2 * Chinese AVS video (AVS1-P2, JiZhun profile) decoder.
3 * Copyright (c) 2006 Stefan Gehrer <stefan.gehrer@gmx.de>
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation; either
8 * version 2 of the License, or (at your option) any later version.
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Lesser General Public License for more details.
15 * You should have received a copy of the GNU Lesser General Public
16 * License along with this library; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
21 #include "bitstream.h"
23 #include "mpegvideo.h"
28 Picture picture
; //currently decoded frame
29 Picture DPB
[2]; //reference frames
30 int dist
[2]; //temporal distances from current frame to ref frames
33 int mb_width
, mb_height
;
38 int loop_filter_disable
;
39 int alpha_offset
, beta_offset
;
44 uint8_t *cy
, *cu
, *cv
;
48 /* mv motion vector cache
53 X are the vectors in the current macroblock (5,6,9,10)
54 A is the macroblock to the left (4,8)
55 B is the macroblock to the top (1,2)
56 C is the macroblock to the top-right (3)
57 D is the macroblock to the top-left (0)
59 the same is repeated for backward motion vectors */
64 /* luma pred mode cache
70 int l_stride
, c_stride
;
76 /* intra prediction is done with un-deblocked samples
77 they are saved here before deblocking the MB */
78 uint8_t *top_border_y
, *top_border_u
, *top_border_v
;
79 uint8_t left_border_y
[16], left_border_u
[10], left_border_v
[10];
80 uint8_t topleft_border_y
, topleft_border_u
, topleft_border_v
;
82 void (*intra_pred_l
[8])(uint8_t *d
,uint8_t *top
,uint8_t *left
,int stride
);
83 void (*intra_pred_c
[7])(uint8_t *d
,uint8_t *top
,uint8_t *left
,int stride
);
84 uint8_t *col_type_base
;
92 /*****************************************************************************
94 * in-loop deblocking filter
96 ****************************************************************************/
98 static inline int get_bs_p(vector_t
*mvP
, vector_t
*mvQ
) {
99 if((mvP
->ref
== REF_INTRA
) || (mvQ
->ref
== REF_INTRA
))
101 if(mvP
->ref
!= mvQ
->ref
)
103 if( (abs(mvP
->x
- mvQ
->x
) >= 4) || (abs(mvP
->y
- mvQ
->y
) >= 4) )
108 static inline int get_bs_b(vector_t
*mvP
, vector_t
*mvQ
) {
109 if((mvP
->ref
== REF_INTRA
) || (mvQ
->ref
== REF_INTRA
)) {
112 vector_t
*mvPbw
= mvP
+ MV_BWD_OFFS
;
113 vector_t
*mvQbw
= mvQ
+ MV_BWD_OFFS
;
114 if( (abs( mvP
->x
- mvQ
->x
) >= 4) ||
115 (abs( mvP
->y
- mvQ
->y
) >= 4) ||
116 (abs(mvPbw
->x
- mvQbw
->x
) >= 4) ||
117 (abs(mvPbw
->y
- mvQbw
->y
) >= 4) )
123 /* boundary strength (bs) mapping:
134 alpha = alpha_tab[clip(qp_avg + h->alpha_offset,0,63)]; \
135 beta = beta_tab[clip(qp_avg + h->beta_offset, 0,63)]; \
136 tc = tc_tab[clip(qp_avg + h->alpha_offset,0,63)];
138 static void filter_mb(AVSContext
*h
, enum mb_t mb_type
) {
139 DECLARE_ALIGNED_8(uint8_t, bs
[8]);
140 int qp_avg
, alpha
, beta
, tc
;
143 /* save un-deblocked lines */
144 h
->topleft_border_y
= h
->top_border_y
[h
->mbx
*16+15];
145 h
->topleft_border_u
= h
->top_border_u
[h
->mbx
*10+8];
146 h
->topleft_border_v
= h
->top_border_v
[h
->mbx
*10+8];
147 memcpy(&h
->top_border_y
[h
->mbx
*16], h
->cy
+ 15* h
->l_stride
,16);
148 memcpy(&h
->top_border_u
[h
->mbx
*10+1], h
->cu
+ 7* h
->c_stride
,8);
149 memcpy(&h
->top_border_v
[h
->mbx
*10+1], h
->cv
+ 7* h
->c_stride
,8);
151 h
->left_border_y
[i
*2+0] = *(h
->cy
+ 15 + (i
*2+0)*h
->l_stride
);
152 h
->left_border_y
[i
*2+1] = *(h
->cy
+ 15 + (i
*2+1)*h
->l_stride
);
153 h
->left_border_u
[i
+1] = *(h
->cu
+ 7 + i
*h
->c_stride
);
154 h
->left_border_v
[i
+1] = *(h
->cv
+ 7 + i
*h
->c_stride
);
156 if(!h
->loop_filter_disable
) {
158 *((uint64_t *)bs
) = 0;
162 *((uint64_t *)bs
) = 0x0202020202020202ULL
;
166 bs
[2] = get_bs_p(&h
->mv
[MV_FWD_X0
], &h
->mv
[MV_FWD_X1
]);
167 bs
[3] = get_bs_p(&h
->mv
[MV_FWD_X2
], &h
->mv
[MV_FWD_X3
]);
169 bs
[6] = get_bs_p(&h
->mv
[MV_FWD_X0
], &h
->mv
[MV_FWD_X2
]);
170 bs
[7] = get_bs_p(&h
->mv
[MV_FWD_X1
], &h
->mv
[MV_FWD_X3
]);
173 bs
[0] = get_bs_p(&h
->mv
[MV_FWD_A1
], &h
->mv
[MV_FWD_X0
]);
174 bs
[1] = get_bs_p(&h
->mv
[MV_FWD_A3
], &h
->mv
[MV_FWD_X2
]);
175 bs
[4] = get_bs_p(&h
->mv
[MV_FWD_B2
], &h
->mv
[MV_FWD_X0
]);
176 bs
[5] = get_bs_p(&h
->mv
[MV_FWD_B3
], &h
->mv
[MV_FWD_X1
]);
181 bs
[2] = get_bs_b(&h
->mv
[MV_FWD_X0
], &h
->mv
[MV_FWD_X1
]);
182 bs
[3] = get_bs_b(&h
->mv
[MV_FWD_X2
], &h
->mv
[MV_FWD_X3
]);
183 bs
[6] = get_bs_b(&h
->mv
[MV_FWD_X0
], &h
->mv
[MV_FWD_X2
]);
184 bs
[7] = get_bs_b(&h
->mv
[MV_FWD_X1
], &h
->mv
[MV_FWD_X3
]);
188 bs
[0] = get_bs_b(&h
->mv
[MV_FWD_A1
], &h
->mv
[MV_FWD_X0
]);
189 bs
[1] = get_bs_b(&h
->mv
[MV_FWD_A3
], &h
->mv
[MV_FWD_X2
]);
190 bs
[4] = get_bs_b(&h
->mv
[MV_FWD_B2
], &h
->mv
[MV_FWD_X0
]);
191 bs
[5] = get_bs_b(&h
->mv
[MV_FWD_B3
], &h
->mv
[MV_FWD_X1
]);
194 if(mb_type
& 1) { //16X8
195 bs
[6] = bs
[7] = get_bs_b(&h
->mv
[MV_FWD_X0
], &h
->mv
[MV_FWD_X2
]);
197 bs
[2] = bs
[3] = get_bs_b(&h
->mv
[MV_FWD_X0
], &h
->mv
[MV_FWD_X1
]);
199 bs
[0] = get_bs_b(&h
->mv
[MV_FWD_A1
], &h
->mv
[MV_FWD_X0
]);
200 bs
[1] = get_bs_b(&h
->mv
[MV_FWD_A3
], &h
->mv
[MV_FWD_X2
]);
201 bs
[4] = get_bs_b(&h
->mv
[MV_FWD_B2
], &h
->mv
[MV_FWD_X0
]);
202 bs
[5] = get_bs_b(&h
->mv
[MV_FWD_B3
], &h
->mv
[MV_FWD_X1
]);
204 if( *((uint64_t *)bs
) ) {
205 if(h
->flags
& A_AVAIL
) {
206 qp_avg
= (h
->qp
+ h
->left_qp
+ 1) >> 1;
208 h
->s
.dsp
.cavs_filter_lv(h
->cy
,h
->l_stride
,alpha
,beta
,tc
,bs
[0],bs
[1]);
209 h
->s
.dsp
.cavs_filter_cv(h
->cu
,h
->c_stride
,alpha
,beta
,tc
,bs
[0],bs
[1]);
210 h
->s
.dsp
