2 * COOK compatible decoder
3 * Copyright (c) 2003 Sascha Sommer
4 * Copyright (c) 2005 Benjamin Larsson
6 * This file is part of FFmpeg.
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
25 * Cook compatible decoder. Bastardization of the G.722.1 standard.
26 * This decoder handles RealNetworks, RealAudio G2 data.
27 * Cook is identified by the codec name cook in RM files.
29 * To use this decoder, a calling application must supply the extradata
30 * bytes provided from the RM container; 8+ bytes for mono streams and
31 * 16+ for stereo streams (maybe more).
33 * Codec technicalities (all this assume a buffer length of 1024):
34 * Cook works with several different techniques to achieve its compression.
35 * In the timedomain the buffer is divided into 8 pieces and quantized. If
36 * two neighboring pieces have different quantization index a smooth
37 * quantization curve is used to get a smooth overlap between the different
39 * To get to the transformdomain Cook uses a modulated lapped transform.
40 * The transform domain has 50 subbands with 20 elements each. This
41 * means only a maximum of 50*20=1000 coefficients are used out of the 1024
49 #include "libavutil/lfg.h"
50 #include "libavutil/random_seed.h"
54 #include "bytestream.h"
59 /* the different Cook versions */
60 #define MONO 0x1000001
61 #define STEREO 0x1000002
62 #define JOINT_STEREO 0x1000003
63 #define MC_COOK 0x2000000 //multichannel Cook, not supported
65 #define SUBBAND_SIZE 20
66 #define MAX_SUBPACKETS 5
79 int samples_per_frame
;
83 int samples_per_channel
;
84 int log2_numvector_size
;
85 unsigned int channel_mask
;
86 VLC ccpl
; ///< channel coupling
88 int bits_per_subpacket
;
91 int numvector_size
; ///< 1 << log2_numvector_size;
93 float mono_previous_buffer1
[1024];
94 float mono_previous_buffer2
[1024];
104 typedef struct cook
{
106 * The following 5 functions provide the lowlevel arithmetic on
107 * the internal audio buffers.
109 void (* scalar_dequant
)(struct cook
*q
, int index
, int quant_index
,
110 int* subband_coef_index
, int* subband_coef_sign
,
113 void (* decouple
) (struct cook
*q
,
117 float *decode_buffer
,
118 float *mlt_buffer1
, float *mlt_buffer2
);
120 void (* imlt_window
) (struct cook
*q
, float *buffer1
,
121 cook_gains
*gains_ptr
, float *previous_buffer
);
123 void (* interpolate
) (struct cook
*q
, float* buffer
,
124 int gain_index
, int gain_index_next
);
126 void (* saturate_output
) (struct cook
*q
, int chan
, int16_t *out
);
128 AVCodecContext
* avctx
;
135 int samples_per_channel
;
144 VLC envelope_quant_index
[13];
145 VLC sqvh
[7]; //scalar quantization
147 /* generatable tables and related variables */
148 int gain_size_factor
;
149 float gain_table
[23];
153 uint8_t* decoded_bytes_buffer
;
154 DECLARE_ALIGNED(16, float,mono_mdct_output
)[2048];
155 float decode_buffer_1
[1024];
156 float decode_buffer_2
[1024];
157 float decode_buffer_0
[1060]; /* static allocation for joint decode */
159 const float *cplscales
[5];
161 COOKSubpacket subpacket
[MAX_SUBPACKETS
];
164 static float pow2tab
[127];
165 static float rootpow2tab
[127];
167 /* debug functions */
170 static void dump_float_table(float* table
, int size
, int delimiter
) {
172 av_log(NULL
,AV_LOG_ERROR
,"\n[%d]: ",i
);
173 for (i
=0 ; i
<size
; i
++) {
174 av_log(NULL
, AV_LOG_ERROR
, "%5.1f, ", table
[i
]);
