2 * Chinese AVS video (AVS1-P2, JiZhun profile) decoder.
3 * Copyright (c) 2006 Stefan Gehrer <stefan.gehrer@gmx.de>
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation; either
8 * version 2 of the License, or (at your option) any later version.
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Lesser General Public License for more details.
15 * You should have received a copy of the GNU Lesser General Public
16 * License along with this library; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
22 * Chinese AVS video (AVS1-P2, JiZhun profile) decoder
23 * @author Stefan Gehrer <stefan.gehrer@gmx.de>
27 #include "bitstream.h"
29 #include "mpegvideo.h"
34 Picture picture
; ///< currently decoded frame
35 Picture DPB
[2]; ///< reference frames
36 int dist
[2]; ///< temporal distances from current frame to ref frames
39 int mb_width
, mb_height
;
43 int skip_mode_flag
; ///< select between skip_count or one skip_flag per MB
44 int loop_filter_disable
;
45 int alpha_offset
, beta_offset
;
47 int mbx
, mby
; ///< macroblock coordinates
48 int flags
; ///< availability flags of neighbouring macroblocks
49 int stc
; ///< last start code
50 uint8_t *cy
, *cu
, *cv
; ///< current MB sample pointers
54 /** mv motion vector cache
59 X are the vectors in the current macroblock (5,6,9,10)
60 A is the macroblock to the left (4,8)
61 B is the macroblock to the top (1,2)
62 C is the macroblock to the top-right (3)
63 D is the macroblock to the top-left (0)
65 the same is repeated for backward motion vectors */
70 /** luma pred mode cache
76 int l_stride
, c_stride
;
82 /** intra prediction is done with un-deblocked samples
83 they are saved here before deblocking the MB */
84 uint8_t *top_border_y
, *top_border_u
, *top_border_v
;
85 uint8_t left_border_y
[16], left_border_u
[10], left_border_v
[10];
86 uint8_t topleft_border_y
, topleft_border_u
, topleft_border_v
;
88 void (*intra_pred_l
[8])(uint8_t *d
,uint8_t *top
,uint8_t *left
,int stride
);
89 void (*intra_pred_c
[7])(uint8_t *d
,uint8_t *top
,uint8_t *left
,int stride
);
90 uint8_t *col_type_base
;
93 /* scaling factors for MV prediction */
94 int sym_factor
; ///< for scaling in symmetrical B block
95 int direct_den
[2]; ///< for scaling in direct B block
96 int scale_den
[2]; ///< for scaling neighbouring MVs
101 /*****************************************************************************
103 * in-loop deblocking filter
105 ****************************************************************************/
107 static inline int get_bs_p(vector_t
*mvP
, vector_t
*mvQ
) {
108 if((mvP
->ref
== REF_INTRA
) || (mvQ
->ref
== REF_INTRA
))
110 if(mvP
->ref
!= mvQ
->ref
)
112 if( (abs(mvP
->x
- mvQ
->x
) >= 4) || (abs(mvP
->y
- mvQ
->y
) >= 4) )
117 static inline int get_bs_b(vector_t
*mvP
, vector_t
*mvQ
) {
118 if((mvP
->ref
== REF_INTRA
) || (mvQ
->ref
== REF_INTRA
)) {
121 vector_t
*mvPbw
= mvP
+ MV_BWD_OFFS
;
122 vector_t
*mvQbw
= mvQ
+ MV_BWD_OFFS
;
123 if( (abs( mvP
->x
- mvQ
->x
) >= 4) ||
124 (abs( mvP
->y
- mvQ
->y
) >= 4) ||
125 (abs(mvPbw
->x
- mvQbw
->x
) >= 4) ||
126 (abs(mvPbw
->y
- mvQbw
->y
) >= 4) )
133 alpha = alpha_tab[clip(qp_avg + h->alpha_offset,0,63)]; \
134 beta = beta_tab[clip(qp_avg + h->beta_offset, 0,63)]; \
135 tc = tc_tab[clip(qp_avg + h->alpha_offset,0,63)];
138 * in-loop deblocking filter for a single macroblock
140 * boundary strength (bs) mapping:
149 static void filter_mb(AVSContext
*h
, enum mb_t mb_type
) {
150 DECLARE_ALIGNED_8(uint8_t, bs
[8]);
151 int qp_avg
, alpha
, beta
, tc
;
154 /* save un-deblocked lines */
155 h
->topleft_border_y
= h
->top_border_y
[h
->mbx
*16+15];
156 h
->topleft_border_u
= h
->top_border_u
[h
->mbx
*10+8];
157 h
->topleft_border_v
= h
->top_border_v
[h
->mbx
*10+8];
158 memcpy(&h
->top_border_y
[h
->mbx
*16], h
->cy
+ 15* h
->l_stride
,16);
159 memcpy(&h
->top_border_u
[h
->mbx
*10+1], h
->cu
+ 7* h
->c_stride
,8);
160 memcpy(&h
->top_border_v
[h
->mbx
*10+1], h
->cv
+ 7* h
->c_stride
,8);
162 h
->left_border_y
[i
*2+0] = *(h
->cy
+ 15 + (i
*2+0)*h
->l_stride
);
163 h
->left_border_y
[i
*2+1] = *(h
->cy
+ 15 + (i
*2+1)*h
->l_stride
);
164 h
->left_border_u
[i
+1] = *(h
->cu
+ 7 + i
*h
->c_stride
);
165 h
->left_border_v
[i
+1] = *(h
->cv
+ 7 + i
*h
->c_stride
);
167 if(!h
->loop_filter_disable
) {
169 *((uint64_t *)bs
) = 0;
173 *((uint64_t *)bs
) = 0x0202020202020202ULL
;
177 bs
[2] = get_bs_p(&h
->mv
[MV_FWD_X0
], &h
->mv
[MV_FWD_X1
]);
178 bs
[3] = get_bs_p(&h
->mv
[MV_FWD_X2
], &h
->mv
[MV_FWD_X3
]);
180 bs
[6] = get_bs_p(&h
->mv
[MV_FWD_X0
], &h
->mv
[MV_FWD_X2
]);
181 bs
[7] = get_bs_p(&h
->mv
[MV_FWD_X1
], &h
->mv
[MV_FWD_X3
]);
184 bs
[0] = get_bs_p(&h
->mv
[MV_FWD_A1
], &h
->mv
[MV_FWD_X0
]);
185 bs
[1] = get_bs_p(&h
->mv
[MV_FWD_A3
], &h
->mv
[MV_FWD_X2
]);
186 bs
[4] = get_bs_p(&h
->mv
[MV_FWD_B2
], &h
->mv
[MV_FWD_X0
]);
187 bs
[5] = get_bs_p(&h
->mv
[MV_FWD_B3
], &h
->mv
[MV_FWD_X1
]);
192 bs
[2] = get_bs_b(&h
->mv
[MV_FWD_X0
], &h
->mv
[MV_FWD_X1
]);
193 bs
[3] = get_bs_b(&h
->mv
[MV_FWD_X2
], &h
->mv
[MV_FWD_X3
]);
194 bs
[6] = get_bs_b(&h
->mv
[MV_FWD_X0
], &h
->mv
[MV_FWD_X2
]);
195 bs
[7] = get_bs_b(&h
->mv
[MV_FWD_X1
], &h
->mv
[MV_FWD_X3
]);
199 bs
[0] = get_bs_b(&h
->mv
[MV_FWD_A1
], &h
->mv
[MV_FWD_X0
]);
200 bs
[1] = get_bs_b(&h
->mv
[MV_FWD_A3
], &h
->mv
[MV_FWD_X2
]);
201 bs
[4] = get_bs_b(&h
->mv
[MV_FWD_B2
], &h
->mv
[MV_FWD_X0
]);
202 bs
[5] = get_bs_b(&h
->mv
[MV_FWD_B3
], &h
->mv
[MV_FWD_X1
]);
205 if(mb_type
& 1) { //16X8
206 bs
[6] = bs
[7] = get_bs_b(&h
->mv
[MV_FWD_X0
], &h
->mv
[MV_FWD_X2
]);
208 bs
[2] = bs
[3] = get_bs_b(&h
->mv
[MV_FWD_X0
], &h
->mv
[MV_FWD_X1
]);
210 bs
[0] = get_bs_b(&h
->mv
[MV_FWD_A1
], &h
->mv
[MV_FWD_X0
]);
211 bs
[1] = get_bs_b(&h
->mv
[MV_FWD_A3
], &h
->mv
[MV_FWD_X2
]);
212 bs
[4] = get_bs_b(&h
->mv
[MV_FWD_B2
], &h
->mv
[MV_FWD_X0
]);
213 bs
[5] = get_bs_b(&h
->mv
[MV_FWD_B3
