3 * Copyright (c) 2001-2003 The ffmpeg Project
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation; either
8 * version 2 of the License, or (at your option) any later version.
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Lesser General Public License for more details.
15 * You should have received a copy of the GNU Lesser General Public
16 * License along with this library; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 * First version by Francois Revol (revol@free.fr)
25 * Fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
26 * by Mike Melanson (melanson@pcisys.net)
27 * CD-ROM XA ADPCM codec by BERO
29 * Features and limitations:
31 * Reference documents:
32 * http://www.pcisys.net/~melanson/codecs/simpleaudio.html
33 * http://www.geocities.com/SiliconValley/8682/aud3.txt
34 * http://openquicktime.sourceforge.net/plugins.htm
35 * XAnim sources (xa_codec.c) http://www.rasnaimaging.com/people/lapus/download.html
36 * http://www.cs.ucla.edu/~leec/mediabench/applications.html
37 * SoX source code http://home.sprynet.com/~cbagwell/sox.html
40 * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html
41 * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html
42 * readstr http://www.geocities.co.jp/Playtown/2004/
47 #define CLAMP_TO_SHORT(value) \
50 else if (value < -32768) \
53 /* step_table[] and index_table[] are from the ADPCM reference source */
54 /* This is the index table: */
55 static const int index_table
[16] = {
56 -1, -1, -1, -1, 2, 4, 6, 8,
57 -1, -1, -1, -1, 2, 4, 6, 8,
61 * This is the step table. Note that many programs use slight deviations from
62 * this table, but such deviations are negligible:
64 static const int step_table
[89] = {
65 7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
66 19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
67 50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
68 130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
69 337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
70 876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
71 2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
72 5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
73 15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767
76 /* These are for MS-ADPCM */
77 /* AdaptationTable[], AdaptCoeff1[], and AdaptCoeff2[] are from libsndfile */
78 static const int AdaptationTable
[] = {
79 230, 230, 230, 230, 307, 409, 512, 614,
80 768, 614, 512, 409, 307, 230, 230, 230
83 static const int AdaptCoeff1
[] = {
84 256, 512, 0, 192, 240, 460, 392
87 static const int AdaptCoeff2
[] = {
88 0, -256, 0, 64, 0, -208, -232
91 /* These are for CD-ROM XA ADPCM */
92 static const int xa_adpcm_table
[5][2] = {
102 typedef struct ADPCMChannelStatus
{
104 short int step_index
;
115 } ADPCMChannelStatus
;
117 typedef struct ADPCMContext
{
118 int channel
; /* for stereo MOVs, decode left, then decode right, then tell it's decoded */
119 ADPCMChannelStatus status
[2];
120 short sample_buffer
[32]; /* hold left samples while waiting for right samples */
123 /* XXX: implement encoding */
125 #ifdef CONFIG_ENCODERS
126 static int adpcm_encode_init(AVCodecContext
*avctx
)
128 if (avctx
->channels
> 2)
129 return -1; /* only stereo or mono =) */
130 switch(avctx
->codec
->id
) {
131 case CODEC_ID_ADPCM_IMA_QT
:
132 av_log(avctx
, AV_LOG_ERROR
, "ADPCM: codec adpcm_ima_qt unsupported for encoding !\n");
133 avctx
->frame_size
= 64; /* XXX: can multiple of avctx->channels * 64 (left and right blocks are interleaved) */
