eb044ba4b9698e0d5838cf64ac0b257d4a159d98
[libav.git] / libavcodec / adpcm.c
1 /*
2 * ADPCM codecs
3 * Copyright (c) 2001-2003 The ffmpeg Project
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21 #include "avcodec.h"
22 #include "get_bits.h"
23 #include "put_bits.h"
24 #include "bytestream.h"
25
26 /**
27 * @file
28 * ADPCM codecs.
29 * First version by Francois Revol (revol@free.fr)
30 * Fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
31 * by Mike Melanson (melanson@pcisys.net)
32 * CD-ROM XA ADPCM codec by BERO
33 * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com)
34 * EA ADPCM R1/R2/R3 decoder by Peter Ross (pross@xvid.org)
35 * EA IMA EACS decoder by Peter Ross (pross@xvid.org)
36 * EA IMA SEAD decoder by Peter Ross (pross@xvid.org)
37 * EA ADPCM XAS decoder by Peter Ross (pross@xvid.org)
38 * MAXIS EA ADPCM decoder by Robert Marston (rmarston@gmail.com)
39 * THP ADPCM decoder by Marco Gerards (mgerards@xs4all.nl)
40 *
41 * Features and limitations:
42 *
43 * Reference documents:
44 * http://www.pcisys.net/~melanson/codecs/simpleaudio.html
45 * http://www.geocities.com/SiliconValley/8682/aud3.txt
46 * http://openquicktime.sourceforge.net/plugins.htm
47 * XAnim sources (xa_codec.c) http://www.rasnaimaging.com/people/lapus/download.html
48 * http://www.cs.ucla.edu/~leec/mediabench/applications.html
49 * SoX source code http://home.sprynet.com/~cbagwell/sox.html
50 *
51 * CD-ROM XA:
52 * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html
53 * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html
54 * readstr http://www.geocities.co.jp/Playtown/2004/
55 */
56
57 #define BLKSIZE 1024
58
59 /* step_table[] and index_table[] are from the ADPCM reference source */
60 /* This is the index table: */
61 static const int index_table[16] = {
62 -1, -1, -1, -1, 2, 4, 6, 8,
63 -1, -1, -1, -1, 2, 4, 6, 8,
64 };
65
66 /**
67 * This is the step table. Note that many programs use slight deviations from
68 * this table, but such deviations are negligible:
69 */
70 static const int step_table[89] = {
71 7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
72 19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
73 50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
74 130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
75 337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
76 876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
77 2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
78 5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
79 15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767
80 };
81
82 /* These are for MS-ADPCM */
83 /* AdaptationTable[], AdaptCoeff1[], and AdaptCoeff2[] are from libsndfile */
84 static const int AdaptationTable[] = {
85 230, 230, 230, 230, 307, 409, 512, 614,
86 768, 614, 512, 409, 307, 230, 230, 230
87 };
88
89 /** Divided by 4 to fit in 8-bit integers */
90 static const uint8_t AdaptCoeff1[] = {
91 64, 128, 0, 48, 60, 115, 98
92 };
93
94 /** Divided by 4 to fit in 8-bit integers */
95 static const int8_t AdaptCoeff2[] = {
96 0, -64, 0, 16, 0, -52, -58
97 };
98
99 /* These are for CD-ROM XA ADPCM */
100 static const int xa_adpcm_table[5][2] = {
101 { 0, 0 },
102 { 60, 0 },
103 { 115, -52 },
104 { 98, -55 },
105 { 122, -60 }
106 };
107
108 static const int ea_adpcm_table[] = {
109 0, 240, 460, 392, 0, 0, -208, -220, 0, 1,
110 3, 4, 7, 8, 10, 11, 0, -1, -3, -4
111 };
112
113 // padded to zero where table size is less then 16
114 static const int swf_index_tables[4][16] = {
115 /*2*/ { -1, 2 },
116 /*3*/ { -1, -1, 2, 4 },
117 /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 },
118 /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
119 };
120
121 static const int yamaha_indexscale[] = {
122 230, 230, 230, 230, 307, 409, 512, 614,
123 230, 230, 230, 230, 307, 409, 512, 614
124 };
125
126 static const int yamaha_difflookup[] = {
127 1, 3, 5, 7, 9, 11, 13, 15,
128 -1, -3, -5, -7, -9, -11, -13, -15
129 };
130
131 /* end of tables */
132
133 typedef struct ADPCMChannelStatus {
134 int predictor;
135 short int step_index;
136 int step;
137 /* for encoding */
138 int prev_sample;
139
140 /* MS version */
141 short sample1;
142 short sample2;
143 int coeff1;
144 int coeff2;
145 int idelta;
146 } ADPCMChannelStatus;
147
148 typedef struct TrellisPath {
149 int nibble;
150 int prev;
151 } TrellisPath;
152
153 typedef struct TrellisNode {
154 uint32_t ssd;
155 int path;
156 int sample1;
157 int sample2;
158 int step;
159 } TrellisNode;
160
161 typedef struct ADPCMContext {
162 ADPCMChannelStatus status[6];
163 TrellisPath *paths;
164 TrellisNode *node_buf;
165 TrellisNode **nodep_buf;
166 } ADPCMContext;
167
168 #define FREEZE_INTERVAL 128
169
170 /* XXX: implement encoding */
171
172 #if CONFIG_ENCODERS
173 static av_cold int adpcm_encode_init(AVCodecContext *avctx)
174 {
175 ADPCMContext *s = avctx->priv_data;
176 uint8_t *extradata;
177 int i;
178 if (avctx->channels > 2)
179 return -1; /* only stereo or mono =) */
180
181 if(avctx->trellis && (unsigned)avctx->trellis > 16U){
182 av_log(avctx, AV_LOG_ERROR, "invalid trellis size\n");
183 return -1;
184 }
185
186 if (avctx->trellis) {
187 int frontier = 1 << avctx->trellis;
188 int max_paths = frontier * FREEZE_INTERVAL;
189 FF_ALLOC_OR_GOTO(avctx, s->paths, max_paths * sizeof(*s->paths), error);
190 FF_ALLOC_OR_GOTO(avctx, s->node_buf, 2 * frontier * sizeof(*s->node_buf), error);
191 FF_ALLOC_OR_GOTO(avctx, s->nodep_buf, 2 * frontier * sizeof(*s->nodep_buf), error);
192 }
193
194 switch(avctx->codec->id) {
195 case CODEC_ID_ADPCM_IMA_WAV:
196 avctx->frame_size = (BLKSIZE - 4 * avctx->channels) * 8 / (4 * avctx->channels) + 1; /* each 16 bits sample gives one nibble */
197 /* and we have 4 bytes per channel overhead */
198 avctx->block_align = BLKSIZE;
199 /* seems frame_size isn't taken into account... have to buffer the samples :-( */
200 break;
201 case CODEC_ID_ADPCM_IMA_QT:
202 avctx->frame_size = 64;
203 avctx->block_align = 34 * avctx->channels;
204 break;
205 case CODEC_ID_ADPCM_MS:
206 avctx->frame_size = (BLKSIZE - 7 * avctx->channels) * 2 / avctx->channels + 2; /* each 16 bits sample gives one nibble */
207 /* and we have 7 bytes per channel overhead */
208 avctx->block_align = BLKSIZE;
209 avctx->extradata_size = 32;
210 extradata = avctx->extradata = av_malloc(avctx->extradata_size);
211 if (!extradata)
212 return AVERROR(ENOMEM);
213 bytestream_put_le16(&extradata, avctx->frame_size);
214 bytestream_put_le16(&extradata, 7); /* wNumCoef */
215 for (i = 0; i < 7; i++) {
216 bytestream_put_le16(&extradata, AdaptCoeff1[i] * 4);
217 bytestream_put_le16(&extradata, AdaptCoeff2[i] * 4);
218 }
219 break;
220 case CODEC_ID_ADPCM_YAMAHA:
221 avctx->frame_size = BLKSIZE * avctx->channels;
222 avctx->block_align = BLKSIZE;
223 break;
224 case CODEC_ID_ADPCM_SWF:
225 if (avctx->sample_rate != 11025 &&
226 avctx->sample_rate != 22050 &&
227 avctx->sample_rate != 44100) {
228 av_log(avctx, AV_LOG_ERROR, "Sample rate must be 11025, 22050 or 44100\n");
229 goto error;
230 }
231 avctx->frame_size = 512 * (avctx->sample_rate / 11025);
232 break;
233 default:
234 goto error;