], &h
->mv
[MV_FWD_X1
]);
215 if( *((uint64_t *)bs
) ) {
216 if(h
->flags
& A_AVAIL
) {
217 qp_avg
= (h
->qp
+ h
->left_qp
+ 1) >> 1;
219 h
->s
.dsp
.cavs_filter_lv(h
->cy
,h
->l_stride
,alpha
,beta
,tc
,bs
[0],bs
[1]);
220 h
->s
.dsp
.cavs_filter_cv(h
->cu
,h
->c_stride
,alpha
,beta
,tc
,bs
[0],bs
[1]);
221 h
->s
.dsp
.cavs_filter_cv(h
->cv
,h
->c_stride
,alpha
,beta
,tc
,bs
[0],bs
[1]);
225 h
->s
.dsp
.cavs_filter_lv(h
->cy
+ 8,h
->l_stride
,alpha
,beta
,tc
,bs
[2],bs
[3]);
226 h
->s
.dsp
.cavs_filter_lh(h
->cy
+ 8*h
->l_stride
,h
->l_stride
,alpha
,beta
,tc
,
229 if(h
->flags
& B_AVAIL
) {
230 qp_avg
= (h
->qp
+ h
->top_qp
[h
->mbx
] + 1) >> 1;
232 h
->s
.dsp
.cavs_filter_lh(h
->cy
,h
->l_stride
,alpha
,beta
,tc
,bs
[4],bs
[5]);
233 h
->s
.dsp
.cavs_filter_ch(h
->cu
,h
->c_stride
,alpha
,beta
,tc
,bs
[4],bs
[5]);
234 h
->s
.dsp
.cavs_filter_ch(h
->cv
,h
->c_stride
,alpha
,beta
,tc
,bs
[4],bs
[5]);
239 h
->top_qp
[h
->mbx
] = h
->qp
;
244 /*****************************************************************************
246 * spatial intra prediction
248 ****************************************************************************/
250 static inline void load_intra_pred_luma(AVSContext
*h
, uint8_t *top
,
251 uint8_t *left
, int block
) {
256 memcpy(&left
[1],h
->left_border_y
,16);
259 memcpy(&top
[1],&h
->top_border_y
[h
->mbx
*16],16);
262 if((h
->flags
& A_AVAIL
) && (h
->flags
& B_AVAIL
))
263 left
[0] = top
[0] = h
->topleft_border_y
;
267 left
[i
+1] = *(h
->cy
+ 7 + i
*h
->l_stride
);
268 memset(&left
[9],left
[8],9);
270 memcpy(&top
[1],&h
->top_border_y
[h
->mbx
*16+8],8);
271 if(h
->flags
& C_AVAIL
)
272 memcpy(&top
[9],&h
->top_border_y
[(h
->mbx
+ 1)*16],8);
274 memset(&top
[9],top
[8],9);
277 if(h
->flags
& B_AVAIL
)
278 left
[0] = top
[0] = h
->top_border_y
[h
->mbx
*16+7];
281 memcpy(&left
[1],&h
->left_border_y
[8],8);
282 memset(&left
[9],left
[8],9);
283 memcpy(&top
[1],h
->cy
+ 7*h
->l_stride
,16);
285 left
[0] = h
->left_border_y
[7];
287 if(h
->flags
& A_AVAIL
)
292 left
[i
] = *(h
->cy
+ 7 + (i
+7)*h
->l_stride
);
293 memset(&left
[9],left
[8],9);
294 memcpy(&top
[0],h
->cy
+ 7 + 7*h
->l_stride
,9);
295 memset(&top
[9],top
[8],9);
300 static void intra_pred_vert(uint8_t *d
,uint8_t *top
,uint8_t *left
,int stride
) {
302 uint64_t a
= unaligned64(&top
[1]);
304 *((uint64_t *)(d
+y
*stride
)) = a
;
308 static void intra_pred_horiz(uint8_t *d
,uint8_t *top
,uint8_t *left
,int stride
) {
312 a
= left
[y
+1] * 0x0101010101010101ULL
;
313 *((uint64_t *)(d
+y
*stride
)) = a
;
317 static void intra_pred_dc_128(uint8_t *d
,uint8_t *top
,uint8_t *left
,int stride
) {
319 uint64_t a
= 0x8080808080808080ULL
;
321 *((uint64_t *)(d
+y
*stride
)) = a
;
324 static void intra_pred_plane(uint8_t *d
,uint8_t *top
,uint8_t *left
,int stride
) {
328 uint8_t *cm
= cropTbl
+ MAX_NEG_CROP
;
331 ih
+= (x
+1)*(top
[5+x
]-top
[3-x
]);
332 iv
+= (x
+1)*(left
[5+x
]-left
[3-x
]);
334 ia
= (top
[8]+left
[8])<<4;
339 d
[y
*stride
+x
] = cm
[(ia
+(x
-3)*ih
+(y
-3)*iv
+16)>>5];
342 #define LOWPASS(ARRAY,INDEX) \
343 (( ARRAY[(INDEX)-1] + 2*ARRAY[(INDEX)] + ARRAY[(INDEX)+1] + 2) >> 2)
345 static void intra_pred_lp(uint8_t *d
,uint8_t *top
,uint8_t *left
,int stride
) {
349 d
[y
*stride
+x
] = (LOWPASS(top
,x
+1) + LOWPASS(left
,y
+1)) >> 1;
352 static void intra_pred_down_left(uint8_t *d
,uint8_t *top
,uint8_t *left
,int stride
) {
356 d
[y
*stride
+x
] = (LOWPASS(top
,x
+y
+2) + LOWPASS(left
,x
+y
+2)) >> 1;
359 static void intra_pred_down_right(uint8_t *d
,uint8_t *top
,uint8_t *left
,int stride
) {
364 d
[y
*stride
+x
] = (left
[1]+2*top
[0]+top
[1]+2)>>2;
366 d
[y
*stride
+x
] = LOWPASS(top
,x
-y
);
368 d
[y
*stride
+x
] = LOWPASS(left
,y
-x
);
371 static void intra_pred_lp_left(uint8_t *d
,uint8_t *top
,uint8_t *left
,int stride
) {
375 d
[y
*stride
+x
] = LOWPASS(left
,y
+1);
378 static void intra_pred_lp_top(uint8_t *d
,uint8_t *top
,uint8_t *left
,int stride
) {
382 d
[y
*stride
+x
] = LOWPASS(top
,x
+1);
387 static inline void modify_pred(const int_fast8_t *mod_table
, int *mode
) {
388 *mode
= mod_table
[*mode
];
390 av_log(NULL
, AV_LOG_ERROR
, "Illegal intra prediction mode\n");
395 /*****************************************************************************
397 * motion compensation
399 ****************************************************************************/
401 static inline void mc_dir_part(AVSContext
*h
,Picture
*pic
,int square
,
402 int chroma_height
,int delta
,int list
,uint8_t *dest_y
,
403 uint8_t *dest_cb
,uint8_t *dest_cr
,int src_x_offset
,
404 int src_y_offset
,qpel_mc_func
*qpix_op
,
405 h264_chroma_mc_func chroma_op
,vector_t
*mv
){
406 MpegEncContext
* const s
= &h
->s
;
407 const int mx
= mv
->x
+ src_x_offset
*8;
408 const int my
= mv
->y
+ src_y_offset
*8;
409 const int luma_xy
= (mx
&3) + ((my
&3)<<2);
410 uint8_t * src_y
= pic
->data
[0] + (mx
>>2) + (my
>>2)*h
->l_stride
;
411 uint8_t * src_cb
= pic
->data
[1] + (mx
>>3) + (my
>>3)*h
->c_stride
;
412 uint8_t * src_cr
= pic
->data
[2] + (mx
>>3) + (my
>>3)*h
->c_stride
;
413 int extra_width
= 0; //(s->flags&CODEC_FLAG_EMU_EDGE) ? 0 : 16;
414 int extra_height
= extra_width
;
416 const int full_mx
= mx
>>2;
417 const int full_my
= my
>>2;
418 const int pic_width
= 16*h
->mb_width
;
419 const int pic_height
= 16*h
->mb_height
;
423 if(mx
&7) extra_width
-= 3;
424 if(my
&7) extra_height
-= 3;
426 if( full_mx
< 0-extra_width
427 || full_my
< 0-extra_height
428 || full_mx
+ 16/*FIXME*/ > pic_width
+ extra_width
429 || full_my
+ 16/*FIXME*/ > pic_height
+ extra_height
){
430 ff_emulated_edge_mc(s
->edge_emu_buffer
, src_y
- 2 - 2*h
->l_stride
, h
->l_stride
,
431 16+5, 16+5/*FIXME*/, full_mx
-2, full_my
-2, pic_width
, pic_height
);
432 src_y
= s
->edge_emu_buffer
+ 2 + 2*h
->l_stride
;
436 qpix_op
[luma_xy
](dest_y
, src_y
, h
->l_stride
); //FIXME try variable height perhaps?