.cavs_filter_cv(h
->cv
,h
->c_stride
,alpha
,beta
,tc
,bs
[0],bs
[1]);
214 h
->s
.dsp
.cavs_filter_lv(h
->cy
+ 8,h
->l_stride
,alpha
,beta
,tc
,bs
[2],bs
[3]);
215 h
->s
.dsp
.cavs_filter_lh(h
->cy
+ 8*h
->l_stride
,h
->l_stride
,alpha
,beta
,tc
,
218 if(h
->flags
& B_AVAIL
) {
219 qp_avg
= (h
->qp
+ h
->top_qp
[h
->mbx
] + 1) >> 1;
221 h
->s
.dsp
.cavs_filter_lh(h
->cy
,h
->l_stride
,alpha
,beta
,tc
,bs
[4],bs
[5]);
222 h
->s
.dsp
.cavs_filter_ch(h
->cu
,h
->c_stride
,alpha
,beta
,tc
,bs
[4],bs
[5]);
223 h
->s
.dsp
.cavs_filter_ch(h
->cv
,h
->c_stride
,alpha
,beta
,tc
,bs
[4],bs
[5]);
228 h
->top_qp
[h
->mbx
] = h
->qp
;
233 /*****************************************************************************
235 * spatial intra prediction
237 ****************************************************************************/
239 static inline void load_intra_pred_luma(AVSContext
*h
, uint8_t *top
,
240 uint8_t *left
, int block
) {
245 memcpy(&left
[1],h
->left_border_y
,16);
248 memcpy(&top
[1],&h
->top_border_y
[h
->mbx
*16],16);
251 if((h
->flags
& A_AVAIL
) && (h
->flags
& B_AVAIL
))
252 left
[0] = top
[0] = h
->topleft_border_y
;
256 left
[i
+1] = *(h
->cy
+ 7 + i
*h
->l_stride
);
257 memset(&left
[9],left
[8],9);
259 memcpy(&top
[1],&h
->top_border_y
[h
->mbx
*16+8],8);
260 if(h
->flags
& C_AVAIL
)
261 memcpy(&top
[9],&h
->top_border_y
[(h
->mbx
+ 1)*16],8);
263 memset(&top
[9],top
[8],9);
266 if(h
->flags
& B_AVAIL
)
267 left
[0] = top
[0] = h
->top_border_y
[h
->mbx
*16+7];
270 memcpy(&left
[1],&h
->left_border_y
[8],8);
271 memset(&left
[9],left
[8],9);
272 memcpy(&top
[1],h
->cy
+ 7*h
->l_stride
,16);
274 left
[0] = h
->left_border_y
[7];
276 if(h
->flags
& A_AVAIL
)
281 left
[i
] = *(h
->cy
+ 7 + (i
+7)*h
->l_stride
);
282 memset(&left
[9],left
[8],9);
283 memcpy(&top
[0],h
->cy
+ 7 + 7*h
->l_stride
,9);
284 memset(&top
[9],top
[8],9);
289 static void intra_pred_vert(uint8_t *d
,uint8_t *top
,uint8_t *left
,int stride
) {
291 uint64_t a
= *((uint64_t *)(&top
[1]));
293 *((uint64_t *)(d
+y
*stride
)) = a
;
297 static void intra_pred_horiz(uint8_t *d
,uint8_t *top
,uint8_t *left
,int stride
) {
301 a
= left
[y
+1] * 0x0101010101010101ULL
;
302 *((uint64_t *)(d
+y
*stride
)) = a
;
306 static void intra_pred_dc_128(uint8_t *d
,uint8_t *top
,uint8_t *left
,int stride
) {
308 uint64_t a
= 0x8080808080808080ULL
;
310 *((uint64_t *)(d
+y
*stride
)) = a
;
313 static void intra_pred_plane(uint8_t *d
,uint8_t *top
,uint8_t *left
,int stride
) {
317 uint8_t *cm
= cropTbl
+ MAX_NEG_CROP
;
320 ih
+= (x
+1)*(top
[5+x
]-top
[3-x
]);
321 iv
+= (x
+1)*(left
[5+x
]-left
[3-x
]);
323 ia
= (top
[8]+left
[8])<<4;
328 d
[y
*stride
+x
] = cm
[(ia
+(x
-3)*ih
+(y
-3)*iv
+16)>>5];
331 #define LOWPASS(ARRAY,INDEX) \
332 (( ARRAY[(INDEX)-1] + 2*ARRAY[(INDEX)] + ARRAY[(INDEX)+1] + 2) >> 2)
334 static void intra_pred_lp(uint8_t *d
,uint8_t *top
,uint8_t *left
,int stride
) {
338 d
[y
*stride
+x
] = (LOWPASS(top
,x
+1) + LOWPASS(left
,y
+1)) >> 1;
341 static void intra_pred_down_left(uint8_t *d
,uint8_t *top
,uint8_t *left
,int stride
) {
345 d
[y
*stride
+x
] = (LOWPASS(top
,x
+y
+2) + LOWPASS(left
,x
+y
+2)) >> 1;
348 static void intra_pred_down_right(uint8_t *d
,uint8_t *top
,uint8_t *left
,int stride
) {
353 d
[y
*stride
+x
] = (left
[1]+2*top
[0]+top
[1]+2)>>2;
355 d
[y
*stride
+x
] = LOWPASS(top
,x
-y
);
357 d
[y
*stride
+x
] = LOWPASS(left
,y
-x
);
360 static void intra_pred_lp_left(uint8_t *d
,uint8_t *top
,uint8_t *left
,int stride
) {
364 d
[y
*stride
+x
] = LOWPASS(left
,y
+1);
367 static void intra_pred_lp_top(uint8_t *d
,uint8_t *top
,uint8_t *left
,int stride
) {
371 d
[y
*stride
+x
] = LOWPASS(top
,x
+1);
376 static inline void modify_pred(const int_fast8_t *mod_table
, int *mode
) {
377 int newmode
= mod_table
[*mode
];
379 av_log(NULL
, AV_LOG_ERROR
, "Illegal intra prediction mode\n");
386 /*****************************************************************************
388 * motion compensation
390 ****************************************************************************/
392 static inline void mc_dir_part(AVSContext
*h
,Picture
*pic
,int square
,
393 int chroma_height
,int delta
,int list
,uint8_t *dest_y
,
394 uint8_t *dest_cb
,uint8_t *dest_cr
,int src_x_offset
,
395 int src_y_offset
,qpel_mc_func
*qpix_op
,
396 h264_chroma_mc_func chroma_op
,vector_t
*mv
){
397 MpegEncContext
* const s
= &h
->s
;
398 const int mx
= mv
->x
+ src_x_offset
*8;
399 const int my
= mv
->y
+ src_y_offset
*8;
400 const int luma_xy
= (mx
&3) + ((my
&3)<<2);
401 uint8_t * src_y
= pic
->data
[0] + (mx
>>2) + (my
>>2)*h
->l_stride
;
402 uint8_t * src_cb
= pic
->data
[1] + (mx
>>3) + (my
>>3)*h
->c_stride
;
403 uint8_t * src_cr
= pic
->data
[2] + (mx
>>3) + (my
>>3)*h
->c_stride
;
404 int extra_width
= 0; //(s->flags&CODEC_FLAG_EMU_EDGE) ? 0 : 16;
405 int extra_height
= extra_width
;
407 const int full_mx
= mx
>>2;
408 const int full_my
= my
>>2;
409 const int pic_width
= 16*h
->mb_width
;
410 const int pic_height
= 16*h
->mb_height
;
414 if(mx
&7) extra_width
-= 3;
415 if(my
&7) extra_height
-= 3;
417 if( full_mx
< 0-extra_width
418 || full_my
< 0-extra_height
419 || full_mx
+ 16/*FIXME*/ > pic_width
+ extra_width
420 || full_my
+ 16/*FIXME*/ > pic_height
+ extra_height
){
421 ff_emulated_edge_mc(s
->edge_emu_buffer
, src_y
- 2 - 2*h
->l_stride
, h
->l_stride
,
422 16+5, 16+5/*FIXME*/, full_mx
-2, full_my
-2, pic_width
, pic_height
);
423 src_y
= s
->edge_emu_buffer
+ 2 + 2*h
->l_stride
;
427 qpix_op
[luma_xy
](dest_y
, src_y
, h
->l_stride
); //FIXME try variable height perhaps?