235 }
236
237 avctx->coded_frame= avcodec_alloc_frame();
238 avctx->coded_frame->key_frame= 1;
239
240 return 0;
241 error:
242 av_freep(&s->paths);
243 av_freep(&s->node_buf);
244 av_freep(&s->nodep_buf);
245 return -1;
246 }
247
248 static av_cold int adpcm_encode_close(AVCodecContext *avctx)
249 {
250 ADPCMContext *s = avctx->priv_data;
251 av_freep(&avctx->coded_frame);
252 av_freep(&s->paths);
253 av_freep(&s->node_buf);
254 av_freep(&s->nodep_buf);
255
256 return 0;
257 }
258
259
260 static inline unsigned char adpcm_ima_compress_sample(ADPCMChannelStatus *c, short sample)
261 {
262 int delta = sample - c->prev_sample;
263 int nibble = FFMIN(7, abs(delta)*4/step_table[c->step_index]) + (delta<0)*8;
264 c->prev_sample += ((step_table[c->step_index] * yamaha_difflookup[nibble]) / 8);
265 c->prev_sample = av_clip_int16(c->prev_sample);
266 c->step_index = av_clip(c->step_index + index_table[nibble], 0, 88);
267 return nibble;
268 }
269
270 static inline unsigned char adpcm_ms_compress_sample(ADPCMChannelStatus *c, short sample)
271 {
272 int predictor, nibble, bias;
273
274 predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64;
275
276 nibble= sample - predictor;
277 if(nibble>=0) bias= c->idelta/2;
278 else bias=-c->idelta/2;
279
280 nibble= (nibble + bias) / c->idelta;
281 nibble= av_clip(nibble, -8, 7)&0x0F;
282
283 predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
284
285 c->sample2 = c->sample1;
286 c->sample1 = av_clip_int16(predictor);
287
288 c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
289 if (c->idelta < 16) c->idelta = 16;
290
291 return nibble;
292 }
293
294 static inline unsigned char adpcm_yamaha_compress_sample(ADPCMChannelStatus *c, short sample)
295 {
296 int nibble, delta;
297
298 if(!c->step) {
299 c->predictor = 0;
300 c->step = 127;
301 }
302
303 delta = sample - c->predictor;
304
305 nibble = FFMIN(7, abs(delta)*4/c->step) + (delta<0)*8;
306
307 c->predictor += ((c->step * yamaha_difflookup[nibble]) / 8);
308 c->predictor = av_clip_int16(c->predictor);
309 c->step = (c->step * yamaha_indexscale[nibble]) >> 8;
310 c->step = av_clip(c->step, 127, 24567);
311
312 return nibble;
313 }
314
315 static void adpcm_compress_trellis(AVCodecContext *avctx, const short *samples,
316 uint8_t *dst, ADPCMChannelStatus *c, int n)
317 {
318 //FIXME 6% faster if frontier is a compile-time constant
319 ADPCMContext *s = avctx->priv_data;
320 const int frontier = 1 << avctx->trellis;
321 const int stride = avctx->channels;
322 const int version = avctx->codec->id;
323 TrellisPath *paths = s->paths, *p;
324 TrellisNode *node_buf = s->node_buf;
325 TrellisNode **nodep_buf = s->nodep_buf;
326 TrellisNode **nodes = nodep_buf; // nodes[] is always sorted by .ssd
327 TrellisNode **nodes_next = nodep_buf + frontier;
328 int pathn = 0, froze = -1, i, j, k;
329
330 memset(nodep_buf, 0, 2 * frontier * sizeof(*nodep_buf));
331 nodes[0] = node_buf + frontier;
332 nodes[0]->ssd = 0;
333 nodes[0]->path = 0;
334 nodes[0]->step = c->step_index;
335 nodes[0]->sample1 = c->sample1;
336 nodes[0]->sample2 = c->sample2;
337 if((version == CODEC_ID_ADPCM_IMA_WAV) || (version == CODEC_ID_ADPCM_IMA_QT) || (version == CODEC_ID_ADPCM_SWF))
338 nodes[0]->sample1 = c->prev_sample;
339 if(version == CODEC_ID_ADPCM_MS)
340 nodes[0]->step = c->idelta;
341 if(version == CODEC_ID_ADPCM_YAMAHA) {
342 if(c->step == 0) {
343 nodes[0]->step = 127;
344 nodes[0]->sample1 = 0;
345 } else {
346 nodes[0]->step = c->step;
347 nodes[0]->sample1 = c->predictor;
348 }
349 }
350
351 for(i=0; i<n; i++) {
352 TrellisNode *t = node_buf + frontier*(i&1);
353 TrellisNode **u;
354 int sample = samples[i*stride];
355 memset(nodes_next, 0, frontier*sizeof(TrellisNode*));
356 for(j=0; j<frontier && nodes[j]; j++) {
357 // higher j have higher ssd already, so they're unlikely to use a suboptimal next sample too
358 const int range = (j < frontier/2) ? 1 : 0;
359 const int step = nodes[j]->step;
360 int nidx;
361 if(version == CODEC_ID_ADPCM_MS) {
362 const int predictor = ((nodes[j]->sample1 * c->coeff1) + (nodes[j]->sample2 * c->coeff2)) / 64;
363 const int div = (sample - predictor) / step;
364 const int nmin = av_clip(div-range, -8, 6);
365 const int nmax = av_clip(div+range, -7, 7);
366 for(nidx=nmin; nidx<=nmax; nidx++) {
367 const int nibble = nidx & 0xf;
368 int dec_sample = predictor + nidx * step;
369 #define STORE_NODE(NAME, STEP_INDEX)\
370 int d;\
371 uint32_t ssd;\
372 dec_sample = av_clip_int16(dec_sample);\
373 d = sample - dec_sample;\
374 ssd = nodes[j]->ssd + d*d;\
375 if(nodes_next[frontier-1] && ssd >= nodes_next[frontier-1]->ssd)\
376 continue;\
377 /* Collapse any two states with the same previous sample value. \
378 * One could also distinguish states by step and by 2nd to last
379 * sample, but the effects of that are negligible. */\
380 for(k=0; k<frontier && nodes_next[k]; k++) {\
381 if(dec_sample == nodes_next[k]->sample1) {\
382 assert(ssd >= nodes_next[k]->ssd);\
383 goto next_##NAME;\
384 }\
385 }\
386 for(k=0; k<frontier; k++) {\
387 if(!nodes_next[k] || ssd < nodes_next[k]->ssd) {\
388 TrellisNode *u = nodes_next[frontier-1];\
389 if(!u) {\
390 assert(pathn < FREEZE_INTERVAL<<avctx->trellis);\
391 u = t++;\
392 u->path = pathn++;\
393 }\
394 u->ssd = ssd;\
395 u->step = STEP_INDEX;\
396 u->sample2 = nodes[j]->sample1;\
397 u->sample1 = dec_sample;\
398 paths[u->path].nibble = nibble;\
399 paths[u->path].prev = nodes[j]->path;\
400 memmove(&nodes_next[k+1], &nodes_next[k], (frontier-k-1)*sizeof(TrellisNode*));\
401 nodes_next[k] = u;\
402 break;\
403 }\
404 }\
405 next_##NAME:;
406 STORE_NODE(ms, FFMAX(16, (AdaptationTable[nibble] * step) >> 8));
407 }
408 } else if((version == CODEC_ID_ADPCM_IMA_WAV)|| (version == CODEC_ID_ADPCM_IMA_QT)|| (version == CODEC_ID_ADPCM_SWF)) {
409 #define LOOP_NODES(NAME, STEP_TABLE, STEP_INDEX)\
410 const int predictor = nodes[j]->sample1;\
411 const int div = (sample - predictor) * 4 / STEP_TABLE;\
412 int nmin = av_clip(div-range, -7, 6);\
413 int nmax = av_clip(div+range, -6, 7);\
414 if(nmin<=0) nmin--; /* distinguish -0 from +0 */\
415 if(nmax<0) nmax--;\
416 for(nidx=nmin; nidx<=nmax; nidx++) {\
417 const int nibble = nidx<0 ? 7-nidx : nidx;\
418 int dec_sample = predictor + (STEP_TABLE * yamaha_difflookup[nibble]) / 8;\
419 STORE_NODE(NAME, STEP_INDEX);\
420 }
421 LOOP_NODES(ima, step_table[step], av_clip(step + index_table[nibble], 0, 88));
422 } else { //CODEC_ID_ADPCM_YAMAHA
423 LOOP_NODES(yamaha, step, av_clip((step * yamaha_indexscale[nibble]) >> 8, 127, 24567));
424 #undef LOOP_NODES
425 #undef STORE_NODE
426 }
427 }
428
429 u = nodes;
430 nodes = nodes_next;
431 nodes_next = u;
432
433 // prevent overflow
434 if(nodes[0]->ssd > (1<<28)) {
435 for(j=1; j<frontier && nodes[j]; j++)
436 nodes[j]->ssd -= nodes[0]->ssd;
437 nodes[0]->ssd = 0;
438 }
439
440 // merge old paths to save memory
441 if(i == froze + FREEZE_INTERVAL) {
442 p = &paths[nodes[0]->path];
443 for(k=i; k>froze; k--) {
444 dst[k] = p->nibble;
445 p = &paths[p->prev];
446 }
447 froze = i;
448 pathn = 0;
449 // other nodes might use paths that don't coincide with the frozen one.
