f022e852f45697214c6754377e4e76c7b7d1f9f9
[libav.git] / libavcodec / adpcm.c
1 /*
2 * ADPCM codecs
3 * Copyright (c) 2001-2003 The ffmpeg Project
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21 #include "avcodec.h"
22 #include "bitstream.h"
23 #include "bytestream.h"
24
25 /**
26 * @file adpcm.c
27 * ADPCM codecs.
28 * First version by Francois Revol (revol@free.fr)
29 * Fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
30 * by Mike Melanson (melanson@pcisys.net)
31 * CD-ROM XA ADPCM codec by BERO
32 * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com)
33 * THP ADPCM decoder by Marco Gerards (mgerards@xs4all.nl)
34 *
35 * Features and limitations:
36 *
37 * Reference documents:
38 * http://www.pcisys.net/~melanson/codecs/simpleaudio.html
39 * http://www.geocities.com/SiliconValley/8682/aud3.txt
40 * http://openquicktime.sourceforge.net/plugins.htm
41 * XAnim sources (xa_codec.c) http://www.rasnaimaging.com/people/lapus/download.html
42 * http://www.cs.ucla.edu/~leec/mediabench/applications.html
43 * SoX source code http://home.sprynet.com/~cbagwell/sox.html
44 *
45 * CD-ROM XA:
46 * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html
47 * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html
48 * readstr http://www.geocities.co.jp/Playtown/2004/
49 */
50
51 #define BLKSIZE 1024
52
53 #define CLAMP_TO_SHORT(value) \
54 if (value > 32767) \
55 value = 32767; \
56 else if (value < -32768) \
57 value = -32768; \
58
59 /* step_table[] and index_table[] are from the ADPCM reference source */
60 /* This is the index table: */
61 static const int index_table[16] = {
62 -1, -1, -1, -1, 2, 4, 6, 8,
63 -1, -1, -1, -1, 2, 4, 6, 8,
64 };
65
66 /**
67 * This is the step table. Note that many programs use slight deviations from
68 * this table, but such deviations are negligible:
69 */
70 static const int step_table[89] = {
71 7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
72 19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
73 50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
74 130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
75 337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
76 876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
77 2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
78 5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
79 15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767
80 };
81
82 /* These are for MS-ADPCM */
83 /* AdaptationTable[], AdaptCoeff1[], and AdaptCoeff2[] are from libsndfile */
84 static const int AdaptationTable[] = {
85 230, 230, 230, 230, 307, 409, 512, 614,
86 768, 614, 512, 409, 307, 230, 230, 230
87 };
88
89 static const int AdaptCoeff1[] = {
90 256, 512, 0, 192, 240, 460, 392
91 };
92
93 static const int AdaptCoeff2[] = {
94 0, -256, 0, 64, 0, -208, -232
95 };
96
97 /* These are for CD-ROM XA ADPCM */
98 static const int xa_adpcm_table[5][2] = {
99 { 0, 0 },
100 { 60, 0 },
101 { 115, -52 },
102 { 98, -55 },
103 { 122, -60 }
104 };
105
106 static const int ea_adpcm_table[] = {
107 0, 240, 460, 392, 0, 0, -208, -220, 0, 1,
108 3, 4, 7, 8, 10, 11, 0, -1, -3, -4
109 };
110
111 static const int ct_adpcm_table[8] = {
112 0x00E6, 0x00E6, 0x00E6, 0x00E6,
113 0x0133, 0x0199, 0x0200, 0x0266
114 };
115
116 // padded to zero where table size is less then 16
117 static const int swf_index_tables[4][16] = {
118 /*2*/ { -1, 2 },
119 /*3*/ { -1, -1, 2, 4 },
120 /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 },
121 /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
122 };
123
124 static const int yamaha_indexscale[] = {
125 230, 230, 230, 230, 307, 409, 512, 614,
126 230, 230, 230, 230, 307, 409, 512, 614
127 };
128
129 static const int yamaha_difflookup[] = {
130 1, 3, 5, 7, 9, 11, 13, 15,
131 -1, -3, -5, -7, -9, -11, -13, -15
132 };
133
134 /* end of tables */
135
136 typedef struct ADPCMChannelStatus {
137 int predictor;
138 short int step_index;
139 int step;
140 /* for encoding */
141 int prev_sample;
142
143 /* MS version */
144 short sample1;
145 short sample2;
146 int coeff1;
147 int coeff2;
148 int idelta;
149 } ADPCMChannelStatus;
150
151 typedef struct ADPCMContext {
152 int channel; /* for stereo MOVs, decode left, then decode right, then tell it's decoded */
153 ADPCMChannelStatus status[2];
154 short sample_buffer[32]; /* hold left samples while waiting for right samples */
155 } ADPCMContext;
156
157 /* XXX: implement encoding */
158
159 #ifdef CONFIG_ENCODERS
160 static int adpcm_encode_init(AVCodecContext *avctx)
161 {
162 if (avctx->channels > 2)
163 return -1; /* only stereo or mono =) */
164 switch(avctx->codec->id) {
165 case CODEC_ID_ADPCM_IMA_QT:
166 av_log(avctx, AV_LOG_ERROR, "ADPCM: codec adpcm_ima_qt unsupported for encoding !\n");
167 avctx->frame_size = 64; /* XXX: can multiple of avctx->channels * 64 (left and right blocks are interleaved) */
168 return -1;
169 break;
170 case CODEC_ID_ADPCM_IMA_WAV:
171 avctx->frame_size = (BLKSIZE - 4 * avctx->channels) * 8 / (4 * avctx->channels) + 1; /* each 16 bits sample gives one nibble */
172 /* and we have 4 bytes per channel overhead */
173 avctx->block_align = BLKSIZE;
174 /* seems frame_size isn't taken into account... have to buffer the samples :-( */
175 break;
176 case CODEC_ID_ADPCM_MS:
177 avctx->frame_size = (BLKSIZE - 7 * avctx->channels) * 2 / avctx->channels + 2; /* each 16 bits sample gives one nibble */
178 /* and we have 7 bytes per channel overhead */
179 avctx->block_align = BLKSIZE;
180 break;
181 case CODEC_ID_ADPCM_YAMAHA:
182 avctx->frame_size = BLKSIZE * avctx->channels;
183 avctx->block_align = BLKSIZE;
184 break;
185 case CODEC_ID_ADPCM_SWF:
186 if (avctx->sample_rate != 11025 &&