136 case CODEC_ID_ADPCM_IMA_WAV
:
137 avctx
->frame_size
= (BLKSIZE
- 4 * avctx
->channels
) * 8 / (4 * avctx
->channels
) + 1; /* each 16 bits sample gives one nibble */
138 /* and we have 4 bytes per channel overhead */
139 avctx
->block_align
= BLKSIZE
;
140 /* seems frame_size isn't taken into account... have to buffer the samples :-( */
142 case CODEC_ID_ADPCM_MS
:
143 av_log(avctx
, AV_LOG_ERROR
, "ADPCM: codec adpcm_ms unsupported for encoding !\n");
151 avctx
->coded_frame
= avcodec_alloc_frame();
152 avctx
->coded_frame
->key_frame
= 1;
157 static int adpcm_encode_close(AVCodecContext
*avctx
)
159 av_freep(&avctx
->coded_frame
);
165 static inline unsigned char adpcm_ima_compress_sample(ADPCMChannelStatus
*c
, short sample
)
168 unsigned char nibble
;
170 int sign
= 0; /* sign bit of the nibble (MSB) */
171 int delta
, predicted_delta
;
173 delta
= sample
- c
->prev_sample
;
180 step_index
= c
->step_index
;
182 /* nibble = 4 * delta / step_table[step_index]; */
183 nibble
= (delta
<< 2) / step_table
[step_index
];
188 step_index
+= index_table
[nibble
];
194 /* what the decoder will find */
195 predicted_delta
= ((step_table
[step_index
] * nibble
) / 4) + (step_table
[step_index
] / 8);
198 c
->prev_sample
-= predicted_delta
;
200 c
->prev_sample
+= predicted_delta
;
202 CLAMP_TO_SHORT(c
->prev_sample
);
205 nibble
+= sign
<< 3; /* sign * 8 */
208 c
->step_index
= step_index
;
213 static int adpcm_encode_frame(AVCodecContext
*avctx
,
214 unsigned char *frame
, int buf_size
, void *data
)
219 ADPCMContext
*c
= avctx
->priv_data
;
222 samples
= (short *)data
;
223 /* n = (BLKSIZE - 4 * avctx->channels) / (2 * 8 * avctx->channels); */
225 switch(avctx
->codec
->id
) {
226 case CODEC_ID_ADPCM_IMA_QT
: /* XXX: can't test until we get .mov writer */
228 case CODEC_ID_ADPCM_IMA_WAV
:
229 n
= avctx
->frame_size
/ 8;
230 c
->status
[0].prev_sample
= (signed short)samples
[0]; /* XXX */
231 /* c->status[0].step_index = 0; *//* XXX: not sure how to init the state machine */
232 *dst
++ = (c
->status
[0].prev_sample
) & 0xFF; /* little endian */
233 *dst
++ = (c
->status
[0].prev_sample
>> 8) & 0xFF;
234 *dst
++ = (unsigned char)c
->status
[0].step_index
;
235 *dst
++ = 0; /* unknown */
237 if (avctx
->channels
== 2) {
238 c
->status
[1].prev_sample
= (signed short)samples
[1];
239 /* c->status[1].step_index = 0; */
240 *dst
++ = (c
->status
[1].prev_sample
) & 0xFF;
241 *dst
++ = (c
->status
[1].prev_sample
>> 8) & 0xFF;
242 *dst
++ = (unsigned char)c
->status
[1].step_index
;
247 /* stereo: 4 bytes (8 samples) for left, 4 bytes for right, 4 bytes left, ... */
249 *dst
= adpcm_ima_compress_sample(&c
->status
[0], samples
[0]) & 0x0F;
250 *dst
|= (adpcm_ima_compress_sample(&c
->status
[0], samples
[avctx
->channels
]) << 4) & 0xF0;
252 *dst
= adpcm_ima_compress_sample(&c
->status
[0], samples
[avctx
->channels
* 2]) & 0x0F;
253 *dst
|= (adpcm_ima_compress_sample(&c
->status
[0], samples
[avctx
->channels
* 3]) << 4) & 0xF0;
255 *dst
= adpcm_ima_compress_sample(&c
->status
[0], samples
[avctx
->channels
* 4]) & 0x0F;
256 *dst
|= (adpcm_ima_compress_sample(&c
->status
[0], samples
[avctx
->channels
* 5]) << 4) & 0xF0;
258 *dst
= adpcm_ima_compress_sample(&c
->status
[0], samples
[avctx
->channels
* 6]) & 0x0F;
259 *dst
|= (adpcm_ima_compress_sample(&c
->status
[0], samples
[avctx
->channels
* 7]) << 4) & 0xF0;
262 if (avctx
->channels
== 2) {
263 *dst
= adpcm_ima_compress_sample(&c
->status
[1], samples
[1]);
264 *dst
|= adpcm_ima_compress_sample(&c
->status
[1], samples