450 // checking which nodes do so is too slow, so just kill them all.
451 // this also slightly improves quality, but I don't know why.
452 memset(nodes+1, 0, (frontier-1)*sizeof(TrellisNode*));
453 }
454 }
455
456 p = &paths[nodes[0]->path];
457 for(i=n-1; i>froze; i--) {
458 dst[i] = p->nibble;
459 p = &paths[p->prev];
460 }
461
462 c->predictor = nodes[0]->sample1;
463 c->sample1 = nodes[0]->sample1;
464 c->sample2 = nodes[0]->sample2;
465 c->step_index = nodes[0]->step;
466 c->step = nodes[0]->step;
467 c->idelta = nodes[0]->step;
468 }
469
470 static int adpcm_encode_frame(AVCodecContext *avctx,
471 unsigned char *frame, int buf_size, void *data)
472 {
473 int n, i, st;
474 short *samples;
475 unsigned char *dst;
476 ADPCMContext *c = avctx->priv_data;
477 uint8_t *buf;
478
479 dst = frame;
480 samples = (short *)data;
481 st= avctx->channels == 2;
482 /* n = (BLKSIZE - 4 * avctx->channels) / (2 * 8 * avctx->channels); */
483
484 switch(avctx->codec->id) {
485 case CODEC_ID_ADPCM_IMA_WAV:
486 n = avctx->frame_size / 8;
487 c->status[0].prev_sample = (signed short)samples[0]; /* XXX */
488 /* c->status[0].step_index = 0; *//* XXX: not sure how to init the state machine */
489 bytestream_put_le16(&dst, c->status[0].prev_sample);
490 *dst++ = (unsigned char)c->status[0].step_index;
491 *dst++ = 0; /* unknown */
492 samples++;
493 if (avctx->channels == 2) {
494 c->status[1].prev_sample = (signed short)samples[0];
495 /* c->status[1].step_index = 0; */
496 bytestream_put_le16(&dst, c->status[1].prev_sample);
497 *dst++ = (unsigned char)c->status[1].step_index;
498 *dst++ = 0;
499 samples++;
500 }
501
502 /* stereo: 4 bytes (8 samples) for left, 4 bytes for right, 4 bytes left, ... */
503 if(avctx->trellis > 0) {
504 FF_ALLOC_OR_GOTO(avctx, buf, 2*n*8, error);
505 adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n*8);
506 if(avctx->channels == 2)
507 adpcm_compress_trellis(avctx, samples+1, buf + n*8, &c->status[1], n*8);
508 for(i=0; i<n; i++) {
509 *dst++ = buf[8*i+0] | (buf[8*i+1] << 4);
510 *dst++ = buf[8*i+2] | (buf[8*i+3] << 4);
511 *dst++ = buf[8*i+4] | (buf[8*i+5] << 4);
512 *dst++ = buf[8*i+6] | (buf[8*i+7] << 4);
513 if (avctx->channels == 2) {
514 uint8_t *buf1 = buf + n*8;
515 *dst++ = buf1[8*i+0] | (buf1[8*i+1] << 4);
516 *dst++ = buf1[8*i+2] | (buf1[8*i+3] << 4);
517 *dst++ = buf1[8*i+4] | (buf1[8*i+5] << 4);
518 *dst++ = buf1[8*i+6] | (buf1[8*i+7] << 4);
519 }
520 }
521 av_free(buf);
522 } else
523 for (; n>0; n--) {
524 *dst = adpcm_ima_compress_sample(&c->status[0], samples[0]);
525 *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels]) << 4;
526 dst++;
527 *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 2]);
528 *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 3]) << 4;
529 dst++;
530 *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 4]);
531 *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 5]) << 4;
532 dst++;
533 *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 6]);
534 *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 7]) << 4;
535 dst++;
536 /* right channel */
537 if (avctx->channels == 2) {
538 *dst = adpcm_ima_compress_sample(&c->status[1], samples[1]);
539 *dst |= adpcm_ima_compress_sample(&c->status[1], samples[3]) << 4;
540 dst++;
541 *dst = adpcm_ima_compress_sample(&c->status[1], samples[5]);
542 *dst |= adpcm_ima_compress_sample(&c->status[1], samples[7]) << 4;
543 dst++;
544 *dst = adpcm_ima_compress_sample(&c->status[1], samples[9]);
545 *dst |= adpcm_ima_compress_sample(&c->status[1], samples[11]) << 4;
546 dst++;
547 *dst = adpcm_ima_compress_sample(&c->status[1], samples[13]);
548 *dst |= adpcm_ima_compress_sample(&c->status[1], samples[15]) << 4;
549 dst++;
550 }
551 samples += 8 * avctx->channels;
552 }
553 break;
554 case CODEC_ID_ADPCM_IMA_QT:
555 {
556 int ch, i;
557 PutBitContext pb;
558 init_put_bits(&pb, dst, buf_size*8);
559
560 for(ch=0; ch<avctx->channels; ch++){
561 put_bits(&pb, 9, (c->status[ch].prev_sample + 0x10000) >> 7);
562 put_bits(&pb, 7, c->status[ch].step_index);
563 if(avctx->trellis > 0) {
564 uint8_t buf[64];
565 adpcm_compress_trellis(avctx, samples+ch, buf, &c->status[ch], 64);
566 for(i=0; i<64; i++)
567 put_bits(&pb, 4, buf[i^1]);
568 c->status[ch].prev_sample = c->status[ch].predictor & ~0x7F;
569 } else {
570 for (i=0; i<64; i+=2){
571 int t1, t2;
572 t1 = adpcm_ima_compress_sample(&c->status[ch], samples[avctx->channels*(i+0)+ch]);
573 t2 = adpcm_ima_compress_sample(&c->status[ch], samples[avctx->channels*(i+1)+ch]);
574 put_bits(&pb, 4, t2);
575 put_bits(&pb, 4, t1);
576 }
577 c->status[ch].prev_sample &= ~0x7F;
578 }
579 }
580
581 dst += put_bits_count(&pb)>>3;
582 break;
583 }
584 case CODEC_ID_ADPCM_SWF:
585 {
586 int i;
587 PutBitContext pb;
588 init_put_bits(&pb, dst, buf_size*8);
589
590 n = avctx->frame_size-1;
591
592 //Store AdpcmCodeSize
593 put_bits(&pb, 2, 2); //Set 4bits flash adpcm format
594
595 //Init the encoder state
596 for(i=0; i<avctx->channels; i++){
597 c->status[i].step_index = av_clip(c->status[i].step_index, 0, 63); // clip step so it fits 6 bits
598 put_sbits(&pb, 16, samples[i]);
599 put_bits(&pb, 6, c->status[i].step_index);
600 c->status[i].prev_sample = (signed short)samples[i];
601 }
602
603 if(avctx->trellis > 0) {
604 FF_ALLOC_OR_GOTO(avctx, buf, 2*n, error);
605 adpcm_compress_trellis(avctx, samples+2, buf, &c->status[0], n);
606 if (avctx->channels == 2)
607 adpcm_compress_trellis(avctx, samples+3, buf+n, &c->status[1], n);
608 for(i=0; i<n; i++) {
609 put_bits(&pb, 4, buf[i]);
610 if (avctx->channels == 2)
611 put_bits(&pb, 4, buf[n+i]);
612 }
613 av_free(buf);
614 } else {
615 for (i=1; i<avctx->frame_size; i++) {
616 put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels*i]));
617 if (avctx->channels == 2)
618 put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[1], samples[2*i+1]));
619 }
620 }
621 flush_put_bits(&pb);
622 dst += put_bits_count(&pb)>>3;
623 break;
624 }
625 case CODEC_ID_ADPCM_MS:
626 for(i=0; i<avctx->channels; i++){
627 int predictor=0;
628
629 *dst++ = predictor;
630 c->status[i].coeff1 = AdaptCoeff1[predictor];
631 c->status[i].coeff2 = AdaptCoeff2[predictor];
632 }
633 for(i=0; i<avctx->channels; i++){
634 if (c->status[i].idelta < 16)
635 c->status[i].idelta = 16;
636
637 bytestream_put_le16(&dst, c->status[i].idelta);
638 }
639 for(i=0; i<avctx->channels; i++){
640 c->status[i].sample2= *samples++;
641 }
642 for(i=0; i<avctx->channels; i++){
643 c->status[i].sample1= *samples++;
644
645 bytestream_put_le16(&dst, c->status[i].sample1);
646 }
647 for(i=0; i<avctx->channels; i++)
648 bytestream_put_le16(&dst, c->status[i].sample2);
649
650 if(avctx->trellis > 0) {
651 int n = avctx->block_align - 7*avctx->channels;
652 FF_ALLOC_OR_GOTO(avctx, buf, 2*n, error);
653 if(avctx->channels == 1) {
654 adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n);
655 for(i=0; i<n; i+=2)