187 avctx->sample_rate != 22050 &&
188 avctx->sample_rate != 44100) {
189 av_log(avctx, AV_LOG_ERROR, "Sample rate must be 11025, 22050 or 44100\n");
190 return -1;
191 }
192 avctx->frame_size = 512 * (avctx->sample_rate / 11025);
193 break;
194 default:
195 return -1;
196 break;
197 }
198
199 avctx->coded_frame= avcodec_alloc_frame();
200 avctx->coded_frame->key_frame= 1;
201
202 return 0;
203 }
204
205 static int adpcm_encode_close(AVCodecContext *avctx)
206 {
207 av_freep(&avctx->coded_frame);
208
209 return 0;
210 }
211
212
213 static inline unsigned char adpcm_ima_compress_sample(ADPCMChannelStatus *c, short sample)
214 {
215 int delta = sample - c->prev_sample;
216 int nibble = FFMIN(7, abs(delta)*4/step_table[c->step_index]) + (delta<0)*8;
217 c->prev_sample = c->prev_sample + ((step_table[c->step_index] * yamaha_difflookup[nibble]) / 8);
218 CLAMP_TO_SHORT(c->prev_sample);
219 c->step_index = av_clip(c->step_index + index_table[nibble], 0, 88);
220 return nibble;
221 }
222
223 static inline unsigned char adpcm_ms_compress_sample(ADPCMChannelStatus *c, short sample)
224 {
225 int predictor, nibble, bias;
226
227 predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 256;
228
229 nibble= sample - predictor;
230 if(nibble>=0) bias= c->idelta/2;
231 else bias=-c->idelta/2;
232
233 nibble= (nibble + bias) / c->idelta;
234 nibble= av_clip(nibble, -8, 7)&0x0F;
235
236 predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
237 CLAMP_TO_SHORT(predictor);
238
239 c->sample2 = c->sample1;
240 c->sample1 = predictor;
241
242 c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
243 if (c->idelta < 16) c->idelta = 16;
244
245 return nibble;
246 }
247
248 static inline unsigned char adpcm_yamaha_compress_sample(ADPCMChannelStatus *c, short sample)
249 {
250 int nibble, delta;
251
252 if(!c->step) {
253 c->predictor = 0;
254 c->step = 127;
255 }
256
257 delta = sample - c->predictor;
258
259 nibble = FFMIN(7, abs(delta)*4/c->step) + (delta<0)*8;
260
261 c->predictor = c->predictor + ((c->step * yamaha_difflookup[nibble]) / 8);
262 CLAMP_TO_SHORT(c->predictor);
263 c->step = (c->step * yamaha_indexscale[nibble]) >> 8;
264 c->step = av_clip(c->step, 127, 24567);
265
266 return nibble;
267 }
268
269 typedef struct TrellisPath {
270 int nibble;
271 int prev;
272 } TrellisPath;
273
274 typedef struct TrellisNode {
275 uint32_t ssd;
276 int path;
277 int sample1;
278 int sample2;
279 int step;
280 } TrellisNode;
281
282 static void adpcm_compress_trellis(AVCodecContext *avctx, const short *samples,
283 uint8_t *dst, ADPCMChannelStatus *c, int n)
284 {
285 #define FREEZE_INTERVAL 128
286 //FIXME 6% faster if frontier is a compile-time constant
287 const int frontier = 1 << avctx->trellis;
288 const int stride = avctx->channels;
289 const int version = avctx->codec->id;
290 const int max_paths = frontier*FREEZE_INTERVAL;
291 TrellisPath paths[max_paths], *p;
292 TrellisNode node_buf[2][frontier];
293 TrellisNode *nodep_buf[2][frontier];
294 TrellisNode **nodes = nodep_buf[0]; // nodes[] is always sorted by .ssd
295 TrellisNode **nodes_next = nodep_buf[1];
296 int pathn = 0, froze = -1, i, j, k;
297
298 assert(!(max_paths&(max_paths-1)));
299
300 memset(nodep_buf, 0, sizeof(nodep_buf));
301 nodes[0] = &node_buf[1][0];
302 nodes[0]->ssd = 0;
303 nodes[0]->path = 0;
304 nodes[0]->step = c->step_index;
305 nodes[0]->sample1 = c->sample1;
306 nodes[0]->sample2 = c->sample2;
307 if(version == CODEC_ID_ADPCM_IMA_WAV)
308 nodes[0]->sample1 = c->prev_sample;
309 if(version == CODEC_ID_ADPCM_MS)
310 nodes[0]->step = c->idelta;
311 if(version == CODEC_ID_ADPCM_YAMAHA) {
312 if(c->step == 0) {
313 nodes[0]->step = 127;
314 nodes[0]->sample1 = 0;
315 } else {
316 nodes[0]->step = c->step;
317 nodes[0]->sample1 = c->predictor;
318 }
319 }
320
321 for(i=0; i<n; i++) {
322 TrellisNode *t = node_buf[i&1];
323 TrellisNode **u;
324 int sample = samples[i*stride];
325 memset(nodes_next, 0, frontier*sizeof(TrellisNode*));
326 for(j=0; j<frontier && nodes[j]; j++) {
327 // higher j have higher ssd already, so they're unlikely to use a suboptimal next sample too
328 const int range = (j < frontier/2) ? 1 : 0;
329 const int step = nodes[j]->step;
330 int nidx;
331 if(version == CODEC_ID_ADPCM_MS) {
332 const int predictor = ((nodes[j]->sample1 * c->coeff1) + (nodes[j]->sample2 * c->coeff2)) / 256;
333 const int div = (sample - predictor) / step;
334 const int nmin = av_clip(div-range, -8, 6);
335 const int nmax = av_clip(div+range, -7, 7);
336 for(nidx=nmin; nidx<=nmax; nidx++) {
337 const int nibble = nidx & 0xf;
338 int dec_sample = predictor + nidx * step;
339 #define STORE_NODE(NAME, STEP_INDEX)\
340 int d;\
341 uint32_t ssd;\
342 CLAMP_TO_SHORT(dec_sample);\
343 d = sample - dec_sample;\
344 ssd = nodes[j]->ssd + d*d;\
345 if(nodes_next[frontier-1] && ssd >= nodes_next[frontier-1]->ssd)\
346 continue;\
347 /* Collapse any two states with the same previous sample value. \
348 * One could also distinguish states by step and by 2nd to last
349 * sample, but the effects of that are negligible. */\
350 for(k=0; k<frontier && nodes_next[k]; k++) {\
351 if(dec_sample == nodes_next[k]->sample1) {\
352 assert(ssd >= nodes_next[k]->ssd);\
353 goto next_##NAME;\
354 }\
355 }\
356 for(k=0; k<frontier; k++) {\
357 if(!nodes_next[k] || ssd < nodes_next[k]->ssd) {\
358 TrellisNode *u = nodes_next[frontier-1];\
359 if(!u) {\
360 assert(pathn < max_paths);\
361 u = t++;\
362 u->path = pathn++;\
363 }\
364 u->ssd = ssd;\
365 u->step = STEP_INDEX;\
366 u->sample2 = nodes[j]->sample1;\
367 u->sample1 = dec_sample;\
368 paths[u->path].nibble = nibble;\
369 paths[u->path].prev = nodes[j]->path;\