429 qpix_op
[luma_xy
](dest_y
+ delta
, src_y
+ delta
, h
->l_stride
);
433 ff_emulated_edge_mc(s
->edge_emu_buffer
, src_cb
, h
->c_stride
,
434 9, 9/*FIXME*/, (mx
>>3), (my
>>3), pic_width
>>1, pic_height
>>1);
435 src_cb
= s
->edge_emu_buffer
;
437 chroma_op(dest_cb
, src_cb
, h
->c_stride
, chroma_height
, mx
&7, my
&7);
440 ff_emulated_edge_mc(s
->edge_emu_buffer
, src_cr
, h
->c_stride
,
441 9, 9/*FIXME*/, (mx
>>3), (my
>>3), pic_width
>>1, pic_height
>>1);
442 src_cr
= s
->edge_emu_buffer
;
444 chroma_op(dest_cr
, src_cr
, h
->c_stride
, chroma_height
, mx
&7, my
&7);
447 static inline void mc_part_std(AVSContext
*h
,int square
,int chroma_height
,int delta
,
448 uint8_t *dest_y
,uint8_t *dest_cb
,uint8_t *dest_cr
,
449 int x_offset
, int y_offset
,qpel_mc_func
*qpix_put
,
450 h264_chroma_mc_func chroma_put
,qpel_mc_func
*qpix_avg
,
451 h264_chroma_mc_func chroma_avg
, vector_t
*mv
){
452 qpel_mc_func
*qpix_op
= qpix_put
;
453 h264_chroma_mc_func chroma_op
= chroma_put
;
455 dest_y
+= 2*x_offset
+ 2*y_offset
*h
->l_stride
;
456 dest_cb
+= x_offset
+ y_offset
*h
->c_stride
;
457 dest_cr
+= x_offset
+ y_offset
*h
->c_stride
;
458 x_offset
+= 8*h
->mbx
;
459 y_offset
+= 8*h
->mby
;
462 Picture
*ref
= &h
->DPB
[mv
->ref
];
463 mc_dir_part(h
, ref
, square
, chroma_height
, delta
, 0,
464 dest_y
, dest_cb
, dest_cr
, x_offset
, y_offset
,
465 qpix_op
, chroma_op
, mv
);
468 chroma_op
= chroma_avg
;
471 if((mv
+MV_BWD_OFFS
)->ref
>= 0){
472 Picture
*ref
= &h
->DPB
[0];
473 mc_dir_part(h
, ref
, square
, chroma_height
, delta
, 1,
474 dest_y
, dest_cb
, dest_cr
, x_offset
, y_offset
,
475 qpix_op
, chroma_op
, mv
+MV_BWD_OFFS
);
479 static void inter_pred(AVSContext
*h
) {
480 /* always do 8x8 blocks TODO: are larger blocks worth it? */
481 mc_part_std(h
, 1, 4, 0, h
->cy
, h
->cu
, h
->cv
, 0, 0,
482 h
->s
.dsp
.put_cavs_qpel_pixels_tab
[1],
483 h
->s
.dsp
.put_h264_chroma_pixels_tab
[1],
484 h
->s
.dsp
.avg_cavs_qpel_pixels_tab
[1],
485 h
->s
.dsp
.avg_h264_chroma_pixels_tab
[1],&h
->mv
[MV_FWD_X0
]);
486 mc_part_std(h
, 1, 4, 0, h
->cy
, h
->cu
, h
->cv
, 4, 0,
487 h
->s
.dsp
.put_cavs_qpel_pixels_tab
[1],
488 h
->s
.dsp
.put_h264_chroma_pixels_tab
[1],
489 h
->s
.dsp
.avg_cavs_qpel_pixels_tab
[1],
490 h
->s
.dsp
.avg_h264_chroma_pixels_tab
[1],&h
->mv
[MV_FWD_X1
]);
491 mc_part_std(h
, 1, 4, 0, h
->cy
, h
->cu
, h
->cv
, 0, 4,
492 h
->s
.dsp
.put_cavs_qpel_pixels_tab
[1],
493 h
->s
.dsp
.put_h264_chroma_pixels_tab
[1],
494 h
->s
.dsp
.avg_cavs_qpel_pixels_tab
[1],
495 h
->s
.dsp
.avg_h264_chroma_pixels_tab
[1],&h
->mv
[MV_FWD_X2
]);
496 mc_part_std(h
, 1, 4, 0, h
->cy
, h
->cu
, h
->cv
, 4, 4,
497 h
->s
.dsp
.put_cavs_qpel_pixels_tab
[1],
498 h
->s
.dsp
.put_h264_chroma_pixels_tab
[1],
499 h
->s
.dsp
.avg_cavs_qpel_pixels_tab
[1],
500 h
->s
.dsp
.avg_h264_chroma_pixels_tab
[1],&h
->mv
[MV_FWD_X3
]);
501 /* set intra prediction modes to default values */
502 h
->pred_mode_Y
[3] = h
->pred_mode_Y
[6] = INTRA_L_LP
;
503 h
->top_pred_Y
[h
->mbx
*2+0] = h
->top_pred_Y
[h
->mbx
*2+1] = INTRA_L_LP
;
506 /*****************************************************************************
508 * motion vector prediction
510 ****************************************************************************/
512 static inline void set_mvs(vector_t
*mv
, enum block_t size
) {
515 mv
[MV_STRIDE
] = mv
[0];
516 mv
[MV_STRIDE
+1] = mv
[0];
521 mv
[MV_STRIDE
] = mv
[0];
526 static inline void store_mvs(AVSContext
*h
) {
527 h
->col_mv
[(h
->mby
*h
->mb_width
+ h
->mbx
)*4 + 0] = h
->mv
[MV_FWD_X0
];
528 h
->col_mv
[(h
->mby
*h
->mb_width
+ h
->mbx
)*4 + 1] = h
->mv
[MV_FWD_X1
];
529 h
->col_mv
[(h
->mby
*h
->mb_width
+ h
->mbx
)*4 + 2] = h
->mv
[MV_FWD_X2
];
530 h
->col_mv
[(h
->mby
*h
->mb_width
+ h
->mbx
)*4 + 3] = h
->mv
[MV_FWD_X3
];
533 static inline void scale_mv(AVSContext
*h
, int *d_x
, int *d_y
, vector_t
*src
, int distp
) {
534 int den
= h
->scale_den
[src
->ref
];
536 *d_x
= (src
->x
*distp
*den
+ 256 + (src
->x
>>31)) >> 9;
537 *d_y
= (src
->y
*distp
*den
+ 256 + (src
->y
>>31)) >> 9;
540 static inline void mv_pred_median(AVSContext
*h
, vector_t
*mvP
, vector_t
*mvA
, vector_t
*mvB
, vector_t
*mvC
) {
541 int ax
, ay
, bx
, by
, cx
, cy
;
542 int len_ab
, len_bc
, len_ca
, len_mid
;
544 /* scale candidates according to their temporal span */
545 scale_mv(h
, &ax
, &ay
, mvA
, mvP
->dist
);
546 scale_mv(h
, &bx
, &by
, mvB
, mvP
->dist
);
547 scale_mv(h
, &cx
, &cy
, mvC
, mvP
->dist
);
548 /* find the geometrical median of the three candidates */
549 len_ab
= abs(ax
- bx
) + abs(ay
- by
);
550 len_bc
= abs(bx
- cx
) + abs(by
- cy
);
551 len_ca
= abs(cx
- ax
) + abs(cy
- ay
);
552 len_mid
= mid_pred(len_ab
, len_bc
, len_ca
);
553 if(len_mid
== len_ab
) {
556 } else if(len_mid
== len_bc
) {
565 static inline void mv_pred_direct(AVSContext
*h
, vector_t
*pmv_fw
,
566 vector_t
*pmv_bw
, vector_t
*col_mv
) {
567 int den
= h
->direct_den
[col_mv
->ref
];
568 int m
= col_mv
->x
>> 31;
570 pmv_fw
->dist
= h
->dist
[1];
571 pmv_bw
->dist
= h
->dist
[0];
574 /* scale the co-located motion vector according to its temporal span */
575 pmv_fw
->x
= (((den
+(den
*col_mv
->x
*pmv_fw
->dist
^m
)-m
-1)>>14)^m
)-m
;
576 pmv_bw
->x
= m
-(((den
+(den
*col_mv
->x
*pmv_bw
->dist
^m
)-m
-1)>>14)^m
);
578 pmv_fw
->y
= (((den
+(den
*col_mv
->y
*pmv_fw
->dist
^m
)-m
-1)>>14)^m