656 *dst++ = (buf[i] << 4) | buf[i+1];
657 } else {
658 adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n);
659 adpcm_compress_trellis(avctx, samples+1, buf+n, &c->status[1], n);
660 for(i=0; i<n; i++)
661 *dst++ = (buf[i] << 4) | buf[n+i];
662 }
663 av_free(buf);
664 } else
665 for(i=7*avctx->channels; i<avctx->block_align; i++) {
666 int nibble;
667 nibble = adpcm_ms_compress_sample(&c->status[ 0], *samples++)<<4;
668 nibble|= adpcm_ms_compress_sample(&c->status[st], *samples++);
669 *dst++ = nibble;
670 }
671 break;
672 case CODEC_ID_ADPCM_YAMAHA:
673 n = avctx->frame_size / 2;
674 if(avctx->trellis > 0) {
675 FF_ALLOC_OR_GOTO(avctx, buf, 2*n*2, error);
676 n *= 2;
677 if(avctx->channels == 1) {
678 adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n);
679 for(i=0; i<n; i+=2)
680 *dst++ = buf[i] | (buf[i+1] << 4);
681 } else {
682 adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n);
683 adpcm_compress_trellis(avctx, samples+1, buf+n, &c->status[1], n);
684 for(i=0; i<n; i++)
685 *dst++ = buf[i] | (buf[n+i] << 4);
686 }
687 av_free(buf);
688 } else
689 for (n *= avctx->channels; n>0; n--) {
690 int nibble;
691 nibble = adpcm_yamaha_compress_sample(&c->status[ 0], *samples++);
692 nibble |= adpcm_yamaha_compress_sample(&c->status[st], *samples++) << 4;
693 *dst++ = nibble;
694 }
695 break;
696 default:
697 error:
698 return -1;
699 }
700 return dst - frame;
701 }
702 #endif //CONFIG_ENCODERS
703
704 static av_cold int adpcm_decode_init(AVCodecContext * avctx)
705 {
706 ADPCMContext *c = avctx->priv_data;
707 unsigned int max_channels = 2;
708
709 switch(avctx->codec->id) {
710 case CODEC_ID_ADPCM_EA_R1:
711 case CODEC_ID_ADPCM_EA_R2:
712 case CODEC_ID_ADPCM_EA_R3:
713 max_channels = 6;
714 break;
715 }
716 if(avctx->channels > max_channels){
717 return -1;
718 }
719
720 switch(avctx->codec->id) {
721 case CODEC_ID_ADPCM_CT:
722 c->status[0].step = c->status[1].step = 511;
723 break;
724 case CODEC_ID_ADPCM_IMA_WS:
725 if (avctx->extradata && avctx->extradata_size == 2 * 4) {
726 c->status[0].predictor = AV_RL32(avctx->extradata);
727 c->status[1].predictor = AV_RL32(avctx->extradata + 4);
728 }
729 break;
730 default:
731 break;
732 }
733 avctx->sample_fmt = SAMPLE_FMT_S16;
734 return 0;
735 }
736
737 static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift)
738 {
739 int step_index;
740 int predictor;
741 int sign, delta, diff, step;
742
743 step = step_table[c->step_index];
744 step_index = c->step_index + index_table[(unsigned)nibble];
745 if (step_index < 0) step_index = 0;
746 else if (step_index > 88) step_index = 88;
747
748 sign = nibble & 8;
749 delta = nibble & 7;
750 /* perform direct multiplication instead of series of jumps proposed by
751 * the reference ADPCM implementation since modern CPUs can do the mults
752 * quickly enough */
753 diff = ((2 * delta + 1) * step) >> shift;
754 predictor = c->predictor;
755 if (sign) predictor -= diff;
756 else predictor += diff;
757
758 c->predictor = av_clip_int16(predictor);
759 c->step_index = step_index;
760
761 return (short)c->predictor;
762 }
763
764 static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, char nibble)
765 {
766 int predictor;
767
768 predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64;
769 predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
770
771 c->sample2 = c->sample1;
772 c->sample1 = av_clip_int16(predictor);
773 c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
774 if (c->idelta < 16) c->idelta = 16;
775
776 return c->sample1;
777 }
778
779 static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble)
780 {
781 int sign, delta, diff;
782 int new_step;
783
784 sign = nibble & 8;
785 delta = nibble & 7;
786 /* perform direct multiplication instead of series of jumps proposed by
787 * the reference ADPCM implementation since modern CPUs can do the mults
788 * quickly enough */
789 diff = ((2 * delta + 1) * c->step) >> 3;
790 /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */
791 c->predictor = ((c->predictor * 254) >> 8) + (sign ? -diff : diff);
792 c->predictor = av_clip_int16(c->predictor);
793 /* calculate new step and clamp it to range 511..32767 */
794 new_step = (AdaptationTable[nibble & 7] * c->step) >> 8;
795 c->step = av_clip(new_step, 511, 32767);
796
797 return (short)c->predictor;
798 }
799
800 static inline short adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, char nibble, int size, int shift)
801 {
802 int sign, delta, diff;
803
804 sign = nibble & (1<<(size-1));
805 delta = nibble & ((1<<(size-1))-1);
806 diff = delta << (7 + c->step + shift);
807
808 /* clamp result */
809 c->predictor = av_clip(c->predictor + (sign ? -diff : diff), -16384,16256);
810
811 /* calculate new step */
812 if (delta >= (2*size - 3) && c->step < 3)
813 c->step++;
814 else if (delta == 0 && c->step > 0)
815 c->step--;
816
817 return (short) c->predictor;
818 }
819
820 static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned char nibble)
821 {
822 if(!c->step) {
823 c->predictor = 0;
824 c->step = 127;
825 }
826
827 c->predictor += (c->step * yamaha_difflookup[nibble]) / 8;
828 c->predictor = av_clip_int16(c->predictor);
829 c->step = (c->step * yamaha_indexscale[nibble]) >> 8;
830 c->step = av_clip(c->step, 127, 24567);
831 return c->predictor;
832 }
833
834 static void xa_decode(short *out, const unsigned char *in,
835 ADPCMChannelStatus *left, ADPCMChannelStatus *right, int inc)
836 {
837 int i, j;
838 int shift,filter,f0,f1;
839 int s_1,s_2;
840 int d,s,t;
841
842 for(i=0;i<4;i++) {
843
844 shift = 12 - (in[4+i*2] & 15);
845 filter = in[4+i*2] >> 4;
846 f0 = xa_adpcm_table[filter][0];
847 f1 = xa_adpcm_table[filter][1];
848
849 s_1 = left->sample1;
850 s_2 = left->sample2;
851
852 for(j=0;j<28;j++) {
853 d = in[16+i+j*4];
854
855 t = (signed char)(d<<4)>>4;
856 s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
857 s_2 = s_1;
858 s_1 = av_clip_int16(s);
859 *out = s_1;
860 out += inc;
861 }
862
863 if (inc==2) { /* stereo */
864 left->sample1 = s_1;
865 left->sample2 = s_2;
866 s_1 = right->sample1;
867 s_2 = right->sample2;
868 out = out + 1 - 28*2;
869 }
870
871 shift = 12 - (in[5+i*2] & 15);
872 filter = in[5+i*2] >> 4;
873
874 f0 = xa_adpcm_table[filter][0];
875 f1 = xa_adpcm_table[filter][1];
876
877 for(j=0;j<28;j++) {
878 d = in[16+i+j*4];
879
880 t = (signed char)d >> 4;
881 s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
882 s_2 = s_1;
883 s_1 = av_clip_int16(s);
884 *out = s_1;
885 out += inc;
886 }
887
888 if (inc==2) { /* stereo */
889 right->sample1 = s_1;
890 right->sample2 = s_2;
891 out -= 1;
892 } else {
893 left->sample1 = s_1;
894 left->sample2 = s_2;
895 }
896 }
897 }
898
899
900 /* DK3 ADPCM support macro */
901 #define DK3_GET_NEXT_NIBBLE() \
902 if (decode_top_nibble_next) \
903 { \
904 nibble = last_byte >> 4; \
905 decode_top_nibble_next = 0; \
906 } \
907 else \
908 { \
909 last_byte = *src++; \
