, adpcm_thp, "ADPCM Nintendo Gamecube THP");
1334 ADPCM_DECODER(AV_CODEC_ID_ADPCM_XA, sample_fmts_s16p, adpcm_xa, "ADPCM CDROM XA");
1335 ADPCM_DECODER(AV_CODEC_ID_ADPCM_YAMAHA, sample_fmts_s16, adpcm_yamaha, "ADPCM Yamaha");