438 qpix_op
[luma_xy
](dest_y
+ delta
, src_y
+ delta
, h
->l_stride
);
442 ff_emulated_edge_mc(s
->edge_emu_buffer
, src_cb
, h
->c_stride
,
443 9, 9/*FIXME*/, (mx
>>3), (my
>>3), pic_width
>>1, pic_height
>>1);
444 src_cb
= s
->edge_emu_buffer
;
446 chroma_op(dest_cb
, src_cb
, h
->c_stride
, chroma_height
, mx
&7, my
&7);
449 ff_emulated_edge_mc(s
->edge_emu_buffer
, src_cr
, h
->c_stride
,
450 9, 9/*FIXME*/, (mx
>>3), (my
>>3), pic_width
>>1, pic_height
>>1);
451 src_cr
= s
->edge_emu_buffer
;
453 chroma_op(dest_cr
, src_cr
, h
->c_stride
, chroma_height
, mx
&7, my
&7);
456 static inline void mc_part_std(AVSContext
*h
,int square
,int chroma_height
,int delta
,
457 uint8_t *dest_y
,uint8_t *dest_cb
,uint8_t *dest_cr
,
458 int x_offset
, int y_offset
,qpel_mc_func
*qpix_put
,
459 h264_chroma_mc_func chroma_put
,qpel_mc_func
*qpix_avg
,
460 h264_chroma_mc_func chroma_avg
, vector_t
*mv
){
461 qpel_mc_func
*qpix_op
= qpix_put
;
462 h264_chroma_mc_func chroma_op
= chroma_put
;
464 dest_y
+= 2*x_offset
+ 2*y_offset
*h
->l_stride
;
465 dest_cb
+= x_offset
+ y_offset
*h
->c_stride
;
466 dest_cr
+= x_offset
+ y_offset
*h
->c_stride
;
467 x_offset
+= 8*h
->mbx
;
468 y_offset
+= 8*h
->mby
;
471 Picture
*ref
= &h
->DPB
[mv
->ref
];
472 mc_dir_part(h
, ref
, square
, chroma_height
, delta
, 0,
473 dest_y
, dest_cb
, dest_cr
, x_offset
, y_offset
,
474 qpix_op
, chroma_op
, mv
);
477 chroma_op
= chroma_avg
;
480 if((mv
+MV_BWD_OFFS
)->ref
>= 0){
481 Picture
*ref
= &h
->DPB
[0];
482 mc_dir_part(h
, ref
, square
, chroma_height
, delta
, 1,
483 dest_y
, dest_cb
, dest_cr
, x_offset
, y_offset
,
484 qpix_op
, chroma_op
, mv
+MV_BWD_OFFS
);
488 static void inter_pred(AVSContext
*h
, enum mb_t mb_type
) {
495 mc_part_std(h
, 1, 8, 0, h
->cy
, h
->cu
, h
->cv
, 0, 0,
496 h
->s
.dsp
.put_cavs_qpel_pixels_tab
[0],
497 h
->s
.dsp
.put_h264_chroma_pixels_tab
[0],
498 h
->s
.dsp
.avg_cavs_qpel_pixels_tab
[0],
499 h
->s
.dsp
.avg_h264_chroma_pixels_tab
[0],&h
->mv
[MV_FWD_X0
]);
502 mc_part_std(h
, 1, 4, 0, h
->cy
, h
->cu
, h
->cv
, 0, 0,
503 h
->s
.dsp
.put_cavs_qpel_pixels_tab
[1],
504 h
->s
.dsp
.put_h264_chroma_pixels_tab
[1],
505 h
->s
.dsp
.avg_cavs_qpel_pixels_tab
[1],
506 h
->s
.dsp
.avg_h264_chroma_pixels_tab
[1],&h
->mv
[MV_FWD_X0
]);
507 mc_part_std(h
, 1, 4, 0, h
->cy
, h
->cu
, h
->cv
, 4, 0,
508 h
->s
.dsp
.put_cavs_qpel_pixels_tab
[1],
509 h
->s
.dsp
.put_h264_chroma_pixels_tab
[1],
510 h
->s
.dsp
.avg_cavs_qpel_pixels_tab
[1],
511 h
->s
.dsp
.avg_h264_chroma_pixels_tab
[1],&h
->mv
[MV_FWD_X1
]);
512 mc_part_std(h
, 1, 4, 0, h
->cy
, h
->cu
, h
->cv
, 0, 4,
513 h
->s
.dsp
.put_cavs_qpel_pixels_tab
[1],
514 h
->s
.dsp
.put_h264_chroma_pixels_tab
[1],
515 h
->s
.dsp
.avg_cavs_qpel_pixels_tab
[1],
516 h
->s
.dsp
.avg_h264_chroma_pixels_tab
[1],&h
->mv
[MV_FWD_X2
]);
517 mc_part_std(h
, 1, 4, 0, h
->cy
, h
->cu
, h
->cv
, 4, 4,
518 h
->s
.dsp
.put_cavs_qpel_pixels_tab
[1],
519 h
->s
.dsp
.put_h264_chroma_pixels_tab
[1],
520 h
->s
.dsp
.avg_cavs_qpel_pixels_tab
[1],
521 h
->s
.dsp
.avg_h264_chroma_pixels_tab
[1],&h
->mv
[MV_FWD_X3
]);
524 /* set intra prediction modes to default values */
525 h
->pred_mode_Y
[3] = h
->pred_mode_Y
[6] = INTRA_L_LP
;
526 h
->top_pred_Y
[h
->mbx
*2+0] = h
->top_pred_Y
[h
->mbx
*2+1] = INTRA_L_LP
;
529 /*****************************************************************************
531 * motion vector prediction
533 ****************************************************************************/
535 static inline void set_mvs(vector_t
*mv
, enum block_t size
) {
538 mv
[MV_STRIDE
] = mv
[0];
539 mv
[MV_STRIDE
+1] = mv
[0];
544 mv
[MV_STRIDE
] = mv
[0];
549 static inline void store_mvs(AVSContext
*h
) {
550 h
->col_mv
[(h
->mby
*h
->mb_width
+ h
->mbx
)*4 + 0] = h
->mv
[MV_FWD_X0
];
551 h
->col_mv
[(h
->mby
*h
->mb_width
+ h
->mbx
)*4 + 1] = h
->mv
[MV_FWD_X1
];
552 h
->col_mv
[(h
->mby
*h
->mb_width
+ h
->mbx
)*4 + 2] = h
->mv
[MV_FWD_X2
];
553 h
->col_mv
[(h
->mby
*h
->mb_width
+ h
->mbx
)*4 + 3] = h
->mv
[MV_FWD_X3
];
556 static inline void scale_mv(AVSContext
*h
, int *d_x
, int *d_y
, vector_t
*src
, int distp
) {
557 int den
= h
->scale_den
[src
->ref
];
559 *d_x
= (src
->x
*distp
*den
+ 256 + (src
->x
>>31)) >> 9;
560 *d_y
= (src
->y
*distp
*den
+ 256 + (src
->y
>>31)) >> 9;
563 static inline void mv_pred_median(AVSContext
*h
, vector_t
*mvP
, vector_t
*mvA
, vector_t
*mvB
, vector_t
*mvC
) {
564 int ax
, ay
, bx
, by
, cx
, cy
;
565 int len_ab
, len_bc
, len_ca
, len_mid
;
567 /* scale candidates according to their temporal span */
568 scale_mv(h
, &ax
, &ay
, mvA
, mvP
->dist
);
569 scale_mv(h
, &bx
, &by
, mvB
, mvP
->dist
);
570 scale_mv(h
, &cx
, &cy
, mvC
, mvP
->dist
);
571 /* find the geometrical median of the three candidates */
572 len_ab
= abs(ax
- bx
) + abs(ay
- by
);
573 len_bc
= abs(bx
- cx
) + abs(by
- cy
);
574 len_ca
= abs(cx
- ax
) + abs(cy
- ay
);
575 len_mid
= mid_pred(len_ab
, len_bc
, len_ca
);
576 if(len_mid
== len_ab
) {
579 } else if(len_mid
== len_bc
) {
588 static inline void mv_pred_direct(AVSContext
*h
, vector_t
*pmv_fw
,
590 vector_t
*pmv_bw
= pmv_fw
+ MV_BWD_OFFS
;
591 int den
= h
->direct_den
[col_mv
->ref
];
592 int m
= col_mv
->x
>> 31;
594 pmv_fw
->dist
= h
->dist
[1];
595 pmv_bw
->dist
= h
->dist
[0];
598 /* scale the co-located motion vector according to its temporal span */
599 pmv_fw
->x
= (((den
+(den
*col_mv
->x
*pmv_fw
->dist
^m
)-m
-1)>>14)^m
)-m
;
600 pmv_bw
->x
= m
-(((den
+(den
*col_mv
->x
*pmv_bw
->dist
^m
)-m
-1)>>14)^m