910 if (src >= buf + buf_size) break; \
911 nibble = last_byte & 0x0F; \
912 decode_top_nibble_next = 1; \
913 }
914
915 static int adpcm_decode_frame(AVCodecContext *avctx,
916 void *data, int *data_size,
917 AVPacket *avpkt)
918 {
919 const uint8_t *buf = avpkt->data;
920 int buf_size = avpkt->size;
921 ADPCMContext *c = avctx->priv_data;
922 ADPCMChannelStatus *cs;
923 int n, m, channel, i;
924 int block_predictor[2];
925 short *samples;
926 short *samples_end;
927 const uint8_t *src;
928 int st; /* stereo */
929
930 /* DK3 ADPCM accounting variables */
931 unsigned char last_byte = 0;
932 unsigned char nibble;
933 int decode_top_nibble_next = 0;
934 int diff_channel;
935
936 /* EA ADPCM state variables */
937 uint32_t samples_in_chunk;
938 int32_t previous_left_sample, previous_right_sample;
939 int32_t current_left_sample, current_right_sample;
940 int32_t next_left_sample, next_right_sample;
941 int32_t coeff1l, coeff2l, coeff1r, coeff2r;
942 uint8_t shift_left, shift_right;
943 int count1, count2;
944 int coeff[2][2], shift[2];//used in EA MAXIS ADPCM
945
946 if (!buf_size)
947 return 0;
948
949 //should protect all 4bit ADPCM variants
950 //8 is needed for CODEC_ID_ADPCM_IMA_WAV with 2 channels
951 //
952 if(*data_size/4 < buf_size + 8)
953 return -1;
954
955 samples = data;
956 samples_end= samples + *data_size/2;
957 *data_size= 0;
958 src = buf;
959
960 st = avctx->channels == 2 ? 1 : 0;
961
962 switch(avctx->codec->id) {
963 case CODEC_ID_ADPCM_IMA_QT:
964 n = buf_size - 2*avctx->channels;
965 for (channel = 0; channel < avctx->channels; channel++) {
966 cs = &(c->status[channel]);
967 /* (pppppp) (piiiiiii) */
968
969 /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
970 cs->predictor = (*src++) << 8;
971 cs->predictor |= (*src & 0x80);
972 cs->predictor &= 0xFF80;
973
974 /* sign extension */
975 if(cs->predictor & 0x8000)
976 cs->predictor -= 0x10000;
977
978 cs->predictor = av_clip_int16(cs->predictor);
979
980 cs->step_index = (*src++) & 0x7F;
981
982 if (cs->step_index > 88){
983 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
984 cs->step_index = 88;
985 }
986
987 cs->step = step_table[cs->step_index];
988
989 samples = (short*)data + channel;
990
991 for(m=32; n>0 && m>0; n--, m--) { /* in QuickTime, IMA is encoded by chuncks of 34 bytes (=64 samples) */
992 *samples = adpcm_ima_expand_nibble(cs, src[0] & 0x0F, 3);
993 samples += avctx->channels;
994 *samples = adpcm_ima_expand_nibble(cs, src[0] >> 4 , 3);
995 samples += avctx->channels;
996 src ++;
997 }
998 }
999 if (st)
1000 samples--;
1001 break;
1002 case CODEC_ID_ADPCM_IMA_WAV:
1003 if (avctx->block_align != 0 && buf_size > avctx->block_align)
1004 buf_size = avctx->block_align;
1005
1006 // samples_per_block= (block_align-4*chanels)*8 / (bits_per_sample * chanels) + 1;
1007
1008 for(i=0; i<avctx->channels; i++){
1009 cs = &(c->status[i]);
1010 cs->predictor = *samples++ = (int16_t)bytestream_get_le16(&src);
1011
1012 cs->step_index = *src++;
1013 if (cs->step_index > 88){
1014 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
1015 cs->step_index = 88;
1016 }
1017 if (*src++) av_log(avctx, AV_LOG_ERROR, "unused byte should be null but is %d!!\n", src[-1]); /* unused */
1018 }
1019
1020 while(src < buf + buf_size){
1021 for(m=0; m<4; m++){
1022 for(i=0; i<=st; i++)
1023 *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] & 0x0F, 3);
1024 for(i=0; i<=st; i++)
1025 *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] >> 4 , 3);
1026 src++;
1027 }
1028 src += 4*st;
1029 }
1030 break;
1031 case CODEC_ID_ADPCM_4XM:
1032 cs = &(c->status[0]);
1033 c->status[0].predictor= (int16_t)bytestream_get_le16(&src);
1034 if(st){
1035 c->status[1].predictor= (int16_t)bytestream_get_le16(&src);
1036 }
1037 c->status[0].step_index= (int16_t)bytestream_get_le16(&src);
1038 if(st){
1039 c->status[1].step_index= (int16_t)bytestream_get_le16(&src);
1040 }
1041 if (cs->step_index < 0) cs->step_index = 0;
1042 if (cs->step_index > 88) cs->step_index = 88;
1043
1044 m= (buf_size - (src - buf))>>st;
1045 for(i=0; i<m; i++) {
1046 *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] & 0x0F, 4);
1047 if (st)
1048 *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] & 0x0F, 4);
1049 *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] >> 4, 4);
1050 if (st)
1051 *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] >> 4, 4);
1052 }
1053
1054 src += m<<st;
1055
1056 break;
1057 case CODEC_ID_ADPCM_MS:
1058 if (avctx->block_align != 0 && buf_size > avctx->block_align)
1059 buf_size = avctx->block_align;
1060 n = buf_size - 7 * avctx->channels;
1061 if (n < 0)
1062 return -1;
1063 block_predictor[0] = av_clip(*src++, 0, 6);
1064 block_predictor[1] = 0;
1065 if (st)
1066 block_predictor[1] = av_clip(*src++, 0, 6);
1067 c->status[0].idelta = (int16_t)bytestream_get_le16(&src);
1068 if (st){
1069 c->status[1].idelta = (int16_t)bytestream_get_le16(&src);
1070 }
1071 c->status[0].coeff1 = AdaptCoeff1[block_predictor[0]];
1072 c->status[0].coeff2 = AdaptCoeff2[block_predictor[0]];
1073 c->status[1].coeff1 = AdaptCoeff1[block_predictor[1]];
1074 c->status[1].coeff2 = AdaptCoeff2[block_predictor[1]];
1075
1076 c->status[0].sample1 = bytestream_get_le16(&src);
1077 if (st) c->status[1].sample1 = bytestream_get_le16(&src);
1078 c->status[0].sample2 = bytestream_get_le16(&src);
1079 if (st) c->status[1].sample2 = bytestream_get_le16(&src);
1080
1081 *samples++ = c->status[0].sample2;
1082 if (st) *samples++ = c->status[1].sample2;
1083 *samples++ = c->status[0].sample1;
1084 if (st) *samples++ = c->status[1].sample1;
1085 for(;n>0;n--) {
1086 *samples++ = adpcm_ms_expand_nibble(&c->status[0 ], src[0] >> 4 );
1087 *samples++ = adpcm_ms_expand_nibble(&c->status[st], src[0] & 0x0F);
1088 src ++;
1089 }
1090 break;
1091 case CODEC_ID_ADPCM_IMA_DK4:
1092 if (avctx->block_align != 0 && buf_size > avctx->block_align)
1093 buf_size = avctx->block_align;
1094
1095 c->status[0].predictor = (int16_t)bytestream_get_le16(&src);
1096 c->status[0].step_index = *src++;
1097 src++;
1098 *samples++ = c->status[0].predictor;
1099 if (st) {
1100 c->status[1].predictor = (int16_t)bytestream_get_le16(&src);
1101 c->status[1].step_index = *src++;
1102 src++;
1103 *samples++ = c->status[1].predictor;
1104 }
1105 while (src < buf + buf_size) {
1106
1107 /* take care of the top nibble (always left or mono channel) */
1108 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1109 src[0] >> 4, 3);
1110
1111 /* take care of the bottom nibble, which is right sample for
1112 * stereo, or another mono sample */
1113 if (st)
1114 *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1115 src[0] & 0x0F, 3);
1116 else
1117 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1118 src[0] & 0x0F, 3);
1119
1120 src++;
1121 }
1122 break;
1123 case CODEC_ID_ADPCM_IMA_DK3:
1124 if (avctx->block_align != 0 && buf_size > avctx->block_align)