175 if ((i
+1)%delimiter
== 0) av_log(NULL
,AV_LOG_ERROR
,"\n[%d]: ",i
+1);
179 static void dump_int_table(int* table
, int size
, int delimiter
) {
181 av_log(NULL
,AV_LOG_ERROR
,"\n[%d]: ",i
);
182 for (i
=0 ; i
<size
; i
++) {
183 av_log(NULL
, AV_LOG_ERROR
, "%d, ", table
[i
]);
184 if ((i
+1)%delimiter
== 0) av_log(NULL
,AV_LOG_ERROR
,"\n[%d]: ",i
+1);
188 static void dump_short_table(short* table
, int size
, int delimiter
) {
190 av_log(NULL
,AV_LOG_ERROR
,"\n[%d]: ",i
);
191 for (i
=0 ; i
<size
; i
++) {
192 av_log(NULL
, AV_LOG_ERROR
, "%d, ", table
[i
]);
193 if ((i
+1)%delimiter
== 0) av_log(NULL
,AV_LOG_ERROR
,"\n[%d]: ",i
+1);
199 /*************** init functions ***************/
201 /* table generator */
202 static av_cold
void init_pow2table(void){
204 for (i
=-63 ; i
<64 ; i
++){
205 pow2tab
[63+i
]= pow(2, i
);
206 rootpow2tab
[63+i
]=sqrt(pow(2, i
));
210 /* table generator */
211 static av_cold
void init_gain_table(COOKContext
*q
) {
213 q
->gain_size_factor
= q
->samples_per_channel
/8;
214 for (i
=0 ; i
<23 ; i
++) {
215 q
->gain_table
[i
] = pow(pow2tab
[i
+52] ,
216 (1.0/(double)q
->gain_size_factor
));
221 static av_cold
int init_cook_vlc_tables(COOKContext
*q
) {
225 for (i
=0 ; i
<13 ; i
++) {
226 result
|= init_vlc (&q
->envelope_quant_index
[i
], 9, 24,
227 envelope_quant_index_huffbits
[i
], 1, 1,
228 envelope_quant_index_huffcodes
[i
], 2, 2, 0);
230 av_log(q
->avctx
,AV_LOG_DEBUG
,"sqvh VLC init\n");
231 for (i
=0 ; i
<7 ; i
++) {
232 result
|= init_vlc (&q
->sqvh
[i
], vhvlcsize_tab
[i
], vhsize_tab
[i
],
233 cvh_huffbits
[i
], 1, 1,
234 cvh_huffcodes
[i
], 2, 2, 0);
237 for(i
=0;i
<q
->num_subpackets
;i
++){
238 if (q
->subpacket
[i
].joint_stereo
==1){
239 result
|= init_vlc (&q
->subpacket
[i
].ccpl
, 6, (1<<q
->subpacket
[i
].js_vlc_bits
)-1,
240 ccpl_huffbits
[q
->subpacket
[i
].js_vlc_bits
-2], 1, 1,
241 ccpl_huffcodes
[q
->subpacket
[i
].js_vlc_bits
-2], 2, 2, 0);
242 av_log(q
->avctx
,AV_LOG_DEBUG
,"subpacket %i Joint-stereo VLC used.\n",i
);
246 av_log(q
->avctx
,AV_LOG_DEBUG
,"VLC tables initialized.\n");
250 static av_cold
int init_cook_mlt(COOKContext
*q
) {
252 int mlt_size
= q
->samples_per_channel
;
254 if ((q
->mlt_window
= av_malloc(sizeof(float)*mlt_size
)) == 0)
257 /* Initialize the MLT window: simple sine window. */
258 ff_sine_window_init(q
->mlt_window
, mlt_size
);
259 for(j
=0 ; j
<mlt_size
; j
++)
260 q
->mlt_window
[j
] *= sqrt(2.0 / q
->samples_per_channel
);
262 /* Initialize the MDCT. */
263 if (ff_mdct_init(&q
->mdct_ctx
, av_log2(mlt_size
)+1, 1, 1.0)) {
264 av_free(q
->mlt_window
);
267 av_log(q
->avctx
,AV_LOG_DEBUG
,"MDCT initialized, order = %d.\n",
268 av_log2(mlt_size
)+1);
273 static const float *maybe_reformat_buffer32 (COOKContext
*q
, const float *ptr
, int n
)
279 static av_cold
void init_cplscales_table (COOKContext
*q
) {
282 q
->cplscales
[i
] = maybe_reformat_buffer32 (q
, cplscales
[i
], (1<<(i
+2))-1);
285 /*************** init functions end ***********/
287 #define DECODE_BYTES_PAD1(bytes) (3 - ((bytes)+3) % 4)
288 #define DECODE_BYTES_PAD2(bytes) ((bytes) % 4 + DECODE_BYTES_PAD1(2 * (bytes)))
291 * Cook indata decoding, every 32 bits are XORed with 0x37c511f2.
292 * Why? No idea, some checksum/error detection method maybe.
294 * Out buffer size: extra bytes are needed to cope with
295 * padding/misalignment.