)-m
;
579 pmv_bw
->y
= m
-(((den
+(den
*col_mv
->y
*pmv_bw
->dist
^m
)-m
-1)>>14)^m
);
582 static inline void mv_pred_sym(AVSContext
*h
, vector_t
*src
, enum block_t size
) {
583 vector_t
*dst
= src
+ MV_BWD_OFFS
;
585 /* backward mv is the scaled and negated forward mv */
586 dst
->x
= -((src
->x
* h
->sym_factor
+ 256) >> 9);
587 dst
->y
= -((src
->y
* h
->sym_factor
+ 256) >> 9);
589 dst
->dist
= h
->dist
[0];
593 static void mv_pred(AVSContext
*h
, enum mv_loc_t nP
, enum mv_loc_t nC
,
594 enum mv_pred_t mode
, enum block_t size
, int ref
) {
595 vector_t
*mvP
= &h
->mv
[nP
];
596 vector_t
*mvA
= &h
->mv
[nP
-1];
597 vector_t
*mvB
= &h
->mv
[nP
-4];
598 vector_t
*mvC
= &h
->mv
[nC
];
599 int mvAref
= mvA
->ref
;
600 int mvBref
= mvB
->ref
;
604 mvP
->dist
= h
->dist
[mvP
->ref
];
605 if(mvC
->ref
== NOT_AVAIL
)
606 mvC
= &h
->mv
[nP
-5]; // set to top-left (mvD)
608 if(mode
== MV_PRED_PSKIP
) {
609 if((mvAref
== NOT_AVAIL
) || (mvBref
== NOT_AVAIL
) ||
610 ((mvA
->x
| mvA
->y
| mvA
->ref
) == 0) ||
611 ((mvB
->x
| mvB
->y
| mvB
->ref
) == 0) ) {
617 /* if there is only one suitable candidate, take it */
618 if((mvAref
>= 0) && (mvBref
< 0) && (mvCref
< 0)) {
621 } else if((mvAref
< 0) && (mvBref
>= 0) && (mvCref
< 0)) {
624 } else if((mvAref
< 0) && (mvBref
< 0) && (mvCref
>= 0)) {
630 if(mvAref
== mvP
->ref
) {
634 mv_pred_median(h
, mvP
, mvA
, mvB
, mvC
);
637 if(mvBref
== mvP
->ref
) {
641 mv_pred_median(h
, mvP
, mvA
, mvB
, mvC
);
643 case MV_PRED_TOPRIGHT
:
644 if(mvCref
== mvP
->ref
) {
648 mv_pred_median(h
, mvP
, mvA
, mvB
, mvC
);
651 mv_pred_median(h
, mvP
, mvA
, mvB
, mvC
);
655 if(mode
< MV_PRED_PSKIP
) {
656 mvP
->x
+= get_se_golomb(&h
->s
.gb
);
657 mvP
->y
+= get_se_golomb(&h
->s
.gb
);
662 /*****************************************************************************
664 * residual data decoding
666 ****************************************************************************/
668 /* kth-order exponential golomb code */
669 static inline int get_ue_code(GetBitContext
*gb
, int order
) {
671 int ret
= get_ue_golomb(gb
) << order
;
672 return ret
+ get_bits(gb
,order
);
674 return get_ue_golomb(gb
);
677 static int decode_residual_block(AVSContext
*h
, GetBitContext
*gb
,
678 const residual_vlc_t
*r
, int esc_golomb_order
,
679 int qp
, uint8_t *dst
, int stride
) {
681 int level_code
, esc_code
, level
, run
, mask
;
684 int dqm
= dequant_mul
[qp
];
685 int dqs
= dequant_shift
[qp
];
686 int dqa
= 1 << (dqs
- 1);
687 const uint8_t *scantab
= ff_zigzag_direct
;
690 memset(block
,0,64*sizeof(DCTELEM
));
692 level_code
= get_ue_code(gb
,r
->golomb_order
);
693 if(level_code
>= ESCAPE_CODE
) {
694 run
= (level_code
- ESCAPE_CODE
) >> 1;
695 esc_code
= get_ue_code(gb
,esc_golomb_order
);
696 level
= esc_code
+ (run
> r
->max_run ?
1 : r
->level_add
[run
]);
697 while(level
> r
->inc_limit
)
699 mask
= -(level_code
& 1);
700 level
= (level
^mask
) - mask
;
704 level
= r
->rltab
[level_code
][0];
705 if(!level
) //end of block signal
707 run
= r
->rltab
[level_code
][1];
708 r
+= r
->rltab
[level_code
][2];
710 level_buf
[i
] = level
;
713 /* inverse scan and dequantization */
715 pos
+= 1 + run_buf
[i
];
717 av_log(h
->s
.avctx
, AV_LOG_ERROR
,
718 "position out of block bounds at pic %d MB(%d,%d)\n",
719 h
->picture
.poc
, h
->mbx
, h
->mby
);
722 block
[scantab
[pos
]] = (level_buf
[i
]*dqm
+ dqa
) >> dqs
;
724 h
->s
.dsp
.cavs_idct8_add(dst
,block
,stride
);
729 static inline void decode_residual_chroma(AVSContext
*h
) {
731 decode_residual_block(h
,&h
->s
.gb
,chroma_2dvlc
,0, chroma_qp
[h
->qp
],
734 decode_residual_block(h
,&h
->s
.gb
,chroma_2dvlc
,0, chroma_qp
[h
->qp
],
738 static inline void decode_residual_inter(AVSContext
*h
) {
741 /* get coded block pattern */
742 h
->cbp
= cbp_tab
[get_ue_golomb(&h
->s
.gb
)][1];
744 if(h
->cbp
&& !h
->qp_fixed
)
745 h
->qp
+= get_se_golomb(&h
->s
.gb
);
746 for(block
=0;block
<4;block
++)
747 if(h
->cbp
& (1<<block
))
748 decode_residual_block(h
,&h
->s
.gb
,inter_2dvlc
,0,h
->qp
,
749 h
->cy
+ h
->luma_scan
[block
], h
->l_stride
);
750 decode_residual_chroma(h
);
753 /*****************************************************************************
757 ****************************************************************************/
759 static inline void init_mb(AVSContext
*h
) {
762 /* copy predictors from top line (MB B and C) into cache */
764 h
->mv
[MV_FWD_B2
+i
] = h
->top_mv
[0][h
->mbx
*2+i
];
765 h
->mv
[MV_BWD_B2
+i
] = h
->top_mv
[1][h
->mbx
*2+i
];
767 h
->pred_mode_Y
[1] = h
->top_pred_Y
[h
->mbx
*2+0];
768 h
->pred_mode_Y
[2] = h
->top_pred_Y
[h
->mbx
*2+1];
769 /* clear top predictors if MB B is not available */
770 if(!(h
->flags
& B_AVAIL
)) {
771 h
->mv
[MV_FWD_B2
] = un_mv
;
772 h
->mv
[MV_FWD_B3
] = un_mv
;
773 h
->mv
[MV_BWD_B2
] = un_mv
;
774 h
->mv
[MV_BWD_B3
] = un_mv
;
775 h
->pred_mode_Y
[1] = h
->pred_mode_Y
[2] = NOT_AVAIL
;
776 h
->flags
&= ~(C_AVAIL
|D_AVAIL
);
780 if(h
->mbx
== h
->mb_width
-1) //MB C not available
781 h
->flags
&= ~C_AVAIL
;
782 /* clear top-right predictors if MB C is not available */
783 if(!(h
->flags
& C_AVAIL
)) {
784 h
->mv
[MV_FWD_C2
] = un_mv
;
785 h
->mv
[MV_BWD_C2
] = un_mv
;
787 /* clear top-left predictors if MB D is not available */
788 if(!(h
->flags
& D_AVAIL
)) {
789 h
->mv
[MV_FWD_D3
] = un_mv
;
790 h
->mv