370 memmove(&nodes_next[k+1], &nodes_next[k], (frontier-k-1)*sizeof(TrellisNode*));\
371 nodes_next[k] = u;\
372 break;\
373 }\
374 }\
375 next_##NAME:;
376 STORE_NODE(ms, FFMAX(16, (AdaptationTable[nibble] * step) >> 8));
377 }
378 } else if(version == CODEC_ID_ADPCM_IMA_WAV) {
379 #define LOOP_NODES(NAME, STEP_TABLE, STEP_INDEX)\
380 const int predictor = nodes[j]->sample1;\
381 const int div = (sample - predictor) * 4 / STEP_TABLE;\
382 int nmin = av_clip(div-range, -7, 6);\
383 int nmax = av_clip(div+range, -6, 7);\
384 if(nmin<=0) nmin--; /* distinguish -0 from +0 */\
385 if(nmax<0) nmax--;\
386 for(nidx=nmin; nidx<=nmax; nidx++) {\
387 const int nibble = nidx<0 ? 7-nidx : nidx;\
388 int dec_sample = predictor + (STEP_TABLE * yamaha_difflookup[nibble]) / 8;\
389 STORE_NODE(NAME, STEP_INDEX);\
390 }
391 LOOP_NODES(ima, step_table[step], av_clip(step + index_table[nibble], 0, 88));
392 } else { //CODEC_ID_ADPCM_YAMAHA
393 LOOP_NODES(yamaha, step, av_clip((step * yamaha_indexscale[nibble]) >> 8, 127, 24567));
394 #undef LOOP_NODES
395 #undef STORE_NODE
396 }
397 }
398
399 u = nodes;
400 nodes = nodes_next;
401 nodes_next = u;
402
403 // prevent overflow
404 if(nodes[0]->ssd > (1<<28)) {
405 for(j=1; j<frontier && nodes[j]; j++)
406 nodes[j]->ssd -= nodes[0]->ssd;
407 nodes[0]->ssd = 0;
408 }
409
410 // merge old paths to save memory
411 if(i == froze + FREEZE_INTERVAL) {
412 p = &paths[nodes[0]->path];
413 for(k=i; k>froze; k--) {
414 dst[k] = p->nibble;
415 p = &paths[p->prev];
416 }
417 froze = i;
418 pathn = 0;
419 // other nodes might use paths that don't coincide with the frozen one.
420 // checking which nodes do so is too slow, so just kill them all.
421 // this also slightly improves quality, but I don't know why.
422 memset(nodes+1, 0, (frontier-1)*sizeof(TrellisNode*));
423 }
424 }
425
426 p = &paths[nodes[0]->path];
427 for(i=n-1; i>froze; i--) {
428 dst[i] = p->nibble;
429 p = &paths[p->prev];
430 }
431
432 c->predictor = nodes[0]->sample1;
433 c->sample1 = nodes[0]->sample1;
434 c->sample2 = nodes[0]->sample2;
435 c->step_index = nodes[0]->step;
436 c->step = nodes[0]->step;
437 c->idelta = nodes[0]->step;
438 }
439
440 static int adpcm_encode_frame(AVCodecContext *avctx,
441 unsigned char *frame, int buf_size, void *data)
442 {
443 int n, i, st;
444 short *samples;
445 unsigned char *dst;
446 ADPCMContext *c = avctx->priv_data;
447
448 dst = frame;
449 samples = (short *)data;
450 st= avctx->channels == 2;
451 /* n = (BLKSIZE - 4 * avctx->channels) / (2 * 8 * avctx->channels); */
452
453 switch(avctx->codec->id) {
454 case CODEC_ID_ADPCM_IMA_QT: /* XXX: can't test until we get .mov writer */
455 break;
456 case CODEC_ID_ADPCM_IMA_WAV:
457 n = avctx->frame_size / 8;
458 c->status[0].prev_sample = (signed short)samples[0]; /* XXX */
459 /* c->status[0].step_index = 0; *//* XXX: not sure how to init the state machine */
460 bytestream_put_le16(&dst, c->status[0].prev_sample);
461 *dst++ = (unsigned char)c->status[0].step_index;
462 *dst++ = 0; /* unknown */
463 samples++;
464 if (avctx->channels == 2) {
465 c->status[1].prev_sample = (signed short)samples[1];
466 /* c->status[1].step_index = 0; */
467 bytestream_put_le16(&dst, c->status[1].prev_sample);
468 *dst++ = (unsigned char)c->status[1].step_index;
469 *dst++ = 0;
470 samples++;
471 }
472
473 /* stereo: 4 bytes (8 samples) for left, 4 bytes for right, 4 bytes left, ... */
474 if(avctx->trellis > 0) {
475 uint8_t buf[2][n*8];
476 adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n*8);
477 if(avctx->channels == 2)
478 adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n*8);
479 for(i=0; i<n; i++) {
480 *dst++ = buf[0][8*i+0] | (buf[0][8*i+1] << 4);
481 *dst++ = buf[0][8*i+2] | (buf[0][8*i+3] << 4);
482 *dst++ = buf[0][8*i+4] | (buf[0][8*i+5] << 4);
483 *dst++ = buf[0][8*i+6] | (buf[0][8*i+7] << 4);
484 if (avctx->channels == 2) {
485 *dst++ = buf[1][8*i+0] | (buf[1][8*i+1] << 4);
486 *dst++ = buf[1][8*i+2] | (buf[1][8*i+3] << 4);
487 *dst++ = buf[1][8*i+4] | (buf[1][8*i+5] << 4);
488 *dst++ = buf[1][8*i+6] | (buf[1][8*i+7] << 4);
489 }
490 }
491 } else
492 for (; n>0; n--) {
493 *dst = adpcm_ima_compress_sample(&c->status[0], samples[0]) & 0x0F;
494 *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels]) << 4) & 0xF0;
495 dst++;
496 *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 2]) & 0x0F;
497 *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 3]) << 4) & 0xF0;
498 dst++;
499 *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 4]) & 0x0F;
500 *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 5]) << 4) & 0xF0;
501 dst++;
502 *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 6]) & 0x0F;
503 *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 7]) << 4) & 0xF0;
504 dst++;
505 /* right channel */
506 if (avctx->channels == 2) {
507 *dst = adpcm_ima_compress_sample(&c->status[1], samples[1]);
508 *dst |= adpcm_ima_compress_sample(&c->status[1], samples[3]) << 4;
509 dst++;
510 *dst = adpcm_ima_compress_sample(&c->status[1], samples[5]);
511 *dst |= adpcm_ima_compress_sample(&c->status[1], samples[7]) << 4;
512 dst++;
513 *dst = adpcm_ima_compress_sample(&c->status[1], samples[9]);
514 *dst |= adpcm_ima_compress_sample(&c->status[1], samples[11]) << 4;
515 dst++;
516 *dst = adpcm_ima_compress_sample(&c->status[1], samples[13]);
517 *dst |= adpcm_ima_compress_sample(&c->status[1], samples[15]) << 4;
518 dst++;
519 }
520 samples += 8 * avctx->channels;
521 }
522 break;
523 case CODEC_ID_ADPCM_SWF:
524 {
525 int i;
526 PutBitContext pb;
527 init_put_bits(&pb, dst, buf_size*8);
528
529 //Store AdpcmCodeSize
530 put_bits(&pb, 2, 2); //Set 4bits flash adpcm format
531
532 //Init the encoder state
