2 * Chinese AVS video (AVS1-P2, JiZhun profile) decoder.
3 * Copyright (c) 2006 Stefan Gehrer <stefan.gehrer@gmx.de>
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation; either
8 * version 2 of the License, or (at your option) any later version.
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Lesser General Public License for more details.
15 * You should have received a copy of the GNU Lesser General Public
16 * License along with this library; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
22 * Chinese AVS video (AVS1-P2, JiZhun profile) decoder
23 * @author Stefan Gehrer <stefan.gehrer@gmx.de>
27 #include "bitstream.h"
29 #include "mpegvideo.h"
34 Picture picture
; ///< currently decoded frame
35 Picture DPB
[2]; ///< reference frames
36 int dist
[2]; ///< temporal distances from current frame to ref frames
39 int mb_width
, mb_height
;
43 int skip_mode_flag
; ///< select between skip_count or one skip_flag per MB
44 int loop_filter_disable
;
45 int alpha_offset
, beta_offset
;
47 int mbx
, mby
; ///< macroblock coordinates
48 int flags
; ///< availability flags of neighbouring macroblocks
49 int stc
; ///< last start code
50 uint8_t *cy
, *cu
, *cv
; ///< current MB sample pointers
54 /** mv motion vector cache
59 X are the vectors in the current macroblock (5,6,9,10)
60 A is the macroblock to the left (4,8)
61 B is the macroblock to the top (1,2)
62 C is the macroblock to the top-right (3)
63 D is the macroblock to the top-left (0)
65 the same is repeated for backward motion vectors */
70 /** luma pred mode cache
76 int l_stride
, c_stride
;
82 /** intra prediction is done with un-deblocked samples
83 they are saved here before deblocking the MB */
84 uint8_t *top_border_y
, *top_border_u
, *top_border_v
;
85 uint8_t left_border_y
[16], left_border_u
[10], left_border_v
[10];
86 uint8_t topleft_border_y
, topleft_border_u
, topleft_border_v
;
88 void (*intra_pred_l
[8])(uint8_t *d
,uint8_t *top
,uint8_t *left
,int stride
);
89 void (*intra_pred_c
[7])(uint8_t *d
,uint8_t *top
,uint8_t *left
,int stride
);
90 uint8_t *col_type_base
;
93 /* scaling factors for MV prediction */
94 int sym_factor
; ///< for scaling in symmetrical B block
95 int direct_den
[2]; ///< for scaling in direct B block
96 int scale_den
[2]; ///< for scaling neighbouring MVs
101 /*****************************************************************************
103 * in-loop deblocking filter
105 ****************************************************************************/
107 static inline int get_bs(vector_t
*mvP
, vector_t
*mvQ
, int b
) {
108 if((mvP
->ref
== REF_INTRA
) || (mvQ
->ref
== REF_INTRA
))
110 if( (abs(mvP
->x
- mvQ
->x
) >= 4) || (abs(mvP
->y
- mvQ
->y
) >= 4) )
115 if( (abs(mvP
->x
- mvQ
->x
) >= 4) || (abs(mvP
->y
- mvQ
->y
) >= 4) )
118 if(mvP
->ref
!= mvQ
->ref
)
125 alpha = alpha_tab[clip(qp_avg + h->alpha_offset,0,63)]; \
126 beta = beta_tab[clip(qp_avg + h->beta_offset, 0,63)]; \
127 tc = tc_tab[clip(qp_avg + h->alpha_offset,0,63)];
130 * in-loop deblocking filter for a single macroblock
132 * boundary strength (bs) mapping:
141 static void filter_mb(AVSContext
*h
, enum mb_t mb_type
) {
142 DECLARE_ALIGNED_8(uint8_t, bs
[8]);
143 int qp_avg
, alpha
, beta
, tc
;
146 /* save un-deblocked lines */
147 h
->topleft_border_y
= h
->top_border_y
[h
->mbx
*16+15];
148 h
->topleft_border_u
= h
->top_border_u
[h
->mbx
*10+8];
149 h
->topleft_border_v
= h
->top_border_v
[h
->mbx
*10+8];
150 memcpy(&h
->top_border_y
[h
->mbx
*16], h
->cy
+ 15* h
->l_stride
,16);
151 memcpy(&h
->top_border_u
[h
->mbx
*10+1], h
->cu
+ 7* h
->c_stride
,8);
152 memcpy(&h
->top_border_v
[h
->mbx
*10+1], h
->cv
+ 7* h
->c_stride
,8);
154 h
->left_border_y
[i
*2+0] = *(h
->cy
+ 15 + (i
*2+0)*h
->l_stride
);
155 h
->left_border_y
[i
*2+1] = *(h
->cy
+ 15 + (i
*2+1)*h
->l_stride
);
156 h
->left_border_u
[i
+1] = *(h
->cu
+ 7 + i
*h
->c_stride
);
157 h
->left_border_v
[i
+1] = *(h
->cv
+ 7 + i
*h
->c_stride
);
159 if(!h
->loop_filter_disable
) {
162 *((uint64_t *)bs
) = 0x0202020202020202ULL
;
164 *((uint64_t *)bs
) = 0;
165 if(partition_flags
[mb_type
] & SPLITV
){
166 bs
[2] = get_bs(&h
->mv
[MV_FWD_X0
], &h
->mv
[MV_FWD_X1
], mb_type
> P_8X8
);
167 bs
[3] = get_bs(&h
->mv
[MV_FWD_X2
], &h
->mv
[MV_FWD_X3
], mb_type
> P_8X8
);
169 if(partition_flags
[mb_type
] & SPLITH
){
170 bs
[6] = get_bs(&h
->mv
[MV_FWD_X0
], &h
->mv
[MV_FWD_X2
], mb_type
> P_8X8
);
171 bs
[7] = get_bs(&h
->mv
[MV_FWD_X1
], &h
->mv
[MV_FWD_X3
], mb_type
> P_8X8
);
173 bs
[0] = get_bs(&h
->mv
[MV_FWD_A1
], &h
->mv
[MV_FWD_X0
], mb_type
> P_8X8
);
174 bs
[1] = get_bs(&h
->mv
[MV_FWD_A3
], &h
->mv
[MV_FWD_X2
], mb_type
> P_8X8
);
175 bs
[4] = get_bs(&h
->mv
[MV_FWD_B2
], &h
->mv
[MV_FWD_X0
], mb_type
> P_8X8
);
176 bs
[5] = get_bs(&h
->mv
[MV_FWD_B3
], &h
->mv
[MV_FWD_X1
], mb_type
> P_8X8
);
178 if( *((uint64_t *)bs
) ) {
179 if(h
->flags
& A_AVAIL
) {
180 qp_avg
= (h
->qp
+ h
->left_qp
+ 1) >> 1;
182 h
->s
.dsp
.cavs_filter_lv(h
->cy
,h
->l_stride
,alpha
,beta
,tc
,bs
[0],bs
[1]);
183 h
->s
.dsp
.cavs_filter_cv(h
->cu
,h
->c_stride
,alpha
,beta
,tc
,bs
[0],bs
[1]);
184 h
->s
.dsp
.cavs_filter_cv(h
->cv
,h
->c_stride
,alpha
,beta
,tc
,bs
[0],bs
[1]);
188 h
->s
.dsp
.cavs_filter_lv(h
->cy
+ 8,h
->l_stride
,alpha
,beta
,tc
,bs
[2],bs
[3]);
189 h
->s
.dsp
.cavs_filter_lh(h
->cy
+ 8*h