[MV_BWD_D3
] = un_mv
;
792 /* set pointer for co-located macroblock type */
793 h
->col_type
= &h
->col_type_base
[h
->mby
*h
->mb_width
+ h
->mbx
];
796 static inline void check_for_slice(AVSContext
*h
);
798 static inline int next_mb(AVSContext
*h
) {
805 /* copy mvs as predictors to the left */
807 h
->mv
[i
] = h
->mv
[i
+2];
808 /* copy bottom mvs from cache to top line */
809 h
->top_mv
[0][h
->mbx
*2+0] = h
->mv
[MV_FWD_X2
];
810 h
->top_mv
[0][h
->mbx
*2+1] = h
->mv
[MV_FWD_X3
];
811 h
->top_mv
[1][h
->mbx
*2+0] = h
->mv
[MV_BWD_X2
];
812 h
->top_mv
[1][h
->mbx
*2+1] = h
->mv
[MV_BWD_X3
];
813 /* next MB address */
815 if(h
->mbx
== h
->mb_width
) { //new mb line
816 h
->flags
= B_AVAIL
|C_AVAIL
;
817 /* clear left pred_modes */
818 h
->pred_mode_Y
[3] = h
->pred_mode_Y
[6] = NOT_AVAIL
;
819 /* clear left mv predictors */
824 /* re-calculate sample pointers */
825 h
->cy
= h
->picture
.data
[0] + h
->mby
*16*h
->l_stride
;
826 h
->cu
= h
->picture
.data
[1] + h
->mby
*8*h
->c_stride
;
827 h
->cv
= h
->picture
.data
[2] + h
->mby
*8*h
->c_stride
;
828 if(h
->mby
== h
->mb_height
) { //frame end
831 //check_for_slice(h);
837 static void decode_mb_i(AVSContext
*h
, int is_i_pic
) {
838 GetBitContext
*gb
= &h
->s
.gb
;
839 int block
, pred_mode_uv
;
844 /* get intra prediction modes from stream */
845 for(block
=0;block
<4;block
++) {
847 int pos
= scan3x3
[block
];
849 nA
= h
->pred_mode_Y
[pos
-1];
850 nB
= h
->pred_mode_Y
[pos
-3];
851 if((nA
== NOT_AVAIL
) || (nB
== NOT_AVAIL
))
854 predpred
= FFMIN(nA
,nB
);
856 h
->pred_mode_Y
[pos
] = predpred
;
858 h
->pred_mode_Y
[pos
] = get_bits(gb
,2);
859 if(h
->pred_mode_Y
[pos
] >= predpred
)
860 h
->pred_mode_Y
[pos
]++;
863 pred_mode_uv
= get_ue_golomb(gb
);
864 if(pred_mode_uv
> 6) {
865 av_log(h
->s
.avctx
, AV_LOG_ERROR
, "illegal intra chroma pred mode\n");
869 /* save pred modes before they get modified */
870 h
->pred_mode_Y
[3] = h
->pred_mode_Y
[5];
871 h
->pred_mode_Y
[6] = h
->pred_mode_Y
[8];
872 h
->top_pred_Y
[h
->mbx
*2+0] = h
->pred_mode_Y
[7];
873 h
->top_pred_Y
[h
->mbx
*2+1] = h
->pred_mode_Y
[8];
875 /* modify pred modes according to availability of neighbour samples */
876 if(!(h
->flags
& A_AVAIL
)) {
877 modify_pred(left_modifier_l
, &h
->pred_mode_Y
[4] );
878 modify_pred(left_modifier_l
, &h
->pred_mode_Y
[7] );
879 modify_pred(left_modifier_c
, &pred_mode_uv
);
881 if(!(h
->flags
& B_AVAIL
)) {
882 modify_pred(top_modifier_l
, &h
->pred_mode_Y
[4] );
883 modify_pred(top_modifier_l
, &h
->pred_mode_Y
[5] );
884 modify_pred(top_modifier_c
, &pred_mode_uv
);
887 /* get coded block pattern */
889 h
->cbp
= cbp_tab
[get_ue_golomb(gb
)][0];
890 if(h
->cbp
&& !h
->qp_fixed
)
891 h
->qp
+= get_se_golomb(gb
); //qp_delta
893 /* luma intra prediction interleaved with residual decode/transform/add */
894 for(block
=0;block
<4;block
++) {
895 d
= h
->cy
+ h
->luma_scan
[block
];
896 load_intra_pred_luma(h
, top
, left
, block
);
897 h
->intra_pred_l
[h
->pred_mode_Y
[scan3x3
[block
]]]
898 (d
, top
, left
, h
->l_stride
);
899 if(h
->cbp
& (1<<block
))
900 decode_residual_block(h
,gb
,intra_2dvlc
,1,h
->qp
,d
,h
->l_stride
);
903 /* chroma intra prediction */
904 /* extend borders by one pixel */
905 h
->left_border_u
[9] = h
->left_border_u
[8];
906 h
->left_border_v
[9] = h
->left_border_v
[8];
907 h
->top_border_u
[h
->mbx
*10+9] = h
->top_border_u
[h
->mbx
*10+8];
908 h
->top_border_v
[h
->mbx
*10+9] = h
->top_border_v
[h
->mbx
*10+8];
909 if(h
->mbx
&& h
->mby
) {
910 h
->top_border_u
[h
->mbx
*10] = h
->left_border_u
[0] = h
->topleft_border_u
;
911 h
->top_border_v
[h
->mbx
*10] = h
->left_border_v
[0] = h
->topleft_border_v
;
913 h
->left_border_u
[0] = h
->left_border_u
[1];
914 h
->left_border_v
[0] = h
->left_border_v
[1];
915 h
->top_border_u
[h
->mbx
*10] = h
->top_border_u
[h
->mbx
*10+1];
916 h
->top_border_v
[h
->mbx
*10] = h
->top_border_v
[h
->mbx
*10+1];
918 h
->intra_pred_c
[pred_mode_uv
](h
->cu
, &h
->top_border_u
[h
->mbx
*10],
919 h
->left_border_u
, h
->c_stride
);
920 h
->intra_pred_c
[pred_mode_uv
](h
->cv
, &h
->top_border_v
[h
->mbx
*10],
921 h
->left_border_v
, h
->c_stride
);
923 decode_residual_chroma(h
);
926 /* mark motion vectors as intra */
927 h
->mv
[MV_FWD_X0
] = intra_mv
;
928 set_mvs(&h
->mv
[MV_FWD_X0
], BLK_16X16
);
929 h
->mv
[MV_BWD_X0
] = intra_mv
;
930 set_mvs(&h
->mv
[MV_BWD_X0
], BLK_16X16
);
931 if(h
->pic_type
!= FF_B_TYPE
)
932 *h
->col_type
= I_8X8
;
935 static void mb_skip_p(AVSContext
*h
) {
936 mv_pred(h
, MV_FWD_X0
, MV_FWD_C2
, MV_PRED_PSKIP
, BLK_16X16
, 0);
940 *h
->col_type
= P_SKIP
;
944 static void mb_skip_b(AVSContext
*h
) {
947 if(!(*h
->col_type
)) {
948 /* intra MB at co-location, do in-plane prediction */
949 mv_pred(h
, MV_FWD_X0
, MV_FWD_C2
, MV_PRED_BSKIP
, BLK_16X16
, 1);
950 mv_pred(h
, MV_BWD_X0
, MV_BWD_C2
, MV_PRED_BSKIP
, BLK_16X16
, 0);
952 /* direct prediction from co-located P MB, block-wise */
954 mv_pred_direct(h
,&h
->mv
[mv_scan
[i
]],
955 &h
->mv
[mv_scan
[i
]+MV_BWD_OFFS
],
956 &h
->col_mv
[(h
->mby
*h
->mb_width
+ h
->mbx
)*4 + i
]);
960 static void decode_mb_p(AVSContext
*h
, enum mb_t mb_type
) {
961 GetBitContext
*gb
= &h
->s
.gb
;
969 ref
[0] = h
->ref_flag ?
0 : get_bits1(gb
);
970 mv_pred(h
, MV_FWD_X0
, MV_FWD_C2
, MV_PRED_MEDIAN
, BLK_16X16
,ref
[0]);
973 ref
[0] = h
->ref_flag ?
