utvideodec: Handle slice_height being zero
[libav.git] / libavcodec / bink.c
1 /*
2 * Bink video decoder
3 * Copyright (c) 2009 Konstantin Shishkov
4 * Copyright (C) 2011 Peter Ross <pross@xvid.org>
5 *
6 * This file is part of Libav.
7 *
8 * Libav is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * Libav is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with Libav; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23 #include "libavutil/attributes.h"
24 #include "libavutil/imgutils.h"
25 #include "libavutil/internal.h"
26 #include "avcodec.h"
27 #include "binkdata.h"
28 #include "binkdsp.h"
29 #include "blockdsp.h"
30 #include "hpeldsp.h"
31 #include "internal.h"
32 #include "mathops.h"
33
34 #define BITSTREAM_READER_LE
35 #include "get_bits.h"
36
37 #define BINK_FLAG_ALPHA 0x00100000
38 #define BINK_FLAG_GRAY 0x00020000
39
40 static VLC bink_trees[16];
41
42 /**
43 * IDs for different data types used in old version of Bink video codec
44 */
45 enum OldSources {
46 BINKB_SRC_BLOCK_TYPES = 0, ///< 8x8 block types
47 BINKB_SRC_COLORS, ///< pixel values used for different block types
48 BINKB_SRC_PATTERN, ///< 8-bit values for 2-colour pattern fill
49 BINKB_SRC_X_OFF, ///< X components of motion value
50 BINKB_SRC_Y_OFF, ///< Y components of motion value
51 BINKB_SRC_INTRA_DC, ///< DC values for intrablocks with DCT
52 BINKB_SRC_INTER_DC, ///< DC values for interblocks with DCT
53 BINKB_SRC_INTRA_Q, ///< quantizer values for intrablocks with DCT
54 BINKB_SRC_INTER_Q, ///< quantizer values for interblocks with DCT
55 BINKB_SRC_INTER_COEFS, ///< number of coefficients for residue blocks
56
57 BINKB_NB_SRC
58 };
59
60 static const int binkb_bundle_sizes[BINKB_NB_SRC] = {
61 4, 8, 8, 5, 5, 11, 11, 4, 4, 7
62 };
63
64 static const int binkb_bundle_signed[BINKB_NB_SRC] = {
65 0, 0, 0, 1, 1, 0, 1, 0, 0, 0
66 };
67
68 static int32_t binkb_intra_quant[16][64];
69 static int32_t binkb_inter_quant[16][64];
70
71 /**
72 * IDs for different data types used in Bink video codec
73 */
74 enum Sources {
75 BINK_SRC_BLOCK_TYPES = 0, ///< 8x8 block types
76 BINK_SRC_SUB_BLOCK_TYPES, ///< 16x16 block types (a subset of 8x8 block types)
77 BINK_SRC_COLORS, ///< pixel values used for different block types
78 BINK_SRC_PATTERN, ///< 8-bit values for 2-colour pattern fill
79 BINK_SRC_X_OFF, ///< X components of motion value
80 BINK_SRC_Y_OFF, ///< Y components of motion value
81 BINK_SRC_INTRA_DC, ///< DC values for intrablocks with DCT
82 BINK_SRC_INTER_DC, ///< DC values for interblocks with DCT
83 BINK_SRC_RUN, ///< run lengths for special fill block
84
85 BINK_NB_SRC
86 };
87
88 /**
89 * data needed to decode 4-bit Huffman-coded value
90 */
91 typedef struct Tree {
92 int vlc_num; ///< tree number (in bink_trees[])
93 uint8_t syms[16]; ///< leaf value to symbol mapping
94 } Tree;
95
96 #define GET_HUFF(gb, tree) (tree).syms[get_vlc2(gb, bink_trees[(tree).vlc_num].table,\
97 bink_trees[(tree).vlc_num].bits, 1)]
98
99 /**
100 * data structure used for decoding single Bink data type
101 */
102 typedef struct Bundle {
103 int len; ///< length of number of entries to decode (in bits)
104 Tree tree; ///< Huffman tree-related data
105 uint8_t *data; ///< buffer for decoded symbols
106 uint8_t *data_end; ///< buffer end
107 uint8_t *cur_dec; ///< pointer to the not yet decoded part of the buffer
108 uint8_t *cur_ptr; ///< pointer to the data that is not read from buffer yet
109 } Bundle;
110
111 /*
112 * Decoder context
113 */
114 typedef struct BinkContext {
115 AVCodecContext *avctx;
116 BlockDSPContext bdsp;
117 HpelDSPContext hdsp;
118 BinkDSPContext binkdsp;
119 AVFrame *last;
120 int version; ///< internal Bink file version
121 int has_alpha;
122 int swap_planes;
123
124 Bundle bundle[BINKB_NB_SRC]; ///< bundles for decoding all data types
125 Tree col_high[16]; ///< trees for decoding high nibble in "colours" data type
126 int col_lastval; ///< value of last decoded high nibble in "colours" data type
127 } BinkContext;
128
129 /**
130 * Bink video block types
131 */
132 enum BlockTypes {
133 SKIP_BLOCK = 0, ///< skipped block
134 SCALED_BLOCK, ///< block has size 16x16
135 MOTION_BLOCK, ///< block is copied from previous frame with some offset
136 RUN_BLOCK, ///< block is composed from runs of colours with custom scan order
137 RESIDUE_BLOCK, ///< motion block with some difference added
138 INTRA_BLOCK, ///< intra DCT block
139 FILL_BLOCK, ///< block is filled with single colour
140 INTER_BLOCK, ///< motion block with DCT applied to the difference
141 PATTERN_BLOCK, ///< block is filled with two colours following custom pattern
142 RAW_BLOCK, ///< uncoded 8x8 block
143 };
144
145 /**
146 * Initialize length length in all bundles.
147 *
148 * @param c decoder context
149 * @param width plane width
150 * @param bw plane width in 8x8 blocks
151 */
152 static void init_lengths(BinkContext *c, int width, int bw)
153 {
154 width = FFALIGN(width, 8);
155
156 c->bundle[BINK_SRC_BLOCK_TYPES].len = av_log2((width >> 3) + 511) + 1;
157
158 c->bundle[BINK_SRC_SUB_BLOCK_TYPES].len = av_log2((width >> 4) + 511) + 1;
159
160 c->bundle[BINK_SRC_COLORS].len = av_log2(bw*64 + 511) + 1;
161
162 c->bundle[BINK_SRC_INTRA_DC].len =
163 c->bundle[BINK_SRC_INTER_DC].len =
164 c->bundle[BINK_SRC_X_OFF].len =
165 c->bundle[BINK_SRC_Y_OFF].len = av_log2((width >> 3) + 511) + 1;
166
167 c->bundle[BINK_SRC_PATTERN].len = av_log2((bw << 3) + 511) + 1;
168
169 c->bundle[BINK_SRC_RUN].len = av_log2(bw*48 + 511) + 1;
170 }
171
172 /**
173 * Allocate memory for bundles.
