033e9bf0a1f2c21a45c9698de00f7ab0640dce1d
[libav.git] / libavcodec / bink.c
1 /*
2 * Bink video decoder
3 * Copyright (c) 2009 Konstantin Shishkov
4 * Copyright (C) 2011 Peter Ross <pross@xvid.org>
5 *
6 * This file is part of Libav.
7 *
8 * Libav is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * Libav is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with Libav; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23 #include "libavutil/imgutils.h"
24 #include "libavutil/internal.h"
25 #include "avcodec.h"
26 #include "dsputil.h"
27 #include "binkdata.h"
28 #include "binkdsp.h"
29 #include "internal.h"
30 #include "mathops.h"
31
32 #define BITSTREAM_READER_LE
33 #include "get_bits.h"
34
35 #define BINK_FLAG_ALPHA 0x00100000
36 #define BINK_FLAG_GRAY 0x00020000
37
38 static VLC bink_trees[16];
39
40 /**
41 * IDs for different data types used in old version of Bink video codec
42 */
43 enum OldSources {
44 BINKB_SRC_BLOCK_TYPES = 0, ///< 8x8 block types
45 BINKB_SRC_COLORS, ///< pixel values used for different block types
46 BINKB_SRC_PATTERN, ///< 8-bit values for 2-colour pattern fill
47 BINKB_SRC_X_OFF, ///< X components of motion value
48 BINKB_SRC_Y_OFF, ///< Y components of motion value
49 BINKB_SRC_INTRA_DC, ///< DC values for intrablocks with DCT
50 BINKB_SRC_INTER_DC, ///< DC values for interblocks with DCT
51 BINKB_SRC_INTRA_Q, ///< quantizer values for intrablocks with DCT
52 BINKB_SRC_INTER_Q, ///< quantizer values for interblocks with DCT
53 BINKB_SRC_INTER_COEFS, ///< number of coefficients for residue blocks
54
55 BINKB_NB_SRC
56 };
57
58 static const int binkb_bundle_sizes[BINKB_NB_SRC] = {
59 4, 8, 8, 5, 5, 11, 11, 4, 4, 7
60 };
61
62 static const int binkb_bundle_signed[BINKB_NB_SRC] = {
63 0, 0, 0, 1, 1, 0, 1, 0, 0, 0
64 };
65
66 static int32_t binkb_intra_quant[16][64];
67 static int32_t binkb_inter_quant[16][64];
68
69 /**
70 * IDs for different data types used in Bink video codec
71 */
72 enum Sources {
73 BINK_SRC_BLOCK_TYPES = 0, ///< 8x8 block types
74 BINK_SRC_SUB_BLOCK_TYPES, ///< 16x16 block types (a subset of 8x8 block types)
75 BINK_SRC_COLORS, ///< pixel values used for different block types
76 BINK_SRC_PATTERN, ///< 8-bit values for 2-colour pattern fill
77 BINK_SRC_X_OFF, ///< X components of motion value
78 BINK_SRC_Y_OFF, ///< Y components of motion value
79 BINK_SRC_INTRA_DC, ///< DC values for intrablocks with DCT
80 BINK_SRC_INTER_DC, ///< DC values for interblocks with DCT
81 BINK_SRC_RUN, ///< run lengths for special fill block
82
83 BINK_NB_SRC
84 };
85
86 /**
87 * data needed to decode 4-bit Huffman-coded value
88 */
89 typedef struct Tree {
90 int vlc_num; ///< tree number (in bink_trees[])
91 uint8_t syms[16]; ///< leaf value to symbol mapping
92 } Tree;
93
94 #define GET_HUFF(gb, tree) (tree).syms[get_vlc2(gb, bink_trees[(tree).vlc_num].table,\
95 bink_trees[(tree).vlc_num].bits, 1)]
96
97 /**
98 * data structure used for decoding single Bink data type
99 */
100 typedef struct Bundle {
101 int len; ///< length of number of entries to decode (in bits)
102 Tree tree; ///< Huffman tree-related data
103 uint8_t *data; ///< buffer for decoded symbols
104 uint8_t *data_end; ///< buffer end
105 uint8_t *cur_dec; ///< pointer to the not yet decoded part of the buffer
106 uint8_t *cur_ptr; ///< pointer to the data that is not read from buffer yet
107 } Bundle;
108
109 /*
110 * Decoder context
111 */
112 typedef struct BinkContext {
113 AVCodecContext *avctx;
114 DSPContext dsp;
115 BinkDSPContext bdsp;
116 AVFrame *pic, *last;
117 int version; ///< internal Bink file version
118 int has_alpha;
119 int swap_planes;
120
121 Bundle bundle[BINKB_NB_SRC]; ///< bundles for decoding all data types
122 Tree col_high[16]; ///< trees for decoding high nibble in "colours" data type
123 int col_lastval; ///< value of last decoded high nibble in "colours" data type
124 } BinkContext;
125
126 /**
127 * Bink video block types
128 */
129 enum BlockTypes {
130 SKIP_BLOCK = 0, ///< skipped block
131 SCALED_BLOCK, ///< block has size 16x16
132 MOTION_BLOCK, ///< block is copied from previous frame with some offset
133 RUN_BLOCK, ///< block is composed from runs of colours with custom scan order
134 RESIDUE_BLOCK, ///< motion block with some difference added
135 INTRA_BLOCK, ///< intra DCT block
136 FILL_BLOCK, ///< block is filled with single colour
137 INTER_BLOCK, ///< motion block with DCT applied to the difference
138 PATTERN_BLOCK, ///< block is filled with two colours following custom pattern
139 RAW_BLOCK, ///< uncoded 8x8 block
140 };
141
142 /**
143 * Initialize length length in all bundles.
144 *
145 * @param c decoder context
146 * @param width plane width
147 * @param bw plane width in 8x8 blocks
148 */
149 static void init_lengths(BinkContext *c, int width, int bw)
150 {
151 width = FFALIGN(width, 8);
152
153 c->bundle[BINK_SRC_BLOCK_TYPES].len = av_log2((width >> 3) + 511) + 1;
154
155 c->bundle[BINK_SRC_SUB_BLOCK_TYPES].len = av_log2((width >> 4) + 511) + 1;
156
157 c->bundle[BINK_SRC_COLORS].len = av_log2(bw*64 + 511) + 1;
158
159 c->bundle[BINK_SRC_INTRA_DC].len =
160 c->bundle[BINK_SRC_INTER_DC].len =
161 c->bundle[BINK_SRC_X_OFF].len =
162 c->bundle[BINK_SRC_Y_OFF].len = av_log2((width >> 3) + 511) + 1;
163
164 c->bundle[BINK_SRC_PATTERN].len = av_log2((bw << 3) + 511) + 1;
165
166 c->bundle[BINK_SRC_RUN].len = av_log2(bw*48 + 511) + 1;
167 }
168
169 /**
170 * Allocate memory for bundles.