533 for(i=0; i<avctx->channels; i++){
534 c->status[i].step_index = av_clip(c->status[i].step_index, 0, 63); // clip step so it fits 6 bits
535 put_bits(&pb, 16, samples[i] & 0xFFFF);
536 put_bits(&pb, 6, c->status[i].step_index);
537 c->status[i].prev_sample = (signed short)samples[i];
538 }
539
540 for (i=1; i<avctx->frame_size; i++) {
541 put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels*i]) & 0xF);
542 if (avctx->channels == 2)
543 put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[1], samples[2*i+1]) & 0xF);
544 }
545 flush_put_bits(&pb);
546 dst += put_bits_count(&pb)>>3;
547 break;
548 }
549 case CODEC_ID_ADPCM_MS:
550 for(i=0; i<avctx->channels; i++){
551 int predictor=0;
552
553 *dst++ = predictor;
554 c->status[i].coeff1 = AdaptCoeff1[predictor];
555 c->status[i].coeff2 = AdaptCoeff2[predictor];
556 }
557 for(i=0; i<avctx->channels; i++){
558 if (c->status[i].idelta < 16)
559 c->status[i].idelta = 16;
560
561 bytestream_put_le16(&dst, c->status[i].idelta);
562 }
563 for(i=0; i<avctx->channels; i++){
564 c->status[i].sample1= *samples++;
565
566 bytestream_put_le16(&dst, c->status[i].sample1);
567 }
568 for(i=0; i<avctx->channels; i++){
569 c->status[i].sample2= *samples++;
570
571 bytestream_put_le16(&dst, c->status[i].sample2);
572 }
573
574 if(avctx->trellis > 0) {
575 int n = avctx->block_align - 7*avctx->channels;
576 uint8_t buf[2][n];
577 if(avctx->channels == 1) {
578 n *= 2;
579 adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
580 for(i=0; i<n; i+=2)
581 *dst++ = (buf[0][i] << 4) | buf[0][i+1];
582 } else {
583 adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
584 adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n);
585 for(i=0; i<n; i++)
586 *dst++ = (buf[0][i] << 4) | buf[1][i];
587 }
588 } else
589 for(i=7*avctx->channels; i<avctx->block_align; i++) {
590 int nibble;
591 nibble = adpcm_ms_compress_sample(&c->status[ 0], *samples++)<<4;
592 nibble|= adpcm_ms_compress_sample(&c->status[st], *samples++);
593 *dst++ = nibble;
594 }
595 break;
596 case CODEC_ID_ADPCM_YAMAHA:
597 n = avctx->frame_size / 2;
598 if(avctx->trellis > 0) {
599 uint8_t buf[2][n*2];
600 n *= 2;
601 if(avctx->channels == 1) {
602 adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
603 for(i=0; i<n; i+=2)
604 *dst++ = buf[0][i] | (buf[0][i+1] << 4);
605 } else {
606 adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
607 adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n);
608 for(i=0; i<n; i++)
609 *dst++ = buf[0][i] | (buf[1][i] << 4);
610 }
611 } else
612 for (; n>0; n--) {
613 for(i = 0; i < avctx->channels; i++) {
614 int nibble;
615 nibble = adpcm_yamaha_compress_sample(&c->status[i], samples[i]);
616 nibble |= adpcm_yamaha_compress_sample(&c->status[i], samples[i+avctx->channels]) << 4;
617 *dst++ = nibble;
618 }
619 samples += 2 * avctx->channels;
620 }
621 break;
622 default:
623 return -1;
624 }
625 return dst - frame;
626 }
627 #endif //CONFIG_ENCODERS
628
629 static int adpcm_decode_init(AVCodecContext * avctx)
630 {
631 ADPCMContext *c = avctx->priv_data;
632
633 if(avctx->channels > 2U){
634 return -1;
635 }
636
637 c->channel = 0;
638 c->status[0].predictor = c->status[1].predictor = 0;
639 c->status[0].step_index = c->status[1].step_index = 0;
640 c->status[0].step = c->status[1].step = 0;
641
642 switch(avctx->codec->id) {
643 case CODEC_ID_ADPCM_CT:
644 c->status[0].step = c->status[1].step = 511;
645 break;
646 case CODEC_ID_ADPCM_IMA_WS:
647 if (avctx->extradata && avctx->extradata_size == 2 * 4) {
648 c->status[0].predictor = AV_RL32(avctx->extradata);
649 c->status[1].predictor = AV_RL32(avctx->extradata + 4);
650 }
651 break;
652 default:
653 break;
654 }
655 return 0;
656 }
657
658 static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift)
659 {
660 int step_index;
661 int predictor;
662 int sign, delta, diff, step;
663
664 step = step_table[c->step_index];
665 step_index = c->step_index + index_table[(unsigned)nibble];
666 if (step_index < 0) step_index = 0;
667 else if (step_index > 88) step_index = 88;
668
669 sign = nibble & 8;
670 delta = nibble & 7;
671 /* perform direct multiplication instead of series of jumps proposed by
672 * the reference ADPCM implementation since modern CPUs can do the mults
673 * quickly enough */
674 diff = ((2 * delta + 1) * step) >> shift;
675 predictor = c->predictor;
676 if (sign) predictor -= diff;
677 else predictor += diff;
678
679 CLAMP_TO_SHORT(predictor);
680 c->predictor = predictor;
681 c->step_index = step_index;
682
683 return (short)predictor;
684 }
685
686 static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, char nibble)
687 {
688 int predictor;
689
690 predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 256;
691 predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
692 CLAMP_TO_SHORT(predictor);
693
694 c->sample2 = c->sample1;
695 c->sample1 = predictor;
696 c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
697 if (c->idelta < 16) c->idelta = 16;
698
699 return (short)predictor;
700 }
701
702 static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble)
703 {
704 int predictor;
705 int sign, delta, diff;
706 int new_step;
707
708 sign = nibble & 8;
709 delta = nibble & 7;
710 /* perform direct multiplication instead of series of jumps proposed by
711 * the reference ADPCM implementation since modern CPUs can do the mults
712 * quickly enough */
713 diff = ((2 * delta + 1) * c->step) >> 3;
714 predictor = c->predictor;
715 /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */
716 if(sign)
717 predictor = ((predictor * 254) >> 8) - diff;
718 else
719 predictor = ((predictor * 254) >> 8) + diff;