174 *
175 * @param c decoder context
176 */
177 static av_cold void init_bundles(BinkContext *c)
178 {
179 int bw, bh, blocks;
180 int i;
181
182 bw = (c->avctx->width + 7) >> 3;
183 bh = (c->avctx->height + 7) >> 3;
184 blocks = bw * bh;
185
186 for (i = 0; i < BINKB_NB_SRC; i++) {
187 c->bundle[i].data = av_malloc(blocks * 64);
188 c->bundle[i].data_end = c->bundle[i].data + blocks * 64;
189 }
190 }
191
192 /**
193 * Free memory used by bundles.
194 *
195 * @param c decoder context
196 */
197 static av_cold void free_bundles(BinkContext *c)
198 {
199 int i;
200 for (i = 0; i < BINKB_NB_SRC; i++)
201 av_freep(&c->bundle[i].data);
202 }
203
204 /**
205 * Merge two consequent lists of equal size depending on bits read.
206 *
207 * @param gb context for reading bits
208 * @param dst buffer where merged list will be written to
209 * @param src pointer to the head of the first list (the second lists starts at src+size)
210 * @param size input lists size
211 */
212 static void merge(GetBitContext *gb, uint8_t *dst, uint8_t *src, int size)
213 {
214 uint8_t *src2 = src + size;
215 int size2 = size;
216
217 do {
218 if (!get_bits1(gb)) {
219 *dst++ = *src++;
220 size--;
221 } else {
222 *dst++ = *src2++;
223 size2--;
224 }
225 } while (size && size2);
226
227 while (size--)
228 *dst++ = *src++;
229 while (size2--)
230 *dst++ = *src2++;
231 }
232
233 /**
234 * Read information about Huffman tree used to decode data.
235 *
236 * @param gb context for reading bits
237 * @param tree pointer for storing tree data
238 */
239 static void read_tree(GetBitContext *gb, Tree *tree)
240 {
241 uint8_t tmp1[16] = { 0 }, tmp2[16], *in = tmp1, *out = tmp2;
242 int i, t, len;
243
244 tree->vlc_num = get_bits(gb, 4);
245 if (!tree->vlc_num) {
246 for (i = 0; i < 16; i++)
247 tree->syms[i] = i;
248 return;
249 }
250 if (get_bits1(gb)) {
251 len = get_bits(gb, 3);
252 for (i = 0; i <= len; i++) {
253 tree->syms[i] = get_bits(gb, 4);
254 tmp1[tree->syms[i]] = 1;
255 }
256 for (i = 0; i < 16 && len < 16 - 1; i++)
257 if (!tmp1[i])
258 tree->syms[++len] = i;
259 } else {
260 len = get_bits(gb, 2);
261 for (i = 0; i < 16; i++)
262 in[i] = i;
263 for (i = 0; i <= len; i++) {
264 int size = 1 << i;
265 for (t = 0; t < 16; t += size << 1)
266 merge(gb, out + t, in + t, size);
267 FFSWAP(uint8_t*, in, out);
268 }
269 memcpy(tree->syms, in, 16);
270 }
271 }
272
273 /**
274 * Prepare bundle for decoding data.
275 *
276 * @param gb context for reading bits
277 * @param c decoder context
278 * @param bundle_num number of the bundle to initialize
279 */
280 static void read_bundle(GetBitContext *gb, BinkContext *c, int bundle_num)
281 {
282 int i;
283
284 if (bundle_num == BINK_SRC_COLORS) {
285 for (i = 0; i < 16; i++)
286 read_tree(gb, &c->col_high[i]);
287 c->col_lastval = 0;
288 }
289 if (bundle_num != BINK_SRC_INTRA_DC && bundle_num != BINK_SRC_INTER_DC)
290 read_tree(gb, &c->bundle[bundle_num].tree);
291 c->bundle[bundle_num].cur_dec =
292 c->bundle[bundle_num].cur_ptr = c->bundle[bundle_num].data;
293 }
294
295 /**
296 * common check before starting decoding bundle data
297 *
298 * @param gb context for reading bits
299 * @param b bundle
300 * @param t variable where number of elements to decode will be stored
301 */
302 #define CHECK_READ_VAL(gb, b, t) \
303 if (!b->cur_dec || (b->cur_dec > b->cur_ptr)) \
304 return 0; \
305 t = get_bits(gb, b->len); \
306 if (!t) { \
307 b->cur_dec = NULL; \
308 return 0; \
309 } \
310
311 static int read_runs(AVCodecContext *avctx, GetBitContext *gb, Bundle *b)
312 {
313 int t, v;
314 const uint8_t *dec_end;
315
316 CHECK_READ_VAL(gb, b, t);
317 dec_end = b->cur_dec + t;
318 if (dec_end > b->data_end) {
319 av_log(avctx, AV_LOG_ERROR, "Run value went out of bounds\n");
320 return AVERROR_INVALIDDATA;
321 }
322 if (get_bits1(gb)) {
323 v = get_bits(gb, 4);
324 memset(b->cur_dec, v, t);
325 b->cur_dec += t;
326 } else {
327 while (b->cur_dec < dec_end)
328 *b->cur_dec++ = GET_HUFF(gb, b->tree);
329 }
330 return 0;
331 }
332
333 static int read_motion_values(AVCodecContext *avctx, GetBitContext *gb, Bundle *b)
334 {
335 int t, sign, v;
336 const uint8_t *dec_end;
337
338 CHECK_READ_VAL(gb, b, t);
339 dec_end = b->cur_dec + t;
340 if (dec_end > b->data_end) {
341 av_log(avctx, AV_LOG_ERROR, "Too many motion values\n");
342 return AVERROR_INVALIDDATA;
343 }
344 if (get_bits1(gb)) {
345 v = get_bits(gb, 4);
346 if (v) {
347 sign = -get_bits1(gb);
348 v = (v ^ sign) - sign;
349 }
350 memset(b->cur_dec, v, t);
351 b->cur_dec += t;
352 } else {
353 while (b->cur_dec < dec_end) {
354 v = GET_HUFF(gb, b->tree);
355 if (v) {
356 sign = -get_bits1(gb);
357 v = (v ^ sign) - sign;
358 }
359 *b->cur_dec++ = v;
360 }
361 }
362 return 0;
363 }
364
365 static const uint8_t bink_rlelens[4] = { 4, 8, 12, 32 };
366
367 static int read_block_types(AVCodecContext *avctx, GetBitContext *gb, Bundle *b)
368 {
369 int t, v;
370 int last = 0;
371 const uint8_t *dec_end;
372
373 CHECK_READ_VAL(gb, b, t);
374 dec_end = b->cur_dec + t;
375 if (dec_end > b->data_end) {
376 av_log(avctx, AV_LOG_ERROR, "Too many block type values\n");
377 return AVERROR_INVALIDDATA;
378 }
379 if (get_bits1(gb)) {
380 v = get_bits(gb, 4);
381 memset(b->cur_dec, v, t);
382 b->cur_dec += t;
383 } else {
384 while (b->cur_dec < dec_end) {