0 : get_bits1(gb
);
974 ref
[2] = h
->ref_flag ?
0 : get_bits1(gb
);
975 mv_pred(h
, MV_FWD_X0
, MV_FWD_C2
, MV_PRED_TOP
, BLK_16X8
, ref
[0]);
976 mv_pred(h
, MV_FWD_X2
, MV_FWD_A1
, MV_PRED_LEFT
, BLK_16X8
, ref
[2]);
979 ref
[0] = h
->ref_flag ?
0 : get_bits1(gb
);
980 ref
[1] = h
->ref_flag ?
0 : get_bits1(gb
);
981 mv_pred(h
, MV_FWD_X0
, MV_FWD_B3
, MV_PRED_LEFT
, BLK_8X16
, ref
[0]);
982 mv_pred(h
, MV_FWD_X1
, MV_FWD_C2
, MV_PRED_TOPRIGHT
, BLK_8X16
, ref
[1]);
985 ref
[0] = h
->ref_flag ?
0 : get_bits1(gb
);
986 ref
[1] = h
->ref_flag ?
0 : get_bits1(gb
);
987 ref
[2] = h
->ref_flag ?
0 : get_bits1(gb
);
988 ref
[3] = h
->ref_flag ?
0 : get_bits1(gb
);
989 mv_pred(h
, MV_FWD_X0
, MV_FWD_B3
, MV_PRED_MEDIAN
, BLK_8X8
, ref
[0]);
990 mv_pred(h
, MV_FWD_X1
, MV_FWD_C2
, MV_PRED_MEDIAN
, BLK_8X8
, ref
[1]);
991 mv_pred(h
, MV_FWD_X2
, MV_FWD_X1
, MV_PRED_MEDIAN
, BLK_8X8
, ref
[2]);
992 mv_pred(h
, MV_FWD_X3
, MV_FWD_X0
, MV_PRED_MEDIAN
, BLK_8X8
, ref
[3]);
996 decode_residual_inter(h
);
997 filter_mb(h
,mb_type
);
998 *h
->col_type
= mb_type
;
1001 static void decode_mb_b(AVSContext
*h
, enum mb_t mb_type
) {
1003 enum sub_mb_t sub_type
[4];
1007 h
->mv
[MV_FWD_X0
] = dir_mv
;
1008 set_mvs(&h
->mv
[MV_FWD_X0
], BLK_16X16
);
1009 h
->mv
[MV_BWD_X0
] = dir_mv
;
1010 set_mvs(&h
->mv
[MV_BWD_X0
], BLK_16X16
);
1015 filter_mb(h
,B_SKIP
);
1021 mv_pred(h
, MV_FWD_X0
, MV_FWD_C2
, MV_PRED_MEDIAN
, BLK_16X16
, 1);
1024 mv_pred(h
, MV_FWD_X0
, MV_FWD_C2
, MV_PRED_MEDIAN
, BLK_16X16
, 1);
1025 mv_pred_sym(h
, &h
->mv
[MV_FWD_X0
], BLK_16X16
);
1028 mv_pred(h
, MV_BWD_X0
, MV_BWD_C2
, MV_PRED_MEDIAN
, BLK_16X16
, 0);
1031 for(block
=0;block
<4;block
++)
1032 sub_type
[block
] = get_bits(&h
->s
.gb
,2);
1033 for(block
=0;block
<4;block
++) {
1034 switch(sub_type
[block
]) {
1036 if(!(*h
->col_type
)) {
1037 /* intra MB at co-location, do in-plane prediction */
1038 mv_pred(h
, mv_scan
[block
], mv_scan
[block
]-3,
1039 MV_PRED_BSKIP
, BLK_8X8
, 1);
1040 mv_pred(h
, mv_scan
[block
]+MV_BWD_OFFS
,
1041 mv_scan
[block
]-3+MV_BWD_OFFS
,
1042 MV_PRED_BSKIP
, BLK_8X8
, 0);
1044 mv_pred_direct(h
,&h
->mv
[mv_scan
[block
]],
1045 &h
->mv
[mv_scan
[block
]+MV_BWD_OFFS
],
1046 &h
->col_mv
[(h
->mby
*h
->mb_width
+ h
->mbx
)*4 + block
]);
1049 mv_pred(h
, mv_scan
[block
], mv_scan
[block
]-3,
1050 MV_PRED_MEDIAN
, BLK_8X8
, 1);
1053 mv_pred(h
, mv_scan
[block
], mv_scan
[block
]-3,
1054 MV_PRED_MEDIAN
, BLK_8X8
, 1);
1055 mv_pred_sym(h
, &h
->mv
[mv_scan
[block
]], BLK_8X8
);
1059 for(block
=0;block
<4;block
++) {
1060 if(sub_type
[block
] == B_SUB_BWD
)
1061 mv_pred(h
, mv_scan
[block
]+MV_BWD_OFFS
,
1062 mv_scan
[block
]+MV_BWD_OFFS
-3,
1063 MV_PRED_MEDIAN
, BLK_8X8
, 0);
1067 assert((mb_type
> B_SYM_16X16
) && (mb_type
< B_8X8
));
1068 flags
= b_partition_flags
[(mb_type
-1)>>1];
1069 if(mb_type
& 1) { /* 16x8 macroblock types */
1071 mv_pred(h
, MV_FWD_X0
, MV_FWD_C2
, MV_PRED_TOP
, BLK_16X8
, 1);
1073 mv_pred(h
, MV_FWD_X0
, MV_FWD_C2
, MV_PRED_TOP
, BLK_16X8
, 1);
1074 mv_pred_sym(h
, &h
->mv
[MV_FWD_X0
], BLK_16X8
);
1077 mv_pred(h
, MV_FWD_X2
, MV_FWD_A1
, MV_PRED_LEFT
, BLK_16X8
, 1);
1079 mv_pred(h
, MV_FWD_X2
, MV_FWD_A1
, MV_PRED_LEFT
, BLK_16X8
, 1);
1080 mv_pred_sym(h
, &h
->mv
[9], BLK_16X8
);
1083 mv_pred(h
, MV_BWD_X0
, MV_BWD_C2
, MV_PRED_TOP
, BLK_16X8
, 0);
1085 mv_pred(h
, MV_BWD_X2
, MV_BWD_A1
, MV_PRED_LEFT
, BLK_16X8
, 0);
1086 } else { /* 8x16 macroblock types */
1088 mv_pred(h
, MV_FWD_X0
, MV_FWD_B3
, MV_PRED_LEFT
, BLK_8X16
, 1);
1090 mv_pred(h
, MV_FWD_X0
, MV_FWD_B3
, MV_PRED_LEFT
, BLK_8X16
, 1);
1091 mv_pred_sym(h
, &h
->mv
[MV_FWD_X0
], BLK_8X16
);
1094 mv_pred(h
, MV_FWD_X1
, MV_FWD_C2
, MV_PRED_TOPRIGHT
,BLK_8X16
, 1);
1096 mv_pred(h
, MV_FWD_X1
, MV_FWD_C2
, MV_PRED_TOPRIGHT
,BLK_8X16
, 1);
1097 mv_pred_sym(h
, &h
->mv
[6], BLK_8X16
);
1100 mv_pred(h
, MV_BWD_X0
, MV_BWD_B3
, MV_PRED_LEFT
, BLK_8X16
, 0);
1102 mv_pred(h
, MV_BWD_X1
, MV_BWD_C2
, MV_PRED_TOPRIGHT
,BLK_8X16
, 0);
1106 decode_residual_inter(h
);
1107 filter_mb(h
,mb_type
);
1110 /*****************************************************************************
1114 ****************************************************************************/
1116 static inline int decode_slice_header(AVSContext
*h
, GetBitContext
*gb
) {
1118 av_log(h
->s
.avctx
, AV_LOG_ERROR
, "unexpected start code 0x%02x\n", h
->stc
);
1120 if((h
->mby
== 0) && (!h
->qp_fixed
)){
1121 h
->qp_fixed
= get_bits1(gb
);
1122 h
->qp
= get_bits(gb
,6);
1124 /* inter frame or second slice can have weighting params */
1125 if((h
->pic_type
!= FF_I_TYPE
) || (!h
->pic_structure
&& h
->mby
>= h
->mb_width
/2))
1126 if(get_bits1(gb
)) { //slice_weighting_flag
1127 av_log(h
->s
.avctx
, AV_LOG_ERROR
,
1128 "weighted prediction not yet supported\n");
1133 static inline void check_for_slice(AVSContext
*h
) {
1134 GetBitContext
*gb
= &h
->s
.gb
;
1136 align
= (-get_bits_count(gb
)) & 7;
1137 if((show_bits_long(gb
,24+align
) & 0xFFFFFF) == 0x000001) {
1138 get_bits_long(gb
,24+align
);
1139 h
->stc
= get_bits(gb
,8);
1140 decode_slice_header(h
,gb
);
1144 /*****************************************************************************
1148 ****************************************************************************/
1150 static void init_pic(AVSContext
*h
) {
1153 /* clear some predictors */
1156 h
->mv
[MV_BWD_X0
] = dir_mv
;
1157 set_mvs(&h
->mv
[MV_BWD_X0
], BLK_16X16
);
1158 h
->mv
[MV_FWD_X0
] = dir_mv
;
1159 set_mvs(&h
->mv
[MV_FWD_X0
], BLK_16X16
);
1160 h
->pred_mode_Y
[3] = h
->pred_mode_Y
[6] = NOT_AVAIL
;
1161 h
->cy
= h
->picture
.data
[0];
1162 h
->cu
= h
->picture
.data
[1];
1163 h
->cv
= h
->picture
.data
[2];
1164 h
->l_stride
= h
->picture
.linesize
[0];
1165 h
->c_stride
= h
->picture
.linesize
[1];
1166 h
->luma_scan
[2] = 8*h