->l_stride
,h
->l_stride
,alpha
,beta
,tc
,
192 if(h
->flags
& B_AVAIL
) {
193 qp_avg
= (h
->qp
+ h
->top_qp
[h
->mbx
] + 1) >> 1;
195 h
->s
.dsp
.cavs_filter_lh(h
->cy
,h
->l_stride
,alpha
,beta
,tc
,bs
[4],bs
[5]);
196 h
->s
.dsp
.cavs_filter_ch(h
->cu
,h
->c_stride
,alpha
,beta
,tc
,bs
[4],bs
[5]);
197 h
->s
.dsp
.cavs_filter_ch(h
->cv
,h
->c_stride
,alpha
,beta
,tc
,bs
[4],bs
[5]);
202 h
->top_qp
[h
->mbx
] = h
->qp
;
207 /*****************************************************************************
209 * spatial intra prediction
211 ****************************************************************************/
213 static inline void load_intra_pred_luma(AVSContext
*h
, uint8_t *top
,
214 uint8_t *left
, int block
) {
219 memcpy(&left
[1],h
->left_border_y
,16);
222 memcpy(&top
[1],&h
->top_border_y
[h
->mbx
*16],16);
225 if((h
->flags
& A_AVAIL
) && (h
->flags
& B_AVAIL
))
226 left
[0] = top
[0] = h
->topleft_border_y
;
230 left
[i
+1] = *(h
->cy
+ 7 + i
*h
->l_stride
);
231 memset(&left
[9],left
[8],9);
233 memcpy(&top
[1],&h
->top_border_y
[h
->mbx
*16+8],8);
234 if(h
->flags
& C_AVAIL
)
235 memcpy(&top
[9],&h
->top_border_y
[(h
->mbx
+ 1)*16],8);
237 memset(&top
[9],top
[8],9);
240 if(h
->flags
& B_AVAIL
)
241 left
[0] = top
[0] = h
->top_border_y
[h
->mbx
*16+7];
244 memcpy(&left
[1],&h
->left_border_y
[8],8);
245 memset(&left
[9],left
[8],9);
246 memcpy(&top
[1],h
->cy
+ 7*h
->l_stride
,16);
248 left
[0] = h
->left_border_y
[7];
250 if(h
->flags
& A_AVAIL
)
255 left
[i
] = *(h
->cy
+ 7 + (i
+7)*h
->l_stride
);
256 memset(&left
[9],left
[8],9);
257 memcpy(&top
[0],h
->cy
+ 7 + 7*h
->l_stride
,9);
258 memset(&top
[9],top
[8],9);
263 static void intra_pred_vert(uint8_t *d
,uint8_t *top
,uint8_t *left
,int stride
) {
265 uint64_t a
= unaligned64(&top
[1]);
267 *((uint64_t *)(d
+y
*stride
)) = a
;
271 static void intra_pred_horiz(uint8_t *d
,uint8_t *top
,uint8_t *left
,int stride
) {
275 a
= left
[y
+1] * 0x0101010101010101ULL
;
276 *((uint64_t *)(d
+y
*stride
)) = a
;
280 static void intra_pred_dc_128(uint8_t *d
,uint8_t *top
,uint8_t *left
,int stride
) {
282 uint64_t a
= 0x8080808080808080ULL
;
284 *((uint64_t *)(d
+y
*stride
)) = a
;
287 static void intra_pred_plane(uint8_t *d
,uint8_t *top
,uint8_t *left
,int stride
) {
291 uint8_t *cm
= cropTbl
+ MAX_NEG_CROP
;
294 ih
+= (x
+1)*(top
[5+x
]-top
[3-x
]);
295 iv
+= (x
+1)*(left
[5+x
]-left
[3-x
]);
297 ia
= (top
[8]+left
[8])<<4;
302 d
[y
*stride
+x
] = cm
[(ia
+(x
-3)*ih
+(y
-3)*iv
+16)>>5];
305 #define LOWPASS(ARRAY,INDEX) \
306 (( ARRAY[(INDEX)-1] + 2*ARRAY[(INDEX)] + ARRAY[(INDEX)+1] + 2) >> 2)
308 static void intra_pred_lp(uint8_t *d
,uint8_t *top
,uint8_t *left
,int stride
) {
312 d
[y
*stride
+x
] = (LOWPASS(top
,x
+1) + LOWPASS(left
,y
+1)) >> 1;
315 static void intra_pred_down_left(uint8_t *d
,uint8_t *top
,uint8_t *left
,int stride
) {
319 d
[y
*stride
+x
] = (LOWPASS(top
,x
+y
+2) + LOWPASS(left
,x
+y
+2)) >> 1;
322 static void intra_pred_down_right(uint8_t *d
,uint8_t *top
,uint8_t *left
,int stride
) {
327 d
[y
*stride
+x
] = (left
[1]+2*top
[0]+top
[1]+2)>>2;
329 d
[y
*stride
+x
] = LOWPASS(top
,x
-y
);
331 d
[y
*stride
+x
] = LOWPASS(left
,y
-x
);
334 static void intra_pred_lp_left(uint8_t *d
,uint8_t *top
,uint8_t *left
,int stride
) {
338 d
[y
*stride
+x
] = LOWPASS(left
,y
+1);
341 static void intra_pred_lp_top(uint8_t *d
,uint8_t *top
,uint8_t *left
,int stride
) {
345 d
[y
*stride
+x
] = LOWPASS(top
,x
+1);
350 static inline void modify_pred(const int_fast8_t *mod_table
, int *mode
) {
351 *mode
= mod_table
[*mode
];
353 av_log(NULL
, AV_LOG_ERROR
, "Illegal intra prediction mode\n");
358 /*****************************************************************************
360 * motion compensation
362 ****************************************************************************/
364 static inline void mc_dir_part(AVSContext
*h
,Picture
*pic
,int square
,
365 int chroma_height
,int delta
,int list
,uint8_t *dest_y
,
366 uint8_t *dest_cb
,uint8_t *dest_cr
,int src_x_offset
,
367 int src_y_offset
,qpel_mc_func
*qpix_op
,
368 h264_chroma_mc_func chroma_op
,vector_t
*mv
){
369 MpegEncContext
* const s
= &h
->s
;
370 const int mx
= mv
->x
+ src_x_offset
*8;
371 const int my
= mv
->y
+ src_y_offset
*8;
372 const int luma_xy
= (mx
&3) + ((my
&3)<<2);
373 uint8_t * src_y
= pic
->data
[0] + (mx
>>2) + (my
>>2)*h
->l_stride
;
374 uint8_t * src_cb
= pic
->data
[1] + (mx
>>3) + (my
>>3)*h
->c_stride
;
375 uint8_t * src_cr
= pic
->data
[2] + (mx
>>3) + (my
>>3)*h
->c_stride
;
376 int extra_width
= 0; //(s->flags&CODEC_FLAG_EMU_EDGE) ? 0 : 16;
377 int extra_height
= extra_width
;
379 const int full_mx
= mx
>>2;
380 const int full_my
= my
>>2;
381 const int pic_width
= 16*h
->mb_width
;
382 const int pic_height
= 16*h
->mb_height
;
386 if(mx
&7) extra_width
-= 3;
387 if(my
&7) extra_height
-= 3;
389 if( full_mx
< 0-extra_width
390 || full_my
< 0-extra_height
391 || full_mx
+ 16/*FIXME*/ > pic_width
+ extra_width
392 || full_my
+ 16/*FIXME*/ > pic_height
+ extra_height
){
393 ff_emulated_edge_mc(s
->edge_emu_buffer
, src_y
- 2 - 2*h
->l_stride
, h
->l_stride
,
394 16+5, 16+5/*FIXME*/, full_mx
-2, full_my
-2, pic_width
, pic_height
);
395 src_y
= s
->edge_emu_buffer
+ 2 + 2*h
->l_stride
;
399 qpix_op
[luma_xy
](dest_y
, src_y
, h
->l_stride
); //FIXME try variable height perhaps?