385 v = GET_HUFF(gb, b->tree);
386 if (v < 12) {
387 last = v;
388 *b->cur_dec++ = v;
389 } else {
390 int run = bink_rlelens[v - 12];
391
392 if (dec_end - b->cur_dec < run)
393 return AVERROR_INVALIDDATA;
394 memset(b->cur_dec, last, run);
395 b->cur_dec += run;
396 }
397 }
398 }
399 return 0;
400 }
401
402 static int read_patterns(AVCodecContext *avctx, GetBitContext *gb, Bundle *b)
403 {
404 int t, v;
405 const uint8_t *dec_end;
406
407 CHECK_READ_VAL(gb, b, t);
408 dec_end = b->cur_dec + t;
409 if (dec_end > b->data_end) {
410 av_log(avctx, AV_LOG_ERROR, "Too many pattern values\n");
411 return AVERROR_INVALIDDATA;
412 }
413 while (b->cur_dec < dec_end) {
414 v = GET_HUFF(gb, b->tree);
415 v |= GET_HUFF(gb, b->tree) << 4;
416 *b->cur_dec++ = v;
417 }
418
419 return 0;
420 }
421
422 static int read_colors(GetBitContext *gb, Bundle *b, BinkContext *c)
423 {
424 int t, sign, v;
425 const uint8_t *dec_end;
426
427 CHECK_READ_VAL(gb, b, t);
428 dec_end = b->cur_dec + t;
429 if (dec_end > b->data_end) {
430 av_log(c->avctx, AV_LOG_ERROR, "Too many color values\n");
431 return AVERROR_INVALIDDATA;
432 }
433 if (get_bits1(gb)) {
434 c->col_lastval = GET_HUFF(gb, c->col_high[c->col_lastval]);
435 v = GET_HUFF(gb, b->tree);
436 v = (c->col_lastval << 4) | v;
437 if (c->version < 'i') {
438 sign = ((int8_t) v) >> 7;
439 v = ((v & 0x7F) ^ sign) - sign;
440 v += 0x80;
441 }
442 memset(b->cur_dec, v, t);
443 b->cur_dec += t;
444 } else {
445 while (b->cur_dec < dec_end) {
446 c->col_lastval = GET_HUFF(gb, c->col_high[c->col_lastval]);
447 v = GET_HUFF(gb, b->tree);
448 v = (c->col_lastval << 4) | v;
449 if (c->version < 'i') {
450 sign = ((int8_t) v) >> 7;
451 v = ((v & 0x7F) ^ sign) - sign;
452 v += 0x80;
453 }
454 *b->cur_dec++ = v;
455 }
456 }
457 return 0;
458 }
459
460 /** number of bits used to store first DC value in bundle */
461 #define DC_START_BITS 11
462
463 static int read_dcs(AVCodecContext *avctx, GetBitContext *gb, Bundle *b,
464 int start_bits, int has_sign)
465 {
466 int i, j, len, len2, bsize, sign, v, v2;
467 int16_t *dst = (int16_t*)b->cur_dec;
468 int16_t *dst_end = (int16_t*)b->data_end;
469
470 CHECK_READ_VAL(gb, b, len);
471 v = get_bits(gb, start_bits - has_sign);
472 if (v && has_sign) {
473 sign = -get_bits1(gb);
474 v = (v ^ sign) - sign;
475 }
476 if (dst_end - dst < 1)
477 return AVERROR_INVALIDDATA;
478 *dst++ = v;
479 len--;
480 for (i = 0; i < len; i += 8) {
481 len2 = FFMIN(len - i, 8);
482 if (dst_end - dst < len2)
483 return AVERROR_INVALIDDATA;
484 bsize = get_bits(gb, 4);
485 if (bsize) {
486 for (j = 0; j < len2; j++) {
487 v2 = get_bits(gb, bsize);
488 if (v2) {
489 sign = -get_bits1(gb);
490 v2 = (v2 ^ sign) - sign;
491 }
492 v += v2;
493 *dst++ = v;
494 if (v < -32768 || v > 32767) {
495 av_log(avctx, AV_LOG_ERROR, "DC value went out of bounds: %d\n", v);
496 return AVERROR_INVALIDDATA;
497 }
498 }
499 } else {
500 for (j = 0; j < len2; j++)
501 *dst++ = v;
502 }
503 }
504
505 b->cur_dec = (uint8_t*)dst;
506 return 0;
507 }
508
509 /**
510 * Retrieve next value from bundle.
511 *
512 * @param c decoder context
513 * @param bundle bundle number
514 */
515 static inline int get_value(BinkContext *c, int bundle)
516 {
517 int ret;
518
519 if (bundle < BINK_SRC_X_OFF || bundle == BINK_SRC_RUN)
520 return *c->bundle[bundle].cur_ptr++;
521 if (bundle == BINK_SRC_X_OFF || bundle == BINK_SRC_Y_OFF)
522 return (int8_t)*c->bundle[bundle].cur_ptr++;
523 ret = *(int16_t*)c->bundle[bundle].cur_ptr;
524 c->bundle[bundle].cur_ptr += 2;
525 return ret;
526 }
527
528 static av_cold void binkb_init_bundle(BinkContext *c, int bundle_num)
529 {
530 c->bundle[bundle_num].cur_dec =
531 c->bundle[bundle_num].cur_ptr = c->bundle[bundle_num].data;
532 c->bundle[bundle_num].len = 13;
533 }
534
535 static av_cold void binkb_init_bundles(BinkContext *c)
536 {
537 int i;
538 for (i = 0; i < BINKB_NB_SRC; i++)
539 binkb_init_bundle(c, i);
540 }
541
542 static int binkb_read_bundle(BinkContext *c, GetBitContext *gb, int bundle_num)
543 {
544 const int bits = binkb_bundle_sizes[bundle_num];
545 const int mask = 1 << (bits - 1);
546 const int issigned = binkb_bundle_signed[bundle_num];
547 Bundle *b = &c->bundle[bundle_num];
548 int i, len;
549
550 CHECK_READ_VAL(gb, b, len);
551 if (b->data_end - b->cur_dec < len * (1 + (bits > 8)))
552 return AVERROR_INVALIDDATA;
553 if (bits <= 8) {
554 if (!issigned) {
555 for (i = 0; i < len; i++)
556 *b->cur_dec++ = get_bits(gb, bits);
557 } else {
558 for (i = 0; i < len; i++)
559 *b->cur_dec++ = get_bits(gb, bits) - mask;
560 }
561 } else {
562 int16_t *dst = (int16_t*)b->cur_dec;
563
564 if (!issigned) {
565 for (i = 0; i < len; i++)
566 *dst++ = get_bits(gb, bits);
567 } else {
568 for (i = 0; i < len; i++)
569 *dst++ = get_bits(gb, bits) - mask;
570 }
571 b->cur_dec = (uint8_t*)dst;
572 }
573 return 0;
574 }
575
576 static inline int binkb_get_value(BinkContext *c, int bundle_num)
577 {
578 int16_t ret;
579 const int bits = binkb_bundle_sizes[bundle_num];
580
581 if (bits <= 8) {
582 int val = *c->bundle[bundle_num].cur_ptr++;
583 return binkb_bundle_signed[bundle_num] ? (int8_t)val : val;
584 }
585 ret = *(int16_t*)c->bundle[bundle_num].cur_ptr;
586 c->bundle[bundle_num].cur_ptr += 2;
587 return ret;
588 }
589
590 /**
591 * Read 8x8 block of DCT coefficients.