[3]) << 4;
266 *dst
= adpcm_ima_compress_sample(&c
->status
[1], samples
[5]);
267 *dst
|= adpcm_ima_compress_sample(&c
->status
[1], samples
[7]) << 4;
269 *dst
= adpcm_ima_compress_sample(&c
->status
[1], samples
[9]);
270 *dst
|= adpcm_ima_compress_sample(&c
->status
[1], samples
[11]) << 4;
272 *dst
= adpcm_ima_compress_sample(&c
->status
[1], samples
[13]);
273 *dst
|= adpcm_ima_compress_sample(&c
->status
[1], samples
[15]) << 4;
276 samples
+= 8 * avctx
->channels
;
284 #endif //CONFIG_ENCODERS
286 static int adpcm_decode_init(AVCodecContext
* avctx
)
288 ADPCMContext
*c
= avctx
->priv_data
;
291 c
->status
[0].predictor
= c
->status
[1].predictor
= 0;
292 c
->status
[0].step_index
= c
->status
[1].step_index
= 0;
293 c
->status
[0].step
= c
->status
[1].step
= 0;
295 switch(avctx
->codec
->id
) {
302 static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus
*c
, char nibble
, int shift
)
306 int sign
, delta
, diff
, step
;
308 step
= step_table
[c
->step_index
];
309 step_index
= c
->step_index
+ index_table
[(unsigned)nibble
];
310 if (step_index
< 0) step_index
= 0;
311 else if (step_index
> 88) step_index
= 88;
315 /* perform direct multiplication instead of series of jumps proposed by
316 * the reference ADPCM implementation since modern CPUs can do the mults
318 diff
= ((2 * delta
+ 1) * step
) >> shift
;
319 predictor
= c
->predictor
;
320 if (sign
) predictor
-= diff
;
321 else predictor
+= diff
;
323 CLAMP_TO_SHORT(predictor
);
324 c
->predictor
= predictor
;
325 c
->step_index
= step_index
;
327 return (short)predictor
;
330 static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus
*c
, char nibble
)
334 predictor
= (((c
->sample1
) * (c
->coeff1
)) + ((c
->sample2
) * (c
->coeff2
))) / 256;
335 predictor
+= (signed)((nibble
& 0x08)?
(nibble
- 0x10):(nibble
)) * c
->idelta
;
336 CLAMP_TO_SHORT(predictor
);
338 c
->sample2
= c
->sample1
;
339 c
->sample1
= predictor
;
340 c
->idelta
= (AdaptationTable
[(int)nibble
] * c
->idelta
) / 256;
341 if (c
->idelta
< 16) c
->idelta
= 16;
343 return (short)predictor
;
346 static void xa_decode(short *out
, const unsigned char *in
,
347 ADPCMChannelStatus
*left
, ADPCMChannelStatus
*right
, int inc
)
350 int shift
,filter
,f0
,f1
;
356 shift
= 12 - (in
[4+i
*2] & 15);
357 filter
= in
[4+i
*2] >> 4;
358 f0
= xa_adpcm_table
[filter
][0];
359 f1
= xa_adpcm_table
[filter
][1];
367 t
= (signed char)(d
<<4)>>4;
368 s
= ( t
<<shift
) + ((s_1
*f0
+ s_2
*f1
+32)>>6);
376 if (inc
==2) { /* stereo */
379 s_1
= right
->sample1
;
380 s_2
= right
->sample2
;
381 out
= out
+ 1 - 28*2;
384 shift
= 12 - (in
[5+i
*2] & 15);
385 filter
= in
[5+i
*2] >> 4;
387 f0
= xa_adpcm_table
[filter
][0];
388 f1
= xa_adpcm_table
[filter
][1];
393 t
= (signed char)d
>> 4;
394 s
= ( t
<<shift
) + ((s_1
*f0
+ s_2
*f1
+32)>>6);
402 if (inc
==2) { /* stereo */
403 right
->sample1
= s_1
;
404 right
->sample2
= s_2
;
414 /* DK3 ADPCM support macro */
415 #define DK3_GET_NEXT_NIBBLE() \
416 if (decode_top_nibble_next) \
418 nibble = (last_byte >> 4) & 0x0F; \
419 decode_top_nibble_next = 0; \
423 last_byte = *src++; \
424 if (src >= buf + buf_size) break; \
425 nibble = last_byte & 0x0F; \
426 decode_top_nibble_next = 1; \
429 static int adpcm_decode_frame(AVCodecContext
*avctx
,
430 void *data
, int *data_size
,
431 uint8_t *buf
, int buf_size
)
433 ADPCMContext
*c
= avctx
->priv_data
;
434 ADPCMChannelStatus
*cs
;
435 int n
, m
, channel
, i
;
436 int block_predictor
[2];
441 /* DK3 ADPCM accounting variables */
442 unsigned char last_byte