171 *
172 * @param c decoder context
173 */
174 static av_cold void init_bundles(BinkContext *c)
175 {
176 int bw, bh, blocks;
177 int i;
178
179 bw = (c->avctx->width + 7) >> 3;
180 bh = (c->avctx->height + 7) >> 3;
181 blocks = bw * bh;
182
183 for (i = 0; i < BINKB_NB_SRC; i++) {
184 c->bundle[i].data = av_malloc(blocks * 64);
185 c->bundle[i].data_end = c->bundle[i].data + blocks * 64;
186 }
187 }
188
189 /**
190 * Free memory used by bundles.
191 *
192 * @param c decoder context
193 */
194 static av_cold void free_bundles(BinkContext *c)
195 {
196 int i;
197 for (i = 0; i < BINKB_NB_SRC; i++)
198 av_freep(&c->bundle[i].data);
199 }
200
201 /**
202 * Merge two consequent lists of equal size depending on bits read.
203 *
204 * @param gb context for reading bits
205 * @param dst buffer where merged list will be written to
206 * @param src pointer to the head of the first list (the second lists starts at src+size)
207 * @param size input lists size
208 */
209 static void merge(GetBitContext *gb, uint8_t *dst, uint8_t *src, int size)
210 {
211 uint8_t *src2 = src + size;
212 int size2 = size;
213
214 do {
215 if (!get_bits1(gb)) {
216 *dst++ = *src++;
217 size--;
218 } else {
219 *dst++ = *src2++;
220 size2--;
221 }
222 } while (size && size2);
223
224 while (size--)
225 *dst++ = *src++;
226 while (size2--)
227 *dst++ = *src2++;
228 }
229
230 /**
231 * Read information about Huffman tree used to decode data.
232 *
233 * @param gb context for reading bits
234 * @param tree pointer for storing tree data
235 */
236 static void read_tree(GetBitContext *gb, Tree *tree)
237 {
238 uint8_t tmp1[16] = { 0 }, tmp2[16], *in = tmp1, *out = tmp2;
239 int i, t, len;
240
241 tree->vlc_num = get_bits(gb, 4);
242 if (!tree->vlc_num) {
243 for (i = 0; i < 16; i++)
244 tree->syms[i] = i;
245 return;
246 }
247 if (get_bits1(gb)) {
248 len = get_bits(gb, 3);
249 for (i = 0; i <= len; i++) {
250 tree->syms[i] = get_bits(gb, 4);
251 tmp1[tree->syms[i]] = 1;
252 }
253 for (i = 0; i < 16 && len < 16 - 1; i++)
254 if (!tmp1[i])
255 tree->syms[++len] = i;
256 } else {
257 len = get_bits(gb, 2);
258 for (i = 0; i < 16; i++)
259 in[i] = i;
260 for (i = 0; i <= len; i++) {
261 int size = 1 << i;
262 for (t = 0; t < 16; t += size << 1)
263 merge(gb, out + t, in + t, size);
264 FFSWAP(uint8_t*, in, out);
265 }
266 memcpy(tree->syms, in, 16);
267 }
268 }
269
270 /**
271 * Prepare bundle for decoding data.
272 *
273 * @param gb context for reading bits
274 * @param c decoder context
275 * @param bundle_num number of the bundle to initialize
276 */
277 static void read_bundle(GetBitContext *gb, BinkContext *c, int bundle_num)
278 {
279 int i;
280
281 if (bundle_num == BINK_SRC_COLORS) {
282 for (i = 0; i < 16; i++)
283 read_tree(gb, &c->col_high[i]);
284 c->col_lastval = 0;
285 }
286 if (bundle_num != BINK_SRC_INTRA_DC && bundle_num != BINK_SRC_INTER_DC)
287 read_tree(gb, &c->bundle[bundle_num].tree);
288 c->bundle[bundle_num].cur_dec =
289 c->bundle[bundle_num].cur_ptr = c->bundle[bundle_num].data;
290 }
291
292 /**
293 * common check before starting decoding bundle data
294 *
295 * @param gb context for reading bits
296 * @param b bundle
297 * @param t variable where number of elements to decode will be stored
298 */
299 #define CHECK_READ_VAL(gb, b, t) \
300 if (!b->cur_dec || (b->cur_dec > b->cur_ptr)) \
301 return 0; \
302 t = get_bits(gb, b->len); \
303 if (!t) { \
304 b->cur_dec = NULL; \
305 return 0; \
306 } \
307
308 static int read_runs(AVCodecContext *avctx, GetBitContext *gb, Bundle *b)
309 {
310 int t, v;
311 const uint8_t *dec_end;
312
313 CHECK_READ_VAL(gb, b, t);
314 dec_end = b->cur_dec + t;
315 if (dec_end > b->data_end) {
316 av_log(avctx, AV_LOG_ERROR, "Run value went out of bounds\n");
317 return AVERROR_INVALIDDATA;
318 }
319 if (get_bits1(gb)) {
320 v = get_bits(gb, 4);
321 memset(b->cur_dec, v, t);
322 b->cur_dec += t;
323 } else {
324 while (b->cur_dec < dec_end)
325 *b->cur_dec++ = GET_HUFF(gb, b->tree);
326 }
327 return 0;
328 }
329
330 static int read_motion_values(AVCodecContext *avctx, GetBitContext *gb, Bundle *b)
331 {
332 int t, sign, v;
333 const uint8_t *dec_end;
334
335 CHECK_READ_VAL(gb, b, t);
336 dec_end = b->cur_dec + t;
337 if (dec_end > b->data_end) {
338 av_log(avctx, AV_LOG_ERROR, "Too many motion values\n");
339 return AVERROR_INVALIDDATA;
340 }
341 if (get_bits1(gb)) {
342 v = get_bits(gb, 4);
343 if (v) {
344 sign = -get_bits1(gb);
345 v = (v ^ sign) - sign;
346 }
347 memset(b->cur_dec, v, t);
348 b->cur_dec += t;
349 } else {
350 while (b->cur_dec < dec_end) {
351 v = GET_HUFF(gb, b->tree);
352 if (v) {
353 sign = -get_bits1(gb);
354 v = (v ^ sign) - sign;
355 }
356 *b->cur_dec++ = v;
357 }
358 }
359 return 0;
360 }
361
362 static const uint8_t bink_rlelens[4] = { 4, 8, 12, 32 };
363
364 static int read_block_types(AVCodecContext *avctx, GetBitContext *gb, Bundle *b)
365 {
366 int t, v;
367 int last = 0;
368 const uint8_t *dec_end;
369
370 CHECK_READ_VAL(gb, b, t);
371 dec_end = b->cur_dec + t;
372 if (dec_end > b->data_end) {
373 av_log(avctx, AV_LOG_ERROR, "Too many block type values\n");
374 return AVERROR_INVALIDDATA;
375 }
376 if (get_bits1(gb)) {
377 v = get_bits(gb, 4);
378 memset(b->cur_dec, v, t);
379 b->cur_dec += t;
380 } else {
381 while (b->cur_dec < dec_end) {