401 qpix_op
[luma_xy
](dest_y
+ delta
, src_y
+ delta
, h
->l_stride
);
405 ff_emulated_edge_mc(s
->edge_emu_buffer
, src_cb
, h
->c_stride
,
406 9, 9/*FIXME*/, (mx
>>3), (my
>>3), pic_width
>>1, pic_height
>>1);
407 src_cb
= s
->edge_emu_buffer
;
409 chroma_op(dest_cb
, src_cb
, h
->c_stride
, chroma_height
, mx
&7, my
&7);
412 ff_emulated_edge_mc(s
->edge_emu_buffer
, src_cr
, h
->c_stride
,
413 9, 9/*FIXME*/, (mx
>>3), (my
>>3), pic_width
>>1, pic_height
>>1);
414 src_cr
= s
->edge_emu_buffer
;
416 chroma_op(dest_cr
, src_cr
, h
->c_stride
, chroma_height
, mx
&7, my
&7);
419 static inline void mc_part_std(AVSContext
*h
,int square
,int chroma_height
,int delta
,
420 uint8_t *dest_y
,uint8_t *dest_cb
,uint8_t *dest_cr
,
421 int x_offset
, int y_offset
,qpel_mc_func
*qpix_put
,
422 h264_chroma_mc_func chroma_put
,qpel_mc_func
*qpix_avg
,
423 h264_chroma_mc_func chroma_avg
, vector_t
*mv
){
424 qpel_mc_func
*qpix_op
= qpix_put
;
425 h264_chroma_mc_func chroma_op
= chroma_put
;
427 dest_y
+= 2*x_offset
+ 2*y_offset
*h
->l_stride
;
428 dest_cb
+= x_offset
+ y_offset
*h
->c_stride
;
429 dest_cr
+= x_offset
+ y_offset
*h
->c_stride
;
430 x_offset
+= 8*h
->mbx
;
431 y_offset
+= 8*h
->mby
;
434 Picture
*ref
= &h
->DPB
[mv
->ref
];
435 mc_dir_part(h
, ref
, square
, chroma_height
, delta
, 0,
436 dest_y
, dest_cb
, dest_cr
, x_offset
, y_offset
,
437 qpix_op
, chroma_op
, mv
);
440 chroma_op
= chroma_avg
;
443 if((mv
+MV_BWD_OFFS
)->ref
>= 0){
444 Picture
*ref
= &h
->DPB
[0];
445 mc_dir_part(h
, ref
, square
, chroma_height
, delta
, 1,
446 dest_y
, dest_cb
, dest_cr
, x_offset
, y_offset
,
447 qpix_op
, chroma_op
, mv
+MV_BWD_OFFS
);
451 static void inter_pred(AVSContext
*h
, enum mb_t mb_type
) {
452 if(partition_flags
[mb_type
] == 0){ // 16x16
453 mc_part_std(h
, 1, 8, 0, h
->cy
, h
->cu
, h
->cv
, 0, 0,
454 h
->s
.dsp
.put_cavs_qpel_pixels_tab
[0],
455 h
->s
.dsp
.put_h264_chroma_pixels_tab
[0],
456 h
->s
.dsp
.avg_cavs_qpel_pixels_tab
[0],
457 h
->s
.dsp
.avg_h264_chroma_pixels_tab
[0],&h
->mv
[MV_FWD_X0
]);
459 mc_part_std(h
, 1, 4, 0, h
->cy
, h
->cu
, h
->cv
, 0, 0,
460 h
->s
.dsp
.put_cavs_qpel_pixels_tab
[1],
461 h
->s
.dsp
.put_h264_chroma_pixels_tab
[1],
462 h
->s
.dsp
.avg_cavs_qpel_pixels_tab
[1],
463 h
->s
.dsp
.avg_h264_chroma_pixels_tab
[1],&h
->mv
[MV_FWD_X0
]);
464 mc_part_std(h
, 1, 4, 0, h
->cy
, h
->cu
, h
->cv
, 4, 0,
465 h
->s
.dsp
.put_cavs_qpel_pixels_tab
[1],
466 h
->s
.dsp
.put_h264_chroma_pixels_tab
[1],
467 h
->s
.dsp
.avg_cavs_qpel_pixels_tab
[1],
468 h
->s
.dsp
.avg_h264_chroma_pixels_tab
[1],&h
->mv
[MV_FWD_X1
]);
469 mc_part_std(h
, 1, 4, 0, h
->cy
, h
->cu
, h
->cv
, 0, 4,
470 h
->s
.dsp
.put_cavs_qpel_pixels_tab
[1],
471 h
->s
.dsp
.put_h264_chroma_pixels_tab
[1],
472 h
->s
.dsp
.avg_cavs_qpel_pixels_tab
[1],
473 h
->s
.dsp
.avg_h264_chroma_pixels_tab
[1],&h
->mv
[MV_FWD_X2
]);
474 mc_part_std(h
, 1, 4, 0, h
->cy
, h
->cu
, h
->cv
, 4, 4,
475 h
->s
.dsp
.put_cavs_qpel_pixels_tab
[1],
476 h
->s
.dsp
.put_h264_chroma_pixels_tab
[1],
477 h
->s
.dsp
.avg_cavs_qpel_pixels_tab
[1],
478 h
->s
.dsp
.avg_h264_chroma_pixels_tab
[1],&h
->mv
[MV_FWD_X3
]);
480 /* set intra prediction modes to default values */
481 h
->pred_mode_Y
[3] = h
->pred_mode_Y
[6] = INTRA_L_LP
;
482 h
->top_pred_Y
[h
->mbx
*2+0] = h
->top_pred_Y
[h
->mbx
*2+1] = INTRA_L_LP
;
485 /*****************************************************************************
487 * motion vector prediction
489 ****************************************************************************/
491 static inline void set_mvs(vector_t
*mv
, enum block_t size
) {
494 mv
[MV_STRIDE
] = mv
[0];
495 mv
[MV_STRIDE
+1] = mv
[0];
500 mv
[MV_STRIDE
] = mv
[0];
505 static inline void store_mvs(AVSContext
*h
) {
506 h
->col_mv
[(h
->mby
*h
->mb_width
+ h
->mbx
)*4 + 0] = h
->mv
[MV_FWD_X0
];
507 h
->col_mv
[(h
->mby
*h
->mb_width
+ h
->mbx
)*4 + 1] = h
->mv
[MV_FWD_X1
];
508 h
->col_mv
[(h
->mby
*h
->mb_width
+ h
->mbx
)*4 + 2] = h
->mv
[MV_FWD_X2
];
509 h
->col_mv
[(h
->mby
*h
->mb_width
+ h
->mbx
)*4 + 3] = h
->mv
[MV_FWD_X3
];
512 static inline void scale_mv(AVSContext
*h
, int *d_x
, int *d_y
, vector_t
*src
, int distp
) {
513 int den
= h
->scale_den
[src
->ref
];
515 *d_x
= (src
->x
*distp
*den
+ 256 + (src
->x
>>31)) >> 9;
516 *d_y
= (src
->y
*distp
*den
+ 256 + (src
->y
>>31)) >> 9;
519 static inline void mv_pred_median(AVSContext
*h
, vector_t
*mvP
, vector_t
*mvA
, vector_t
*mvB
, vector_t
*mvC
) {
520 int ax
, ay
, bx
, by
, cx
, cy
;
521 int len_ab
, len_bc
, len_ca
, len_mid
;
523 /* scale candidates according to their temporal span */
524 scale_mv(h
, &ax
, &ay
, mvA
, mvP
->dist
);
525 scale_mv(h
, &bx
, &by
, mvB
, mvP
->dist
);
526 scale_mv(h
, &cx
, &cy
, mvC
, mvP
->dist
);
527 /* find the geometrical median of the three candidates */
528 len_ab
= abs(ax
- bx
) + abs(ay
- by
);
529 len_bc
= abs(bx
- cx
) + abs(by
- cy
);
530 len_ca
= abs(cx
- ax
) + abs(cy
- ay
);
531 len_mid
= mid_pred(len_ab
, len_bc
, len_ca
);
532 if(len_mid
== len_ab
) {
535 } else if(len_mid
== len_bc
) {
544 static inline void mv_pred_direct(AVSContext
*h
, vector_t
*pmv_fw
,
546 vector_t
*pmv_bw
= pmv_fw
+ MV_BWD_OFFS
;
547 int den
= h
->direct_den
[col_mv
->ref
];
548 int m
= col_mv
->x
>> 31;
550 pmv_fw
->dist
= h
->dist
[1];
551 pmv_bw
->dist
= h
->dist
[0];
554 /* scale the co-located motion vector according to its temporal span */
555 pmv_fw
->x
= (((den
+(den
*col_mv
->x
*pmv_fw
->dist
^m
)-m
-1)>>14)^m
)-m
;
556 pmv_bw
->x
= m
-(((den
+(den
*col_mv
->x
*pmv_bw
->dist
^m
)-m
-1)>>14)^m
);
558 pmv_fw
->y
= (((den
+(den
*col_mv
->y
*pmv_fw
->dist
^m
)-m
-1)>>14)^m
)-m
;
559 pmv_bw
->y
= m
-(((den
+(den