1125 buf_size = avctx->block_align;
1126
1127 if(buf_size + 16 > (samples_end - samples)*3/8)
1128 return -1;
1129
1130 c->status[0].predictor = (int16_t)AV_RL16(src + 10);
1131 c->status[1].predictor = (int16_t)AV_RL16(src + 12);
1132 c->status[0].step_index = src[14];
1133 c->status[1].step_index = src[15];
1134 /* sign extend the predictors */
1135 src += 16;
1136 diff_channel = c->status[1].predictor;
1137
1138 /* the DK3_GET_NEXT_NIBBLE macro issues the break statement when
1139 * the buffer is consumed */
1140 while (1) {
1141
1142 /* for this algorithm, c->status[0] is the sum channel and
1143 * c->status[1] is the diff channel */
1144
1145 /* process the first predictor of the sum channel */
1146 DK3_GET_NEXT_NIBBLE();
1147 adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1148
1149 /* process the diff channel predictor */
1150 DK3_GET_NEXT_NIBBLE();
1151 adpcm_ima_expand_nibble(&c->status[1], nibble, 3);
1152
1153 /* process the first pair of stereo PCM samples */
1154 diff_channel = (diff_channel + c->status[1].predictor) / 2;
1155 *samples++ = c->status[0].predictor + c->status[1].predictor;
1156 *samples++ = c->status[0].predictor - c->status[1].predictor;
1157
1158 /* process the second predictor of the sum channel */
1159 DK3_GET_NEXT_NIBBLE();
1160 adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1161
1162 /* process the second pair of stereo PCM samples */
1163 diff_channel = (diff_channel + c->status[1].predictor) / 2;
1164 *samples++ = c->status[0].predictor + c->status[1].predictor;
1165 *samples++ = c->status[0].predictor - c->status[1].predictor;
1166 }
1167 break;
1168 case CODEC_ID_ADPCM_IMA_ISS:
1169 c->status[0].predictor = (int16_t)AV_RL16(src + 0);
1170 c->status[0].step_index = src[2];
1171 src += 4;
1172 if(st) {
1173 c->status[1].predictor = (int16_t)AV_RL16(src + 0);
1174 c->status[1].step_index = src[2];
1175 src += 4;
1176 }
1177
1178 while (src < buf + buf_size) {
1179
1180 if (st) {
1181 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1182 src[0] >> 4 , 3);
1183 *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1184 src[0] & 0x0F, 3);
1185 } else {
1186 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1187 src[0] & 0x0F, 3);
1188 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1189 src[0] >> 4 , 3);
1190 }
1191
1192 src++;
1193 }
1194 break;
1195 case CODEC_ID_ADPCM_IMA_WS:
1196 /* no per-block initialization; just start decoding the data */
1197 while (src < buf + buf_size) {
1198
1199 if (st) {
1200 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1201 src[0] >> 4 , 3);
1202 *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1203 src[0] & 0x0F, 3);
1204 } else {
1205 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1206 src[0] >> 4 , 3);
1207 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1208 src[0] & 0x0F, 3);
1209 }
1210
1211 src++;
1212 }
1213 break;
1214 case CODEC_ID_ADPCM_XA:
1215 while (buf_size >= 128) {
1216 xa_decode(samples, src, &c->status[0], &c->status[1],
1217 avctx->channels);
1218 src += 128;
1219 samples += 28 * 8;
1220 buf_size -= 128;
1221 }
1222 break;
1223 case CODEC_ID_ADPCM_IMA_EA_EACS:
1224 samples_in_chunk = bytestream_get_le32(&src) >> (1-st);
1225
1226 if (samples_in_chunk > buf_size-4-(8<<st)) {
1227 src += buf_size - 4;
1228 break;
1229 }
1230
1231 for (i=0; i<=st; i++)
1232 c->status[i].step_index = bytestream_get_le32(&src);
1233 for (i=0; i<=st; i++)
1234 c->status[i].predictor = bytestream_get_le32(&src);
1235
1236 for (; samples_in_chunk; samples_in_chunk--, src++) {
1237 *samples++ = adpcm_ima_expand_nibble(&c->status[0], *src>>4, 3);
1238 *samples++ = adpcm_ima_expand_nibble(&c->status[st], *src&0x0F, 3);
1239 }
1240 break;
1241 case CODEC_ID_ADPCM_IMA_EA_SEAD:
1242 for (; src < buf+buf_size; src++) {
1243 *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[0] >> 4, 6);
1244 *samples++ = adpcm_ima_expand_nibble(&c->status[st],src[0]&0x0F, 6);
1245 }
1246 break;
1247 case CODEC_ID_ADPCM_EA:
1248 if (buf_size < 4 || AV_RL32(src) >= ((buf_size - 12) * 2)) {
1249 src += buf_size;
1250 break;
1251 }
1252 samples_in_chunk = AV_RL32(src);
1253 src += 4;
1254 current_left_sample = (int16_t)bytestream_get_le16(&src);
1255 previous_left_sample = (int16_t)bytestream_get_le16(&src);
1256 current_right_sample = (int16_t)bytestream_get_le16(&src);
1257 previous_right_sample = (int16_t)bytestream_get_le16(&src);
1258
1259 for (count1 = 0; count1 < samples_in_chunk/28;count1++) {
1260 coeff1l = ea_adpcm_table[ *src >> 4 ];
1261 coeff2l = ea_adpcm_table[(*src >> 4 ) + 4];
1262 coeff1r = ea_adpcm_table[*src & 0x0F];
1263 coeff2r = ea_adpcm_table[(*src & 0x0F) + 4];
1264 src++;
1265
1266 shift_left = (*src >> 4 ) + 8;
1267 shift_right = (*src & 0x0F) + 8;
1268 src++;
1269
1270 for (count2 = 0; count2 < 28; count2++) {
1271 next_left_sample = (int32_t)((*src & 0xF0) << 24) >> shift_left;
1272 next_right_sample = (int32_t)((*src & 0x0F) << 28) >> shift_right;
1273 src++;
1274
1275 next_left_sample = (next_left_sample +
1276 (current_left_sample * coeff1l) +
1277 (previous_left_sample * coeff2l) + 0x80) >> 8;
1278 next_right_sample = (next_right_sample +
1279 (current_right_sample * coeff1r) +
1280 (previous_right_sample * coeff2r) + 0x80) >> 8;
1281
1282 previous_left_sample = current_left_sample;
1283 current_left_sample = av_clip_int16(next_left_sample);
1284 previous_right_sample = current_right_sample;
1285 current_right_sample = av_clip_int16(next_right_sample);
1286 *samples++ = (unsigned short)current_left_sample;
1287 *samples++ = (unsigned short)current_right_sample;
1288 }
1289 }
1290
1291 if (src - buf == buf_size - 2)
1292 src += 2; // Skip terminating 0x0000
1293
1294 break;
1295 case CODEC_ID_ADPCM_EA_MAXIS_XA:
1296 for(channel = 0; channel < avctx->channels; channel++) {
1297 for (i=0; i<2; i++)
1298 coeff[channel][i] = ea_adpcm_table[(*src >> 4) + 4*i];
1299 shift[channel] = (*src & 0x0F) + 8;
1300 src++;
1301 }
1302 for (count1 = 0; count1 < (buf_size - avctx->channels) / avctx->channels; count1++) {
1303 for(i = 4; i >= 0; i-=4) { /* Pairwise samples LL RR (st) or LL LL (mono) */
1304 for(channel = 0; channel < avctx->channels; channel++) {
1305 int32_t sample = (int32_t)(((*(src+channel) >> i) & 0x0F) << 0x1C) >> shift[channel];
1306 sample = (sample +
1307 c->status[channel].sample1 * coeff[channel][0] +
1308 c->status[channel].sample2 * coeff[channel][1] + 0x80) >> 8;
1309 c->status[channel].sample2 = c->status[channel].sample1;
1310 c->status[channel].sample1 = av_clip_int16(sample);
1311 *samples++ = c->status[channel].sample1;
1312 }
1313 }
1314 src+=avctx->channels;
1315 }
1316 break;
1317 case CODEC_ID_ADPCM_EA_R1:
1318 case CODEC_ID_ADPCM_EA_R2:
1319 case CODEC_ID_ADPCM_EA_R3: {
1320 /* channel numbering
1321 2chan: 0=fl, 1=fr
1322 4chan: 0=fl, 1=rl, 2=fr, 3=rr
1323 6chan: 0=fl, 1=c, 2=fr, 3=rl, 4=rr, 5=sub */