->l_stride
;
1167 h
->luma_scan
[3] = 8*h
->l_stride
+8;
1168 h
->mbx
= h
->mby
= 0;
1172 static int decode_pic(AVSContext
*h
) {
1173 MpegEncContext
*s
= &h
->s
;
1177 if (!s
->context_initialized
) {
1178 if (MPV_common_init(s
) < 0)
1181 get_bits(&s
->gb
,16);//bbv_dwlay
1182 if(h
->stc
== PIC_PB_START_CODE
) {
1183 h
->pic_type
= get_bits(&s
->gb
,2) + FF_I_TYPE
;
1184 /* make sure we have the reference frames we need */
1185 if(!h
->DPB
[0].data
[0] ||
1186 (!h
->DPB
[1].data
[0] && h
->pic_type
== FF_B_TYPE
))
1189 h
->pic_type
= FF_I_TYPE
;
1190 if(get_bits1(&s
->gb
))
1191 get_bits(&s
->gb
,16);//time_code
1193 /* release last B frame */
1194 if(h
->picture
.data
[0])
1195 s
->avctx
->release_buffer(s
->avctx
, (AVFrame
*)&h
->picture
);
1197 s
->avctx
->get_buffer(s
->avctx
, (AVFrame
*)&h
->picture
);
1199 h
->picture
.poc
= get_bits(&s
->gb
,8)*2;
1201 /* get temporal distances and MV scaling factors */
1202 if(h
->pic_type
!= FF_B_TYPE
) {
1203 h
->dist
[0] = (h
->picture
.poc
- h
->DPB
[0].poc
+ 512) % 512;
1205 h
->dist
[0] = (h
->DPB
[0].poc
- h
->picture
.poc
+ 512) % 512;
1207 h
->dist
[1] = (h
->picture
.poc
- h
->DPB
[1].poc
+ 512) % 512;
1208 h
->scale_den
[0] = h
->dist
[0] ?
512/h
->dist
[0] : 0;
1209 h
->scale_den
[1] = h
->dist
[1] ?
512/h
->dist
[1] : 0;
1210 if(h
->pic_type
== FF_B_TYPE
) {
1211 h
->sym_factor
= h
->dist
[0]*h
->scale_den
[1];
1213 h
->direct_den
[0] = h
->dist
[0] ?
16384/h
->dist
[0] : 0;
1214 h
->direct_den
[1] = h
->dist
[1] ?
16384/h
->dist
[1] : 0;
1218 get_ue_golomb(&s
->gb
); //bbv_check_times
1219 h
->progressive
= get_bits1(&s
->gb
);
1221 h
->pic_structure
= 1;
1222 else if(!(h
->pic_structure
= get_bits1(&s
->gb
) && (h
->stc
== PIC_PB_START_CODE
)) )
1223 get_bits1(&s
->gb
); //advanced_pred_mode_disable
1224 skip_bits1(&s
->gb
); //top_field_first
1225 skip_bits1(&s
->gb
); //repeat_first_field
1226 h
->qp_fixed
= get_bits1(&s
->gb
);
1227 h
->qp
= get_bits(&s
->gb
,6);
1228 if(h
->pic_type
== FF_I_TYPE
) {
1229 if(!h
->progressive
&& !h
->pic_structure
)
1230 skip_bits1(&s
->gb
);//what is this?
1231 skip_bits(&s
->gb
,4); //reserved bits
1233 if(!(h
->pic_type
== FF_B_TYPE
&& h
->pic_structure
== 1))
1234 h
->ref_flag
= get_bits1(&s
->gb
);
1235 skip_bits(&s
->gb
,4); //reserved bits
1236 h
->skip_mode_flag
= get_bits1(&s
->gb
);
1238 h
->loop_filter_disable
= get_bits1(&s
->gb
);
1239 if(!h
->loop_filter_disable
&& get_bits1(&s
->gb
)) {
1240 h
->alpha_offset
= get_se_golomb(&s
->gb
);
1241 h
->beta_offset
= get_se_golomb(&s
->gb
);
1243 h
->alpha_offset
= h
->beta_offset
= 0;
1246 if(h
->pic_type
== FF_I_TYPE
) {
1250 } while(next_mb(h
));
1251 } else if(h
->pic_type
== FF_P_TYPE
) {
1253 if(h
->skip_mode_flag
) {
1254 skip_count
= get_ue_golomb(&s
->gb
);
1255 for(i
=0;i
<skip_count
;i
++) {
1261 mb_type
= get_ue_golomb(&s
->gb
) + P_16X16
;
1263 mb_type
= get_ue_golomb(&s
->gb
) + P_SKIP
;
1266 if(mb_type
> P_8X8
) {
1267 h
->cbp
= cbp_tab
[mb_type
- P_8X8
- 1][0];
1270 decode_mb_p(h
,mb_type
);
1272 } while(next_mb(h
));
1273 } else { //FF_B_TYPE
1275 if(h
->skip_mode_flag
) {
1276 skip_count
= get_ue_golomb(&s
->gb
);
1277 for(i
=0;i
<skip_count
;i
++) {
1281 filter_mb(h
,B_SKIP
);
1285 mb_type
= get_ue_golomb(&s
->gb
) + B_DIRECT
;
1287 mb_type
= get_ue_golomb(&s
->gb
) + B_SKIP
;
1290 if(mb_type
> B_8X8
) {
1291 h
->cbp
= cbp_tab
[mb_type
- B_8X8
- 1][0];
1294 decode_mb_b(h
,mb_type
);
1296 } while(next_mb(h
));
1299 if(h
->pic_type
!= FF_B_TYPE
) {
1300 if(h
->DPB
[1].data
[0])
1301 s
->avctx
->release_buffer(s
->avctx
, (AVFrame
*)&h
->DPB
[1]);
1302 memcpy(&h
->DPB
[1], &h
->DPB
[0], sizeof(Picture
));
1303 memcpy(&h
->DPB
[0], &h
->picture
, sizeof(Picture
));
1304 memset(&h
->picture
,0,sizeof(Picture
));
1309 /*****************************************************************************
1311 * headers and interface
1313 ****************************************************************************/
1315 static void init_top_lines(AVSContext
*h
) {
1316 /* alloc top line of predictors */
1317 h
->top_qp
= av_malloc( h
->mb_width
);
1318 h
->top_mv
[0] = av_malloc((h
->mb_width
*2+1)*sizeof(vector_t
));
1319 h
->top_mv
[1] = av_malloc((h
->mb_width
*2+1)*sizeof(vector_t
));
1320 h
->top_pred_Y
= av_malloc( h
->mb_width
*2*sizeof(*h
->top_pred_Y
));
1321 h
->top_border_y
= av_malloc((h
->mb_width
+1)*16);
1322 h
->top_border_u
= av_malloc((h
->mb_width
)*10);
1323 h
->top_border_v
= av_malloc((h
->mb_width
)*10);
1325 /* alloc space for co-located MVs and types */
1326 h
->col_mv
= av_malloc( h
->mb_width
*h
->mb_height
*4*sizeof(vector_t
));
1327 h
->col_type_base
= av_malloc(h
->mb_width
*h
->mb_height
);
1330 static int decode_seq_header(AVSContext
*h
) {
1331 MpegEncContext
*s
= &h
->s
;
1332 extern const AVRational ff_frame_rate_tab
[];
1333 int frame_rate_code
;
1335 h
->profile
= get_bits(&s
->gb
,8);
1336 h
->level
= get_bits(&s
->gb
,8);
1337 skip_bits1(&s
->gb
); //progressive sequence
1338 s
->width
= get_bits(&s
->gb
,14);
1339 s
->height
= get_bits(&s
->gb
,14);
1340 skip_bits(&s
->gb
,2); //chroma format
1341 skip_bits(&s
->gb
,3); //sample_precision
1342 h
->aspect_ratio
= get_bits(&s
->gb
,4);
1343 frame_rate_code
= get_bits(&s
->gb
,4);
1344 skip_bits(&s
->gb
,18);//bit_rate_lower
1345 skip_bits1(&s
->gb
); //marker_bit
1346 skip_bits(&s
->gb
,12);//bit_rate_upper
1347 s
->low_delay
= get_bits1(&s
->gb
);
1348 h
->mb_width
= (s
->width
+ 15) >> 4;
1349 h
->mb_height
= (s
->height
+ 15) >> 4;
1350 h
->s
.avctx
->time_base
.den
= ff_frame_rate_tab
[frame_rate_code
].num
;
1351 h
->s
.avctx
->time_base
.num
= ff_frame_rate_tab
[frame_rate_code
].den
;
1352 h
->s
.avctx
->width
= s
->width
;
1353 h
->s
.avctx
->height
= s
->height
;
1360 * finds the end of the current frame in the bitstream.