*col_mv
->y
*pmv_bw
->dist
^m
)-m
-1)>>14)^m
);
562 static inline void mv_pred_sym(AVSContext
*h
, vector_t
*src
, enum block_t size
) {
563 vector_t
*dst
= src
+ MV_BWD_OFFS
;
565 /* backward mv is the scaled and negated forward mv */
566 dst
->x
= -((src
->x
* h
->sym_factor
+ 256) >> 9);
567 dst
->y
= -((src
->y
* h
->sym_factor
+ 256) >> 9);
569 dst
->dist
= h
->dist
[0];
573 static void mv_pred(AVSContext
*h
, enum mv_loc_t nP
, enum mv_loc_t nC
,
574 enum mv_pred_t mode
, enum block_t size
, int ref
) {
575 vector_t
*mvP
= &h
->mv
[nP
];
576 vector_t
*mvA
= &h
->mv
[nP
-1];
577 vector_t
*mvB
= &h
->mv
[nP
-4];
578 vector_t
*mvC
= &h
->mv
[nC
];
579 int mvAref
= mvA
->ref
;
580 int mvBref
= mvB
->ref
;
584 mvP
->dist
= h
->dist
[mvP
->ref
];
585 if(mvC
->ref
== NOT_AVAIL
)
586 mvC
= &h
->mv
[nP
-5]; // set to top-left (mvD)
588 if(mode
== MV_PRED_PSKIP
) {
589 if((mvAref
== NOT_AVAIL
) || (mvBref
== NOT_AVAIL
) ||
590 ((mvA
->x
| mvA
->y
| mvA
->ref
) == 0) ||
591 ((mvB
->x
| mvB
->y
| mvB
->ref
) == 0) ) {
597 /* if there is only one suitable candidate, take it */
598 if((mvAref
>= 0) && (mvBref
< 0) && (mvCref
< 0)) {
601 } else if((mvAref
< 0) && (mvBref
>= 0) && (mvCref
< 0)) {
604 } else if((mvAref
< 0) && (mvBref
< 0) && (mvCref
>= 0)) {
610 if(mvAref
== mvP
->ref
) {
614 mv_pred_median(h
, mvP
, mvA
, mvB
, mvC
);
617 if(mvBref
== mvP
->ref
) {
621 mv_pred_median(h
, mvP
, mvA
, mvB
, mvC
);
623 case MV_PRED_TOPRIGHT
:
624 if(mvCref
== mvP
->ref
) {
628 mv_pred_median(h
, mvP
, mvA
, mvB
, mvC
);
631 mv_pred_median(h
, mvP
, mvA
, mvB
, mvC
);
635 if(mode
< MV_PRED_PSKIP
) {
636 mvP
->x
+= get_se_golomb(&h
->s
.gb
);
637 mvP
->y
+= get_se_golomb(&h
->s
.gb
);
642 /*****************************************************************************
644 * residual data decoding
646 ****************************************************************************/
648 /** kth-order exponential golomb code */
649 static inline int get_ue_code(GetBitContext
*gb
, int order
) {
651 int ret
= get_ue_golomb(gb
) << order
;
652 return ret
+ get_bits(gb
,order
);
654 return get_ue_golomb(gb
);
658 * decode coefficients from one 8x8 block, dequantize, inverse transform
659 * and add them to sample block
660 * @param r pointer to 2D VLC table
661 * @param esc_golomb_order escape codes are k-golomb with this order k
662 * @param qp quantizer
663 * @param dst location of sample block
664 * @param stride line stride in frame buffer
666 static int decode_residual_block(AVSContext
*h
, GetBitContext
*gb
,
667 const residual_vlc_t
*r
, int esc_golomb_order
,
668 int qp
, uint8_t *dst
, int stride
) {
670 int level_code
, esc_code
, level
, run
, mask
;
673 int dqm
= dequant_mul
[qp
];
674 int dqs
= dequant_shift
[qp
];
675 int dqa
= 1 << (dqs
- 1);
676 const uint8_t *scantab
= ff_zigzag_direct
;
679 memset(block
,0,64*sizeof(DCTELEM
));
681 level_code
= get_ue_code(gb
,r
->golomb_order
);
682 if(level_code
>= ESCAPE_CODE
) {
683 run
= (level_code
- ESCAPE_CODE
) >> 1;
684 esc_code
= get_ue_code(gb
,esc_golomb_order
);
685 level
= esc_code
+ (run
> r
->max_run ?
1 : r
->level_add
[run
]);
686 while(level
> r
->inc_limit
)
688 mask
= -(level_code
& 1);
689 level
= (level
^mask
) - mask
;
693 level
= r
->rltab
[level_code
][0];
694 if(!level
) //end of block signal
696 run
= r
->rltab
[level_code
][1];
697 r
+= r
->rltab
[level_code
][2];
699 level_buf
[i
] = level
;
702 /* inverse scan and dequantization */
704 pos
+= 1 + run_buf
[i
];
706 av_log(h
->s
.avctx
, AV_LOG_ERROR
,
707 "position out of block bounds at pic %d MB(%d,%d)\n",
708 h
->picture
.poc
, h
->mbx
, h
->mby
);
711 block
[scantab
[pos
]] = (level_buf
[i
]*dqm
+ dqa
) >> dqs
;
713 h
->s
.dsp
.cavs_idct8_add(dst
,block
,stride
);
718 static inline void decode_residual_chroma(AVSContext
*h
) {
720 decode_residual_block(h
,&h
->s
.gb
,chroma_2dvlc
,0, chroma_qp
[h
->qp
],
723 decode_residual_block(h
,&h
->s
.gb
,chroma_2dvlc
,0, chroma_qp
[h
->qp
],
727 static inline int decode_residual_inter(AVSContext
*h
) {
730 /* get coded block pattern */
731 int cbp
= get_ue_golomb(&h
->s
.gb
);
733 av_log(h
->s
.avctx
, AV_LOG_ERROR
, "illegal inter cbp\n");
736 h
->cbp
= cbp_tab
[cbp
][1];
739 if(h
->cbp
&& !h
->qp_fixed
)
740 h
->qp
+= get_se_golomb(&h
->s
.gb
);
741 for(block
=0;block
<4;block
++)
742 if(h
->cbp
& (1<<block
))
743 decode_residual_block(h
,&h
->s
.gb
,inter_2dvlc
,0,h
->qp
,
744 h
->cy
+ h
->luma_scan
[block
], h
->l_stride
);
745 decode_residual_chroma(h
);
750 /*****************************************************************************
754 ****************************************************************************/
757 * initialise predictors for motion vectors and intra prediction
759 static inline void init_mb(AVSContext
*h
) {
762 /* copy predictors from top line (MB B and C) into cache */
764 h
->mv
[MV_FWD_B2
+i
] = h
->top_mv
[0][h
->mbx
*2+i
];
765 h
->mv
[MV_BWD_B2
+i
] = h
->top_mv
[1][h
->mbx
*2+i
];
767 h
->pred_mode_Y
[1] = h
->top_pred_Y
[h
->mbx
*2+0];
768 h
->pred_mode_Y
[2] = h
->top_pred_Y
[h
->mbx
*2+1];
769 /* clear top predictors if MB B is not available */
770 if(!(h
->flags
& B_AVAIL
)) {
771 h
->mv
[MV_FWD_B2
] = un_mv
;
772 h
->mv
[MV_FWD_B3
] = un_mv
;
773 h
->mv
[MV_BWD_B2
] = un_mv
;
774 h
->mv
[MV_BWD_B3
] = un_mv
;
775 h
->pred_mode_Y
[1] = h
->pred_mode_Y
[2] = NOT_AVAIL
;
776 h
->flags
&= ~(C_AVAIL
|D_AVAIL
);
780 if(h
->mbx
== h
->mb_width
-1) //MB C not available
781 h
->flags
&= ~C_AVAIL
;
782 /* clear top-right predictors if MB C is not available */
783 if(!(h
->flags
& C_AVAIL
)) {
784 h
->mv
[MV_FWD_C2
] = un_mv
;
785 h
->mv
[MV_BWD_C2
] = un_mv
;