);
602 pmv_fw
->y
= (((den
+(den
*col_mv
->y
*pmv_fw
->dist
^m
)-m
-1)>>14)^m
)-m
;
603 pmv_bw
->y
= m
-(((den
+(den
*col_mv
->y
*pmv_bw
->dist
^m
)-m
-1)>>14)^m
);
606 static inline void mv_pred_sym(AVSContext
*h
, vector_t
*src
, enum block_t size
) {
607 vector_t
*dst
= src
+ MV_BWD_OFFS
;
609 /* backward mv is the scaled and negated forward mv */
610 dst
->x
= -((src
->x
* h
->sym_factor
+ 256) >> 9);
611 dst
->y
= -((src
->y
* h
->sym_factor
+ 256) >> 9);
613 dst
->dist
= h
->dist
[0];
617 static void mv_pred(AVSContext
*h
, enum mv_loc_t nP
, enum mv_loc_t nC
,
618 enum mv_pred_t mode
, enum block_t size
, int ref
) {
619 vector_t
*mvP
= &h
->mv
[nP
];
620 vector_t
*mvA
= &h
->mv
[nP
-1];
621 vector_t
*mvB
= &h
->mv
[nP
-4];
622 vector_t
*mvC
= &h
->mv
[nC
];
623 int mvAref
= mvA
->ref
;
624 int mvBref
= mvB
->ref
;
628 mvP
->dist
= h
->dist
[mvP
->ref
];
629 if(mvC
->ref
== NOT_AVAIL
)
630 mvC
= &h
->mv
[nP
-5]; // set to top-left (mvD)
632 if(mode
== MV_PRED_PSKIP
) {
633 if((mvAref
== NOT_AVAIL
) || (mvBref
== NOT_AVAIL
) ||
634 ((mvA
->x
| mvA
->y
| mvA
->ref
) == 0) ||
635 ((mvB
->x
| mvB
->y
| mvB
->ref
) == 0) ) {
641 /* if there is only one suitable candidate, take it */
642 if((mvAref
>= 0) && (mvBref
< 0) && (mvCref
< 0)) {
645 } else if((mvAref
< 0) && (mvBref
>= 0) && (mvCref
< 0)) {
648 } else if((mvAref
< 0) && (mvBref
< 0) && (mvCref
>= 0)) {
654 if(mvAref
== mvP
->ref
) {
658 mv_pred_median(h
, mvP
, mvA
, mvB
, mvC
);
661 if(mvBref
== mvP
->ref
) {
665 mv_pred_median(h
, mvP
, mvA
, mvB
, mvC
);
667 case MV_PRED_TOPRIGHT
:
668 if(mvCref
== mvP
->ref
) {
672 mv_pred_median(h
, mvP
, mvA
, mvB
, mvC
);
675 mv_pred_median(h
, mvP
, mvA
, mvB
, mvC
);
679 if(mode
< MV_PRED_PSKIP
) {
680 mvP
->x
+= get_se_golomb(&h
->s
.gb
);
681 mvP
->y
+= get_se_golomb(&h
->s
.gb
);
686 /*****************************************************************************
688 * residual data decoding
690 ****************************************************************************/
692 /** kth-order exponential golomb code */
693 static inline int get_ue_code(GetBitContext
*gb
, int order
) {
695 int ret
= get_ue_golomb(gb
) << order
;
696 return ret
+ get_bits(gb
,order
);
698 return get_ue_golomb(gb
);
702 * decode coefficients from one 8x8 block, dequantize, inverse transform
703 * and add them to sample block
704 * @param r pointer to 2D VLC table
705 * @param esc_golomb_order escape codes are k-golomb with this order k
706 * @param qp quantizer
707 * @param dst location of sample block
708 * @param stride line stride in frame buffer
710 static int decode_residual_block(AVSContext
*h
, GetBitContext
*gb
,
711 const residual_vlc_t
*r
, int esc_golomb_order
,
712 int qp
, uint8_t *dst
, int stride
) {
714 int level_code
, esc_code
, level
, run
, mask
;
717 int dqm
= dequant_mul
[qp
];
718 int dqs
= dequant_shift
[qp
];
719 int dqa
= 1 << (dqs
- 1);
720 const uint8_t *scantab
= ff_zigzag_direct
;
723 memset(block
,0,64*sizeof(DCTELEM
));
725 level_code
= get_ue_code(gb
,r
->golomb_order
);
726 if(level_code
>= ESCAPE_CODE
) {
727 run
= (level_code
- ESCAPE_CODE
) >> 1;
728 esc_code
= get_ue_code(gb
,esc_golomb_order
);
729 level
= esc_code
+ (run
> r
->max_run ?
1 : r
->level_add
[run
]);
730 while(level
> r
->inc_limit
)
732 mask
= -(level_code
& 1);
733 level
= (level
^mask
) - mask
;
737 level
= r
->rltab
[level_code
][0];
738 if(!level
) //end of block signal
740 run
= r
->rltab
[level_code
][1];
741 r
+= r
->rltab
[level_code
][2];
743 level_buf
[i
] = level
;
746 /* inverse scan and dequantization */
748 pos
+= 1 + run_buf
[i
];
750 av_log(h
->s
.avctx
, AV_LOG_ERROR
,
751 "position out of block bounds at pic %d MB(%d,%d)\n",
752 h
->picture
.poc
, h
->mbx
, h
->mby
);
755 block
[scantab
[pos
]] = (level_buf
[i
]*dqm
+ dqa
) >> dqs
;
757 h
->s
.dsp
.cavs_idct8_add(dst
,block
,stride
);
762 static inline void decode_residual_chroma(AVSContext
*h
) {
764 decode_residual_block(h
,&h
->s
.gb
,chroma_2dvlc
,0, chroma_qp
[h
->qp
],
767 decode_residual_block(h
,&h
->s
.gb
,chroma_2dvlc
,0, chroma_qp
[h
->qp
],
771 static inline int decode_residual_inter(AVSContext
*h
) {
774 /* get coded block pattern */
775 int cbp
= get_ue_golomb(&h
->s
.gb
);
777 av_log(h
->s
.avctx
, AV_LOG_ERROR
, "illegal inter cbp\n");
780 h
->cbp
= cbp_tab
[cbp
][1];
783 if(h
->cbp
&& !h
->qp_fixed
)
784 h
->qp
+= get_se_golomb(&h
->s
.gb
);
785 for(block
=0;block
<4;block
++)
786 if(h
->cbp
& (1<<block
))
787 decode_residual_block(h
,&h
->s
.gb
,inter_2dvlc
,0,h
->qp
,
788 h
->cy
+ h
->luma_scan
[block
], h
->l_stride
);
789 decode_residual_chroma(h
);
794 /*****************************************************************************
798 ****************************************************************************/
801 * initialise predictors for motion vectors and intra prediction
803 static inline void init_mb(AVSContext
*h
) {
806 /* copy predictors from top line (MB B and C) into cache */
808 h
->mv
[MV_FWD_B2
+i
] = h
->top_mv
[0][h
->mbx
*2+i
];
809 h
->mv
[MV_BWD_B2
+i
] = h
->top_mv
[1][h
->mbx
*2+i
];
811 h
->pred_mode_Y
[1] = h
->top_pred_Y
[h
->mbx
*2+0];
812 h
->pred_mode_Y
[2] = h
->top_pred_Y
[h
->mbx
*2+1];
813 /* clear top predictors if MB B is not available */
814 if(!(h
->flags
& B_AVAIL
)) {
815 h
->mv
[MV_FWD_B2
] = un_mv
;
816 h
->mv
[MV_FWD_B3
] = un_mv
;
817 h
->mv
[MV_BWD_B2
] = un_mv
;
818 h
->mv
[MV_BWD_B3
] = un_mv
;
819 h
->pred_mode_Y
[1] = h
->pred_mode_Y
[2] = NOT_AVAIL
;
820 h
->flags