296 * Subpackets passed to the decoder can contain two, consecutive
297 * half-subpackets, of identical but arbitrary size.
298 * 1234 1234 1234 1234 extraA extraB
299 * Case 1: AAAA BBBB 0 0
300 * Case 2: AAAA ABBB BB-- 3 3
301 * Case 3: AAAA AABB BBBB 2 2
302 * Case 4: AAAA AAAB BBBB BB-- 1 5
304 * Nice way to waste CPU cycles.
306 * @param inbuffer pointer to byte array of indata
307 * @param out pointer to byte array of outdata
308 * @param bytes number of bytes
311 static inline int decode_bytes(const uint8_t* inbuffer
, uint8_t* out
, int bytes
){
315 uint32_t* obuf
= (uint32_t*) out
;
316 /* FIXME: 64 bit platforms would be able to do 64 bits at a time.
317 * I'm too lazy though, should be something like
318 * for(i=0 ; i<bitamount/64 ; i++)
319 * (int64_t)out[i] = 0x37c511f237c511f2^be2me_64(int64_t)in[i]);
320 * Buffer alignment needs to be checked. */
322 off
= (intptr_t)inbuffer
& 3;
323 buf
= (const uint32_t*) (inbuffer
- off
);
324 c
= be2me_32((0x37c511f2 >> (off
*8)) | (0x37c511f2 << (32-(off
*8))));
326 for (i
= 0; i
< bytes
/4; i
++)
327 obuf
[i
] = c
^ buf
[i
];
336 static av_cold
int cook_decode_close(AVCodecContext
*avctx
)
339 COOKContext
*q
= avctx
->priv_data
;
340 av_log(avctx
,AV_LOG_DEBUG
, "Deallocating memory.\n");
342 /* Free allocated memory buffers. */
343 av_free(q
->mlt_window
);
344 av_free(q
->decoded_bytes_buffer
);
346 /* Free the transform. */
347 ff_mdct_end(&q
->mdct_ctx
);
349 /* Free the VLC tables. */
350 for (i
=0 ; i
<13 ; i
++) {
351 free_vlc(&q
->envelope_quant_index
[i
]);
353 for (i
=0 ; i
<7 ; i
++) {
354 free_vlc(&q
->sqvh
[i
]);
356 for (i
=0 ; i
<q
->num_subpackets
; i
++) {
357 free_vlc(&q
->subpacket
[i
].ccpl
);
360 av_log(avctx
,AV_LOG_DEBUG
,"Memory deallocated.\n");
366 * Fill the gain array for the timedomain quantization.
368 * @param gb pointer to the GetBitContext
369 * @param gaininfo[9] array of gain indexes
372 static void decode_gain_info(GetBitContext
*gb
, int *gaininfo
)
376 while (get_bits1(gb
)) {}
377 n
= get_bits_count(gb
) - 1; //amount of elements*2 to update
381 int index
= get_bits(gb
, 3);
382 int gain
= get_bits1(gb
) ?
get_bits(gb
, 4) - 7 : -1;
384 while (i
<= index
) gaininfo
[i
++] = gain
;
386 while (i
<= 8) gaininfo
[i
++] = 0;
390 * Create the quant index table needed for the envelope.
392 * @param q pointer to the COOKContext
393 * @param quant_index_table pointer to the array
396 static void decode_envelope(COOKContext
*q
, COOKSubpacket
*p
, int* quant_index_table
) {
399 quant_index_table
[0]= get_bits(&q
->gb
,6) - 6; //This is used later in categorize
401 for (i
=1 ; i
< p
->total_subbands
; i
++){
403 if (i
>= p
->js_subband_start
* 2) {
404 vlc_index
-=p
->js_subband_start
;
407 if(vlc_index
< 1) vlc_index
= 1;
409 if (vlc_index
>13) vlc_index
= 13; //the VLC tables >13 are identical to No. 13
411 j
= get_vlc2(&q
->gb
, q
->envelope_quant_index
[vlc_index
-1].table
,
412 q
->envelope_quant_index
[vlc_index
-1].bits
,2);
413 quant_index_table
[i
] = quant_index_table
[i
-1] + j
- 12; //differential encoding
418 * Calculate the category and category_index vector.