592 *
593 * @param gb context for reading bits
594 * @param block place for storing coefficients
595 * @param scan scan order table
596 * @param quant_matrices quantization matrices
597 * @return 0 for success, negative value in other cases
598 */
599 static int read_dct_coeffs(GetBitContext *gb, int32_t block[64], const uint8_t *scan,
600 const int32_t quant_matrices[16][64], int q)
601 {
602 int coef_list[128];
603 int mode_list[128];
604 int i, t, bits, ccoef, mode, sign;
605 int list_start = 64, list_end = 64, list_pos;
606 int coef_count = 0;
607 int coef_idx[64];
608 int quant_idx;
609 const int32_t *quant;
610
611 coef_list[list_end] = 4; mode_list[list_end++] = 0;
612 coef_list[list_end] = 24; mode_list[list_end++] = 0;
613 coef_list[list_end] = 44; mode_list[list_end++] = 0;
614 coef_list[list_end] = 1; mode_list[list_end++] = 3;
615 coef_list[list_end] = 2; mode_list[list_end++] = 3;
616 coef_list[list_end] = 3; mode_list[list_end++] = 3;
617
618 for (bits = get_bits(gb, 4) - 1; bits >= 0; bits--) {
619 list_pos = list_start;
620 while (list_pos < list_end) {
621 if (!(mode_list[list_pos] | coef_list[list_pos]) || !get_bits1(gb)) {
622 list_pos++;
623 continue;
624 }
625 ccoef = coef_list[list_pos];
626 mode = mode_list[list_pos];
627 switch (mode) {
628 case 0:
629 coef_list[list_pos] = ccoef + 4;
630 mode_list[list_pos] = 1;
631 case 2:
632 if (mode == 2) {
633 coef_list[list_pos] = 0;
634 mode_list[list_pos++] = 0;
635 }
636 for (i = 0; i < 4; i++, ccoef++) {
637 if (get_bits1(gb)) {
638 coef_list[--list_start] = ccoef;
639 mode_list[ list_start] = 3;
640 } else {
641 if (!bits) {
642 t = 1 - (get_bits1(gb) << 1);
643 } else {
644 t = get_bits(gb, bits) | 1 << bits;
645 sign = -get_bits1(gb);
646 t = (t ^ sign) - sign;
647 }
648 block[scan[ccoef]] = t;
649 coef_idx[coef_count++] = ccoef;
650 }
651 }
652 break;
653 case 1:
654 mode_list[list_pos] = 2;
655 for (i = 0; i < 3; i++) {
656 ccoef += 4;
657 coef_list[list_end] = ccoef;
658 mode_list[list_end++] = 2;
659 }
660 break;
661 case 3:
662 if (!bits) {
663 t = 1 - (get_bits1(gb) << 1);
664 } else {
665 t = get_bits(gb, bits) | 1 << bits;
666 sign = -get_bits1(gb);
667 t = (t ^ sign) - sign;
668 }
669 block[scan[ccoef]] = t;
670 coef_idx[coef_count++] = ccoef;
671 coef_list[list_pos] = 0;
672 mode_list[list_pos++] = 0;
673 break;
674 }
675 }
676 }
677
678 if (q == -1) {
679 quant_idx = get_bits(gb, 4);
680 } else {
681 quant_idx = q;
682 }
683
684 if (quant_idx >= 16)
685 return AVERROR_INVALIDDATA;
686
687 quant = quant_matrices[quant_idx];
688
689 block[0] = (block[0] * quant[0]) >> 11;
690 for (i = 0; i < coef_count; i++) {
691 int idx = coef_idx[i];
692 block[scan[idx]] = (block[scan[idx]] * quant[idx]) >> 11;
693 }
694
695 return 0;
696 }
697
698 /**
699 * Read 8x8 block with residue after motion compensation.