&= ~(C_AVAIL
|D_AVAIL
);
824 if(h
->mbx
== h
->mb_width
-1) //MB C not available
825 h
->flags
&= ~C_AVAIL
;
826 /* clear top-right predictors if MB C is not available */
827 if(!(h
->flags
& C_AVAIL
)) {
828 h
->mv
[MV_FWD_C2
] = un_mv
;
829 h
->mv
[MV_BWD_C2
] = un_mv
;
831 /* clear top-left predictors if MB D is not available */
832 if(!(h
->flags
& D_AVAIL
)) {
833 h
->mv
[MV_FWD_D3
] = un_mv
;
834 h
->mv
[MV_BWD_D3
] = un_mv
;
836 /* set pointer for co-located macroblock type */
837 h
->col_type
= &h
->col_type_base
[h
->mby
*h
->mb_width
+ h
->mbx
];
840 static inline void check_for_slice(AVSContext
*h
);
843 * save predictors for later macroblocks and increase
845 * @returns 0 if end of frame is reached, 1 otherwise
847 static inline int next_mb(AVSContext
*h
) {
854 /* copy mvs as predictors to the left */
856 h
->mv
[i
] = h
->mv
[i
+2];
857 /* copy bottom mvs from cache to top line */
858 h
->top_mv
[0][h
->mbx
*2+0] = h
->mv
[MV_FWD_X2
];
859 h
->top_mv
[0][h
->mbx
*2+1] = h
->mv
[MV_FWD_X3
];
860 h
->top_mv
[1][h
->mbx
*2+0] = h
->mv
[MV_BWD_X2
];
861 h
->top_mv
[1][h
->mbx
*2+1] = h
->mv
[MV_BWD_X3
];
862 /* next MB address */
864 if(h
->mbx
== h
->mb_width
) { //new mb line
865 h
->flags
= B_AVAIL
|C_AVAIL
;
866 /* clear left pred_modes */
867 h
->pred_mode_Y
[3] = h
->pred_mode_Y
[6] = NOT_AVAIL
;
868 /* clear left mv predictors */
873 /* re-calculate sample pointers */
874 h
->cy
= h
->picture
.data
[0] + h
->mby
*16*h
->l_stride
;
875 h
->cu
= h
->picture
.data
[1] + h
->mby
*8*h
->c_stride
;
876 h
->cv
= h
->picture
.data
[2] + h
->mby
*8*h
->c_stride
;
877 if(h
->mby
== h
->mb_height
) { //frame end
880 //check_for_slice(h);
886 static int decode_mb_i(AVSContext
*h
, int cbp_code
) {
887 GetBitContext
*gb
= &h
->s
.gb
;
888 int block
, pred_mode_uv
;
895 /* get intra prediction modes from stream */
896 for(block
=0;block
<4;block
++) {
898 int pos
= scan3x3
[block
];
900 nA
= h
->pred_mode_Y
[pos
-1];
901 nB
= h
->pred_mode_Y
[pos
-3];
902 predpred
= FFMIN(nA
,nB
);
903 if(predpred
== NOT_AVAIL
) // if either is not available
904 predpred
= INTRA_L_LP
;
906 int rem_mode
= get_bits(gb
, 2);
907 predpred
= rem_mode
+ (rem_mode
>= predpred
);
909 h
->pred_mode_Y
[pos
] = predpred
;
911 pred_mode_uv
= get_ue_golomb(gb
);
912 if(pred_mode_uv
> 6) {
913 av_log(h
->s
.avctx
, AV_LOG_ERROR
, "illegal intra chroma pred mode\n");
917 /* save pred modes before they get modified */
918 h
->pred_mode_Y
[3] = h
->pred_mode_Y
[5];
919 h
->pred_mode_Y
[6] = h
->pred_mode_Y
[8];
920 h
->top_pred_Y
[h
->mbx
*2+0] = h
->pred_mode_Y
[7];
921 h
->top_pred_Y
[h
->mbx
*2+1] = h
->pred_mode_Y
[8];
923 /* modify pred modes according to availability of neighbour samples */
924 if(!(h
->flags
& A_AVAIL
)) {
925 modify_pred(left_modifier_l
, &h
->pred_mode_Y
[4] );
926 modify_pred(left_modifier_l
, &h
->pred_mode_Y
[7] );
927 modify_pred(left_modifier_c
, &pred_mode_uv
);
929 if(!(h
->flags
& B_AVAIL
)) {
930 modify_pred(top_modifier_l
, &h
->pred_mode_Y
[4] );
931 modify_pred(top_modifier_l
, &h
->pred_mode_Y
[5] );
932 modify_pred(top_modifier_c
, &pred_mode_uv
);
935 /* get coded block pattern */
936 if(h
->pic_type
== FF_I_TYPE
)
937 cbp_code
= get_ue_golomb(gb
);
939 av_log(h
->s
.avctx
, AV_LOG_ERROR
, "illegal intra cbp\n");
942 h
->cbp
= cbp_tab
[cbp_code
][0];
943 if(h
->cbp
&& !h
->qp_fixed
)
944 h
->qp
+= get_se_golomb(gb
); //qp_delta
946 /* luma intra prediction interleaved with residual decode/transform/add */
947 for(block
=0;block
<4;block
++) {
948 d
= h
->cy
+ h
->luma_scan
[block
];
949 load_intra_pred_luma(h
, top
, left
, block
);
950 h
->intra_pred_l
[h
->pred_mode_Y
[scan3x3
[block
]]]
951 (d
, top
, left
, h
->l_stride
);
952 if(h
->cbp
& (1<<block
))
953 decode_residual_block(h
,gb
,intra_2dvlc
,1,h
->qp
,d
,h
->l_stride
);
956 /* chroma intra prediction */
957 /* extend borders by one pixel */
958 h
->left_border_u
[9] = h
->left_border_u
[8];
959 h
->left_border_v
[9] = h
->left_border_v
[8];
960 h
->top_border_u
[h
->mbx
*10+9] = h
->top_border_u
[h
->mbx
*10+8];
961 h
->top_border_v
[h
->mbx
*10+9] = h
->top_border_v
[h
->mbx
*10+8];
962 if(h
->mbx
&& h
->mby
) {
963 h
->top_border_u
[h
->mbx
*10] = h
->left_border_u
[0] = h
->topleft_border_u
;
964 h
->top_border_v
[h
->mbx
*10] = h
->left_border_v
[0] = h
->topleft_border_v
;
966 h
->left_border_u
[0] = h
->left_border_u
[1];
967 h
->left_border_v
[0] = h
->left_border_v
[1];
968 h
->top_border_u
[h
->mbx
*10] = h
->top_border_u
[h
->mbx
*10+1];
969 h
->top_border_v
[h
->mbx
*10] = h
->top_border_v
[h
->mbx
*10+1];
971 h
->intra_pred_c
[pred_mode_uv
](h
->cu
, &h
->top_border_u
[h
->mbx
*10],
972 h
->left_border_u
, h
->c_stride
);
973 h
->intra_pred_c
[pred_mode_uv
](h
->cv
, &h
->top_border_v
[h
->mbx
*10],
974 h
->left_border_v
, h
->c_stride
);
976 decode_residual_chroma(h
);
979 /* mark motion vectors as intra */
980 h
->mv
[MV_FWD_X0
] = intra_mv
;
981 set_mvs(&h
->mv
[MV_FWD_X0
], BLK_16X16
);
982 h
->mv
[MV_BWD_X0
] = intra_mv
;
983 set_mvs(&h
->mv
[MV_BWD_X0
], BLK_16X16
);
984 if(h
->pic_type
!= FF_B_TYPE
)
985 *h
->col_type
= I_8X8
;
990 static void decode_mb_p(AVSContext
*h
, enum mb_t mb_type
) {
991 GetBitContext
*gb
= &h
->s
.gb
;
997 mv_pred(h
, MV_FWD_X0
, MV_FWD_C2
, MV_PRED_PSKIP
, BLK_16X16
, 0);
1000 ref
[0] = h
->ref_flag ?
0 : get_bits1(gb
);
1001 mv_pred(h
, MV_FWD_X0
, MV_FWD_C2
, MV_PRED_MEDIAN
, BLK_16X16
,ref
[0]);
1004 ref
[0] = h
->ref_flag ?
0 : get_bits1(gb
);
1005 ref
[2] = h
->ref_flag ?