720 /* calculate new step and clamp it to range 511..32767 */
721 new_step = (ct_adpcm_table[nibble & 7] * c->step) >> 8;
722 c->step = new_step;
723 if(c->step < 511)
724 c->step = 511;
725 if(c->step > 32767)
726 c->step = 32767;
727
728 CLAMP_TO_SHORT(predictor);
729 c->predictor = predictor;
730 return (short)predictor;
731 }
732
733 static inline short adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, char nibble, int size, int shift)
734 {
735 int sign, delta, diff;
736
737 sign = nibble & (1<<(size-1));
738 delta = nibble & ((1<<(size-1))-1);
739 diff = delta << (7 + c->step + shift);
740
741 if (sign)
742 c->predictor -= diff;
743 else
744 c->predictor += diff;
745
746 /* clamp result */
747 if (c->predictor > 16256)
748 c->predictor = 16256;
749 else if (c->predictor < -16384)
750 c->predictor = -16384;
751
752 /* calculate new step */
753 if (delta >= (2*size - 3) && c->step < 3)
754 c->step++;
755 else if (delta == 0 && c->step > 0)
756 c->step--;
757
758 return (short) c->predictor;
759 }
760
761 static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned char nibble)
762 {
763 if(!c->step) {
764 c->predictor = 0;
765 c->step = 127;
766 }
767
768 c->predictor += (c->step * yamaha_difflookup[nibble]) / 8;
769 CLAMP_TO_SHORT(c->predictor);
770 c->step = (c->step * yamaha_indexscale[nibble]) >> 8;
771 c->step = av_clip(c->step, 127, 24567);
772 return c->predictor;
773 }
774
775 static void xa_decode(short *out, const unsigned char *in,
776 ADPCMChannelStatus *left, ADPCMChannelStatus *right, int inc)
777 {
778 int i, j;
779 int shift,filter,f0,f1;
780 int s_1,s_2;
781 int d,s,t;
782
783 for(i=0;i<4;i++) {
784
785 shift = 12 - (in[4+i*2] & 15);
786 filter = in[4+i*2] >> 4;
787 f0 = xa_adpcm_table[filter][0];
788 f1 = xa_adpcm_table[filter][1];
789
790 s_1 = left->sample1;
791 s_2 = left->sample2;
792
793 for(j=0;j<28;j++) {
794 d = in[16+i+j*4];
795
796 t = (signed char)(d<<4)>>4;
797 s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
798 CLAMP_TO_SHORT(s);
799 *out = s;
800 out += inc;
801 s_2 = s_1;
802 s_1 = s;
803 }
804
805 if (inc==2) { /* stereo */
806 left->sample1 = s_1;
807 left->sample2 = s_2;
808 s_1 = right->sample1;
809 s_2 = right->sample2;
810 out = out + 1 - 28*2;
811 }
812
813 shift = 12 - (in[5+i*2] & 15);
814 filter = in[5+i*2] >> 4;
815
816 f0 = xa_adpcm_table[filter][0];
817 f1 = xa_adpcm_table[filter][1];
818
819 for(j=0;j<28;j++) {
820 d = in[16+i+j*4];
821
822 t = (signed char)d >> 4;
823 s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
824 CLAMP_TO_SHORT(s);
825 *out = s;
826 out += inc;
827 s_2 = s_1;
828 s_1 = s;
829 }
830
831 if (inc==2) { /* stereo */
832 right->sample1 = s_1;
833 right->sample2 = s_2;
834 out -= 1;
835 } else {
836 left->sample1 = s_1;
837 left->sample2 = s_2;
838 }
839 }
840 }
841
842
843 /* DK3 ADPCM support macro */
844 #define DK3_GET_NEXT_NIBBLE() \
845 if (decode_top_nibble_next) \
846 { \
847 nibble = (last_byte >> 4) & 0x0F; \
848 decode_top_nibble_next = 0; \
849 } \
850 else \
851 { \
852 last_byte = *src++; \
853 if (src >= buf + buf_size) break; \
854 nibble = last_byte & 0x0F; \
855 decode_top_nibble_next = 1; \
856 }
857
858 static int adpcm_decode_frame(AVCodecContext *avctx,
859 void *data, int *data_size,
860 uint8_t *buf, int buf_size)
861 {
862 ADPCMContext *c = avctx->priv_data;
863 ADPCMChannelStatus *cs;
864 int n, m, channel, i;
865 int block_predictor[2];
866 short *samples;
867 short *samples_end;
868 uint8_t *src;
869 int st; /* stereo */
870
871 /* DK3 ADPCM accounting variables */
872 unsigned char last_byte = 0;
873 unsigned char nibble;
874 int decode_top_nibble_next = 0;
875 int diff_channel;
876
877 /* EA ADPCM state variables */
878 uint32_t samples_in_chunk;
879 int32_t previous_left_sample, previous_right_sample;
880 int32_t current_left_sample, current_right_sample;
881 int32_t next_left_sample, next_right_sample;
882 int32_t coeff1l, coeff2l, coeff1r, coeff2r;
883 uint8_t shift_left, shift_right;
884 int count1, count2;
885
886 if (!buf_size)
887 return 0;
888
889 //should protect all 4bit ADPCM variants
890 //8 is needed for CODEC_ID_ADPCM_IMA_WAV with 2 channels
891 //
892 if(*data_size/4 < buf_size + 8)
893 return -1;
894
895 samples = data;
896 samples_end= samples + *data_size/2;
897 *data_size= 0;
898 src = buf;
899
900 st = avctx->channels == 2 ? 1 : 0;
901
902 switch(avctx->codec->id) {
903 case CODEC_ID_ADPCM_IMA_QT:
904 n = (buf_size - 2);/* >> 2*avctx->channels;*/
905 channel = c->channel;
906 cs = &(c->status[channel]);
907 /* (pppppp) (piiiiiii) */
908
909 /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
910 cs->predictor = (*src++) << 8;
911 cs->predictor |= (*src & 0x80);
912 cs->predictor &= 0xFF80;
913
914 /* sign extension */
915 if(cs->predictor & 0x8000)
916 cs->predictor -= 0x10000;
917
918 CLAMP_TO_SHORT(cs->predictor);
919
920 cs->step_index = (*src++) & 0x7F;
921
922 if (cs->step_index > 88){
923 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
924 cs->step_index = 88;
925 }
926
927 cs->step = step_table[cs->step_index];
928
929 if (st && channel)
930 samples++;
931
932 for(m=32; n>0 && m>0; n--, m--) { /* in QuickTime, IMA is encoded by chuncks of 34 bytes (=64 samples) */
933 *samples = adpcm_ima_expand_nibble(cs, src[0] & 0x0F, 3);
934 samples += avctx->channels;
935 *samples = adpcm_ima_expand_nibble(cs, (src[0] >> 4) & 0x0F, 3);
936 samples += avctx->channels;
937 src ++;
938 }
939
940 if(st) { /* handle stereo interlacing */
941 c->channel = (channel + 1) % 2; /* we get one packet for left, then one for right data */
942 if(channel == 1) { /* wait for the other packet before outputing anything */
943 return src - buf;
944 }
945 }
946 break;