= 0;
443 unsigned char nibble
;
444 int decode_top_nibble_next
= 0;
453 st
= avctx
->channels
== 2;
455 switch(avctx
->codec
->id
) {
456 case CODEC_ID_ADPCM_IMA_QT
:
457 n
= (buf_size
- 2);/* >> 2*avctx->channels;*/
458 channel
= c
->channel
;
459 cs
= &(c
->status
[channel
]);
460 /* (pppppp) (piiiiiii) */
462 /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
463 cs
->predictor
= (*src
++) << 8;
464 cs
->predictor
|= (*src
& 0x80);
465 cs
->predictor
&= 0xFF80;
468 if(cs
->predictor
& 0x8000)
469 cs
->predictor
-= 0x10000;
471 CLAMP_TO_SHORT(cs
->predictor
);
473 cs
->step_index
= (*src
++) & 0x7F;
475 if (cs
->step_index
> 88) av_log(avctx
, AV_LOG_ERROR
, "ERROR: step_index = %i\n", cs
->step_index
);
476 if (cs
->step_index
> 88) cs
->step_index
= 88;
478 cs
->step
= step_table
[cs
->step_index
];
483 for(m
=32; n
>0 && m
>0; n
--, m
--) { /* in QuickTime, IMA is encoded by chuncks of 34 bytes (=64 samples) */
484 *samples
= adpcm_ima_expand_nibble(cs
, src
[0] & 0x0F, 3);
485 samples
+= avctx
->channels
;
486 *samples
= adpcm_ima_expand_nibble(cs
, (src
[0] >> 4) & 0x0F, 3);
487 samples
+= avctx
->channels
;
491 if(st
) { /* handle stereo interlacing */
492 c
->channel
= (channel
+ 1) % 2; /* we get one packet for left, then one for right data */
493 if(channel
== 1) { /* wait for the other packet before outputing anything */
499 case CODEC_ID_ADPCM_IMA_WAV
:
500 if (avctx
->block_align
!= 0 && buf_size
> avctx
->block_align
)
501 buf_size
= avctx
->block_align
;
503 for(i
=0; i
<avctx
->channels
; i
++){
504 cs
= &(c
->status
[i
]);
505 cs
->predictor
= *src
++;
506 cs
->predictor
|= (*src
++) << 8;
507 if(cs
->predictor
& 0x8000)
508 cs
->predictor
-= 0x10000;
509 CLAMP_TO_SHORT(cs
->predictor
);
511 // XXX: is this correct ??: *samples++ = cs->predictor;
513 cs
->step_index
= *src
++;
514 if (cs
->step_index
< 0) cs
->step_index
= 0;
515 if (cs
->step_index
> 88) cs
->step_index
= 88;
516 if (*src
++) av_log(avctx
, AV_LOG_ERROR
, "unused byte should be null !!\n"); /* unused */
519 for(m
=4; src
< (buf
+ buf_size
);) {
520 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0], src
[0] & 0x0F, 3);
522 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[1], src
[4] & 0x0F, 3);
523 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0], (src
[0] >> 4) & 0x0F, 3);
525 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[1], (src
[4] >> 4) & 0x0F, 3);
534 case CODEC_ID_ADPCM_4XM
:
535 cs
= &(c
->status
[0]);
536 c
->status
[0].predictor
= (int16_t)(src
[0] + (src
[1]<<8)); src
+=2;
538 c
->status
[1].predictor
= (int16_t)(src
[0] + (src
[1]<<8)); src
+=2;
540 c
->status
[0].step_index
= (int16_t)(src
[0] + (src
[1]<<8)); src
+=2;
542 c
->status
[1].step_index
= (int16_t)(src
[0] + (src
[1]<<8)); src
+=2;
544 if (cs
->step_index
< 0) cs
->step_index
= 0;
545 if (cs
->step_index
> 88) cs
->step_index
= 88;
547 m
= (buf_size
- (src
- buf
))>>st
;
549 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0], src
[i
] & 0x0F, 4);
551 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[1], src
[i
+m
] & 0x0F, 4);
552 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0], src
[i
] >> 4, 4);
554 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[1], src
[i
+m
] >> 4, 4);
560 case CODEC_ID_ADPCM_MS
:
561 if (avctx
->block_align
!= 0 && buf_size
> avctx
->block_align
)
562 buf_size
= avctx
->block_align
;
563 n
= buf_size
- 7 * avctx
->channels
;
566 block_predictor
[0] = (*src
++); /* should be bound */
567 block_predictor
[0] = (block_predictor
[0] < 0)?