1324 const int big_endian = avctx->codec->id == CODEC_ID_ADPCM_EA_R3;
1325 int32_t previous_sample, current_sample, next_sample;
1326 int32_t coeff1, coeff2;
1327 uint8_t shift;
1328 unsigned int channel;
1329 uint16_t *samplesC;
1330 const uint8_t *srcC;
1331 const uint8_t *src_end = buf + buf_size;
1332
1333 samples_in_chunk = (big_endian ? bytestream_get_be32(&src)
1334 : bytestream_get_le32(&src)) / 28;
1335 if (samples_in_chunk > UINT32_MAX/(28*avctx->channels) ||
1336 28*samples_in_chunk*avctx->channels > samples_end-samples) {
1337 src += buf_size - 4;
1338 break;
1339 }
1340
1341 for (channel=0; channel<avctx->channels; channel++) {
1342 int32_t offset = (big_endian ? bytestream_get_be32(&src)
1343 : bytestream_get_le32(&src))
1344 + (avctx->channels-channel-1) * 4;
1345
1346 if ((offset < 0) || (offset >= src_end - src - 4)) break;
1347 srcC = src + offset;
1348 samplesC = samples + channel;
1349
1350 if (avctx->codec->id == CODEC_ID_ADPCM_EA_R1) {
1351 current_sample = (int16_t)bytestream_get_le16(&srcC);
1352 previous_sample = (int16_t)bytestream_get_le16(&srcC);
1353 } else {
1354 current_sample = c->status[channel].predictor;
1355 previous_sample = c->status[channel].prev_sample;
1356 }
1357
1358 for (count1=0; count1<samples_in_chunk; count1++) {
1359 if (*srcC == 0xEE) { /* only seen in R2 and R3 */
1360 srcC++;
1361 if (srcC > src_end - 30*2) break;
1362 current_sample = (int16_t)bytestream_get_be16(&srcC);
1363 previous_sample = (int16_t)bytestream_get_be16(&srcC);
1364
1365 for (count2=0; count2<28; count2++) {
1366 *samplesC = (int16_t)bytestream_get_be16(&srcC);
1367 samplesC += avctx->channels;
1368 }
1369 } else {
1370 coeff1 = ea_adpcm_table[ *srcC>>4 ];
1371 coeff2 = ea_adpcm_table[(*srcC>>4) + 4];
1372 shift = (*srcC++ & 0x0F) + 8;
1373
1374 if (srcC > src_end - 14) break;
1375 for (count2=0; count2<28; count2++) {
1376 if (count2 & 1)
1377 next_sample = (int32_t)((*srcC++ & 0x0F) << 28) >> shift;
1378 else
1379 next_sample = (int32_t)((*srcC & 0xF0) << 24) >> shift;
1380
1381 next_sample += (current_sample * coeff1) +
1382 (previous_sample * coeff2);
1383 next_sample = av_clip_int16(next_sample >> 8);
1384
1385 previous_sample = current_sample;
1386 current_sample = next_sample;
1387 *samplesC = current_sample;
1388 samplesC += avctx->channels;
1389 }
1390 }
1391 }
1392
1393 if (avctx->codec->id != CODEC_ID_ADPCM_EA_R1) {
1394 c->status[channel].predictor = current_sample;
1395 c->status[channel].prev_sample = previous_sample;
1396 }
1397 }
1398
1399 src = src + buf_size - (4 + 4*avctx->channels);
1400 samples += 28 * samples_in_chunk * avctx->channels;
1401 break;
1402 }
1403 case CODEC_ID_ADPCM_EA_XAS:
1404 if (samples_end-samples < 32*4*avctx->channels
1405 || buf_size < (4+15)*4*avctx->channels) {
1406 src += buf_size;
1407 break;
1408 }
1409 for (channel=0; channel<avctx->channels; channel++) {
1410 int coeff[2][4], shift[4];
1411 short *s2, *s = &samples[channel];
1412 for (n=0; n<4; n++, s+=32*avctx->channels) {
1413 for (i=0; i<2; i++)
1414 coeff[i][n] = ea_adpcm_table[(src[0]&0x0F)+4*i];
1415 shift[n] = (src[2]&0x0F) + 8;
1416 for (s2=s, i=0; i<2; i++, src+=2, s2+=avctx->channels)
1417 s2[0] = (src[0]&0xF0) + (src[1]<<8);
1418 }
1419
1420 for (m=2; m<32; m+=2) {
1421 s = &samples[m*avctx->channels + channel];
1422 for (n=0; n<4; n++, src++, s+=32*avctx->channels) {
1423 for (s2=s, i=0; i<8; i+=4, s2+=avctx->channels) {
1424 int level = (int32_t)((*src & (0xF0>>i)) << (24+i)) >> shift[n];
1425 int pred = s2[-1*avctx->channels] * coeff[0][n]
1426 + s2[-2*avctx->channels] * coeff[1][n];
1427 s2[0] = av_clip_int16((level + pred + 0x80) >> 8);
1428 }
1429 }
1430 }
1431 }
1432 samples += 32*4*avctx->channels;
1433 break;
1434 case CODEC_ID_ADPCM_IMA_AMV:
1435 case CODEC_ID_ADPCM_IMA_SMJPEG:
1436 c->status[0].predictor = (int16_t)bytestream_get_le16(&src);
1437 c->status[0].step_index = bytestream_get_le16(&src);
1438
1439 if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV)
1440 src+=4;
1441
1442 while (src < buf + buf_size) {
1443 char hi, lo;
1444 lo = *src & 0x0F;
1445 hi = *src >> 4;
1446
1447 if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV)
1448 FFSWAP(char, hi, lo);
1449
1450 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1451 lo, 3);
1452 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1453 hi, 3);
1454 src++;
1455 }
1456 break;
1457 case CODEC_ID_ADPCM_CT:
1458 while (src < buf + buf_size) {
1459 if (st) {
1460 *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1461 src[0] >> 4);
1462 *samples++ = adpcm_ct_expand_nibble(&c->status[1],
1463 src[0] & 0x0F);
1464 } else {
1465 *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1466 src[0] >> 4);
1467 *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1468 src[0] & 0x0F);
1469 }
1470 src++;
1471 }
1472 break;
1473 case CODEC_ID_ADPCM_SBPRO_4:
1474 case CODEC_ID_ADPCM_SBPRO_3:
1475 case CODEC_ID_ADPCM_SBPRO_2:
1476 if (!c->status[0].step_index) {
1477 /* the first byte is a raw sample */
1478 *samples++ = 128 * (*src++ - 0x80);
1479 if (st)
1480 *samples++ = 128 * (*src++ - 0x80);
1481 c->status[0].step_index = 1;
1482 }
1483 if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_4) {
1484 while (src < buf + buf_size) {
1485 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1486 src[0] >> 4, 4, 0);
1487 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1488 src[0] & 0x0F, 4, 0);
1489 src++;
1490 }
1491 } else if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_3) {
1492 while (src < buf + buf_size && samples + 2 < samples_end) {
1493 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1494 src[0] >> 5 , 3, 0);
1495 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1496 (src[0] >> 2) & 0x07, 3, 0);
1497 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1498 src[0] & 0x03, 2, 0);
1499 src++;
1500 }
1501 } else {
1502 while (src < buf + buf_size && samples + 3 < samples_end) {
1503 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1504 src[0] >> 6 , 2, 2);
1505 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1506 (src[0] >> 4) & 0x03, 2, 2);
1507 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1508 (src[0] >> 2) & 0x03, 2, 2);
1509 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1510 src[0] & 0x03, 2, 2);
1511 src++;
1512 }
1513 }
1514 break;
1515 case CODEC_ID_ADPCM_SWF:
1516 {
1517 GetBitContext gb;
1518 const int *table;
1519 int k0, signmask, nb_bits, count;
1520 int size = buf_size*8;
1521
1522 init_get_bits(&gb, buf, size);
1523
1524 //read bits & initial values
1525 nb_bits = get_bits(&gb, 2)+2;
1526 //av_log(NULL,AV_LOG_INFO,"nb_bits: %d\n", nb_bits);
1527 table = swf_index_tables[nb_bits-2];
1528 k0 = 1 << (nb_bits-2);
1529 signmask = 1 << (nb_bits-1);
1530
1531 while (get_bits_count(&gb) <= size - 22*avctx->channels) {
1532 for (i = 0; i < avctx->channels; i++) {
1533 *samples++ = c->status[i].predictor = get_sbits(&gb, 16);