787 /* clear top-left predictors if MB D is not available */
788 if(!(h
->flags
& D_AVAIL
)) {
789 h
->mv
[MV_FWD_D3
] = un_mv
;
790 h
->mv
[MV_BWD_D3
] = un_mv
;
792 /* set pointer for co-located macroblock type */
793 h
->col_type
= &h
->col_type_base
[h
->mby
*h
->mb_width
+ h
->mbx
];
796 static inline void check_for_slice(AVSContext
*h
);
799 * save predictors for later macroblocks and increase
801 * @returns 0 if end of frame is reached, 1 otherwise
803 static inline int next_mb(AVSContext
*h
) {
810 /* copy mvs as predictors to the left */
812 h
->mv
[i
] = h
->mv
[i
+2];
813 /* copy bottom mvs from cache to top line */
814 h
->top_mv
[0][h
->mbx
*2+0] = h
->mv
[MV_FWD_X2
];
815 h
->top_mv
[0][h
->mbx
*2+1] = h
->mv
[MV_FWD_X3
];
816 h
->top_mv
[1][h
->mbx
*2+0] = h
->mv
[MV_BWD_X2
];
817 h
->top_mv
[1][h
->mbx
*2+1] = h
->mv
[MV_BWD_X3
];
818 /* next MB address */
820 if(h
->mbx
== h
->mb_width
) { //new mb line
821 h
->flags
= B_AVAIL
|C_AVAIL
;
822 /* clear left pred_modes */
823 h
->pred_mode_Y
[3] = h
->pred_mode_Y
[6] = NOT_AVAIL
;
824 /* clear left mv predictors */
829 /* re-calculate sample pointers */
830 h
->cy
= h
->picture
.data
[0] + h
->mby
*16*h
->l_stride
;
831 h
->cu
= h
->picture
.data
[1] + h
->mby
*8*h
->c_stride
;
832 h
->cv
= h
->picture
.data
[2] + h
->mby
*8*h
->c_stride
;
833 if(h
->mby
== h
->mb_height
) { //frame end
836 //check_for_slice(h);
842 static int decode_mb_i(AVSContext
*h
, int cbp_code
) {
843 GetBitContext
*gb
= &h
->s
.gb
;
844 int block
, pred_mode_uv
;
851 /* get intra prediction modes from stream */
852 for(block
=0;block
<4;block
++) {
854 int pos
= scan3x3
[block
];
856 nA
= h
->pred_mode_Y
[pos
-1];
857 nB
= h
->pred_mode_Y
[pos
-3];
858 predpred
= FFMIN(nA
,nB
);
859 if(predpred
== NOT_AVAIL
) // if either is not available
860 predpred
= INTRA_L_LP
;
862 int rem_mode
= get_bits(gb
, 2);
863 predpred
= rem_mode
+ (rem_mode
>= predpred
);
865 h
->pred_mode_Y
[pos
] = predpred
;
867 pred_mode_uv
= get_ue_golomb(gb
);
868 if(pred_mode_uv
> 6) {
869 av_log(h
->s
.avctx
, AV_LOG_ERROR
, "illegal intra chroma pred mode\n");
873 /* save pred modes before they get modified */
874 h
->pred_mode_Y
[3] = h
->pred_mode_Y
[5];
875 h
->pred_mode_Y
[6] = h
->pred_mode_Y
[8];
876 h
->top_pred_Y
[h
->mbx
*2+0] = h
->pred_mode_Y
[7];
877 h
->top_pred_Y
[h
->mbx
*2+1] = h
->pred_mode_Y
[8];
879 /* modify pred modes according to availability of neighbour samples */
880 if(!(h
->flags
& A_AVAIL
)) {
881 modify_pred(left_modifier_l
, &h
->pred_mode_Y
[4] );
882 modify_pred(left_modifier_l
, &h
->pred_mode_Y
[7] );
883 modify_pred(left_modifier_c
, &pred_mode_uv
);
885 if(!(h
->flags
& B_AVAIL
)) {
886 modify_pred(top_modifier_l
, &h
->pred_mode_Y
[4] );
887 modify_pred(top_modifier_l
, &h
->pred_mode_Y
[5] );
888 modify_pred(top_modifier_c
, &pred_mode_uv
);
891 /* get coded block pattern */
892 if(h
->pic_type
== FF_I_TYPE
)
893 cbp_code
= get_ue_golomb(gb
);
895 av_log(h
->s
.avctx
, AV_LOG_ERROR
, "illegal intra cbp\n");
898 h
->cbp
= cbp_tab
[cbp_code
][0];
899 if(h
->cbp
&& !h
->qp_fixed
)
900 h
->qp
+= get_se_golomb(gb
); //qp_delta
902 /* luma intra prediction interleaved with residual decode/transform/add */
903 for(block
=0;block
<4;block
++) {
904 d
= h
->cy
+ h
->luma_scan
[block
];
905 load_intra_pred_luma(h
, top
, left
, block
);
906 h
->intra_pred_l
[h
->pred_mode_Y
[scan3x3
[block
]]]
907 (d
, top
, left
, h
->l_stride
);
908 if(h
->cbp
& (1<<block
))
909 decode_residual_block(h
,gb
,intra_2dvlc
,1,h
->qp
,d
,h
->l_stride
);
912 /* chroma intra prediction */
913 /* extend borders by one pixel */
914 h
->left_border_u
[9] = h
->left_border_u
[8];
915 h
->left_border_v
[9] = h
->left_border_v
[8];
916 h
->top_border_u
[h
->mbx
*10+9] = h
->top_border_u
[h
->mbx
*10+8];
917 h
->top_border_v
[h
->mbx
*10+9] = h
->top_border_v
[h
->mbx
*10+8];
918 if(h
->mbx
&& h
->mby
) {
919 h
->top_border_u
[h
->mbx
*10] = h
->left_border_u
[0] = h
->topleft_border_u
;
920 h
->top_border_v
[h
->mbx
*10] = h
->left_border_v
[0] = h
->topleft_border_v
;
922 h
->left_border_u
[0] = h
->left_border_u
[1];
923 h
->left_border_v
[0] = h
->left_border_v
[1];
924 h
->top_border_u
[h
->mbx
*10] = h
->top_border_u
[h
->mbx
*10+1];
925 h
->top_border_v
[h
->mbx
*10] = h
->top_border_v
[h
->mbx
*10+1];
927 h
->intra_pred_c
[pred_mode_uv
](h
->cu
, &h
->top_border_u
[h
->mbx
*10],
928 h
->left_border_u
, h
->c_stride
);
929 h
->intra_pred_c
[pred_mode_uv
](h
->cv
, &h
->top_border_v
[h
->mbx
*10],
930 h
->left_border_v
, h
->c_stride
);
932 decode_residual_chroma(h
);
935 /* mark motion vectors as intra */
936 h
->mv
[MV_FWD_X0
] = intra_mv
;
937 set_mvs(&h
->mv
[MV_FWD_X0
], BLK_16X16
);
938 h
->mv
[MV_BWD_X0
] = intra_mv
;
939 set_mvs(&h
->mv
[MV_BWD_X0
], BLK_16X16
);
940 if(h
->pic_type
!= FF_B_TYPE
)
941 *h
->col_type
= I_8X8
;
946 static void decode_mb_p(AVSContext
*h
, enum mb_t mb_type
) {
947 GetBitContext
*gb
= &h
->s
.gb
;
953 mv_pred(h
, MV_FWD_X0
, MV_FWD_C2
, MV_PRED_PSKIP
, BLK_16X16
, 0);
956 ref
[0] = h
->ref_flag ?
0 : get_bits1(gb
);
957 mv_pred(h
, MV_FWD_X0
, MV_FWD_C2
, MV_PRED_MEDIAN
, BLK_16X16
,ref
[0]);
960 ref
[0] = h
->ref_flag ?
0 : get_bits1(gb
);
961 ref
[2] = h
->ref_flag ?
0 : get_bits1(gb
);
962 mv_pred(h
, MV_FWD_X0
, MV_FWD_C2
, MV_PRED_TOP
, BLK_16X8
, ref
[0]);
963 mv_pred(h
, MV_FWD_X2
, MV_FWD_A1
, MV_PRED_LEFT
, BLK_16X8
, ref
[2]);
966 ref
[0] = h
->ref_flag ?
0 : get_bits1(gb
);
967 ref
[1] = h
->ref_flag ?
0 : get_bits1(gb
);
968 mv_pred(h
, MV_FWD_X0
, MV_FWD_B3
, MV_PRED_LEFT
, BLK_8X16
, ref
[0]);
969 mv_pred(h
, MV_FWD_X1
, MV_FWD_C2
, MV_PRED_TOPRIGHT
, BLK_8X16
, ref
[1]);
972 ref
[0] = h
->ref_flag ?