(0):((block_predictor
[0] > 7)?
(7):(block_predictor
[0]));
568 block_predictor
[1] = 0;
570 block_predictor
[1] = (*src
++);
571 block_predictor
[1] = (block_predictor
[1] < 0)?
(0):((block_predictor
[1] > 7)?
(7):(block_predictor
[1]));
572 c
->status
[0].idelta
= ((*src
& 0xFF) | ((src
[1] << 8) & 0xFF00));
573 if (c
->status
[0].idelta
& 0x08000)
574 c
->status
[0].idelta
-= 0x10000;
577 c
->status
[1].idelta
= ((*src
& 0xFF) | ((src
[1] << 8) & 0xFF00));
578 if (st
&& c
->status
[1].idelta
& 0x08000)
579 c
->status
[1].idelta
|= 0xFFFF0000;
582 c
->status
[0].coeff1
= AdaptCoeff1
[block_predictor
[0]];
583 c
->status
[0].coeff2
= AdaptCoeff2
[block_predictor
[0]];
584 c
->status
[1].coeff1
= AdaptCoeff1
[block_predictor
[1]];
585 c
->status
[1].coeff2
= AdaptCoeff2
[block_predictor
[1]];
587 c
->status
[0].sample1
= ((*src
& 0xFF) | ((src
[1] << 8) & 0xFF00));
589 if (st
) c
->status
[1].sample1
= ((*src
& 0xFF) | ((src
[1] << 8) & 0xFF00));
591 c
->status
[0].sample2
= ((*src
& 0xFF) | ((src
[1] << 8) & 0xFF00));
593 if (st
) c
->status
[1].sample2
= ((*src
& 0xFF) | ((src
[1] << 8) & 0xFF00));
596 *samples
++ = c
->status
[0].sample1
;
597 if (st
) *samples
++ = c
->status
[1].sample1
;
598 *samples
++ = c
->status
[0].sample2
;
599 if (st
) *samples
++ = c
->status
[1].sample2
;
601 *samples
++ = adpcm_ms_expand_nibble(&c
->status
[0], (src
[0] >> 4) & 0x0F);
602 *samples
++ = adpcm_ms_expand_nibble(&c
->status
[st
], src
[0] & 0x0F);
606 case CODEC_ID_ADPCM_IMA_DK4
:
607 if (avctx
->block_align
!= 0 && buf_size
> avctx
->block_align
)
608 buf_size
= avctx
->block_align
;
610 c
->status
[0].predictor
= (src
[0] | (src
[1] << 8));
611 c
->status
[0].step_index
= src
[2];
613 if(c
->status
[0].predictor
& 0x8000)
614 c
->status
[0].predictor
-= 0x10000;
615 *samples
++ = c
->status
[0].predictor
;
617 c
->status
[1].predictor
= (src
[0] | (src
[1] << 8));
618 c
->status
[1].step_index
= src
[2];
620 if(c
->status
[1].predictor
& 0x8000)
621 c
->status
[1].predictor
-= 0x10000;
622 *samples
++ = c
->status
[1].predictor
;
624 while (src
< buf
+ buf_size
) {
626 /* take care of the top nibble (always left or mono channel) */
627 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0],
628 (src
[0] >> 4) & 0x0F, 3);
630 /* take care of the bottom nibble, which is right sample for
631 * stereo, or another mono sample */
633 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[1],
636 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0],
642 case CODEC_ID_ADPCM_IMA_DK3
:
643 if (avctx
->block_align
!= 0 && buf_size
> avctx
->block_align
)
644 buf_size
= avctx
->block_align
;
646 c
->status
[0].predictor
= (src
[10] | (src
[11] << 8));
647 c
->status
[1].predictor
= (src
[12] | (src
[13] << 8));
648 c
->status
[0].step_index
= src
[14];
649 c
->status
[1].step_index
= src
[15];
650 /* sign extend the predictors */
651 if(c
->status
[0].predictor
& 0x8000)
652 c
->status
[0].predictor
-= 0x10000;
653 if(c
->status