700 *
701 * @param gb context for reading bits
702 * @param block place to store read data
703 * @param masks_count number of masks to decode
704 * @return 0 on success, negative value in other cases
705 */
706 static int read_residue(GetBitContext *gb, int16_t block[64], int masks_count)
707 {
708 int coef_list[128];
709 int mode_list[128];
710 int i, sign, mask, ccoef, mode;
711 int list_start = 64, list_end = 64, list_pos;
712 int nz_coeff[64];
713 int nz_coeff_count = 0;
714
715 coef_list[list_end] = 4; mode_list[list_end++] = 0;
716 coef_list[list_end] = 24; mode_list[list_end++] = 0;
717 coef_list[list_end] = 44; mode_list[list_end++] = 0;
718 coef_list[list_end] = 0; mode_list[list_end++] = 2;
719
720 for (mask = 1 << get_bits(gb, 3); mask; mask >>= 1) {
721 for (i = 0; i < nz_coeff_count; i++) {
722 if (!get_bits1(gb))
723 continue;
724 if (block[nz_coeff[i]] < 0)
725 block[nz_coeff[i]] -= mask;
726 else
727 block[nz_coeff[i]] += mask;
728 masks_count--;
729 if (masks_count < 0)
730 return 0;
731 }
732 list_pos = list_start;
733 while (list_pos < list_end) {
734 if (!(coef_list[list_pos] | mode_list[list_pos]) || !get_bits1(gb)) {
735 list_pos++;
736 continue;
737 }
738 ccoef = coef_list[list_pos];
739 mode = mode_list[list_pos];
740 switch (mode) {
741 case 0:
742 coef_list[list_pos] = ccoef + 4;
743 mode_list[list_pos] = 1;
744 case 2:
745 if (mode == 2) {
746 coef_list[list_pos] = 0;
747 mode_list[list_pos++] = 0;
748 }
749 for (i = 0; i < 4; i++, ccoef++) {
750 if (get_bits1(gb)) {
751 coef_list[--list_start] = ccoef;
752 mode_list[ list_start] = 3;
753 } else {
754 nz_coeff[nz_coeff_count++] = bink_scan[ccoef];
755 sign = -get_bits1(gb);
756 block[bink_scan[ccoef]] = (mask ^ sign) - sign;
757 masks_count--;
758 if (masks_count < 0)
759 return 0;
760 }
761 }
762 break;
763 case 1:
764 mode_list[list_pos] = 2;
765 for (i = 0; i < 3; i++) {
766 ccoef += 4;
767 coef_list[list_end] = ccoef;
768 mode_list[list_end++] = 2;
769 }
770 break;
771 case 3:
772 nz_coeff[nz_coeff_count++] = bink_scan[ccoef];
773 sign = -get_bits1(gb);
774 block[bink_scan[ccoef]] = (mask ^ sign) - sign;
775 coef_list[list_pos] = 0;
776 mode_list[list_pos++] = 0;
777 masks_count--;
778 if (masks_count < 0)
779 return 0;
780 break;
781 }
782 }
783 }
784
785 return 0;
786 }
787
788 /**
789 * Copy 8x8 block from source to destination, where src and dst may be overlapped
790 */
791 static inline void put_pixels8x8_overlapped(uint8_t *dst, uint8_t *src, int stride)
792 {
793 uint8_t tmp[64];
794 int i;
795 for (i = 0; i < 8; i++)
796 memcpy(tmp + i*8, src + i*stride, 8);
797 for (i = 0; i < 8; i++)
798 memcpy(dst + i*stride, tmp + i*8, 8);
799 }
800
801 static int binkb_decode_plane(BinkContext *c, AVFrame *frame, GetBitContext *gb,
802 int plane_idx, int is_key, int is_chroma)
803 {
804 int blk, ret;
805 int i, j, bx, by;
806 uint8_t *dst, *ref, *ref_start, *ref_end;
807 int v, col[2];
808 const uint8_t *scan;
809 int xoff, yoff;
810 LOCAL_ALIGNED_16(int16_t, block, [64]);
811 LOCAL_ALIGNED_16(int32_t, dctblock, [64]);
812 int coordmap[64];
813 int ybias = is_key ? -15 : 0;
814 int qp;
815
816 const int stride = frame->linesize[plane_idx];
817 int bw = is_chroma ? (c->avctx->width + 15) >> 4 : (c->avctx->width + 7) >> 3;
818 int bh = is_chroma ? (c->avctx->height + 15) >> 4 : (c->avctx->height + 7) >> 3;
819
820 binkb_init_bundles(c);
821 ref_start = frame->data[plane_idx];
822 ref_end = frame->data[plane_idx] + (bh * frame->linesize[plane_idx] + bw) * 8;
823
824 for (i = 0; i < 64; i++)
825 coordmap[i] = (i & 7) + (i >> 3) * stride;
826
827 for (by = 0; by < bh; by++) {
828 for (i = 0; i < BINKB_NB_SRC; i++) {
829 if ((ret = binkb_read_bundle(c, gb, i)) < 0)
830 return ret;
831 }
832
833 dst = frame->data[plane_idx] + 8*by*stride;
834 for (bx = 0; bx < bw; bx++, dst += 8) {
835 blk = binkb_get_value(c, BINKB_SRC_BLOCK_TYPES);
836 switch (blk) {
837 case 0:
838 break;
839 case 1:
840 scan = bink_patterns[get_bits(gb, 4)];
841 i = 0;
842 do {
843 int mode, run;
844
845 mode = get_bits1(gb);
846 run = get_bits(gb, binkb_runbits[i]) + 1;
847
848 i += run;
849 if (i > 64) {
850 av_log(c->avctx, AV_LOG_ERROR, "Run went out of bounds\n");
851 return AVERROR_INVALIDDATA;
852 }
853 if (mode) {
854 v = binkb_get_value(c, BINKB_SRC_COLORS);
855 for (j = 0; j < run; j++)
856 dst[coordmap[*scan++]] = v;
857 } else {
858 for (j = 0; j < run; j++)
859 dst[coordmap[*scan++]] = binkb_get_value(c, BINKB_SRC_COLORS);
860 }
861 } while (i < 63);
862 if (i == 63)
863 dst[coordmap[*scan++]] = binkb_get_value(c, BINKB_SRC_COLORS);
864 break;
865 case 2:
866 memset(dctblock, 0, sizeof(*dctblock) * 64);
867 dctblock[0] = binkb_get_value(c, BINKB_SRC_INTRA_DC);
868 qp = binkb_get_value(c, BINKB_SRC_INTRA_Q);
869 read_dct_coeffs(gb, dctblock, bink_scan, binkb_intra_quant, qp);
870 c->binkdsp.idct_put(dst, stride, dctblock);
871 break;
872 case 3:
873 xoff = binkb_get_value(c, BINKB_SRC_X_OFF);
874 yoff = binkb_get_value(c, BINKB_SRC_Y_OFF) + ybias;
875 ref = dst + xoff + yoff * stride;