947 case CODEC_ID_ADPCM_IMA_WAV:
948 if (avctx->block_align != 0 && buf_size > avctx->block_align)
949 buf_size = avctx->block_align;
950
951 // samples_per_block= (block_align-4*chanels)*8 / (bits_per_sample * chanels) + 1;
952
953 for(i=0; i<avctx->channels; i++){
954 cs = &(c->status[i]);
955 cs->predictor = (int16_t)(src[0] + (src[1]<<8));
956 src+=2;
957
958 // XXX: is this correct ??: *samples++ = cs->predictor;
959
960 cs->step_index = *src++;
961 if (cs->step_index > 88){
962 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
963 cs->step_index = 88;
964 }
965 if (*src++) av_log(avctx, AV_LOG_ERROR, "unused byte should be null but is %d!!\n", src[-1]); /* unused */
966 }
967
968 while(src < buf + buf_size){
969 for(m=0; m<4; m++){
970 for(i=0; i<=st; i++)
971 *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] & 0x0F, 3);
972 for(i=0; i<=st; i++)
973 *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] >> 4 , 3);
974 src++;
975 }
976 src += 4*st;
977 }
978 break;
979 case CODEC_ID_ADPCM_4XM:
980 cs = &(c->status[0]);
981 c->status[0].predictor= (int16_t)(src[0] + (src[1]<<8)); src+=2;
982 if(st){
983 c->status[1].predictor= (int16_t)(src[0] + (src[1]<<8)); src+=2;
984 }
985 c->status[0].step_index= (int16_t)(src[0] + (src[1]<<8)); src+=2;
986 if(st){
987 c->status[1].step_index= (int16_t)(src[0] + (src[1]<<8)); src+=2;
988 }
989 if (cs->step_index < 0) cs->step_index = 0;
990 if (cs->step_index > 88) cs->step_index = 88;
991
992 m= (buf_size - (src - buf))>>st;
993 for(i=0; i<m; i++) {
994 *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] & 0x0F, 4);
995 if (st)
996 *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] & 0x0F, 4);
997 *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] >> 4, 4);
998 if (st)
999 *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] >> 4, 4);
1000 }
1001
1002 src += m<<st;
1003
1004 break;
1005 case CODEC_ID_ADPCM_MS:
1006 if (avctx->block_align != 0 && buf_size > avctx->block_align)
1007 buf_size = avctx->block_align;
1008 n = buf_size - 7 * avctx->channels;
1009 if (n < 0)
1010 return -1;
1011 block_predictor[0] = av_clip(*src++, 0, 7);
1012 block_predictor[1] = 0;
1013 if (st)
1014 block_predictor[1] = av_clip(*src++, 0, 7);
1015 c->status[0].idelta = (int16_t)((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
1016 src+=2;
1017 if (st){
1018 c->status[1].idelta = (int16_t)((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
1019 src+=2;
1020 }
1021 c->status[0].coeff1 = AdaptCoeff1[block_predictor[0]];
1022 c->status[0].coeff2 = AdaptCoeff2[block_predictor[0]];
1023 c->status[1].coeff1 = AdaptCoeff1[block_predictor[1]];
1024 c->status[1].coeff2 = AdaptCoeff2[block_predictor[1]];
1025
1026 c->status[0].sample1 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
1027 src+=2;
1028 if (st) c->status[1].sample1 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
1029 if (st) src+=2;
1030 c->status[0].sample2 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
1031 src+=2;
1032 if (st) c->status[1].sample2 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
1033 if (st) src+=2;
1034
1035 *samples++ = c->status[0].sample1;
1036 if (st) *samples++ = c->status[1].sample1;
1037 *samples++ = c->status[0].sample2;
1038 if (st) *samples++ = c->status[1].sample2;
1039 for(;n>0;n--) {
1040 *samples++ = adpcm_ms_expand_nibble(&c->status[0], (src[0] >> 4) & 0x0F);
1041 *samples++ = adpcm_ms_expand_nibble(&c->status[st], src[0] & 0x0F);
1042 src ++;
1043 }
1044 break;
1045 case CODEC_ID_ADPCM_IMA_DK4:
1046 if (avctx->block_align != 0 && buf_size > avctx->block_align)
1047 buf_size = avctx->block_align;
1048
1049 c->status[0].predictor = (int16_t)(src[0] | (src[1] << 8));
1050 c->status[0].step_index = src[2];
1051 src += 4;
1052 *samples++ = c->status[0].predictor;
1053 if (st) {
1054 c->status[1].predictor = (int16_t)(src[0] | (src[1] << 8));
1055 c->status[1].step_index = src[2];
1056 src += 4;
1057 *samples++ = c->status[1].predictor;
1058 }
1059 while (src < buf + buf_size) {
1060
1061 /* take care of the top nibble (always left or mono channel) */
1062 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1063 (src[0] >> 4) & 0x0F, 3);
1064
1065 /* take care of the bottom nibble, which is right sample for
1066 * stereo, or another mono sample */
1067 if (st)
1068 *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1069 src[0] & 0x0F, 3);
1070 else
1071 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1072 src[0] & 0x0F, 3);
1073
1074 src++;
1075 }
1076 break;
1077 case CODEC_ID_ADPCM_IMA_DK3:
1078 if (avctx->block_align != 0 && buf_size > avctx->block_align)
1079 buf_size = avctx->block_align;
1080
1081 if(buf_size + 16 > (samples_end - samples)*3/8)
1082 return -1;
1083
1084 c->status[0].predictor = (int16_t)(src[10] | (src[11] << 8));
1085 c->status[1].predictor = (int16_t)(src[12] | (src[13] << 8));
1086 c->status[0].step_index = src[14];
1087 c->status[1].step_index = src[15];
1088 /* sign extend the predictors */
1089 src += 16;
1090 diff_channel = c->status[1].predictor;
1091
1092 /* the DK3_GET_NEXT_NIBBLE macro issues the break statement when
1093 * the buffer is consumed */
1094 while (1) {
1095
1096 /* for this algorithm, c->status[0] is the sum channel and
1097 * c->status[1] is the diff channel */
1098
1099 /* process the first predictor of the sum channel */
1100 DK3_GET_NEXT_NIBBLE();
1101 adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1102
1103 /* process the diff channel predictor */
1104 DK3_GET_NEXT_NIBBLE();
1105 adpcm_ima_expand_nibble(&c->status[1], nibble, 3);
1106
1107 /* process the first pair of stereo PCM samples */
1108 diff_channel = (diff_channel + c->status[1].predictor) / 2;