382 v = GET_HUFF(gb, b->tree);
383 if (v < 12) {
384 last = v;
385 *b->cur_dec++ = v;
386 } else {
387 int run = bink_rlelens[v - 12];
388
389 if (dec_end - b->cur_dec < run)
390 return AVERROR_INVALIDDATA;
391 memset(b->cur_dec, last, run);
392 b->cur_dec += run;
393 }
394 }
395 }
396 return 0;
397 }
398
399 static int read_patterns(AVCodecContext *avctx, GetBitContext *gb, Bundle *b)
400 {
401 int t, v;
402 const uint8_t *dec_end;
403
404 CHECK_READ_VAL(gb, b, t);
405 dec_end = b->cur_dec + t;
406 if (dec_end > b->data_end) {
407 av_log(avctx, AV_LOG_ERROR, "Too many pattern values\n");
408 return AVERROR_INVALIDDATA;
409 }
410 while (b->cur_dec < dec_end) {
411 v = GET_HUFF(gb, b->tree);
412 v |= GET_HUFF(gb, b->tree) << 4;
413 *b->cur_dec++ = v;
414 }
415
416 return 0;
417 }
418
419 static int read_colors(GetBitContext *gb, Bundle *b, BinkContext *c)
420 {
421 int t, sign, v;
422 const uint8_t *dec_end;
423
424 CHECK_READ_VAL(gb, b, t);
425 dec_end = b->cur_dec + t;
426 if (dec_end > b->data_end) {
427 av_log(c->avctx, AV_LOG_ERROR, "Too many color values\n");
428 return AVERROR_INVALIDDATA;
429 }
430 if (get_bits1(gb)) {
431 c->col_lastval = GET_HUFF(gb, c->col_high[c->col_lastval]);
432 v = GET_HUFF(gb, b->tree);
433 v = (c->col_lastval << 4) | v;
434 if (c->version < 'i') {
435 sign = ((int8_t) v) >> 7;
436 v = ((v & 0x7F) ^ sign) - sign;
437 v += 0x80;
438 }
439 memset(b->cur_dec, v, t);
440 b->cur_dec += t;
441 } else {
442 while (b->cur_dec < dec_end) {
443 c->col_lastval = GET_HUFF(gb, c->col_high[c->col_lastval]);
444 v = GET_HUFF(gb, b->tree);
445 v = (c->col_lastval << 4) | v;
446 if (c->version < 'i') {
447 sign = ((int8_t) v) >> 7;
448 v = ((v & 0x7F) ^ sign) - sign;
449 v += 0x80;
450 }
451 *b->cur_dec++ = v;
452 }
453 }
454 return 0;
455 }
456
457 /** number of bits used to store first DC value in bundle */
458 #define DC_START_BITS 11
459
460 static int read_dcs(AVCodecContext *avctx, GetBitContext *gb, Bundle *b,
461 int start_bits, int has_sign)
462 {
463 int i, j, len, len2, bsize, sign, v, v2;
464 int16_t *dst = (int16_t*)b->cur_dec;
465 int16_t *dst_end = (int16_t*)b->data_end;
466
467 CHECK_READ_VAL(gb, b, len);
468 v = get_bits(gb, start_bits - has_sign);
469 if (v && has_sign) {
470 sign = -get_bits1(gb);
471 v = (v ^ sign) - sign;
472 }
473 if (dst_end - dst < 1)
474 return AVERROR_INVALIDDATA;
475 *dst++ = v;
476 len--;
477 for (i = 0; i < len; i += 8) {
478 len2 = FFMIN(len - i, 8);
479 if (dst_end - dst < len2)
480 return AVERROR_INVALIDDATA;
481 bsize = get_bits(gb, 4);
482 if (bsize) {
483 for (j = 0; j < len2; j++) {
484 v2 = get_bits(gb, bsize);
485 if (v2) {
486 sign = -get_bits1(gb);
487 v2 = (v2 ^ sign) - sign;
488 }
489 v += v2;
490 *dst++ = v;
491 if (v < -32768 || v > 32767) {
492 av_log(avctx, AV_LOG_ERROR, "DC value went out of bounds: %d\n", v);
493 return AVERROR_INVALIDDATA;
494 }
495 }
496 } else {
497 for (j = 0; j < len2; j++)
498 *dst++ = v;
499 }
500 }
501
502 b->cur_dec = (uint8_t*)dst;
503 return 0;
504 }
505
506 /**
507 * Retrieve next value from bundle.
508 *
509 * @param c decoder context
510 * @param bundle bundle number
511 */
512 static inline int get_value(BinkContext *c, int bundle)
513 {
514 int ret;
515
516 if (bundle < BINK_SRC_X_OFF || bundle == BINK_SRC_RUN)
517 return *c->bundle[bundle].cur_ptr++;
518 if (bundle == BINK_SRC_X_OFF || bundle == BINK_SRC_Y_OFF)
519 return (int8_t)*c->bundle[bundle].cur_ptr++;
520 ret = *(int16_t*)c->bundle[bundle].cur_ptr;
521 c->bundle[bundle].cur_ptr += 2;
522 return ret;
523 }
524
525 static void binkb_init_bundle(BinkContext *c, int bundle_num)
526 {
527 c->bundle[bundle_num].cur_dec =
528 c->bundle[bundle_num].cur_ptr = c->bundle[bundle_num].data;
529 c->bundle[bundle_num].len = 13;
530 }
531
532 static void binkb_init_bundles(BinkContext *c)
533 {
534 int i;
535 for (i = 0; i < BINKB_NB_SRC; i++)
536 binkb_init_bundle(c, i);
537 }
538
539 static int binkb_read_bundle(BinkContext *c, GetBitContext *gb, int bundle_num)
540 {
541 const int bits = binkb_bundle_sizes[bundle_num];
542 const int mask = 1 << (bits - 1);
543 const int issigned = binkb_bundle_signed[bundle_num];
544 Bundle *b = &c->bundle[bundle_num];
545 int i, len;
546
547 CHECK_READ_VAL(gb, b, len);
548 if (b->data_end - b->cur_dec < len * (1 + (bits > 8)))
549 return AVERROR_INVALIDDATA;
550 if (bits <= 8) {
551 if (!issigned) {
552 for (i = 0; i < len; i++)
553 *b->cur_dec++ = get_bits(gb, bits);
554 } else {
555 for (i = 0; i < len; i++)
556 *b->cur_dec++ = get_bits(gb, bits) - mask;
557 }
558 } else {
559 int16_t *dst = (int16_t*)b->cur_dec;
560
561 if (!issigned) {
562 for (i = 0; i < len; i++)
563 *dst++ = get_bits(gb, bits);
564 } else {
565 for (i = 0; i < len; i++)
566 *dst++ = get_bits(gb, bits) - mask;
567 }
568 b->cur_dec = (uint8_t*)dst;
569 }
570 return 0;
571 }
572
573 static inline int binkb_get_value(BinkContext *c, int bundle_num)
574 {
575 int16_t ret;
576 const int bits = binkb_bundle_sizes[bundle_num];
577
578 if (bits <= 8) {
579 int val = *c->bundle[bundle_num].cur_ptr++;
580 return binkb_bundle_signed[bundle_num] ? (int8_t)val : val;
581 }
582 ret = *(int16_t*)c->bundle[bundle_num].cur_ptr;
583 c->bundle[bundle_num].cur_ptr += 2;
584 return ret;
585 }
586
587 /**
588 * Read 8x8 block of DCT coefficients.