876 if (ref < ref_start || ref + 8*stride > ref_end) {
877 av_log(c->avctx, AV_LOG_WARNING, "Reference block is out of bounds\n");
878 } else if (ref + 8*stride < dst || ref >= dst + 8*stride) {
879 c->hdsp.put_pixels_tab[1][0](dst, ref, stride, 8);
880 } else {
881 put_pixels8x8_overlapped(dst, ref, stride);
882 }
883 c->bdsp.clear_block(block);
884 v = binkb_get_value(c, BINKB_SRC_INTER_COEFS);
885 read_residue(gb, block, v);
886 c->binkdsp.add_pixels8(dst, block, stride);
887 break;
888 case 4:
889 xoff = binkb_get_value(c, BINKB_SRC_X_OFF);
890 yoff = binkb_get_value(c, BINKB_SRC_Y_OFF) + ybias;
891 ref = dst + xoff + yoff * stride;
892 if (ref < ref_start || ref + 8 * stride > ref_end) {
893 av_log(c->avctx, AV_LOG_WARNING, "Reference block is out of bounds\n");
894 } else if (ref + 8*stride < dst || ref >= dst + 8*stride) {
895 c->hdsp.put_pixels_tab[1][0](dst, ref, stride, 8);
896 } else {
897 put_pixels8x8_overlapped(dst, ref, stride);
898 }
899 memset(dctblock, 0, sizeof(*dctblock) * 64);
900 dctblock[0] = binkb_get_value(c, BINKB_SRC_INTER_DC);
901 qp = binkb_get_value(c, BINKB_SRC_INTER_Q);
902 read_dct_coeffs(gb, dctblock, bink_scan, binkb_inter_quant, qp);
903 c->binkdsp.idct_add(dst, stride, dctblock);
904 break;
905 case 5:
906 v = binkb_get_value(c, BINKB_SRC_COLORS);
907 c->bdsp.fill_block_tab[1](dst, v, stride, 8);
908 break;
909 case 6:
910 for (i = 0; i < 2; i++)
911 col[i] = binkb_get_value(c, BINKB_SRC_COLORS);
912 for (i = 0; i < 8; i++) {
913 v = binkb_get_value(c, BINKB_SRC_PATTERN);
914 for (j = 0; j < 8; j++, v >>= 1)
915 dst[i*stride + j] = col[v & 1];
916 }
917 break;
918 case 7:
919 xoff = binkb_get_value(c, BINKB_SRC_X_OFF);
920 yoff = binkb_get_value(c, BINKB_SRC_Y_OFF) + ybias;
921 ref = dst + xoff + yoff * stride;
922 if (ref < ref_start || ref + 8 * stride > ref_end) {
923 av_log(c->avctx, AV_LOG_WARNING, "Reference block is out of bounds\n");
924 } else if (ref + 8*stride < dst || ref >= dst + 8*stride) {
925 c->hdsp.put_pixels_tab[1][0](dst, ref, stride, 8);
926 } else {
927 put_pixels8x8_overlapped(dst, ref, stride);
928 }
929 break;
930 case 8:
931 for (i = 0; i < 8; i++)
932 memcpy(dst + i*stride, c->bundle[BINKB_SRC_COLORS].cur_ptr + i*8, 8);
933 c->bundle[BINKB_SRC_COLORS].cur_ptr += 64;
934 break;
935 default:
936 av_log(c->avctx, AV_LOG_ERROR, "Unknown block type %d\n", blk);
937 return AVERROR_INVALIDDATA;
938 }
939 }
940 }
941 if (get_bits_count(gb) & 0x1F) //next plane data starts at 32-bit boundary
942 skip_bits_long(gb, 32 - (get_bits_count(gb) & 0x1F));
943
944 return 0;
945 }
946
947 static int bink_decode_plane(BinkContext *c, AVFrame *frame, GetBitContext *gb,
948 int plane_idx, int is_chroma)
949 {
950 int blk, ret;
951 int i, j, bx, by;
952 uint8_t *dst, *prev, *ref, *ref_start, *ref_end;
953 int v, col[2];
954 const uint8_t *scan;
955 int xoff, yoff;
956 LOCAL_ALIGNED_16(int16_t, block, [64]);
957 LOCAL_ALIGNED_16(uint8_t, ublock, [64]);
958 LOCAL_ALIGNED_16(int32_t, dctblock, [64]);
959 int coordmap[64];
960
961 const int stride = frame->linesize[plane_idx];
962 int bw = is_chroma ? (c->avctx->width + 15) >> 4 : (c->avctx->width + 7) >> 3;
963 int bh = is_chroma ? (c->avctx->height + 15) >> 4 : (c->avctx->height + 7) >> 3;
964 int width = c->avctx->width >> is_chroma;
965
966 init_lengths(c, FFMAX(width, 8), bw);
967 for (i = 0; i < BINK_NB_SRC; i++)
968 read_bundle(gb, c, i);
969
970 ref_start = c->last->data[plane_idx] ? c->last->data[plane_idx]
971 : frame->data[plane_idx];
972 ref_end = ref_start
973 + (bw - 1 + c->last->linesize[plane_idx] * (bh - 1)) * 8;
974
975 for (i = 0; i < 64; i++)
976 coordmap[i] = (i & 7) + (i >> 3) * stride;
977
978 for (by = 0; by < bh; by++) {
979 if ((ret = read_block_types(c->avctx, gb, &c->bundle[BINK_SRC_BLOCK_TYPES])) < 0)
980 return ret;
981 if ((ret = read_block_types(c->avctx, gb, &c->bundle[BINK_SRC_SUB_BLOCK_TYPES])) < 0)
982 return ret;
983 if ((ret = read_colors(gb, &c->bundle[BINK_SRC_COLORS], c)) < 0)
984 return ret;
985 if ((ret = read_patterns(c->avctx, gb, &c->bundle[BINK_SRC_PATTERN])) < 0)
986 return ret;
987 if ((ret = read_motion_values(c->avctx, gb, &c->bundle[BINK_SRC_X_OFF])) < 0)
988 return ret;
989 if ((ret = read_motion_values(c->avctx, gb, &c->bundle[BINK_SRC_Y_OFF])) < 0)
990 return ret;
991 if ((ret = read_dcs(c->avctx, gb, &c->bundle[BINK_SRC_INTRA_DC], DC_START_BITS, 0)) < 0)
992 return ret;
993 if ((ret = read_dcs(c->avctx, gb, &c->bundle[BINK_SRC_INTER_DC], DC_START_BITS, 1)) < 0)
994 return ret;
995 if ((ret = read_runs(c->avctx, gb, &c->bundle[BINK_SRC_RUN])) < 0)
996 return ret;
997
998 if (by == bh)
999 break;
1000 dst = frame->data[plane_idx] + 8*by*stride;
1001 prev = (c->last->data[plane_idx] ? c->last->data[plane_idx]
1002 : frame->data[plane_idx]) + 8*by*stride;
1003 for (bx = 0; bx < bw; bx++, dst += 8, prev += 8) {
1004 blk = get_value(c, BINK_SRC_BLOCK_TYPES);
1005 // 16x16 block type on odd line means part of the already decoded block, so skip it
1006 if ((by & 1) && blk == SCALED_BLOCK) {
1007 bx++;