1109 *samples++ = c->status[0].predictor + c->status[1].predictor;
1110 *samples++ = c->status[0].predictor - c->status[1].predictor;
1111
1112 /* process the second predictor of the sum channel */
1113 DK3_GET_NEXT_NIBBLE();
1114 adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1115
1116 /* process the second pair of stereo PCM samples */
1117 diff_channel = (diff_channel + c->status[1].predictor) / 2;
1118 *samples++ = c->status[0].predictor + c->status[1].predictor;
1119 *samples++ = c->status[0].predictor - c->status[1].predictor;
1120 }
1121 break;
1122 case CODEC_ID_ADPCM_IMA_WS:
1123 /* no per-block initialization; just start decoding the data */
1124 while (src < buf + buf_size) {
1125
1126 if (st) {
1127 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1128 (src[0] >> 4) & 0x0F, 3);
1129 *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1130 src[0] & 0x0F, 3);
1131 } else {
1132 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1133 (src[0] >> 4) & 0x0F, 3);
1134 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1135 src[0] & 0x0F, 3);
1136 }
1137
1138 src++;
1139 }
1140 break;
1141 case CODEC_ID_ADPCM_XA:
1142 c->status[0].sample1 = c->status[0].sample2 =
1143 c->status[1].sample1 = c->status[1].sample2 = 0;
1144 while (buf_size >= 128) {
1145 xa_decode(samples, src, &c->status[0], &c->status[1],
1146 avctx->channels);
1147 src += 128;
1148 samples += 28 * 8;
1149 buf_size -= 128;
1150 }
1151 break;
1152 case CODEC_ID_ADPCM_EA:
1153 samples_in_chunk = AV_RL32(src);
1154 if (samples_in_chunk >= ((buf_size - 12) * 2)) {
1155 src += buf_size;
1156 break;
1157 }
1158 src += 4;
1159 current_left_sample = (int16_t)AV_RL16(src);
1160 src += 2;
1161 previous_left_sample = (int16_t)AV_RL16(src);
1162 src += 2;
1163 current_right_sample = (int16_t)AV_RL16(src);
1164 src += 2;
1165 previous_right_sample = (int16_t)AV_RL16(src);
1166 src += 2;
1167
1168 for (count1 = 0; count1 < samples_in_chunk/28;count1++) {
1169 coeff1l = ea_adpcm_table[(*src >> 4) & 0x0F];
1170 coeff2l = ea_adpcm_table[((*src >> 4) & 0x0F) + 4];
1171 coeff1r = ea_adpcm_table[*src & 0x0F];
1172 coeff2r = ea_adpcm_table[(*src & 0x0F) + 4];
1173 src++;
1174
1175 shift_left = ((*src >> 4) & 0x0F) + 8;
1176 shift_right = (*src & 0x0F) + 8;
1177 src++;
1178
1179 for (count2 = 0; count2 < 28; count2++) {
1180 next_left_sample = (((*src & 0xF0) << 24) >> shift_left);
1181 next_right_sample = (((*src & 0x0F) << 28) >> shift_right);
1182 src++;
1183
1184 next_left_sample = (next_left_sample +
1185 (current_left_sample * coeff1l) +
1186 (previous_left_sample * coeff2l) + 0x80) >> 8;
1187 next_right_sample = (next_right_sample +
1188 (current_right_sample * coeff1r) +
1189 (previous_right_sample * coeff2r) + 0x80) >> 8;
1190 CLAMP_TO_SHORT(next_left_sample);
1191 CLAMP_TO_SHORT(next_right_sample);
1192
1193 previous_left_sample = current_left_sample;
1194 current_left_sample = next_left_sample;
1195 previous_right_sample = current_right_sample;
1196 current_right_sample = next_right_sample;
1197 *samples++ = (unsigned short)current_left_sample;
1198 *samples++ = (unsigned short)current_right_sample;
1199 }
1200 }
1201 break;
1202 case CODEC_ID_ADPCM_IMA_SMJPEG:
1203 c->status[0].predictor = *src;
1204 src += 2;
1205 c->status[0].step_index = *src++;
1206 src++; /* skip another byte before getting to the meat */
1207 while (src < buf + buf_size) {
1208 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1209 *src & 0x0F, 3);
1210 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1211 (*src >> 4) & 0x0F, 3);
1212 src++;
1213 }
1214 break;
1215 case CODEC_ID_ADPCM_CT:
1216 while (src < buf + buf_size) {
1217 if (st) {
1218 *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1219 (src[0] >> 4) & 0x0F);
1220 *samples++ = adpcm_ct_expand_nibble(&c->status[1],
1221 src[0] & 0x0F);
1222 } else {
1223 *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1224 (src[0] >> 4) & 0x0F);
1225 *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1226 src[0] & 0x0F);
1227 }
1228 src++;
1229 }
1230 break;
1231 case CODEC_ID_ADPCM_SBPRO_4:
1232 case CODEC_ID_ADPCM_SBPRO_3:
1233 case CODEC_ID_ADPCM_SBPRO_2:
1234 if (!c->status[0].step_index) {
1235 /* the first byte is a raw sample */
1236 *samples++ = 128 * (*src++ - 0x80);
1237 if (st)
1238 *samples++ = 128 * (*src++ - 0x80);
1239 c->status[0].step_index = 1;
1240 }
1241 if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_4) {
1242 while (src < buf + buf_size) {
1243 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1244 (src[0] >> 4) & 0x0F, 4, 0);
1245 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1246 src[0] & 0x0F, 4, 0);
1247 src++;
1248 }
1249 } else if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_3) {
1250 while (src < buf + buf_size && samples + 2 < samples_end) {
1251 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1252 (src[0] >> 5) & 0x07, 3, 0);
1253 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1254 (src[0] >> 2) & 0x07, 3, 0);
1255 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1256 src[0] & 0x03, 2, 0);
1257 src++;
1258 }
1259 } else {
1260 while (src < buf + buf_size && samples + 3 < samples_end) {
1261 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1262 (src[0] >> 6) & 0x03, 2, 2);
1263 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1264 (src[0] >> 4) & 0x03, 2, 2);
1265 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1266 (src[0] >> 2) & 0x03, 2, 2);
1267 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1268 src[0] & 0x03, 2, 2);
1269 src++;
1270 }
1271 }
1272 break;
1273 case CODEC_ID_ADPCM_SWF:
1274 {
1275 GetBitContext gb;
1276 const int *table;