0 : get_bits1(gb
);
973 ref
[1] = h
->ref_flag ?
0 : get_bits1(gb
);
974 ref
[2] = h
->ref_flag ?
0 : get_bits1(gb
);
975 ref
[3] = h
->ref_flag ?
0 : get_bits1(gb
);
976 mv_pred(h
, MV_FWD_X0
, MV_FWD_B3
, MV_PRED_MEDIAN
, BLK_8X8
, ref
[0]);
977 mv_pred(h
, MV_FWD_X1
, MV_FWD_C2
, MV_PRED_MEDIAN
, BLK_8X8
, ref
[1]);
978 mv_pred(h
, MV_FWD_X2
, MV_FWD_X1
, MV_PRED_MEDIAN
, BLK_8X8
, ref
[2]);
979 mv_pred(h
, MV_FWD_X3
, MV_FWD_X0
, MV_PRED_MEDIAN
, BLK_8X8
, ref
[3]);
981 inter_pred(h
, mb_type
);
983 if(mb_type
!= P_SKIP
)
984 decode_residual_inter(h
);
985 filter_mb(h
,mb_type
);
986 *h
->col_type
= mb_type
;
989 static void decode_mb_b(AVSContext
*h
, enum mb_t mb_type
) {
991 enum sub_mb_t sub_type
[4];
997 h
->mv
[MV_FWD_X0
] = dir_mv
;
998 set_mvs(&h
->mv
[MV_FWD_X0
], BLK_16X16
);
999 h
->mv
[MV_BWD_X0
] = dir_mv
;
1000 set_mvs(&h
->mv
[MV_BWD_X0
], BLK_16X16
);
1004 if(!(*h
->col_type
)) {
1005 /* intra MB at co-location, do in-plane prediction */
1006 mv_pred(h
, MV_FWD_X0
, MV_FWD_C2
, MV_PRED_BSKIP
, BLK_16X16
, 1);
1007 mv_pred(h
, MV_BWD_X0
, MV_BWD_C2
, MV_PRED_BSKIP
, BLK_16X16
, 0);
1009 /* direct prediction from co-located P MB, block-wise */
1010 for(block
=0;block
<4;block
++)
1011 mv_pred_direct(h
,&h
->mv
[mv_scan
[block
]],
1012 &h
->col_mv
[(h
->mby
*h
->mb_width
+h
->mbx
)*4 + block
]);
1015 mv_pred(h
, MV_FWD_X0
, MV_FWD_C2
, MV_PRED_MEDIAN
, BLK_16X16
, 1);
1018 mv_pred(h
, MV_FWD_X0
, MV_FWD_C2
, MV_PRED_MEDIAN
, BLK_16X16
, 1);
1019 mv_pred_sym(h
, &h
->mv
[MV_FWD_X0
], BLK_16X16
);
1022 mv_pred(h
, MV_BWD_X0
, MV_BWD_C2
, MV_PRED_MEDIAN
, BLK_16X16
, 0);
1025 for(block
=0;block
<4;block
++)
1026 sub_type
[block
] = get_bits(&h
->s
.gb
,2);
1027 for(block
=0;block
<4;block
++) {
1028 switch(sub_type
[block
]) {
1030 if(!(*h
->col_type
)) {
1031 /* intra MB at co-location, do in-plane prediction */
1032 mv_pred(h
, mv_scan
[block
], mv_scan
[block
]-3,
1033 MV_PRED_BSKIP
, BLK_8X8
, 1);
1034 mv_pred(h
, mv_scan
[block
]+MV_BWD_OFFS
,
1035 mv_scan
[block
]-3+MV_BWD_OFFS
,
1036 MV_PRED_BSKIP
, BLK_8X8
, 0);
1038 mv_pred_direct(h
,&h
->mv
[mv_scan
[block
]],
1039 &h
->col_mv
[(h
->mby
*h
->mb_width
+ h
->mbx
)*4 + block
]);
1042 mv_pred(h
, mv_scan
[block
], mv_scan
[block
]-3,
1043 MV_PRED_MEDIAN
, BLK_8X8
, 1);
1046 mv_pred(h
, mv_scan
[block
], mv_scan
[block
]-3,
1047 MV_PRED_MEDIAN
, BLK_8X8
, 1);
1048 mv_pred_sym(h
, &h
->mv
[mv_scan
[block
]], BLK_8X8
);
1052 for(block
=0;block
<4;block
++) {
1053 if(sub_type
[block
] == B_SUB_BWD
)
1054 mv_pred(h
, mv_scan
[block
]+MV_BWD_OFFS
,
1055 mv_scan
[block
]+MV_BWD_OFFS
-3,
1056 MV_PRED_MEDIAN
, BLK_8X8
, 0);
1060 assert((mb_type
> B_SYM_16X16
) && (mb_type
< B_8X8
));
1061 flags
= partition_flags
[mb_type
];
1062 if(mb_type
& 1) { /* 16x8 macroblock types */
1064 mv_pred(h
, MV_FWD_X0
, MV_FWD_C2
, MV_PRED_TOP
, BLK_16X8
, 1);
1066 mv_pred(h
, MV_FWD_X0
, MV_FWD_C2
, MV_PRED_TOP
, BLK_16X8
, 1);
1067 mv_pred_sym(h
, &h
->mv
[MV_FWD_X0
], BLK_16X8
);
1070 mv_pred(h
, MV_FWD_X2
, MV_FWD_A1
, MV_PRED_LEFT
, BLK_16X8
, 1);
1072 mv_pred(h
, MV_FWD_X2
, MV_FWD_A1
, MV_PRED_LEFT
, BLK_16X8
, 1);
1073 mv_pred_sym(h
, &h
->mv
[9], BLK_16X8
);
1076 mv_pred(h
, MV_BWD_X0
, MV_BWD_C2
, MV_PRED_TOP
, BLK_16X8
, 0);
1078 mv_pred(h
, MV_BWD_X2
, MV_BWD_A1
, MV_PRED_LEFT
, BLK_16X8
, 0);
1079 } else { /* 8x16 macroblock types */
1081 mv_pred(h
, MV_FWD_X0
, MV_FWD_B3
, MV_PRED_LEFT
, BLK_8X16
, 1);
1083 mv_pred(h
, MV_FWD_X0
, MV_FWD_B3
, MV_PRED_LEFT
, BLK_8X16
, 1);
1084 mv_pred_sym(h
, &h
->mv
[MV_FWD_X0
], BLK_8X16
);
1087 mv_pred(h
, MV_FWD_X1
, MV_FWD_C2
, MV_PRED_TOPRIGHT
,BLK_8X16
, 1);
1089 mv_pred(h
, MV_FWD_X1
, MV_FWD_C2
, MV_PRED_TOPRIGHT
,BLK_8X16
, 1);
1090 mv_pred_sym(h
, &h
->mv
[6], BLK_8X16
);
1093 mv_pred(h
, MV_BWD_X0
, MV_BWD_B3
, MV_PRED_LEFT
, BLK_8X16
, 0);
1095 mv_pred(h
, MV_BWD_X1
, MV_BWD_C2
, MV_PRED_TOPRIGHT
,BLK_8X16
, 0);
1098 inter_pred(h
, mb_type
);
1099 if(mb_type
!= B_SKIP
)
1100 decode_residual_inter(h
);
1101 filter_mb(h
,mb_type
);
1104 /*****************************************************************************
1108 ****************************************************************************/
1110 static inline int decode_slice_header(AVSContext
*h
, GetBitContext
*gb
) {
1112 av_log(h
->s
.avctx
, AV_LOG_ERROR
, "unexpected start code 0x%02x\n", h
->stc
);
1114 if((h
->mby
== 0) && (!h
->qp_fixed
)){
1115 h
->qp_fixed
= get_bits1(gb
);
1116 h
->qp
= get_bits(gb
,6);
1118 /* inter frame or second slice can have weighting params */
1119 if((h
->pic_type
!= FF_I_TYPE
) || (!h
->pic_structure
&& h
->mby
>= h
->mb_width
/2))
1120 if(get_bits1(gb
)) { //slice_weighting_flag
1121 av_log(h
->s
.avctx
, AV_LOG_ERROR
,
1122 "weighted prediction not yet supported\n");
1127 static inline void check_for_slice(AVSContext
*h
) {
1128 GetBitContext
*gb
= &h
->s
.gb
;
1130 align
= (-get_bits_count(gb
)) & 7;