[1].predictor
& 0x8000)
654 c
->status
[1].predictor
-= 0x10000;
656 diff_channel
= c
->status
[1].predictor
;
658 /* the DK3_GET_NEXT_NIBBLE macro issues the break statement when
659 * the buffer is consumed */
662 /* for this algorithm, c->status[0] is the sum channel and
663 * c->status[1] is the diff channel */
665 /* process the first predictor of the sum channel */
666 DK3_GET_NEXT_NIBBLE();
667 adpcm_ima_expand_nibble(&c
->status
[0], nibble
, 3);
669 /* process the diff channel predictor */
670 DK3_GET_NEXT_NIBBLE();
671 adpcm_ima_expand_nibble(&c
->status
[1], nibble
, 3);
673 /* process the first pair of stereo PCM samples */
674 diff_channel
= (diff_channel
+ c
->status
[1].predictor
) / 2;
675 *samples
++ = c
->status
[0].predictor
+ c
->status
[1].predictor
;
676 *samples
++ = c
->status
[0].predictor
- c
->status
[1].predictor
;
678 /* process the second predictor of the sum channel */
679 DK3_GET_NEXT_NIBBLE();
680 adpcm_ima_expand_nibble(&c
->status
[0], nibble
, 3);
682 /* process the second pair of stereo PCM samples */
683 diff_channel
= (diff_channel
+ c
->status
[1].predictor
) / 2;
684 *samples
++ = c
->status
[0].predictor
+ c
->status
[1].predictor
;
685 *samples
++ = c
->status
[0].predictor
- c
->status
[1].predictor
;
688 case CODEC_ID_ADPCM_IMA_WS
:
689 /* no per-block initialization; just start decoding the data */
690 while (src
< buf
+ buf_size
) {
693 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0],
694 (src
[0] >> 4) & 0x0F, 3);
695 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[1],
698 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0],
699 (src
[0] >> 4) & 0x0F, 3);
700 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0],
707 case CODEC_ID_ADPCM_XA
:
708 c
->status
[0].sample1
= c
->status
[0].sample2
=
709 c
->status
[1].sample1
= c
->status
[1].sample2
= 0;
710 while (buf_size
>= 128) {
711 xa_decode(samples
, src
, &c
->status
[0], &c
->status
[1],
722 *data_size
= (uint8_t *)samples
- (uint8_t *)data
;
728 #ifdef CONFIG_ENCODERS
729 #define ADPCM_ENCODER(id,name) \
730 AVCodec name ## _encoder = { \
734 sizeof(ADPCMContext), \
736 adpcm_encode_frame, \
737 adpcm_encode_close, \
741 #define ADPCM_ENCODER(id,name)
744 #ifdef CONFIG_DECODERS
745 #define ADPCM_DECODER(id,name) \
746 AVCodec name ## _decoder = { \
750 sizeof(ADPCMContext), \
754 adpcm_decode_frame, \
757 #define ADPCM_DECODER(id,name)
760 #define ADPCM_CODEC(id, name) \
761 ADPCM_ENCODER(id,name) ADPCM_DECODER(id,name)
763 ADPCM_CODEC(CODEC_ID_ADPCM_IMA_QT
, adpcm_ima_qt
);
764 ADPCM_CODEC(CODEC_ID_ADPCM_IMA_WAV
, adpcm_ima_wav
);
765 ADPCM_CODEC(CODEC_ID_ADPCM_IMA_DK3
, adpcm_ima_dk3
);
766 ADPCM_CODEC(CODEC_ID_ADPCM_IMA_DK4
, adpcm_ima_dk4
);
767 ADPCM_CODEC(CODEC_ID_ADPCM_IMA_WS
, adpcm_ima_ws
);
768 ADPCM_CODEC(CODEC_ID_ADPCM_MS
, adpcm_ms
);
769 ADPCM_CODEC(CODEC_ID_ADPCM_4XM
, adpcm_4xm
);
770 ADPCM_CODEC(CODEC_ID_ADPCM_XA
, adpcm_xa
);
771 ADPCM_CODEC(CODEC_ID_ADPCM_ADX
, adpcm_adx
);