1277 int k0, signmask, nb_bits, count;
1278 int size = buf_size*8;
1279
1280 init_get_bits(&gb, buf, size);
1281
1282 //read bits & initial values
1283 nb_bits = get_bits(&gb, 2)+2;
1284 //av_log(NULL,AV_LOG_INFO,"nb_bits: %d\n", nb_bits);
1285 table = swf_index_tables[nb_bits-2];
1286 k0 = 1 << (nb_bits-2);
1287 signmask = 1 << (nb_bits-1);
1288
1289 while (get_bits_count(&gb) <= size - 22*avctx->channels) {
1290 for (i = 0; i < avctx->channels; i++) {
1291 *samples++ = c->status[i].predictor = get_sbits(&gb, 16);
1292 c->status[i].step_index = get_bits(&gb, 6);
1293 }
1294
1295 for (count = 0; get_bits_count(&gb) <= size - nb_bits*avctx->channels && count < 4095; count++) {
1296 int i;
1297
1298 for (i = 0; i < avctx->channels; i++) {
1299 // similar to IMA adpcm
1300 int delta = get_bits(&gb, nb_bits);
1301 int step = step_table[c->status[i].step_index];
1302 long vpdiff = 0; // vpdiff = (delta+0.5)*step/4
1303 int k = k0;
1304
1305 do {
1306 if (delta & k)
1307 vpdiff += step;
1308 step >>= 1;
1309 k >>= 1;
1310 } while(k);
1311 vpdiff += step;
1312
1313 if (delta & signmask)
1314 c->status[i].predictor -= vpdiff;
1315 else
1316 c->status[i].predictor += vpdiff;
1317
1318 c->status[i].step_index += table[delta & (~signmask)];
1319
1320 c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88);
1321 c->status[i].predictor = av_clip(c->status[i].predictor, -32768, 32767);
1322
1323 *samples++ = c->status[i].predictor;
1324 if (samples >= samples_end) {
1325 av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n");
1326 return -1;
1327 }
1328 }
1329 }
1330 }
1331 src += buf_size;
1332 break;
1333 }
1334 case CODEC_ID_ADPCM_YAMAHA:
1335 while (src < buf + buf_size) {
1336 if (st) {
1337 *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1338 src[0] & 0x0F);
1339 *samples++ = adpcm_yamaha_expand_nibble(&c->status[1],
1340 (src[0] >> 4) & 0x0F);
1341 } else {
1342 *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1343 src[0] & 0x0F);
1344 *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1345 (src[0] >> 4) & 0x0F);
1346 }
1347 src++;
1348 }
1349 break;
1350 case CODEC_ID_ADPCM_THP:
1351 {
1352 int table[2][16];
1353 unsigned int samplecnt;
1354 int prev[2][2];
1355 int ch;
1356
1357 if (buf_size < 80) {
1358 av_log(avctx, AV_LOG_ERROR, "frame too small\n");
1359 return -1;
1360 }
1361
1362 src+=4;
1363 samplecnt = bytestream_get_be32(&src);
1364
1365 for (i = 0; i < 32; i++)
1366 table[0][i] = (int16_t)bytestream_get_be16(&src);
1367
1368 /* Initialize the previous sample. */
1369 for (i = 0; i < 4; i++)
1370 prev[0][i] = (int16_t)bytestream_get_be16(&src);
1371
1372 if (samplecnt >= (samples_end - samples) / (st + 1)) {
1373 av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n");
1374 return -1;
1375 }
1376
1377 for (ch = 0; ch <= st; ch++) {
1378 samples = (unsigned short *) data + ch;
1379
1380 /* Read in every sample for this channel. */
1381 for (i = 0; i < samplecnt / 14; i++) {
1382 int index = (*src >> 4) & 7;
1383 unsigned int exp = 28 - (*src++ & 15);
1384 int factor1 = table[ch][index * 2];
1385 int factor2 = table[ch][index * 2 + 1];
1386
1387 /* Decode 14 samples. */
1388 for (n = 0; n < 14; n++) {
1389 int32_t sampledat;
1390 if(n&1) sampledat= *src++ <<28;
1391 else sampledat= (*src&0xF0)<<24;
1392
1393 sampledat = ((prev[ch][0]*factor1
1394 + prev[ch][1]*factor2) >> 11) + (sampledat>>exp);
1395 CLAMP_TO_SHORT(sampledat);
1396 *samples = sampledat;
1397 prev[ch][1] = prev[ch][0];
1398 prev[ch][0] = *samples++;
1399
1400 /* In case of stereo, skip one sample, this sample
1401 is for the other channel. */
1402 samples += st;
1403 }
1404 }
1405 }
1406
1407 /* In the previous loop, in case stereo is used, samples is
1408 increased exactly one time too often. */
1409 samples -= st;
1410 break;
1411 }
1412
1413 default:
1414 return -1;
1415 }
1416 *data_size = (uint8_t *)samples - (uint8_t *)data;
1417 return src - buf;
1418 }
1419
1420
1421
1422 #ifdef CONFIG_ENCODERS
1423 #define ADPCM_ENCODER(id,name) \
1424 AVCodec name ## _encoder = { \
1425 #name, \
1426 CODEC_TYPE_AUDIO, \
1427 id, \
1428 sizeof(ADPCMContext), \
1429 adpcm_encode_init, \
1430 adpcm_encode_frame, \
1431 adpcm_encode_close, \
1432 NULL, \
1433 };
1434 #else
1435 #define ADPCM_ENCODER(id,name)
1436 #endif
1437
1438 #ifdef CONFIG_DECODERS
1439 #define ADPCM_DECODER(id,name) \
1440 AVCodec name ## _decoder = { \
1441 #name, \
1442 CODEC_TYPE_AUDIO, \
1443 id, \
1444 sizeof(ADPCMContext), \
1445 adpcm_decode_init, \
1446 NULL, \
1447 NULL, \
1448 adpcm_decode_frame, \
1449 };
1450 #else
1451 #define ADPCM_DECODER(id,name)
1452 #endif
1453
1454 #define ADPCM_CODEC(id, name) \
1455 ADPCM_ENCODER(id,name) ADPCM_DECODER(id,name)
1456
1457 ADPCM_CODEC(CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt);
1458 ADPCM_CODEC(CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav);
1459 ADPCM_CODEC(CODEC_ID_ADPCM_IMA_DK3, adpcm_ima_dk3);
1460 ADPCM_CODEC(CODEC_ID_ADPCM_IMA_DK4, adpcm_ima_dk4);
1461 ADPCM_CODEC(CODEC_ID_ADPCM_IMA_WS, adpcm_ima_ws);
1462 ADPCM_CODEC(CODEC_ID_ADPCM_IMA_SMJPEG, adpcm_ima_smjpeg);
1463 ADPCM_CODEC(CODEC_ID_ADPCM_MS, adpcm_ms);
1464 ADPCM_CODEC(CODEC_ID_ADPCM_4XM, adpcm_4xm);
1465 ADPCM_CODEC(CODEC_ID_ADPCM_XA, adpcm_xa);
1466 ADPCM_CODEC(CODEC_ID_ADPCM_EA, adpcm_ea);
1467 ADPCM_CODEC(CODEC_ID_ADPCM_CT, adpcm_ct);
1468 ADPCM_CODEC(CODEC_ID_ADPCM_SWF, adpcm_swf);
1469 ADPCM_CODEC(CODEC_ID_ADPCM_YAMAHA, adpcm_yamaha);
1470 ADPCM_CODEC(CODEC_ID_ADPCM_SBPRO_4, adpcm_sbpro_4);
1471 ADPCM_CODEC(CODEC_ID_ADPCM_SBPRO_3, adpcm_sbpro_3);
1472 ADPCM_CODEC(CODEC_ID_ADPCM_SBPRO_2, adpcm_sbpro_2);
1473 ADPCM_CODEC(CODEC_ID_ADPCM_THP, adpcm_thp);
1474
1475 #undef ADPCM_CODEC