589 *
590 * @param gb context for reading bits
591 * @param block place for storing coefficients
592 * @param scan scan order table
593 * @param quant_matrices quantization matrices
594 * @return 0 for success, negative value in other cases
595 */
596 static int read_dct_coeffs(GetBitContext *gb, int32_t block[64], const uint8_t *scan,
597 const int32_t quant_matrices[16][64], int q)
598 {
599 int coef_list[128];
600 int mode_list[128];
601 int i, t, bits, ccoef, mode, sign;
602 int list_start = 64, list_end = 64, list_pos;
603 int coef_count = 0;
604 int coef_idx[64];
605 int quant_idx;
606 const int32_t *quant;
607
608 coef_list[list_end] = 4; mode_list[list_end++] = 0;
609 coef_list[list_end] = 24; mode_list[list_end++] = 0;
610 coef_list[list_end] = 44; mode_list[list_end++] = 0;
611 coef_list[list_end] = 1; mode_list[list_end++] = 3;
612 coef_list[list_end] = 2; mode_list[list_end++] = 3;
613 coef_list[list_end] = 3; mode_list[list_end++] = 3;
614
615 for (bits = get_bits(gb, 4) - 1; bits >= 0; bits--) {
616 list_pos = list_start;
617 while (list_pos < list_end) {
618 if (!(mode_list[list_pos] | coef_list[list_pos]) || !get_bits1(gb)) {
619 list_pos++;
620 continue;
621 }
622 ccoef = coef_list[list_pos];
623 mode = mode_list[list_pos];
624 switch (mode) {
625 case 0:
626 coef_list[list_pos] = ccoef + 4;
627 mode_list[list_pos] = 1;
628 case 2:
629 if (mode == 2) {
630 coef_list[list_pos] = 0;
631 mode_list[list_pos++] = 0;
632 }
633 for (i = 0; i < 4; i++, ccoef++) {
634 if (get_bits1(gb)) {
635 coef_list[--list_start] = ccoef;
636 mode_list[ list_start] = 3;
637 } else {
638 if (!bits) {
639 t = 1 - (get_bits1(gb) << 1);
640 } else {
641 t = get_bits(gb, bits) | 1 << bits;
642 sign = -get_bits1(gb);
643 t = (t ^ sign) - sign;
644 }
645 block[scan[ccoef]] = t;
646 coef_idx[coef_count++] = ccoef;
647 }
648 }
649 break;
650 case 1:
651 mode_list[list_pos] = 2;
652 for (i = 0; i < 3; i++) {
653 ccoef += 4;
654 coef_list[list_end] = ccoef;
655 mode_list[list_end++] = 2;
656 }
657 break;
658 case 3:
659 if (!bits) {
660 t = 1 - (get_bits1(gb) << 1);
661 } else {
662 t = get_bits(gb, bits) | 1 << bits;
663 sign = -get_bits1(gb);
664 t = (t ^ sign) - sign;
665 }
666 block[scan[ccoef]] = t;
667 coef_idx[coef_count++] = ccoef;
668 coef_list[list_pos] = 0;
669 mode_list[list_pos++] = 0;
670 break;
671 }
672 }
673 }
674
675 if (q == -1) {
676 quant_idx = get_bits(gb, 4);
677 } else {
678 quant_idx = q;
679 }
680
681 quant = quant_matrices[quant_idx];
682
683 block[0] = (block[0] * quant[0]) >> 11;
684 for (i = 0; i < coef_count; i++) {
685 int idx = coef_idx[i];
686 block[scan[idx]] = (block[scan[idx]] * quant[idx]) >> 11;
687 }
688
689 return 0;
690 }
691
692 /**
693 * Read 8x8 block with residue after motion compensation.
694 *
695 * @param gb context for reading bits
696 * @param block place to store read data
697 * @param masks_count number of masks to decode
698 * @return 0 on success, negative value in other cases
699 */
700 static int read_residue(GetBitContext *gb, int16_t block[64], int masks_count)
701 {
702 int coef_list[128];
703 int mode_list[128];
704 int i, sign, mask, ccoef, mode;
705 int list_start = 64, list_end = 64, list_pos;
706 int nz_coeff[64];
707 int nz_coeff_count = 0;
708
709 coef_list[list_end] = 4; mode_list[list_end++] = 0;
710 coef_list[list_end] = 24; mode_list[list_end++] = 0;
711 coef_list[list_end] = 44; mode_list[list_end++] = 0;
712 coef_list[list_end] = 0; mode_list[list_end++] = 2;
713
714 for (mask = 1 << get_bits(gb, 3); mask; mask >>= 1) {
715 for (i = 0; i < nz_coeff_count; i++) {
716 if (!get_bits1(gb))
717 continue;
718 if (block[nz_coeff[i]] < 0)
719 block[nz_coeff[i]] -= mask;
720 else
721 block[nz_coeff[i]] += mask;
722 masks_count--;
723 if (masks_count < 0)
724 return 0;
725 }
726 list_pos = list_start;
727 while (list_pos < list_end) {
728 if (!(coef_list[list_pos] | mode_list[list_pos]) || !get_bits1(gb)) {
729 list_pos++;
730 continue;
731 }
732 ccoef = coef_list[list_pos];
733 mode = mode_list[list_pos];
734 switch (mode) {
735 case 0:
736 coef_list[list_pos] = ccoef + 4;
737 mode_list[list_pos] = 1;
738 case 2:
739 if (mode == 2) {
740 coef_list[list_pos] = 0;
741 mode_list[list_pos++] = 0;
742 }
743 for (i = 0; i < 4; i++, ccoef++) {
744 if (get_bits1(gb)) {
745 coef_list[--list_start] = ccoef;
746 mode_list[ list_start] = 3;
747 } else {
748 nz_coeff[nz_coeff_count++] = bink_scan[ccoef];
749 sign = -get_bits1(gb);
750 block[bink_scan[ccoef]] = (mask ^ sign) - sign;
751 masks_count--;
752 if (masks_count < 0)
753 return 0;
754 }
755 }
756 break;
757 case 1:
758 mode_list[list_pos] = 2;
759 for (i = 0; i < 3; i++) {
760 ccoef += 4;
761 coef_list[list_end] = ccoef;
762 mode_list[list_end++] = 2;
763 }
764 break;
765 case 3:
766 nz_coeff[nz_coeff_count++] = bink_scan[ccoef];
767 sign = -get_bits1(gb);
768 block[bink_scan[ccoef]] = (mask ^ sign) - sign;
769 coef_list[list_pos] = 0;
770 mode_list[list_pos++] = 0;
771 masks_count--;
772 if (masks_count < 0)
773 return 0;
774 break;
775 }
776 }
777 }
778
779 return 0;
780 }
781
782 /**
783 * Copy 8x8 block from source to destination, where src and dst may be overlapped
784 */
785 static inline void put_pixels8x8_overlapped(uint8_t *dst, uint8_t *src, int stride)
786 {
787 uint8_t tmp[64];
788 int i;
789 for (i = 0; i < 8; i++)
790 memcpy(tmp + i*8, src + i*stride, 8);
791 for (i = 0; i < 8; i++)
792 memcpy(dst + i*stride, tmp + i*8, 8);
793 }
794
795 static int binkb_decode_plane(BinkContext *c, GetBitContext *gb, int plane_idx,
796 int is_key, int is_chroma)
797 {
798 int blk, ret;
799 int i, j, bx, by;
800 uint8_t *dst, *ref, *ref_start, *ref_end;
801 int v, col[2];
802 const uint8_t *scan;
803 int xoff, yoff;
804 LOCAL_ALIGNED_16(int16_t, block, [64]);
805 LOCAL_ALIGNED_16(int32_t, dctblock, [64]);
806 int coordmap[64];
807 int ybias = is_key ? -15 : 0;
808 int qp;
809
810 const int stride = c->pic->linesize[plane_idx];
811 int bw = is_chroma ? (c->avctx->width + 15) >> 4 : (c->avctx->width + 7) >> 3;
812 int bh = is_chroma ? (c->avctx->height + 15) >> 4 : (c->avctx->height + 7) >> 3;
813
814 binkb_init_bundles(c);
815 ref_start = c->pic->data[plane_idx];
816 ref_end = c->pic->data[plane_idx] + (bh * c->pic->linesize[plane_idx] + bw) * 8;
817
818 for (i = 0; i < 64; i++)
819 coordmap[i] = (i & 7) + (i >> 3) * stride;
820
821 for (by = 0; by < bh; by++) {
822 for (i = 0; i < BINKB_NB_SRC; i++) {
823 if ((ret = binkb_read_bundle(c, gb, i)) < 0)
824 return ret;
825 }
826
827 dst = c->pic->data[plane_idx] + 8*by*stride;
828 for (bx = 0; bx < bw; bx++, dst += 8) {
829 blk = binkb_get_value(c, BINKB_SRC_BLOCK_TYPES);
830 switch (blk) {
831 case 0:
832 break;
833 case 1:
834 scan = bink_patterns[get_bits(gb, 4)];
835 i = 0;
836 do {
837 int mode, run;
838
839 mode = get_bits1(gb);
840 run = get_bits(gb, binkb_runbits[i]) + 1;
841
842 i += run;
843 if (i > 64) {
844 av_log(c->avctx, AV_LOG_ERROR, "Run went out of bounds\n");
845 return AVERROR_INVALIDDATA;
846 }
847 if (mode) {
848 v = binkb_get_value(c, BINKB_SRC_COLORS);
849 for (j = 0; j < run; j++)
850 dst[coordmap[*scan++]] = v;
851 } else {
852 for (j = 0; j < run; j++)
853 dst[coordmap[*scan++]] = binkb_get_value(c, BINKB_SRC_COLORS);
854 }
855 } while (i < 63);
856 if (i == 63)
857 dst[coordmap[*scan++]] = binkb_get_value(c, BINKB_SRC_COLORS);
858 break;
859 case 2:
860 memset(dctblock, 0, sizeof(*dctblock) * 64);
861 dctblock[0] = binkb_get_value(c, BINKB_SRC_INTRA_DC);
862 qp = binkb_get_value(c, BINKB_SRC_INTRA_Q);
863 read_dct_coeffs(gb, dctblock, bink_scan, binkb_intra_quant, qp);
864 c->bdsp.idct_put(dst, stride, dctblock);
865 break;
866 case 3:
867 xoff = binkb_get_value(c, BINKB_SRC_X_OFF);
868 yoff = binkb_get_value(c, BINKB_SRC_Y_OFF) + ybias;
869 ref = dst + xoff + yoff * stride;
870 if (ref < ref_start || ref + 8*stride > ref_end) {
871 av_log(c->avctx, AV_LOG_WARNING, "Reference block is out of bounds\n");
872 } else if (ref + 8*stride < dst || ref >= dst + 8*stride) {
873 c->dsp.put_pixels_tab[1][0](dst, ref, stride, 8);
874 } else {
875 put_pixels8x8_overlapped(dst, ref, stride);
876 }
877 c->dsp.clear_block(block);
878 v = binkb_get_value(c, BINKB_SRC_INTER_COEFS);
879 read_residue(gb, block, v);
880 c->dsp.add_pixels8(dst, block, stride);
881 break;
882 case 4:
883 xoff = binkb_get_value(c, BINKB_SRC_X_OFF);
884 yoff = binkb_get_value(c, BINKB_SRC_Y_OFF) + ybias;
885 ref = dst + xoff + yoff * stride;
886 if (ref < ref_start || ref + 8 * stride > ref_end) {
887 av_log(c->avctx, AV_LOG_WARNING, "Reference block is out of bounds\n");
888 } else if (ref + 8*stride < dst || ref >= dst + 8*stride) {
889 c->dsp.put_pixels_tab[1][0](dst, ref, stride, 8);
890 } else {
891 put_pixels8x8_overlapped(dst, ref, stride);
892 }
893 memset(dctblock, 0, sizeof(*dctblock) * 64);
894 dctblock[0] = binkb_get_value(c, BINKB_SRC_INTER_DC);
895 qp = binkb_get_value(c, BINKB_SRC_INTER_Q);
896 read_dct_coeffs(gb, dctblock, bink_scan, binkb_inter_quant, qp);
897 c->bdsp.idct_add(dst, stride, dctblock);
898 break;
899 case 5:
900 v = binkb_get_value(c, BINKB_SRC_COLORS);
901 c->dsp.fill_block_tab[1](dst, v, stride, 8);
902 break;
903 case 6:
904 for (i = 0; i < 2; i++)