0 : get_bits1(gb
);
1006 mv_pred(h
, MV_FWD_X0
, MV_FWD_C2
, MV_PRED_TOP
, BLK_16X8
, ref
[0]);
1007 mv_pred(h
, MV_FWD_X2
, MV_FWD_A1
, MV_PRED_LEFT
, BLK_16X8
, ref
[2]);
1010 ref
[0] = h
->ref_flag ?
0 : get_bits1(gb
);
1011 ref
[1] = h
->ref_flag ?
0 : get_bits1(gb
);
1012 mv_pred(h
, MV_FWD_X0
, MV_FWD_B3
, MV_PRED_LEFT
, BLK_8X16
, ref
[0]);
1013 mv_pred(h
, MV_FWD_X1
, MV_FWD_C2
, MV_PRED_TOPRIGHT
, BLK_8X16
, ref
[1]);
1016 ref
[0] = h
->ref_flag ?
0 : get_bits1(gb
);
1017 ref
[1] = h
->ref_flag ?
0 : get_bits1(gb
);
1018 ref
[2] = h
->ref_flag ?
0 : get_bits1(gb
);
1019 ref
[3] = h
->ref_flag ?
0 : get_bits1(gb
);
1020 mv_pred(h
, MV_FWD_X0
, MV_FWD_B3
, MV_PRED_MEDIAN
, BLK_8X8
, ref
[0]);
1021 mv_pred(h
, MV_FWD_X1
, MV_FWD_C2
, MV_PRED_MEDIAN
, BLK_8X8
, ref
[1]);
1022 mv_pred(h
, MV_FWD_X2
, MV_FWD_X1
, MV_PRED_MEDIAN
, BLK_8X8
, ref
[2]);
1023 mv_pred(h
, MV_FWD_X3
, MV_FWD_X0
, MV_PRED_MEDIAN
, BLK_8X8
, ref
[3]);
1025 inter_pred(h
, mb_type
);
1027 if(mb_type
!= P_SKIP
)
1028 decode_residual_inter(h
);
1029 filter_mb(h
,mb_type
);
1030 *h
->col_type
= mb_type
;
1033 static void decode_mb_b(AVSContext
*h
, enum mb_t mb_type
) {
1035 enum sub_mb_t sub_type
[4];
1041 h
->mv
[MV_FWD_X0
] = dir_mv
;
1042 set_mvs(&h
->mv
[MV_FWD_X0
], BLK_16X16
);
1043 h
->mv
[MV_BWD_X0
] = dir_mv
;
1044 set_mvs(&h
->mv
[MV_BWD_X0
], BLK_16X16
);
1048 if(!(*h
->col_type
)) {
1049 /* intra MB at co-location, do in-plane prediction */
1050 mv_pred(h
, MV_FWD_X0
, MV_FWD_C2
, MV_PRED_BSKIP
, BLK_16X16
, 1);
1051 mv_pred(h
, MV_BWD_X0
, MV_BWD_C2
, MV_PRED_BSKIP
, BLK_16X16
, 0);
1053 /* direct prediction from co-located P MB, block-wise */
1054 for(block
=0;block
<4;block
++)
1055 mv_pred_direct(h
,&h
->mv
[mv_scan
[block
]],
1056 &h
->col_mv
[(h
->mby
*h
->mb_width
+h
->mbx
)*4 + block
]);
1059 mv_pred(h
, MV_FWD_X0
, MV_FWD_C2
, MV_PRED_MEDIAN
, BLK_16X16
, 1);
1062 mv_pred(h
, MV_FWD_X0
, MV_FWD_C2
, MV_PRED_MEDIAN
, BLK_16X16
, 1);
1063 mv_pred_sym(h
, &h
->mv
[MV_FWD_X0
], BLK_16X16
);
1066 mv_pred(h
, MV_BWD_X0
, MV_BWD_C2
, MV_PRED_MEDIAN
, BLK_16X16
, 0);
1069 for(block
=0;block
<4;block
++)
1070 sub_type
[block
] = get_bits(&h
->s
.gb
,2);
1071 for(block
=0;block
<4;block
++) {
1072 switch(sub_type
[block
]) {
1074 if(!(*h
->col_type
)) {
1075 /* intra MB at co-location, do in-plane prediction */
1076 mv_pred(h
, mv_scan
[block
], mv_scan
[block
]-3,
1077 MV_PRED_BSKIP
, BLK_8X8
, 1);
1078 mv_pred(h
, mv_scan
[block
]+MV_BWD_OFFS
,
1079 mv_scan
[block
]-3+MV_BWD_OFFS
,
1080 MV_PRED_BSKIP
, BLK_8X8
, 0);
1082 mv_pred_direct(h
,&h
->mv
[mv_scan
[block
]],
1083 &h
->col_mv
[(h
->mby
*h
->mb_width
+ h
->mbx
)*4 + block
]);
1086 mv_pred(h
, mv_scan
[block
], mv_scan
[block
]-3,
1087 MV_PRED_MEDIAN
, BLK_8X8
, 1);
1090 mv_pred(h
, mv_scan
[block
], mv_scan
[block
]-3,
1091 MV_PRED_MEDIAN
, BLK_8X8
, 1);
1092 mv_pred_sym(h
, &h
->mv
[mv_scan
[block
]], BLK_8X8
);
1096 for(block
=0;block
<4;block
++) {
1097 if(sub_type
[block
] == B_SUB_BWD
)
1098 mv_pred(h
, mv_scan
[block
]+MV_BWD_OFFS
,
1099 mv_scan
[block
]+MV_BWD_OFFS
-3,
1100 MV_PRED_MEDIAN
, BLK_8X8
, 0);
1104 assert((mb_type
> B_SYM_16X16
) && (mb_type
< B_8X8
));
1105 flags
= b_partition_flags
[(mb_type
-1)>>1];
1106 if(mb_type
& 1) { /* 16x8 macroblock types */
1108 mv_pred(h
, MV_FWD_X0
, MV_FWD_C2
, MV_PRED_TOP
, BLK_16X8
, 1);
1110 mv_pred(h
, MV_FWD_X0
, MV_FWD_C2
, MV_PRED_TOP
, BLK_16X8
, 1);
1111 mv_pred_sym(h
, &h
->mv
[MV_FWD_X0
], BLK_16X8
);
1114 mv_pred(h
, MV_FWD_X2
, MV_FWD_A1
, MV_PRED_LEFT
, BLK_16X8
, 1);
1116 mv_pred(h
, MV_FWD_X2
, MV_FWD_A1
, MV_PRED_LEFT
, BLK_16X8
, 1);
1117 mv_pred_sym(h
, &h
->mv
[9], BLK_16X8
);
1120 mv_pred(h
, MV_BWD_X0
, MV_BWD_C2
, MV_PRED_TOP
, BLK_16X8
, 0);
1122 mv_pred(h
, MV_BWD_X2
, MV_BWD_A1
, MV_PRED_LEFT
, BLK_16X8
, 0);
1123 } else { /* 8x16 macroblock types */
1125 mv_pred(h
, MV_FWD_X0
, MV_FWD_B3
, MV_PRED_LEFT
, BLK_8X16
, 1);
1127 mv_pred(h
, MV_FWD_X0
, MV_FWD_B3
, MV_PRED_LEFT
, BLK_8X16
, 1);
1128 mv_pred_sym(h
, &h
->mv
[MV_FWD_X0
], BLK_8X16
);
1131 mv_pred(h
, MV_FWD_X1
, MV_FWD_C2
, MV_PRED_TOPRIGHT
,BLK_8X16
, 1);
1133 mv_pred(h
, MV_FWD_X1
, MV_FWD_C2
, MV_PRED_TOPRIGHT
,BLK_8X16
, 1);
1134 mv_pred_sym(h
, &h
->mv
[6], BLK_8X16
);
1137 mv_pred(h
, MV_BWD_X0
, MV_BWD_B3
, MV_PRED_LEFT
, BLK_8X16
, 0);
1139 mv_pred(h
, MV_BWD_X1
, MV_BWD_C2
, MV_PRED_TOPRIGHT
,BLK_8X16
, 0);
1142 inter_pred(h
, mb_type
);
1143 if(mb_type
!= B_SKIP
)
1144 decode_residual_inter(h
);
1145 filter_mb(h
,mb_type
);
1148 /*****************************************************************************
1152 ****************************************************************************/
1154 static inline int decode_slice_header(AVSContext
*h
, GetBitContext
*gb
) {
1156 av_log(h
->s
.avctx
, AV_LOG_ERROR
, "unexpected start code 0x%02x\n", h
->stc
);
1158 if((h
->mby
== 0) && (!h
->qp_fixed
)){
1159 h
->qp_fixed
= get_bits1(gb
);
1160 h
->qp
= get_bits(gb
,6);
1162 /* inter frame or second slice can have weighting params */
1163 if((h
->pic_type
!= FF_I_TYPE
) || (!h
->pic_structure
&& h
->mby
>= h
->mb_width
/2))
1164 if(get_bits1(gb
)) { //slice_weighting_flag