1008 dst += 8;
1009 prev += 8;
1010 continue;
1011 }
1012 switch (blk) {
1013 case SKIP_BLOCK:
1014 c->hdsp.put_pixels_tab[1][0](dst, prev, stride, 8);
1015 break;
1016 case SCALED_BLOCK:
1017 blk = get_value(c, BINK_SRC_SUB_BLOCK_TYPES);
1018 switch (blk) {
1019 case RUN_BLOCK:
1020 scan = bink_patterns[get_bits(gb, 4)];
1021 i = 0;
1022 do {
1023 int run = get_value(c, BINK_SRC_RUN) + 1;
1024
1025 i += run;
1026 if (i > 64) {
1027 av_log(c->avctx, AV_LOG_ERROR, "Run went out of bounds\n");
1028 return AVERROR_INVALIDDATA;
1029 }
1030 if (get_bits1(gb)) {
1031 v = get_value(c, BINK_SRC_COLORS);
1032 for (j = 0; j < run; j++)
1033 ublock[*scan++] = v;
1034 } else {
1035 for (j = 0; j < run; j++)
1036 ublock[*scan++] = get_value(c, BINK_SRC_COLORS);
1037 }
1038 } while (i < 63);
1039 if (i == 63)
1040 ublock[*scan++] = get_value(c, BINK_SRC_COLORS);
1041 break;
1042 case INTRA_BLOCK:
1043 memset(dctblock, 0, sizeof(*dctblock) * 64);
1044 dctblock[0] = get_value(c, BINK_SRC_INTRA_DC);
1045 read_dct_coeffs(gb, dctblock, bink_scan, bink_intra_quant, -1);
1046 c->binkdsp.idct_put(ublock, 8, dctblock);
1047 break;
1048 case FILL_BLOCK:
1049 v = get_value(c, BINK_SRC_COLORS);
1050 c->bdsp.fill_block_tab[0](dst, v, stride, 16);
1051 break;
1052 case PATTERN_BLOCK:
1053 for (i = 0; i < 2; i++)
1054 col[i] = get_value(c, BINK_SRC_COLORS);
1055 for (j = 0; j < 8; j++) {
1056 v = get_value(c, BINK_SRC_PATTERN);
1057 for (i = 0; i < 8; i++, v >>= 1)
1058 ublock[i + j*8] = col[v & 1];
1059 }
1060 break;
1061 case RAW_BLOCK:
1062 for (j = 0; j < 8; j++)
1063 for (i = 0; i < 8; i++)
1064 ublock[i + j*8] = get_value(c, BINK_SRC_COLORS);
1065 break;
1066 default:
1067 av_log(c->avctx, AV_LOG_ERROR, "Incorrect 16x16 block type %d\n", blk);
1068 return AVERROR_INVALIDDATA;
1069 }
1070 if (blk != FILL_BLOCK)
1071 c->binkdsp.scale_block(ublock, dst, stride);
1072 bx++;
1073 dst += 8;
1074 prev += 8;
1075 break;
1076 case MOTION_BLOCK:
1077 xoff = get_value(c, BINK_SRC_X_OFF);
1078 yoff = get_value(c, BINK_SRC_Y_OFF);
1079 ref = prev + xoff + yoff * stride;
1080 if (ref < ref_start || ref > ref_end) {
1081 av_log(c->avctx, AV_LOG_ERROR, "Copy out of bounds @%d, %d\n",
1082 bx*8 + xoff, by*8 + yoff);
1083 return AVERROR_INVALIDDATA;
1084 }
1085 c->hdsp.put_pixels_tab[1][0](dst, ref, stride, 8);
1086 break;
1087 case RUN_BLOCK:
1088 scan = bink_patterns[get_bits(gb, 4)];
1089 i = 0;
1090 do {
1091 int run = get_value(c, BINK_SRC_RUN) + 1;
1092
1093 i += run;
1094 if (i > 64) {
1095 av_log(c->avctx, AV_LOG_ERROR, "Run went out of bounds\n");
1096 return AVERROR_INVALIDDATA;
1097 }
1098 if (get_bits1(gb)) {
1099 v = get_value(c, BINK_SRC_COLORS);
1100 for (j = 0; j < run; j++)
1101 dst[coordmap[*scan++]] = v;
1102 } else {
1103 for (j = 0; j < run; j++)
1104 dst[coordmap[*scan++]] = get_value(c, BINK_SRC_COLORS);
1105 }
1106 } while (i < 63);
1107 if (i == 63)
1108 dst[coordmap[*scan++]] = get_value(c, BINK_SRC_COLORS);
1109 break;
1110 case RESIDUE_BLOCK:
1111 xoff = get_value(c, BINK_SRC_X_OFF);
1112 yoff = get_value(c, BINK_SRC_Y_OFF);
1113 ref = prev + xoff + yoff * stride;
1114 if (ref < ref_start || ref > ref_end) {
1115 av_log(c->avctx, AV_LOG_ERROR, "Copy out of bounds @%d, %d\n",
1116 bx*8 + xoff, by*8 + yoff);
1117 return AVERROR_INVALIDDATA;
1118 }
1119 c->hdsp.put_pixels_tab[1][0](dst, ref, stride, 8);
1120 c->bdsp.clear_block(block);
1121 v = get_bits(gb, 7);
1122 read_residue(gb, block, v);
1123 c->binkdsp.add_pixels8(dst, block, stride);
1124 break;
1125 case INTRA_BLOCK:
1126 memset(dctblock, 0, sizeof(*dctblock) * 64);
1127 dctblock[0] = get_value(c, BINK_SRC_INTRA_DC);
1128 read_dct_coeffs(gb, dctblock, bink_scan, bink_intra_quant, -1);
1129 c->binkdsp.idct_put(dst, stride, dctblock);
1130 break;
1131 case FILL_BLOCK:
1132 v = get_value(c, BINK_SRC_COLORS);
1133 c->bdsp.fill_block_tab[1](dst, v, stride, 8);
1134 break;
1135 case INTER_BLOCK:
1136 xoff = get_value(c, BINK_SRC_X_OFF);
1137 yoff = get_value(c, BINK_SRC_Y_OFF);
1138 ref = prev + xoff + yoff * stride;
1139 c->hdsp.put_pixels_tab[1][0](dst, ref, stride, 8);
1140 memset(dctblock, 0, sizeof(*dctblock) * 64);
1141 dctblock[0] = get_value(c, BINK_SRC_INTER_DC);
1142 read_dct_coeffs(gb, dctblock, bink_scan, bink_inter_quant, -1);
1143 c->binkdsp.idct_add(dst, stride, dctblock);
1144 break;
1145 case PATTERN_BLOCK:
1146 for (i = 0; i < 2; i++)
1147 col[i] = get_value(c, BINK_SRC_COLORS);
1148 for (i = 0; i < 8; i++) {
1149 v = get_value(c, BINK_SRC_PATTERN);
1150 for (j = 0; j < 8; j++, v >>= 1)
1151 dst[i*stride + j] = col[v & 1];
1152 }
1153 break;
1154 case RAW_BLOCK:
1155 for (i = 0; i < 8; i++)
1156 memcpy(dst + i*stride, c->bundle[BINK_SRC_COLORS].cur_ptr + i*8, 8);
1157 c->bundle[BINK_SRC_COLORS].cur_ptr += 64;
1158 break;
1159 default:
1160 av_log(c->avctx, AV_LOG_ERROR, "Unknown block type %d\n", blk);
1161 return AVERROR_INVALIDDATA;
1162 }
1163 }
1164 }
1165 if (get_bits_count(gb) & 0x1F) //next plane data starts at 32-bit boundary
1166 skip_bits_long(gb, 32 - (get_bits_count(gb) & 0x1F));