905 col[i] = binkb_get_value(c, BINKB_SRC_COLORS);
906 for (i = 0; i < 8; i++) {
907 v = binkb_get_value(c, BINKB_SRC_PATTERN);
908 for (j = 0; j < 8; j++, v >>= 1)
909 dst[i*stride + j] = col[v & 1];
910 }
911 break;
912 case 7:
913 xoff = binkb_get_value(c, BINKB_SRC_X_OFF);
914 yoff = binkb_get_value(c, BINKB_SRC_Y_OFF) + ybias;
915 ref = dst + xoff + yoff * stride;
916 if (ref < ref_start || ref + 8 * stride > ref_end) {
917 av_log(c->avctx, AV_LOG_WARNING, "Reference block is out of bounds\n");
918 } else if (ref + 8*stride < dst || ref >= dst + 8*stride) {
919 c->dsp.put_pixels_tab[1][0](dst, ref, stride, 8);
920 } else {
921 put_pixels8x8_overlapped(dst, ref, stride);
922 }
923 break;
924 case 8:
925 for (i = 0; i < 8; i++)
926 memcpy(dst + i*stride, c->bundle[BINKB_SRC_COLORS].cur_ptr + i*8, 8);
927 c->bundle[BINKB_SRC_COLORS].cur_ptr += 64;
928 break;
929 default:
930 av_log(c->avctx, AV_LOG_ERROR, "Unknown block type %d\n", blk);
931 return AVERROR_INVALIDDATA;
932 }
933 }
934 }
935 if (get_bits_count(gb) & 0x1F) //next plane data starts at 32-bit boundary
936 skip_bits_long(gb, 32 - (get_bits_count(gb) & 0x1F));
937
938 return 0;
939 }
940
941 static int bink_decode_plane(BinkContext *c, GetBitContext *gb, int plane_idx,
942 int is_chroma)
943 {
944 int blk, ret;
945 int i, j, bx, by;
946 uint8_t *dst, *prev, *ref, *ref_start, *ref_end;
947 int v, col[2];
948 const uint8_t *scan;
949 int xoff, yoff;
950 LOCAL_ALIGNED_16(int16_t, block, [64]);
951 LOCAL_ALIGNED_16(uint8_t, ublock, [64]);
952 LOCAL_ALIGNED_16(int32_t, dctblock, [64]);
953 int coordmap[64];
954
955 const int stride = c->pic->linesize[plane_idx];
956 int bw = is_chroma ? (c->avctx->width + 15) >> 4 : (c->avctx->width + 7) >> 3;
957 int bh = is_chroma ? (c->avctx->height + 15) >> 4 : (c->avctx->height + 7) >> 3;
958 int width = c->avctx->width >> is_chroma;
959
960 init_lengths(c, FFMAX(width, 8), bw);
961 for (i = 0; i < BINK_NB_SRC; i++)
962 read_bundle(gb, c, i);
963
964 ref_start = c->last->data[plane_idx] ? c->last->data[plane_idx]
965 : c->pic->data[plane_idx];
966 ref_end = ref_start
967 + (bw - 1 + c->last->linesize[plane_idx] * (bh - 1)) * 8;
968
969 for (i = 0; i < 64; i++)
970 coordmap[i] = (i & 7) + (i >> 3) * stride;
971
972 for (by = 0; by < bh; by++) {
973 if ((ret = read_block_types(c->avctx, gb, &c->bundle[BINK_SRC_BLOCK_TYPES])) < 0)
974 return ret;
975 if ((ret = read_block_types(c->avctx, gb, &c->bundle[BINK_SRC_SUB_BLOCK_TYPES])) < 0)
976 return ret;
977 if ((ret = read_colors(gb, &c->bundle[BINK_SRC_COLORS], c)) < 0)
978 return ret;
979 if ((ret = read_patterns(c->avctx, gb, &c->bundle[BINK_SRC_PATTERN])) < 0)
980 return ret;
981 if ((ret = read_motion_values(c->avctx, gb, &c->bundle[BINK_SRC_X_OFF])) < 0)
982 return ret;
983 if ((ret = read_motion_values(c->avctx, gb, &c->bundle[BINK_SRC_Y_OFF])) < 0)
984 return ret;
985 if ((ret = read_dcs(c->avctx, gb, &c->bundle[BINK_SRC_INTRA_DC], DC_START_BITS, 0)) < 0)
986 return ret;
987 if ((ret = read_dcs(c->avctx, gb, &c->bundle[BINK_SRC_INTER_DC], DC_START_BITS, 1)) < 0)
988 return ret;
989 if ((ret = read_runs(c->avctx, gb, &c->bundle[BINK_SRC_RUN])) < 0)
990 return ret;
991
992 if (by == bh)
993 break;
994 dst = c->pic->data[plane_idx] + 8*by*stride;
995 prev = (c->last->data[plane_idx] ? c->last->data[plane_idx]
996 : c->pic->data[plane_idx]) + 8*by*stride;
997 for (bx = 0; bx < bw; bx++, dst += 8, prev += 8) {
998 blk = get_value(c, BINK_SRC_BLOCK_TYPES);
999 // 16x16 block type on odd line means part of the already decoded block, so skip it
1000 if ((by & 1) && blk == SCALED_BLOCK) {
1001 bx++;
1002 dst += 8;
1003 prev += 8;
1004 continue;
1005 }
1006 switch (blk) {
1007 case SKIP_BLOCK:
1008 c->dsp.put_pixels_tab[1][0](dst, prev, stride, 8);
1009 break;
1010 case SCALED_BLOCK:
1011 blk = get_value(c, BINK_SRC_SUB_BLOCK_TYPES);
1012 switch (blk) {
1013 case RUN_BLOCK:
1014 scan = bink_patterns[get_bits(gb, 4)];
1015 i = 0;
1016 do {
1017 int run = get_value(c, BINK_SRC_RUN) + 1;
1018
1019 i += run;
1020 if (i > 64) {
1021 av_log(c->avctx, AV_LOG_ERROR, "Run went out of bounds\n");
1022 return AVERROR_INVALIDDATA;
1023 }
1024 if (get_bits1(gb)) {
1025 v = get_value(c, BINK_SRC_COLORS);
1026 for (j = 0; j < run; j++)
1027 ublock[*scan++] = v;
1028 } else {
1029 for (j = 0; j < run; j++)
1030 ublock[*scan++] = get_value(c, BINK_SRC_COLORS);
1031 }
1032 } while (i < 63);
1033 if (i == 63)
1034 ublock[*scan++] = get_value(c, BINK_SRC_COLORS);
1035 break;
1036 case INTRA_BLOCK:
1037 memset(dctblock, 0, sizeof(*dctblock) * 64);
1038 dctblock[0] = get_value(c, BINK_SRC_INTRA_DC);