1165 av_log(h
->s
.avctx
, AV_LOG_ERROR
,
1166 "weighted prediction not yet supported\n");
1171 static inline void check_for_slice(AVSContext
*h
) {
1172 GetBitContext
*gb
= &h
->s
.gb
;
1174 align
= (-get_bits_count(gb
)) & 7;
1175 if((show_bits_long(gb
,24+align
) & 0xFFFFFF) == 0x000001) {
1176 get_bits_long(gb
,24+align
);
1177 h
->stc
= get_bits(gb
,8);
1178 decode_slice_header(h
,gb
);
1182 /*****************************************************************************
1186 ****************************************************************************/
1188 static void init_pic(AVSContext
*h
) {
1191 /* clear some predictors */
1194 h
->mv
[MV_BWD_X0
] = dir_mv
;
1195 set_mvs(&h
->mv
[MV_BWD_X0
], BLK_16X16
);
1196 h
->mv
[MV_FWD_X0
] = dir_mv
;
1197 set_mvs(&h
->mv
[MV_FWD_X0
], BLK_16X16
);
1198 h
->pred_mode_Y
[3] = h
->pred_mode_Y
[6] = NOT_AVAIL
;
1199 h
->cy
= h
->picture
.data
[0];
1200 h
->cu
= h
->picture
.data
[1];
1201 h
->cv
= h
->picture
.data
[2];
1202 h
->l_stride
= h
->picture
.linesize
[0];
1203 h
->c_stride
= h
->picture
.linesize
[1];
1204 h
->luma_scan
[2] = 8*h
->l_stride
;
1205 h
->luma_scan
[3] = 8*h
->l_stride
+8;
1206 h
->mbx
= h
->mby
= 0;
1210 static int decode_pic(AVSContext
*h
) {
1211 MpegEncContext
*s
= &h
->s
;
1215 if (!s
->context_initialized
) {
1216 if (MPV_common_init(s
) < 0)
1219 get_bits(&s
->gb
,16);//bbv_dwlay
1220 if(h
->stc
== PIC_PB_START_CODE
) {
1221 h
->pic_type
= get_bits(&s
->gb
,2) + FF_I_TYPE
;
1222 /* make sure we have the reference frames we need */
1223 if(!h
->DPB
[0].data
[0] ||
1224 (!h
->DPB
[1].data
[0] && h
->pic_type
== FF_B_TYPE
))
1227 h
->pic_type
= FF_I_TYPE
;
1228 if(get_bits1(&s
->gb
))
1229 get_bits(&s
->gb
,16);//time_code
1231 /* release last B frame */
1232 if(h
->picture
.data
[0])
1233 s
->avctx
->release_buffer(s
->avctx
, (AVFrame
*)&h
->picture
);
1235 s
->avctx
->get_buffer(s
->avctx
, (AVFrame
*)&h
->picture
);
1237 h
->picture
.poc
= get_bits(&s
->gb
,8)*2;
1239 /* get temporal distances and MV scaling factors */
1240 if(h
->pic_type
!= FF_B_TYPE
) {
1241 h
->dist
[0] = (h
->picture
.poc
- h
->DPB
[0].poc
+ 512) % 512;
1243 h
->dist
[0] = (h
->DPB
[0].poc
- h
->picture
.poc
+ 512) % 512;
1245 h
->dist
[1] = (h
->picture
.poc
- h
->DPB
[1].poc
+ 512) % 512;
1246 h
->scale_den
[0] = h
->dist
[0] ?
512/h
->dist
[0] : 0;
1247 h
->scale_den
[1] = h
->dist
[1] ?
512/h
->dist
[1] : 0;
1248 if(h
->pic_type
== FF_B_TYPE
) {
1249 h
->sym_factor
= h
->dist
[0]*h
->scale_den
[1];
1251 h
->direct_den
[0] = h
->dist
[0] ?
16384/h
->dist
[0] : 0;
1252 h
->direct_den
[1] = h
->dist
[1] ?
16384/h
->dist
[1] : 0;
1256 get_ue_golomb(&s
->gb
); //bbv_check_times
1257 h
->progressive
= get_bits1(&s
->gb
);
1259 h
->pic_structure
= 1;
1260 else if(!(h
->pic_structure
= get_bits1(&s
->gb
) && (h
->stc
== PIC_PB_START_CODE
)) )
1261 get_bits1(&s
->gb
); //advanced_pred_mode_disable
1262 skip_bits1(&s
->gb
); //top_field_first
1263 skip_bits1(&s
->gb
); //repeat_first_field
1264 h
->qp_fixed
= get_bits1(&s
->gb
);
1265 h
->qp
= get_bits(&s
->gb
,6);
1266 if(h
->pic_type
== FF_I_TYPE
) {
1267 if(!h
->progressive
&& !h
->pic_structure
)
1268 skip_bits1(&s
->gb
);//what is this?
1269 skip_bits(&s
->gb
,4); //reserved bits
1271 if(!(h
->pic_type
== FF_B_TYPE
&& h
->pic_structure
== 1))
1272 h
->ref_flag
= get_bits1(&s
->gb
);
1273 skip_bits(&s
->gb
,4); //reserved bits
1274 h
->skip_mode_flag
= get_bits1(&s
->gb
);
1276 h
->loop_filter_disable
= get_bits1(&s
->gb
);
1277 if(!h
->loop_filter_disable
&& get_bits1(&s
->gb
)) {
1278 h
->alpha_offset
= get_se_golomb(&s
->gb
);
1279 h
->beta_offset
= get_se_golomb(&s
->gb
);
1281 h
->alpha_offset
= h
->beta_offset
= 0;
1284 if(h
->pic_type
== FF_I_TYPE
) {
1287 } while(next_mb(h
));
1288 } else if(h
->pic_type
== FF_P_TYPE
) {
1290 if(h
->skip_mode_flag
) {
1291 skip_count
= get_ue_golomb(&s
->gb
);
1292 while(skip_count
--) {
1293 decode_mb_p(h
,P_SKIP
);
1297 mb_type
= get_ue_golomb(&s
->gb
) + P_16X16
;
1299 mb_type
= get_ue_golomb(&s
->gb
) + P_SKIP
;
1300 if(mb_type
> P_8X8
) {
1301 decode_mb_i(h
, mb_type
- P_8X8
- 1);
1303 decode_mb_p(h
,mb_type
);
1304 } while(next_mb(h
));
1305 } else { /* FF_B_TYPE */
1307 if(h
->skip_mode_flag
) {
1308 skip_count
= get_ue_golomb(&s
->gb
);
1309 while(skip_count
--) {
1310 decode_mb_b(h
,B_SKIP
);
1314 mb_type
= get_ue_golomb(&s
->gb
) + B_DIRECT
;
1316 mb_type
= get_ue_golomb(&s
->gb
) + B_SKIP
;
1317 if(mb_type
> B_8X8
) {
1318 decode_mb_i(h
, mb_type
- B_8X8
- 1);
1320 decode_mb_b(h
,mb_type
);
1321 } while(next_mb(h
));
1324 if(h
->pic_type
!= FF_B_TYPE
) {
1325 if(h
->DPB
[1].data
[0])
1326 s
->avctx
->release_buffer(s
->avctx
, (AVFrame
*)&h
->DPB
[1]);
1327 memcpy(&h
->DPB
[1], &h
->DPB
[0], sizeof(Picture
));
1328 memcpy(&h
->DPB
[0], &h
->picture
, sizeof(Picture
));
1329 memset(&h
->picture
,0,sizeof(Picture
));
1334 /*****************************************************************************
1336 * headers and interface
1338 ****************************************************************************/
1341 * some predictions require data from the top-neighbouring macroblock.