1361 * @return the position of the first byte of the next frame, or -1
1363 int ff_cavs_find_frame_end(ParseContext
*pc
, const uint8_t *buf
, int buf_size
) {
1367 pic_found
= pc
->frame_start_found
;
1372 for(i
=0; i
<buf_size
; i
++){
1373 state
= (state
<<8) | buf
[i
];
1374 if(state
== PIC_I_START_CODE
|| state
== PIC_PB_START_CODE
){
1383 /* EOF considered as end of frame */
1386 for(; i
<buf_size
; i
++){
1387 state
= (state
<<8) | buf
[i
];
1388 if((state
&0xFFFFFF00) == 0x100){
1389 if(state
< SLICE_MIN_START_CODE
|| state
> SLICE_MAX_START_CODE
){
1390 pc
->frame_start_found
=0;
1397 pc
->frame_start_found
= pic_found
;
1399 return END_NOT_FOUND
;
1402 void ff_cavs_flush(AVCodecContext
* avctx
) {
1403 AVSContext
*h
= avctx
->priv_data
;
1404 h
->got_keyframe
= 0;
1407 static int cavs_decode_frame(AVCodecContext
* avctx
,void *data
, int *data_size
,
1408 uint8_t * buf
, int buf_size
) {
1409 AVSContext
*h
= avctx
->priv_data
;
1410 MpegEncContext
*s
= &h
->s
;
1412 const uint8_t *buf_end
;
1413 const uint8_t *buf_ptr
;
1414 AVFrame
*picture
= data
;
1419 if (buf_size
== 0) {
1420 if(!s
->low_delay
&& h
->DPB
[0].data
[0]) {
1421 *data_size
= sizeof(AVPicture
);
1422 *picture
= *(AVFrame
*) &h
->DPB
[0];
1428 buf_end
= buf
+ buf_size
;
1430 buf_ptr
= ff_find_start_code(buf_ptr
,buf_end
, &stc
);
1431 if(stc
& 0xFFFFFE00)
1432 return FFMAX(0, buf_ptr
- buf
- s
->parse_context
.last_index
);
1433 input_size
= (buf_end
- buf_ptr
)*8;
1435 case SEQ_START_CODE
:
1436 init_get_bits(&s
->gb
, buf_ptr
, input_size
);
1437 decode_seq_header(h
);
1439 case PIC_I_START_CODE
:
1440 if(!h
->got_keyframe
) {
1441 if(h
->DPB
[0].data
[0])
1442 avctx
->release_buffer(avctx
, (AVFrame
*)&h
->DPB
[0]);
1443 if(h
->DPB
[1].data
[0])
1444 avctx
->release_buffer(avctx
, (AVFrame
*)&h
->DPB
[1]);
1445 h
->got_keyframe
= 1;
1447 case PIC_PB_START_CODE
:
1449 if(!h
->got_keyframe
)
1451 init_get_bits(&s
->gb
, buf_ptr
, input_size
);
1455 *data_size
= sizeof(AVPicture
);
1456 if(h
->pic_type
!= FF_B_TYPE
) {
1457 if(h
->DPB
[1].data
[0]) {
1458 *picture
= *(AVFrame
*) &h
->DPB
[1];
1463 *picture
= *(AVFrame
*) &h
->picture
;
1465 case EXT_START_CODE
:
1466 //mpeg_decode_extension(avctx,buf_ptr, input_size);
1468 case USER_START_CODE
:
1469 //mpeg_decode_user_data(avctx,buf_ptr, input_size);
1472 if (stc
>= SLICE_MIN_START_CODE
&&
1473 stc
<= SLICE_MAX_START_CODE
) {
1474 init_get_bits(&s
->gb
, buf_ptr
, input_size
);
1475 decode_slice_header(h
, &s
->gb
);
1482 static int cavs_decode_init(AVCodecContext
* avctx
) {
1483 AVSContext
*h
= avctx
->priv_data
;
1484 MpegEncContext
* const s
= &h
->s
;
1486 MPV_decode_defaults(s
);
1489 avctx
->pix_fmt
= PIX_FMT_YUV420P
;
1491 h
->luma_scan
[0] = 0;
1492 h
->luma_scan
[1] = 8;
1493 h
->intra_pred_l
[ INTRA_L_VERT
] = intra_pred_vert
;
1494 h
->intra_pred_l
[ INTRA_L_HORIZ
] = intra_pred_horiz
;
1495 h
->intra_pred_l
[ INTRA_L_LP
] = intra_pred_lp
;
1496 h
->intra_pred_l
[ INTRA_L_DOWN_LEFT
] = intra_pred_down_left
;
1497 h
->intra_pred_l
[INTRA_L_DOWN_RIGHT
] = intra_pred_down_right
;
1498 h
->intra_pred_l
[ INTRA_L_LP_LEFT
] = intra_pred_lp_left
;
1499 h
->intra_pred_l
[ INTRA_L_LP_TOP
] = intra_pred_lp_top
;
1500 h
->intra_pred_l
[ INTRA_L_DC_128
] = intra_pred_dc_128
;
1501 h
->intra_pred_c
[ INTRA_C_LP
] = intra_pred_lp
;
1502 h
->intra_pred_c
[ INTRA_C_HORIZ
] = intra_pred_horiz
;
1503 h
->intra_pred_c
[ INTRA_C_VERT
] = intra_pred_vert
;
1504 h
->intra_pred_c
[ INTRA_C_PLANE
] = intra_pred_plane
;
1505 h
->intra_pred_c
[ INTRA_C_LP_LEFT
] = intra_pred_lp_left
;
1506 h
->intra_pred_c
[ INTRA_C_LP_TOP
] = intra_pred_lp_top
;
1507 h
->intra_pred_c
[ INTRA_C_DC_128
] = intra_pred_dc_128
;
1513 static int cavs_decode_end(AVCodecContext
* avctx
) {
1514 AVSContext
*h
= avctx
->priv_data
;
1517 av_free(h
->top_mv
[0]);
1518 av_free(h
->top_mv
[1]);
1519 av_free(h
->top_pred_Y
);
1520 av_free(h
->top_border_y
);
1521 av_free(h
->top_border_u
);
1522 av_free(h
->top_border_v
);
1524 av_free(h
->col_type_base
);
1528 AVCodec cavs_decoder
= {
1537 CODEC_CAP_DR1
| CODEC_CAP_DELAY
,
1538 .flush
= ff_cavs_flush
,