1039 read_dct_coeffs(gb, dctblock, bink_scan, bink_intra_quant, -1);
1040 c->bdsp.idct_put(ublock, 8, dctblock);
1041 break;
1042 case FILL_BLOCK:
1043 v = get_value(c, BINK_SRC_COLORS);
1044 c->dsp.fill_block_tab[0](dst, v, stride, 16);
1045 break;
1046 case PATTERN_BLOCK:
1047 for (i = 0; i < 2; i++)
1048 col[i] = get_value(c, BINK_SRC_COLORS);
1049 for (j = 0; j < 8; j++) {
1050 v = get_value(c, BINK_SRC_PATTERN);
1051 for (i = 0; i < 8; i++, v >>= 1)
1052 ublock[i + j*8] = col[v & 1];
1053 }
1054 break;
1055 case RAW_BLOCK:
1056 for (j = 0; j < 8; j++)
1057 for (i = 0; i < 8; i++)
1058 ublock[i + j*8] = get_value(c, BINK_SRC_COLORS);
1059 break;
1060 default:
1061 av_log(c->avctx, AV_LOG_ERROR, "Incorrect 16x16 block type %d\n", blk);
1062 return AVERROR_INVALIDDATA;
1063 }
1064 if (blk != FILL_BLOCK)
1065 c->bdsp.scale_block(ublock, dst, stride);
1066 bx++;
1067 dst += 8;
1068 prev += 8;
1069 break;
1070 case MOTION_BLOCK:
1071 xoff = get_value(c, BINK_SRC_X_OFF);
1072 yoff = get_value(c, BINK_SRC_Y_OFF);
1073 ref = prev + xoff + yoff * stride;
1074 if (ref < ref_start || ref > ref_end) {
1075 av_log(c->avctx, AV_LOG_ERROR, "Copy out of bounds @%d, %d\n",
1076 bx*8 + xoff, by*8 + yoff);
1077 return AVERROR_INVALIDDATA;
1078 }
1079 c->dsp.put_pixels_tab[1][0](dst, ref, stride, 8);
1080 break;
1081 case RUN_BLOCK:
1082 scan = bink_patterns[get_bits(gb, 4)];
1083 i = 0;
1084 do {
1085 int run = get_value(c, BINK_SRC_RUN) + 1;
1086
1087 i += run;
1088 if (i > 64) {
1089 av_log(c->avctx, AV_LOG_ERROR, "Run went out of bounds\n");
1090 return AVERROR_INVALIDDATA;
1091 }
1092 if (get_bits1(gb)) {
1093 v = get_value(c, BINK_SRC_COLORS);
1094 for (j = 0; j < run; j++)
1095 dst[coordmap[*scan++]] = v;
1096 } else {
1097 for (j = 0; j < run; j++)
1098 dst[coordmap[*scan++]] = get_value(c, BINK_SRC_COLORS);
1099 }
1100 } while (i < 63);
1101 if (i == 63)
1102 dst[coordmap[*scan++]] = get_value(c, BINK_SRC_COLORS);
1103 break;
1104 case RESIDUE_BLOCK:
1105 xoff = get_value(c, BINK_SRC_X_OFF);
1106 yoff = get_value(c, BINK_SRC_Y_OFF);
1107 ref = prev + xoff + yoff * stride;
1108 if (ref < ref_start || ref > ref_end) {
1109 av_log(c->avctx, AV_LOG_ERROR, "Copy out of bounds @%d, %d\n",
1110 bx*8 + xoff, by*8 + yoff);
1111 return AVERROR_INVALIDDATA;
1112 }
1113 c->dsp.put_pixels_tab[1][0](dst, ref, stride, 8);
1114 c->dsp.clear_block(block);
1115 v = get_bits(gb, 7);
1116 read_residue(gb, block, v);
1117 c->dsp.add_pixels8(dst, block, stride);
1118 break;
1119 case INTRA_BLOCK:
1120 memset(dctblock, 0, sizeof(*dctblock) * 64);
1121 dctblock[0] = get_value(c, BINK_SRC_INTRA_DC);
1122 read_dct_coeffs(gb, dctblock, bink_scan, bink_intra_quant, -1);
1123 c->bdsp.idct_put(dst, stride, dctblock);
1124 break;
1125 case FILL_BLOCK:
1126 v = get_value(c, BINK_SRC_COLORS);
1127 c->dsp.fill_block_tab[1](dst, v, stride, 8);
1128 break;
1129 case INTER_BLOCK:
1130 xoff = get_value(c, BINK_SRC_X_OFF);
1131 yoff = get_value(c, BINK_SRC_Y_OFF);
1132 ref = prev + xoff + yoff * stride;
1133 c->dsp.put_pixels_tab[1][0](dst, ref, stride, 8);
1134 memset(dctblock, 0, sizeof(*dctblock) * 64);
1135 dctblock[0] = get_value(c, BINK_SRC_INTER_DC);
1136 read_dct_coeffs(gb, dctblock, bink_scan, bink_inter_quant, -1);
1137 c->bdsp.idct_add(dst, stride, dctblock);
1138 break;
1139 case PATTERN_BLOCK:
1140 for (i = 0; i < 2; i++)
1141 col[i] = get_value(c, BINK_SRC_COLORS);
1142 for (i = 0; i < 8; i++) {
1143 v = get_value(c, BINK_SRC_PATTERN);
1144 for (j = 0; j < 8; j++, v >>= 1)
1145 dst[i*stride + j] = col[v & 1];
1146 }
1147 break;
1148 case RAW_BLOCK:
1149 for (i = 0; i < 8; i++)
1150 memcpy(dst + i*stride, c->bundle[BINK_SRC_COLORS].cur_ptr + i*8, 8);
1151 c->bundle[BINK_SRC_COLORS].cur_ptr += 64;
1152 break;
1153 default:
1154 av_log(c->avctx, AV_LOG_ERROR, "Unknown block type %d\n", blk);
1155 return AVERROR_INVALIDDATA;
1156 }
1157 }
1158 }
1159 if (get_bits_count(gb) & 0x1F) //next plane data starts at 32-bit boundary
1160 skip_bits_long(gb, 32 - (get_bits_count(gb) & 0x1F));
1161
1162 return 0;
1163 }
1164
1165 static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *pkt)
1166 {
1167 BinkContext * const c = avctx->priv_data;
1168 GetBitContext gb;
1169 int plane, plane_idx, ret;
1170 int bits_count = pkt->size << 3;
1171
1172 if (c->version > 'b') {
1173 if(c->pic->data[0])
1174 avctx->release_buffer(avctx, c->pic);
1175
1176 if ((ret = ff_get_buffer(avctx, c->pic)) < 0) {
1177 av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
1178 return ret;
1179 }
1180 } else {
1181 if ((ret = avctx->reget_buffer(avctx, c->pic)) < 0) {