1534 c->status[i].step_index = get_bits(&gb, 6);
1535 }
1536
1537 for (count = 0; get_bits_count(&gb) <= size - nb_bits*avctx->channels && count < 4095; count++) {
1538 int i;
1539
1540 for (i = 0; i < avctx->channels; i++) {
1541 // similar to IMA adpcm
1542 int delta = get_bits(&gb, nb_bits);
1543 int step = step_table[c->status[i].step_index];
1544 long vpdiff = 0; // vpdiff = (delta+0.5)*step/4
1545 int k = k0;
1546
1547 do {
1548 if (delta & k)
1549 vpdiff += step;
1550 step >>= 1;
1551 k >>= 1;
1552 } while(k);
1553 vpdiff += step;
1554
1555 if (delta & signmask)
1556 c->status[i].predictor -= vpdiff;
1557 else
1558 c->status[i].predictor += vpdiff;
1559
1560 c->status[i].step_index += table[delta & (~signmask)];
1561
1562 c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88);
1563 c->status[i].predictor = av_clip_int16(c->status[i].predictor);
1564
1565 *samples++ = c->status[i].predictor;
1566 if (samples >= samples_end) {
1567 av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n");
1568 return -1;
1569 }
1570 }
1571 }
1572 }
1573 src += buf_size;
1574 break;
1575 }
1576 case CODEC_ID_ADPCM_YAMAHA:
1577 while (src < buf + buf_size) {
1578 if (st) {
1579 *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1580 src[0] & 0x0F);
1581 *samples++ = adpcm_yamaha_expand_nibble(&c->status[1],
1582 src[0] >> 4 );
1583 } else {
1584 *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1585 src[0] & 0x0F);
1586 *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1587 src[0] >> 4 );
1588 }
1589 src++;
1590 }
1591 break;
1592 case CODEC_ID_ADPCM_THP:
1593 {
1594 int table[2][16];
1595 unsigned int samplecnt;
1596 int prev[2][2];
1597 int ch;
1598
1599 if (buf_size < 80) {
1600 av_log(avctx, AV_LOG_ERROR, "frame too small\n");
1601 return -1;
1602 }
1603
1604 src+=4;
1605 samplecnt = bytestream_get_be32(&src);
1606
1607 for (i = 0; i < 32; i++)
1608 table[0][i] = (int16_t)bytestream_get_be16(&src);
1609
1610 /* Initialize the previous sample. */
1611 for (i = 0; i < 4; i++)
1612 prev[0][i] = (int16_t)bytestream_get_be16(&src);
1613
1614 if (samplecnt >= (samples_end - samples) / (st + 1)) {
1615 av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n");
1616 return -1;
1617 }
1618
1619 for (ch = 0; ch <= st; ch++) {
1620 samples = (unsigned short *) data + ch;
1621
1622 /* Read in every sample for this channel. */
1623 for (i = 0; i < samplecnt / 14; i++) {
1624 int index = (*src >> 4) & 7;
1625 unsigned int exp = 28 - (*src++ & 15);
1626 int factor1 = table[ch][index * 2];
1627 int factor2 = table[ch][index * 2 + 1];
1628
1629 /* Decode 14 samples. */
1630 for (n = 0; n < 14; n++) {
1631 int32_t sampledat;
1632 if(n&1) sampledat= *src++ <<28;
1633 else sampledat= (*src&0xF0)<<24;
1634
1635 sampledat = ((prev[ch][0]*factor1
1636 + prev[ch][1]*factor2) >> 11) + (sampledat>>exp);
1637 *samples = av_clip_int16(sampledat);
1638 prev[ch][1] = prev[ch][0];
1639 prev[ch][0] = *samples++;
1640
1641 /* In case of stereo, skip one sample, this sample
1642 is for the other channel. */
1643 samples += st;
1644 }
1645 }
1646 }
1647
1648 /* In the previous loop, in case stereo is used, samples is
1649 increased exactly one time too often. */
1650 samples -= st;
1651 break;
1652 }
1653
1654 default:
1655 return -1;
1656 }
1657 *data_size = (uint8_t *)samples - (uint8_t *)data;
1658 return src - buf;
1659 }
1660
1661
1662
1663 #if CONFIG_ENCODERS
1664 #define ADPCM_ENCODER(id,name,long_name_) \
1665 AVCodec name ## _encoder = { \
1666 #name, \
1667 AVMEDIA_TYPE_AUDIO, \
1668 id, \
1669 sizeof(ADPCMContext), \
1670 adpcm_encode_init, \
1671 adpcm_encode_frame, \
1672 adpcm_encode_close, \
1673 NULL, \
1674 .sample_fmts = (const enum SampleFormat[]){SAMPLE_FMT_S16,SAMPLE_FMT_NONE}, \
1675 .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
1676 };
1677 #else
1678 #define ADPCM_ENCODER(id,name,long_name_)
1679 #endif
1680
1681 #if CONFIG_DECODERS
1682 #define ADPCM_DECODER(id,name,long_name_) \
1683 AVCodec name ## _decoder = { \
1684 #name, \
1685 AVMEDIA_TYPE_AUDIO, \
1686 id, \
1687 sizeof(ADPCMContext), \
1688 adpcm_decode_init, \
1689 NULL, \
1690 NULL, \
1691 adpcm_decode_frame, \
1692 .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
1693 };
1694 #else
1695 #define ADPCM_DECODER(id,name,long_name_)
1696 #endif
1697
1698 #define ADPCM_CODEC(id,name,long_name_) \
1699 ADPCM_ENCODER(id,name,long_name_) ADPCM_DECODER(id,name,long_name_)
1700
1701 /* Note: Do not forget to add new entries to the Makefile as well. */
1702 ADPCM_DECODER(CODEC_ID_ADPCM_4XM, adpcm_4xm, "ADPCM 4X Movie");
1703 ADPCM_DECODER(CODEC_ID_ADPCM_CT, adpcm_ct, "ADPCM Creative Technology");
1704 ADPCM_DECODER(CODEC_ID_ADPCM_EA, adpcm_ea, "ADPCM Electronic Arts");
1705 ADPCM_DECODER(CODEC_ID_ADPCM_EA_MAXIS_XA, adpcm_ea_maxis_xa, "ADPCM Electronic Arts Maxis CDROM XA");
1706 ADPCM_DECODER(CODEC_ID_ADPCM_EA_R1, adpcm_ea_r1, "ADPCM Electronic Arts R1");
1707 ADPCM_DECODER(CODEC_ID_ADPCM_EA_R2, adpcm_ea_r2, "ADPCM Electronic Arts R2");
1708 ADPCM_DECODER(CODEC_ID_ADPCM_EA_R3, adpcm_ea_r3, "ADPCM Electronic Arts R3");
1709 ADPCM_DECODER(CODEC_ID_ADPCM_EA_XAS, adpcm_ea_xas, "ADPCM Electronic Arts XAS");
1710 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_AMV, adpcm_ima_amv, "ADPCM IMA AMV");
1711 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK3, adpcm_ima_dk3, "ADPCM IMA Duck DK3");
1712 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK4, adpcm_ima_dk4, "ADPCM IMA Duck DK4");
1713 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_EACS, adpcm_ima_ea_eacs, "ADPCM IMA Electronic Arts EACS");
1714 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_SEAD, adpcm_ima_ea_sead, "ADPCM IMA Electronic Arts SEAD");
1715 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_ISS, adpcm_ima_iss, "ADPCM IMA Funcom ISS");
1716 ADPCM_CODEC (CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt, "ADPCM IMA QuickTime");
1717 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_SMJPEG, adpcm_ima_smjpeg, "ADPCM IMA Loki SDL MJPEG");
1718 ADPCM_CODEC (CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav, "ADPCM IMA WAV");
1719 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_WS, adpcm_ima_ws, "ADPCM IMA Westwood");
1720 ADPCM_CODEC (CODEC_ID_ADPCM_MS, adpcm_ms, "ADPCM Microsoft");
1721 ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_2, adpcm_sbpro_2, "ADPCM Sound Blaster Pro 2-bit");
1722 ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_3, adpcm_sbpro_3, "ADPCM Sound Blaster Pro 2.6-bit");
1723 ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_4, adpcm_sbpro_4, "ADPCM Sound Blaster Pro 4-bit");
1724 ADPCM_CODEC (CODEC_ID_ADPCM_SWF, adpcm_swf, "ADPCM Shockwave Flash");
1725 ADPCM_DECODER(CODEC_ID_ADPCM_THP, adpcm_thp, "ADPCM Nintendo Gamecube THP");
1726 ADPCM_DECODER(CODEC_ID_ADPCM_XA, adpcm_xa, "ADPCM CDROM XA");
1727 ADPCM_CODEC (CODEC_ID_ADPCM_YAMAHA, adpcm_yamaha, "ADPCM Yamaha");