1167
1168 return 0;
1169 }
1170
1171 static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *pkt)
1172 {
1173 BinkContext * const c = avctx->priv_data;
1174 AVFrame *frame = data;
1175 GetBitContext gb;
1176 int plane, plane_idx, ret;
1177 int bits_count = pkt->size << 3;
1178
1179 if (c->version > 'b') {
1180 if ((ret = ff_get_buffer(avctx, frame, AV_GET_BUFFER_FLAG_REF)) < 0) {
1181 av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
1182 return ret;
1183 }
1184 } else {
1185 if ((ret = ff_reget_buffer(avctx, c->last)) < 0) {
1186 av_log(avctx, AV_LOG_ERROR, "reget_buffer() failed\n");
1187 return ret;
1188 }
1189 if ((ret = av_frame_ref(frame, c->last)) < 0)
1190 return ret;
1191 }
1192
1193 init_get_bits(&gb, pkt->data, bits_count);
1194 if (c->has_alpha) {
1195 if (c->version >= 'i')
1196 skip_bits_long(&gb, 32);
1197 if ((ret = bink_decode_plane(c, frame, &gb, 3, 0)) < 0)
1198 return ret;
1199 }
1200 if (c->version >= 'i')
1201 skip_bits_long(&gb, 32);
1202
1203 for (plane = 0; plane < 3; plane++) {
1204 plane_idx = (!plane || !c->swap_planes) ? plane : (plane ^ 3);
1205
1206 if (c->version > 'b') {
1207 if ((ret = bink_decode_plane(c, frame, &gb, plane_idx, !!plane)) < 0)
1208 return ret;
1209 } else {
1210 if ((ret = binkb_decode_plane(c, frame, &gb, plane_idx,
1211 !avctx->frame_number, !!plane)) < 0)
1212 return ret;
1213 }
1214 if (get_bits_count(&gb) >= bits_count)
1215 break;
1216 }
1217 emms_c();
1218
1219 if (c->version > 'b') {
1220 av_frame_unref(c->last);
1221 if ((ret = av_frame_ref(c->last, frame)) < 0)
1222 return ret;
1223 }
1224
1225 *got_frame = 1;
1226
1227 /* always report that the buffer was completely consumed */
1228 return pkt->size;
1229 }
1230
1231 /**
1232 * Caclulate quantization tables for version b
1233 */
1234 static av_cold void binkb_calc_quant(void)
1235 {
1236 uint8_t inv_bink_scan[64];
1237 double s[64];
1238 int i, j;
1239
1240 for (j = 0; j < 8; j++) {
1241 for (i = 0; i < 8; i++) {
1242 if (j && j != 4)
1243 if (i && i != 4)
1244 s[j*8 + i] = cos(j * M_PI/16.0) * cos(i * M_PI/16.0) * 2.0;
1245 else
1246 s[j*8 + i] = cos(j * M_PI/16.0) * sqrt(2.0);
1247 else
1248 if (i && i != 4)
1249 s[j*8 + i] = cos(i * M_PI/16.0) * sqrt(2.0);
1250 else
1251 s[j*8 + i] = 1.0;
1252 }
1253 }
1254
1255 for (i = 0; i < 64; i++)
1256 inv_bink_scan[bink_scan[i]] = i;
1257
1258 for (j = 0; j < 16; j++) {
1259 for (i = 0; i < 64; i++) {
1260 int k = inv_bink_scan[i];
1261 if (s[i] == 1.0) {
1262 binkb_intra_quant[j][k] = (1L << 12) * binkb_intra_seed[i] *
1263 binkb_num[j]/binkb_den[j];
1264 binkb_inter_quant[j][k] = (1L << 12) * binkb_inter_seed[i] *
1265 binkb_num[j]/binkb_den[j];
1266 } else {
1267 binkb_intra_quant[j][k] = (1L << 12) * binkb_intra_seed[i] * s[i] *
1268 binkb_num[j]/(double)binkb_den[j];
1269 binkb_inter_quant[j][k] = (1L << 12) * binkb_inter_seed[i] * s[i] *
1270 binkb_num[j]/(double)binkb_den[j];
1271 }
1272 }
1273 }
1274 }
1275
1276 static av_cold int decode_init(AVCodecContext *avctx)
1277 {
1278 BinkContext * const c = avctx->priv_data;
1279 static VLC_TYPE table[16 * 128][2];
1280 static int binkb_initialised = 0;
1281 int i, ret;
1282 int flags;
1283
1284 c->version = avctx->codec_tag >> 24;
1285 if (avctx->extradata_size < 4) {
1286 av_log(avctx, AV_LOG_ERROR, "Extradata missing or too short\n");
1287 return AVERROR_INVALIDDATA;
1288 }
1289 flags = AV_RL32(avctx->extradata);
1290 c->has_alpha = flags & BINK_FLAG_ALPHA;
1291 c->swap_planes = c->version >= 'h';
1292 if (!bink_trees[15].table) {
1293 for (i = 0; i < 16; i++) {
1294 const int maxbits = bink_tree_lens[i][15];
1295 bink_trees[i].table = table + i*128;
1296 bink_trees[i].table_allocated = 1 << maxbits;
1297 init_vlc(&bink_trees[i], maxbits, 16,
1298 bink_tree_lens[i], 1, 1,
1299 bink_tree_bits[i], 1, 1, INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
1300 }
1301 }
1302 c->avctx = avctx;
1303
1304 c->last = av_frame_alloc();
1305 if (!c->last)
1306 return AVERROR(ENOMEM);
1307
1308 if ((ret = av_image_check_size(avctx->width, avctx->height, 0, avctx)) < 0)
1309 return ret;
1310
1311 avctx->pix_fmt = c->has_alpha ? AV_PIX_FMT_YUVA420P : AV_PIX_FMT_YUV420P;
1312
1313 ff_blockdsp_init(&c->bdsp, avctx);
1314 ff_hpeldsp_init(&c->hdsp, avctx->flags);
1315 ff_binkdsp_init(&c->binkdsp);
1316
1317 init_bundles(c);
1318
1319 if (c->version == 'b') {
1320 if (!binkb_initialised) {
1321 binkb_calc_quant();
1322 binkb_initialised = 1;
1323 }
1324 }
1325
1326 return 0;
1327 }
1328
1329 static av_cold int decode_end(AVCodecContext *avctx)
1330 {
1331 BinkContext * const c = avctx->priv_data;
1332
1333 av_frame_free(&c->last);
1334
1335 free_bundles(c);
1336 return 0;
1337 }
1338
1339 AVCodec ff_bink_decoder = {
1340 .name = "binkvideo",
1341 .long_name = NULL_IF_CONFIG_SMALL("Bink video"),
1342 .type = AVMEDIA_TYPE_VIDEO,
1343 .id = AV_CODEC_ID_BINKVIDEO,
1344 .priv_data_size = sizeof(BinkContext),
1345 .init = decode_init,
1346 .close = decode_end,
1347 .decode = decode_frame,
1348 .capabilities = CODEC_CAP_DR1,
1349 };