1182 av_log(avctx, AV_LOG_ERROR, "reget_buffer() failed\n");
1183 return ret;
1184 }
1185 }
1186
1187 init_get_bits(&gb, pkt->data, bits_count);
1188 if (c->has_alpha) {
1189 if (c->version >= 'i')
1190 skip_bits_long(&gb, 32);
1191 if ((ret = bink_decode_plane(c, &gb, 3, 0)) < 0)
1192 return ret;
1193 }
1194 if (c->version >= 'i')
1195 skip_bits_long(&gb, 32);
1196
1197 for (plane = 0; plane < 3; plane++) {
1198 plane_idx = (!plane || !c->swap_planes) ? plane : (plane ^ 3);
1199
1200 if (c->version > 'b') {
1201 if ((ret = bink_decode_plane(c, &gb, plane_idx, !!plane)) < 0)
1202 return ret;
1203 } else {
1204 if ((ret = binkb_decode_plane(c, &gb, plane_idx,
1205 !avctx->frame_number, !!plane)) < 0)
1206 return ret;
1207 }
1208 if (get_bits_count(&gb) >= bits_count)
1209 break;
1210 }
1211 emms_c();
1212
1213 *got_frame = 1;
1214 *(AVFrame*)data = *c->pic;
1215
1216 if (c->version > 'b')
1217 FFSWAP(AVFrame*, c->pic, c->last);
1218
1219 /* always report that the buffer was completely consumed */
1220 return pkt->size;
1221 }
1222
1223 /**
1224 * Caclulate quantization tables for version b
1225 */
1226 static av_cold void binkb_calc_quant(void)
1227 {
1228 uint8_t inv_bink_scan[64];
1229 double s[64];
1230 int i, j;
1231
1232 for (j = 0; j < 8; j++) {
1233 for (i = 0; i < 8; i++) {
1234 if (j && j != 4)
1235 if (i && i != 4)
1236 s[j*8 + i] = cos(j * M_PI/16.0) * cos(i * M_PI/16.0) * 2.0;
1237 else
1238 s[j*8 + i] = cos(j * M_PI/16.0) * sqrt(2.0);
1239 else
1240 if (i && i != 4)
1241 s[j*8 + i] = cos(i * M_PI/16.0) * sqrt(2.0);
1242 else
1243 s[j*8 + i] = 1.0;
1244 }
1245 }
1246
1247 for (i = 0; i < 64; i++)
1248 inv_bink_scan[bink_scan[i]] = i;
1249
1250 for (j = 0; j < 16; j++) {
1251 for (i = 0; i < 64; i++) {
1252 int k = inv_bink_scan[i];
1253 if (s[i] == 1.0) {
1254 binkb_intra_quant[j][k] = (1L << 12) * binkb_intra_seed[i] *
1255 binkb_num[j]/binkb_den[j];
1256 binkb_inter_quant[j][k] = (1L << 12) * binkb_inter_seed[i] *
1257 binkb_num[j]/binkb_den[j];
1258 } else {
1259 binkb_intra_quant[j][k] = (1L << 12) * binkb_intra_seed[i] * s[i] *
1260 binkb_num[j]/(double)binkb_den[j];
1261 binkb_inter_quant[j][k] = (1L << 12) * binkb_inter_seed[i] * s[i] *
1262 binkb_num[j]/(double)binkb_den[j];
1263 }
1264 }
1265 }
1266 }
1267
1268 static av_cold int decode_init(AVCodecContext *avctx)
1269 {
1270 BinkContext * const c = avctx->priv_data;
1271 static VLC_TYPE table[16 * 128][2];
1272 static int binkb_initialised = 0;
1273 int i, ret;
1274 int flags;
1275
1276 c->version = avctx->codec_tag >> 24;
1277 if (avctx->extradata_size < 4) {
1278 av_log(avctx, AV_LOG_ERROR, "Extradata missing or too short\n");
1279 return AVERROR_INVALIDDATA;
1280 }
1281 flags = AV_RL32(avctx->extradata);
1282 c->has_alpha = flags & BINK_FLAG_ALPHA;
1283 c->swap_planes = c->version >= 'h';
1284 if (!bink_trees[15].table) {
1285 for (i = 0; i < 16; i++) {
1286 const int maxbits = bink_tree_lens[i][15];
1287 bink_trees[i].table = table + i*128;
1288 bink_trees[i].table_allocated = 1 << maxbits;
1289 init_vlc(&bink_trees[i], maxbits, 16,
1290 bink_tree_lens[i], 1, 1,
1291 bink_tree_bits[i], 1, 1, INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
1292 }
1293 }
1294 c->avctx = avctx;
1295
1296 c->pic = avcodec_alloc_frame();
1297 c->last = avcodec_alloc_frame();
1298 if (!c->pic || !c->last) {
1299 avcodec_free_frame(&c->pic);
1300 avcodec_free_frame(&c->last);
1301 return AVERROR(ENOMEM);
1302 }
1303
1304 if ((ret = av_image_check_size(avctx->width, avctx->height, 0, avctx)) < 0)
1305 return ret;
1306
1307 avctx->pix_fmt = c->has_alpha ? AV_PIX_FMT_YUVA420P : AV_PIX_FMT_YUV420P;
1308
1309 ff_dsputil_init(&c->dsp, avctx);
1310 ff_binkdsp_init(&c->bdsp);
1311
1312 init_bundles(c);
1313
1314 if (c->version == 'b') {
1315 if (!binkb_initialised) {
1316 binkb_calc_quant();
1317 binkb_initialised = 1;
1318 }
1319 }
1320
1321 return 0;
1322 }
1323
1324 static av_cold int decode_end(AVCodecContext *avctx)
1325 {
1326 BinkContext * const c = avctx->priv_data;
1327
1328 if (c->pic->data[0])
1329 avctx->release_buffer(avctx, c->pic);
1330 if (c->last->data[0])
1331 avctx->release_buffer(avctx, c->last);
1332 avcodec_free_frame(&c->pic);
1333 avcodec_free_frame(&c->last);
1334
1335 free_bundles(c);
1336 return 0;
1337 }
1338
1339 AVCodec ff_bink_decoder = {
1340 .name = "binkvideo",
1341 .type = AVMEDIA_TYPE_VIDEO,
1342 .id = AV_CODEC_ID_BINKVIDEO,
1343 .priv_data_size = sizeof(BinkContext),
1344 .init = decode_init,
1345 .close = decode_end,
1346 .decode = decode_frame,
1347 .long_name = NULL_IF_CONFIG_SMALL("Bink video"),
1348 .capabilities = CODEC_CAP_DR1,
1349 };