1131 if((show_bits_long(gb
,24+align
) & 0xFFFFFF) == 0x000001) {
1132 get_bits_long(gb
,24+align
);
1133 h
->stc
= get_bits(gb
,8);
1134 decode_slice_header(h
,gb
);
1138 /*****************************************************************************
1142 ****************************************************************************/
1144 static void init_pic(AVSContext
*h
) {
1147 /* clear some predictors */
1150 h
->mv
[MV_BWD_X0
] = dir_mv
;
1151 set_mvs(&h
->mv
[MV_BWD_X0
], BLK_16X16
);
1152 h
->mv
[MV_FWD_X0
] = dir_mv
;
1153 set_mvs(&h
->mv
[MV_FWD_X0
], BLK_16X16
);
1154 h
->pred_mode_Y
[3] = h
->pred_mode_Y
[6] = NOT_AVAIL
;
1155 h
->cy
= h
->picture
.data
[0];
1156 h
->cu
= h
->picture
.data
[1];
1157 h
->cv
= h
->picture
.data
[2];
1158 h
->l_stride
= h
->picture
.linesize
[0];
1159 h
->c_stride
= h
->picture
.linesize
[1];
1160 h
->luma_scan
[2] = 8*h
->l_stride
;
1161 h
->luma_scan
[3] = 8*h
->l_stride
+8;
1162 h
->mbx
= h
->mby
= 0;
1166 static int decode_pic(AVSContext
*h
) {
1167 MpegEncContext
*s
= &h
->s
;
1171 if (!s
->context_initialized
) {
1172 if (MPV_common_init(s
) < 0)
1175 get_bits(&s
->gb
,16);//bbv_dwlay
1176 if(h
->stc
== PIC_PB_START_CODE
) {
1177 h
->pic_type
= get_bits(&s
->gb
,2) + FF_I_TYPE
;
1178 /* make sure we have the reference frames we need */
1179 if(!h
->DPB
[0].data
[0] ||
1180 (!h
->DPB
[1].data
[0] && h
->pic_type
== FF_B_TYPE
))
1183 h
->pic_type
= FF_I_TYPE
;
1184 if(get_bits1(&s
->gb
))
1185 get_bits(&s
->gb
,16);//time_code
1187 /* release last B frame */
1188 if(h
->picture
.data
[0])
1189 s
->avctx
->release_buffer(s
->avctx
, (AVFrame
*)&h
->picture
);
1191 s
->avctx
->get_buffer(s
->avctx
, (AVFrame
*)&h
->picture
);
1193 h
->picture
.poc
= get_bits(&s
->gb
,8)*2;
1195 /* get temporal distances and MV scaling factors */
1196 if(h
->pic_type
!= FF_B_TYPE
) {
1197 h
->dist
[0] = (h
->picture
.poc
- h
->DPB
[0].poc
+ 512) % 512;
1199 h
->dist
[0] = (h
->DPB
[0].poc
- h
->picture
.poc
+ 512) % 512;
1201 h
->dist
[1] = (h
->picture
.poc
- h
->DPB
[1].poc
+ 512) % 512;
1202 h
->scale_den
[0] = h
->dist
[0] ?
512/h
->dist
[0] : 0;
1203 h
->scale_den
[1] = h
->dist
[1] ?
512/h
->dist
[1] : 0;
1204 if(h
->pic_type
== FF_B_TYPE
) {
1205 h
->sym_factor
= h
->dist
[0]*h
->scale_den
[1];
1207 h
->direct_den
[0] = h
->dist
[0] ?
16384/h
->dist
[0] : 0;
1208 h
->direct_den
[1] = h
->dist
[1] ?
16384/h
->dist
[1] : 0;
1212 get_ue_golomb(&s
->gb
); //bbv_check_times
1213 h
->progressive
= get_bits1(&s
->gb
);
1215 h
->pic_structure
= 1;
1216 else if(!(h
->pic_structure
= get_bits1(&s
->gb
) && (h
->stc
== PIC_PB_START_CODE
)) )
1217 get_bits1(&s
->gb
); //advanced_pred_mode_disable
1218 skip_bits1(&s
->gb
); //top_field_first
1219 skip_bits1(&s
->gb
); //repeat_first_field
1220 h
->qp_fixed
= get_bits1(&s
->gb
);
1221 h
->qp
= get_bits(&s
->gb
,6);
1222 if(h
->pic_type
== FF_I_TYPE
) {
1223 if(!h
->progressive
&& !h
->pic_structure
)
1224 skip_bits1(&s
->gb
);//what is this?
1225 skip_bits(&s
->gb
,4); //reserved bits
1227 if(!(h
->pic_type
== FF_B_TYPE
&& h
->pic_structure
== 1))
1228 h
->ref_flag
= get_bits1(&s
->gb
);
1229 skip_bits(&s
->gb
,4); //reserved bits
1230 h
->skip_mode_flag
= get_bits1(&s
->gb
);
1232 h
->loop_filter_disable
= get_bits1(&s
->gb
);
1233 if(!h
->loop_filter_disable
&& get_bits1(&s
->gb
)) {
1234 h
->alpha_offset
= get_se_golomb(&s
->gb
);
1235 h
->beta_offset
= get_se_golomb(&s
->gb
);
1237 h
->alpha_offset
= h
->beta_offset
= 0;
1240 if(h
->pic_type
== FF_I_TYPE
) {
1243 } while(next_mb(h
));
1244 } else if(h
->pic_type
== FF_P_TYPE
) {
1246 if(h
->skip_mode_flag
) {
1247 skip_count
= get_ue_golomb(&s
->gb
);
1248 while(skip_count
--) {
1249 decode_mb_p(h
,P_SKIP
);
1253 mb_type
= get_ue_golomb(&s
->gb
) + P_16X16
;
1255 mb_type
= get_ue_golomb(&s
->gb
) + P_SKIP
;
1256 if(mb_type
> P_8X8
) {
1257 decode_mb_i(h
, mb_type
- P_8X8
- 1);
1259 decode_mb_p(h
,mb_type
);
1260 } while(next_mb(h
));
1261 } else { /* FF_B_TYPE */
1263 if(h
->skip_mode_flag
) {
1264 skip_count
= get_ue_golomb(&s
->gb
);
1265 while(skip_count
--) {
1266 decode_mb_b(h
,B_SKIP
);
1270 mb_type
= get_ue_golomb(&s
->gb
) + B_DIRECT
;
1272 mb_type
= get_ue_golomb(&s
->gb
) + B_SKIP
;
1273 if(mb_type
> B_8X8
) {
1274 decode_mb_i(h
, mb_type
- B_8X8
- 1);
1276 decode_mb_b(h
,mb_type
);
1277 } while(next_mb(h
));
1280 if(h
->pic_type
!= FF_B_TYPE
) {
1281 if(h
->DPB
[1].data
[0])
1282 s
->avctx
->release_buffer(s
->avctx
, (AVFrame
*)&h
->DPB
[1]);
1283 memcpy(&h
->DPB
[1], &h
->DPB
[0], sizeof(Picture
));
1284 memcpy(&h
->DPB
[0], &h
->picture
, sizeof(Picture
));
1285 memset(&h
->picture
,0,sizeof(Picture
));
1290 /*****************************************************************************
1292 * headers and interface
1294 ****************************************************************************/
1297 * some predictions require data from the top-neighbouring macroblock.