1342 * this data has to be stored for one complete row of macroblocks
1343 * and this storage space is allocated here
1345 static void init_top_lines(AVSContext
*h
) {
1346 /* alloc top line of predictors */
1347 h
->top_qp
= av_malloc( h
->mb_width
);
1348 h
->top_mv
[0] = av_malloc((h
->mb_width
*2+1)*sizeof(vector_t
));
1349 h
->top_mv
[1] = av_malloc((h
->mb_width
*2+1)*sizeof(vector_t
));
1350 h
->top_pred_Y
= av_malloc( h
->mb_width
*2*sizeof(*h
->top_pred_Y
));
1351 h
->top_border_y
= av_malloc((h
->mb_width
+1)*16);
1352 h
->top_border_u
= av_malloc((h
->mb_width
)*10);
1353 h
->top_border_v
= av_malloc((h
->mb_width
)*10);
1355 /* alloc space for co-located MVs and types */
1356 h
->col_mv
= av_malloc( h
->mb_width
*h
->mb_height
*4*sizeof(vector_t
));
1357 h
->col_type_base
= av_malloc(h
->mb_width
*h
->mb_height
);
1360 static int decode_seq_header(AVSContext
*h
) {
1361 MpegEncContext
*s
= &h
->s
;
1362 extern const AVRational ff_frame_rate_tab
[];
1363 int frame_rate_code
;
1365 h
->profile
= get_bits(&s
->gb
,8);
1366 h
->level
= get_bits(&s
->gb
,8);
1367 skip_bits1(&s
->gb
); //progressive sequence
1368 s
->width
= get_bits(&s
->gb
,14);
1369 s
->height
= get_bits(&s
->gb
,14);
1370 skip_bits(&s
->gb
,2); //chroma format
1371 skip_bits(&s
->gb
,3); //sample_precision
1372 h
->aspect_ratio
= get_bits(&s
->gb
,4);
1373 frame_rate_code
= get_bits(&s
->gb
,4);
1374 skip_bits(&s
->gb
,18);//bit_rate_lower
1375 skip_bits1(&s
->gb
); //marker_bit
1376 skip_bits(&s
->gb
,12);//bit_rate_upper
1377 s
->low_delay
= get_bits1(&s
->gb
);
1378 h
->mb_width
= (s
->width
+ 15) >> 4;
1379 h
->mb_height
= (s
->height
+ 15) >> 4;
1380 h
->s
.avctx
->time_base
.den
= ff_frame_rate_tab
[frame_rate_code
].num
;
1381 h
->s
.avctx
->time_base
.num
= ff_frame_rate_tab
[frame_rate_code
].den
;
1382 h
->s
.avctx
->width
= s
->width
;
1383 h
->s
.avctx
->height
= s
->height
;
1390 * finds the end of the current frame in the bitstream.
1391 * @return the position of the first byte of the next frame, or -1
1393 int ff_cavs_find_frame_end(ParseContext
*pc
, const uint8_t *buf
, int buf_size
) {
1397 pic_found
= pc
->frame_start_found
;
1402 for(i
=0; i
<buf_size
; i
++){
1403 state
= (state
<<8) | buf
[i
];
1404 if(state
== PIC_I_START_CODE
|| state
== PIC_PB_START_CODE
){
1413 /* EOF considered as end of frame */
1416 for(; i
<buf_size
; i
++){
1417 state
= (state
<<8) | buf
[i
];
1418 if((state
&0xFFFFFF00) == 0x100){
1419 if(state
< SLICE_MIN_START_CODE
|| state
> SLICE_MAX_START_CODE
){
1420 pc
->frame_start_found
=0;
1427 pc
->frame_start_found
= pic_found
;
1429 return END_NOT_FOUND
;
1432 void ff_cavs_flush(AVCodecContext
* avctx
) {
1433 AVSContext
*h
= avctx
->priv_data
;
1434 h
->got_keyframe
= 0;
1437 static int cavs_decode_frame(AVCodecContext
* avctx
,void *data
, int *data_size
,
1438 uint8_t * buf
, int buf_size
) {
1439 AVSContext
*h
= avctx
->priv_data
;
1440 MpegEncContext
*s
= &h
->s
;
1442 const uint8_t *buf_end
;
1443 const uint8_t *buf_ptr
;
1444 AVFrame
*picture
= data
;
1449 if (buf_size
== 0) {
1450 if(!s
->low_delay
&& h
->DPB
[0].data
[0]) {
1451 *data_size
= sizeof(AVPicture
);
1452 *picture
= *(AVFrame
*) &h
->DPB
[0];
1458 buf_end
= buf
+ buf_size
;
1460 buf_ptr
= ff_find_start_code(buf_ptr
,buf_end
, &stc
);
1461 if(stc
& 0xFFFFFE00)
1462 return FFMAX(0, buf_ptr
- buf
- s
->parse_context
.last_index
);
1463 input_size
= (buf_end
- buf_ptr
)*8;
1465 case SEQ_START_CODE
:
1466 init_get_bits(&s
->gb
, buf_ptr
, input_size
);
1467 decode_seq_header(h
);
1469 case PIC_I_START_CODE
:
1470 if(!h
->got_keyframe
) {
1471 if(h
->DPB
[0].data
[0])
1472 avctx
->release_buffer(avctx
, (AVFrame
*)&h
->DPB
[0]);
1473 if(h
->DPB
[1].data
[0])
1474 avctx
->release_buffer(avctx
, (AVFrame
*)&h
->DPB
[1]);
1475 h
->got_keyframe
= 1;
1477 case PIC_PB_START_CODE
:
1479 if(!h
->got_keyframe
)
1481 init_get_bits(&s
->gb
, buf_ptr
, input_size
);
1485 *data_size
= sizeof(AVPicture
);
1486 if(h
->pic_type
!= FF_B_TYPE
) {
1487 if(h
->DPB
[1].data
[0]) {
1488 *picture
= *(AVFrame
*) &h
->DPB
[1];
1493 *picture
= *(AVFrame
*) &h
->picture
;
1495 case EXT_START_CODE
:
1496 //mpeg_decode_extension(avctx,buf_ptr, input_size);
1498 case USER_START_CODE
:
1499 //mpeg_decode_user_data(avctx,buf_ptr, input_size);
1502 if (stc
>= SLICE_MIN_START_CODE
&&
1503 stc
<= SLICE_MAX_START_CODE
) {
1504 init_get_bits(&s
->gb
, buf_ptr
, input_size
);
1505 decode_slice_header(h
, &s
->gb
);
1512 static int cavs_decode_init(AVCodecContext
* avctx
) {
1513 AVSContext
*h
= avctx
->priv_data
;
1514 MpegEncContext
* const s
= &h
->s
;
1516 MPV_decode_defaults(s
);
1519 avctx
->pix_fmt
= PIX_FMT_YUV420P
;
1521 h
->luma_scan
[0] = 0;
1522 h
->luma_scan
[1] = 8;
1523 h
->intra_pred_l
[ INTRA_L_VERT
] = intra_pred_vert
;
1524 h
->intra_pred_l
[ INTRA_L_HORIZ
] = intra_pred_horiz
;
1525 h
->intra_pred_l
[ INTRA_L_LP
] = intra_pred_lp
;
1526 h
->intra_pred_l
[ INTRA_L_DOWN_LEFT
] = intra_pred_down_left
;
1527 h
->intra_pred_l
[INTRA_L_DOWN_RIGHT
] = intra_pred_down_right
;
1528 h
->intra_pred_l
[ INTRA_L_LP_LEFT
] = intra_pred_lp_left
;
1529 h
->intra_pred_l
[ INTRA_L_LP_TOP
] = intra_pred_lp_top
;
1530 h
->intra_pred_l
[ INTRA_L_DC_128
] = intra_pred_dc_128
;
1531 h
->intra_pred_c
[ INTRA_C_LP
] = intra_pred_lp
;
1532 h
->intra_pred_c
[ INTRA_C_HORIZ
] = intra_pred_horiz
;
1533 h
->intra_pred_c
[ INTRA_C_VERT
] = intra_pred_vert
;
1534 h
->intra_pred_c
[ INTRA_C_PLANE
] = intra_pred_plane
;
1535 h
->intra_pred_c
[ INTRA_C_LP_LEFT
] = intra_pred_lp_left
;
1536 h
->intra_pred_c
[ INTRA_C_LP_TOP
] = intra_pred_lp_top
;
1537 h
->intra_pred_c
[ INTRA_C_DC_128
] = intra_pred_dc_128
;
1543 static int cavs_decode_end(AVCodecContext
* avctx
) {
1544 AVSContext
*h
= avctx
->priv_data
;
1547 av_free(h
->top_mv
[0]);
1548 av_free(h
->top_mv
[1]);
1549 av_free(h
->top_pred_Y
);
1550 av_free(h
->top_border_y
);
1551 av_free(h
->top_border_u
);
1552 av_free(h
->top_border_v
);
1554 av_free(h
->col_type_base
);
1558 AVCodec cavs_decoder
= {
1567 CODEC_CAP_DR1
| CODEC_CAP_DELAY
,
1568 .flush
= ff_cavs_flush
,