1298 * this data has to be stored for one complete row of macroblocks
1299 * and this storage space is allocated here
1301 static void init_top_lines(AVSContext
*h
) {
1302 /* alloc top line of predictors */
1303 h
->top_qp
= av_malloc( h
->mb_width
);
1304 h
->top_mv
[0] = av_malloc((h
->mb_width
*2+1)*sizeof(vector_t
));
1305 h
->top_mv
[1] = av_malloc((h
->mb_width
*2+1)*sizeof(vector_t
));
1306 h
->top_pred_Y
= av_malloc( h
->mb_width
*2*sizeof(*h
->top_pred_Y
));
1307 h
->top_border_y
= av_malloc((h
->mb_width
+1)*16);
1308 h
->top_border_u
= av_malloc((h
->mb_width
)*10);
1309 h
->top_border_v
= av_malloc((h
->mb_width
)*10);
1311 /* alloc space for co-located MVs and types */
1312 h
->col_mv
= av_malloc( h
->mb_width
*h
->mb_height
*4*sizeof(vector_t
));
1313 h
->col_type_base
= av_malloc(h
->mb_width
*h
->mb_height
);
1316 static int decode_seq_header(AVSContext
*h
) {
1317 MpegEncContext
*s
= &h
->s
;
1318 extern const AVRational ff_frame_rate_tab
[];
1319 int frame_rate_code
;
1321 h
->profile
= get_bits(&s
->gb
,8);
1322 h
->level
= get_bits(&s
->gb
,8);
1323 skip_bits1(&s
->gb
); //progressive sequence
1324 s
->width
= get_bits(&s
->gb
,14);
1325 s
->height
= get_bits(&s
->gb
,14);
1326 skip_bits(&s
->gb
,2); //chroma format
1327 skip_bits(&s
->gb
,3); //sample_precision
1328 h
->aspect_ratio
= get_bits(&s
->gb
,4);
1329 frame_rate_code
= get_bits(&s
->gb
,4);
1330 skip_bits(&s
->gb
,18);//bit_rate_lower
1331 skip_bits1(&s
->gb
); //marker_bit
1332 skip_bits(&s
->gb
,12);//bit_rate_upper
1333 s
->low_delay
= get_bits1(&s
->gb
);
1334 h
->mb_width
= (s
->width
+ 15) >> 4;
1335 h
->mb_height
= (s
->height
+ 15) >> 4;
1336 h
->s
.avctx
->time_base
.den
= ff_frame_rate_tab
[frame_rate_code
].num
;
1337 h
->s
.avctx
->time_base
.num
= ff_frame_rate_tab
[frame_rate_code
].den
;
1338 h
->s
.avctx
->width
= s
->width
;
1339 h
->s
.avctx
->height
= s
->height
;
1346 * finds the end of the current frame in the bitstream.
1347 * @return the position of the first byte of the next frame, or -1
1349 int ff_cavs_find_frame_end(ParseContext
*pc
, const uint8_t *buf
, int buf_size
) {
1353 pic_found
= pc
->frame_start_found
;
1358 for(i
=0; i
<buf_size
; i
++){
1359 state
= (state
<<8) | buf
[i
];
1360 if(state
== PIC_I_START_CODE
|| state
== PIC_PB_START_CODE
){
1369 /* EOF considered as end of frame */
1372 for(; i
<buf_size
; i
++){
1373 state
= (state
<<8) | buf
[i
];
1374 if((state
&0xFFFFFF00) == 0x100){
1375 if(state
< SLICE_MIN_START_CODE
|| state
> SLICE_MAX_START_CODE
){
1376 pc
->frame_start_found
=0;
1383 pc
->frame_start_found
= pic_found
;
1385 return END_NOT_FOUND
;
1388 void ff_cavs_flush(AVCodecContext
* avctx
) {
1389 AVSContext
*h
= avctx
->priv_data
;
1390 h
->got_keyframe
= 0;
1393 static int cavs_decode_frame(AVCodecContext
* avctx
,void *data
, int *data_size
,
1394 uint8_t * buf
, int buf_size
) {
1395 AVSContext
*h
= avctx
->priv_data
;
1396 MpegEncContext
*s
= &h
->s
;
1398 const uint8_t *buf_end
;
1399 const uint8_t *buf_ptr
;
1400 AVFrame
*picture
= data
;
1405 if (buf_size
== 0) {
1406 if(!s
->low_delay
&& h
->DPB
[0].data
[0]) {
1407 *data_size
= sizeof(AVPicture
);
1408 *picture
= *(AVFrame
*) &h
->DPB
[0];
1414 buf_end
= buf
+ buf_size
;
1416 buf_ptr
= ff_find_start_code(buf_ptr
,buf_end
, &stc
);
1417 if(stc
& 0xFFFFFE00)
1418 return FFMAX(0, buf_ptr
- buf
- s
->parse_context
.last_index
);
1419 input_size
= (buf_end
- buf_ptr
)*8;
1421 case SEQ_START_CODE
:
1422 init_get_bits(&s
->gb
, buf_ptr
, input_size
);
1423 decode_seq_header(h
);
1425 case PIC_I_START_CODE
:
1426 if(!h
->got_keyframe
) {
1427 if(h
->DPB
[0].data
[0])
1428 avctx
->release_buffer(avctx
, (AVFrame
*)&h
->DPB
[0]);
1429 if(h
->DPB
[1].data
[0])
1430 avctx
->release_buffer(avctx
, (AVFrame
*)&h
->DPB
[1]);
1431 h
->got_keyframe
= 1;
1433 case PIC_PB_START_CODE
:
1435 if(!h
->got_keyframe
)
1437 init_get_bits(&s
->gb
, buf_ptr
, input_size
);
1441 *data_size
= sizeof(AVPicture
);
1442 if(h
->pic_type
!= FF_B_TYPE
) {
1443 if(h
->DPB
[1].data
[0]) {
1444 *picture
= *(AVFrame
*) &h
->DPB
[1];
1449 *picture
= *(AVFrame
*) &h
->picture
;
1451 case EXT_START_CODE
:
1452 //mpeg_decode_extension(avctx,buf_ptr, input_size);
1454 case USER_START_CODE
:
1455 //mpeg_decode_user_data(avctx,buf_ptr, input_size);
1458 if (stc
>= SLICE_MIN_START_CODE
&&
1459 stc
<= SLICE_MAX_START_CODE
) {
1460 init_get_bits(&s
->gb
, buf_ptr
, input_size
);
1461 decode_slice_header(h
, &s
->gb
);
1468 static int cavs_decode_init(AVCodecContext
* avctx
) {
1469 AVSContext
*h
= avctx
->priv_data
;
1470 MpegEncContext
* const s
= &h
->s
;
1472 MPV_decode_defaults(s
);
1475 avctx
->pix_fmt
= PIX_FMT_YUV420P
;
1477 h
->luma_scan
[0] = 0;
1478 h
->luma_scan
[1] = 8;
1479 h
->intra_pred_l
[ INTRA_L_VERT
] = intra_pred_vert
;
1480 h
->intra_pred_l
[ INTRA_L_HORIZ
] = intra_pred_horiz
;
1481 h
->intra_pred_l
[ INTRA_L_LP
] = intra_pred_lp
;
1482 h
->intra_pred_l
[ INTRA_L_DOWN_LEFT
] = intra_pred_down_left
;
1483 h
->intra_pred_l
[INTRA_L_DOWN_RIGHT
] = intra_pred_down_right
;
1484 h
->intra_pred_l
[ INTRA_L_LP_LEFT
] = intra_pred_lp_left
;
1485 h
->intra_pred_l
[ INTRA_L_LP_TOP
] = intra_pred_lp_top
;
1486 h
->intra_pred_l
[ INTRA_L_DC_128
] = intra_pred_dc_128
;
1487 h
->intra_pred_c
[ INTRA_C_LP
] = intra_pred_lp
;
1488 h
->intra_pred_c
[ INTRA_C_HORIZ
] = intra_pred_horiz
;
1489 h
->intra_pred_c
[ INTRA_C_VERT
] = intra_pred_vert
;
1490 h
->intra_pred_c
[ INTRA_C_PLANE
] = intra_pred_plane
;
1491 h
->intra_pred_c
[ INTRA_C_LP_LEFT
] = intra_pred_lp_left
;
1492 h
->intra_pred_c
[ INTRA_C_LP_TOP
] = intra_pred_lp_top
;
1493 h
->intra_pred_c
[ INTRA_C_DC_128
] = intra_pred_dc_128
;
1499 static int cavs_decode_end(AVCodecContext
* avctx
) {
1500 AVSContext
*h
= avctx
->priv_data
;
1503 av_free(h
->top_mv
[0]);
1504 av_free(h
->top_mv
[1]);
1505 av_free(h
->top_pred_Y
);
1506 av_free(h
->top_border_y
);
1507 av_free(h
->top_border_u
);
1508 av_free(h
->top_border_v
);
1510 av_free(h
->col_type_base
);
1514 AVCodec cavs_decoder
= {
1523 CODEC_CAP_DR1
| CODEC_CAP_DELAY
,
1524 .flush
= ff_cavs_flush
,