420 * @param q pointer to the COOKContext
421 * @param quant_index_table pointer to the array
422 * @param category pointer to the category array
423 * @param category_index pointer to the category_index array
426 static void categorize(COOKContext
*q
, COOKSubpacket
*p
, int* quant_index_table
,
427 int* category
, int* category_index
){
428 int exp_idx
, bias
, tmpbias1
, tmpbias2
, bits_left
, num_bits
, index
, v
, i
, j
;
432 int tmp_categorize_array
[128*2];
433 int tmp_categorize_array1_idx
=p
->numvector_size
;
434 int tmp_categorize_array2_idx
=p
->numvector_size
;
436 bits_left
= p
->bits_per_subpacket
- get_bits_count(&q
->gb
);
438 if(bits_left
> q
->samples_per_channel
) {
439 bits_left
= q
->samples_per_channel
+
440 ((bits_left
- q
->samples_per_channel
)*5)/8;
441 //av_log(q->avctx, AV_LOG_ERROR, "bits_left = %d\n",bits_left);
444 memset(&exp_index1
,0,102*sizeof(int));
445 memset(&exp_index2
,0,102*sizeof(int));
446 memset(&tmp_categorize_array
,0,128*2*sizeof(int));
451 for (i
=32 ; i
>0 ; i
=i
/2){
454 for (j
=p
->total_subbands
; j
>0 ; j
--){
455 exp_idx
= av_clip((i
- quant_index_table
[index
] + bias
) / 2, 0, 7);
457 num_bits
+=expbits_tab
[exp_idx
];
459 if(num_bits
>= bits_left
- 32){
464 /* Calculate total number of bits. */
466 for (i
=0 ; i
<p
->total_subbands
; i
++) {
467 exp_idx
= av_clip((bias
- quant_index_table
[i
]) / 2, 0, 7);
468 num_bits
+= expbits_tab
[exp_idx
];
469 exp_index1
[i
] = exp_idx
;
470 exp_index2
[i
] = exp_idx
;
472 tmpbias1
= tmpbias2
= num_bits
;
474 for (j
= 1 ; j
< p
->numvector_size
; j
++) {
475 if (tmpbias1
+ tmpbias2
> 2*bits_left
) { /* ---> */
478 for (i
=0 ; i
<p
->total_subbands
; i
++){
479 if (exp_index1
[i
] < 7) {
480 v
= (-2*exp_index1
[i
]) - quant_index_table
[i
] + bias
;
488 tmp_categorize_array
[tmp_categorize_array1_idx
++] = index
;
489 tmpbias1
-= expbits_tab
[exp_index1
[index
]] -
490 expbits_tab
[exp_index1
[index
]+1];
495 for (i
=0 ; i
<p
->total_subbands
; i
++){
496 if(exp_index2
[i
] > 0){
497 v
= (-2*exp_index2
[i
])-quant_index_table
[i
]+bias
;
504 if(index
== -1)break;
505 tmp_categorize_array
[--tmp_categorize_array2_idx
] = index
;
506 tmpbias2
-= expbits_tab
[exp_index2
[index
]] -
507 expbits_tab
[exp_index2
[index
]-1];
512 for(i
=0 ; i
<p
->total_subbands
; i
++)
513 category
[i
] = exp_index2
[i
];
515 for(i
=0 ; i
<p
->numvector_size
-1 ; i
++)
516 category_index
[i
] = tmp_categorize_array
[tmp_categorize_array2_idx
++];
522 * Expand the category vector.
524 * @param q pointer to the COOKContext
525 * @param category pointer to the category array
526 * @param category_index pointer to the category_index array
529 static inline void expand_category(COOKContext
*q
, int* category
,
530 int* category_index
){
532 for(i
=0 ; i
<q
->num_vectors
; i
++){
533 ++category
[category_index
[i
]];
538 * The real requantization of the mltcoefs
540 * @param q pointer to the COOKContext
542 * @param quant_index quantisation index
543 * @param subband_coef_index array of indexes to quant_centroid_tab
544 * @param subband_coef_sign signs of coefficients
545 * @param mlt_p pointer into the mlt buffer
548 static void scalar_dequant_float(COOKContext
*q
, int index
, int quant_index
,
549 int* subband_coef_index
, int* subband_coef_sign
,
554 for(i
=0 ; i
<SUBBAND_SIZE
; i
++) {
555 if (subband_coef_index
[i
]) {
556 f1
= quant_centroid_tab
[index
][subband_coef_index
[i
]];
557 if (subband_coef_sign
[i
]) f1
= -f1
;
559 /* noise coding if subband_coef_index[i] == 0 */
560 f1
= dither_tab
[index
];
561 if (av_lfg_get(&q
->random_state
) < 0x80000000) f1
= -f1
;
563 mlt_p
[i
] = f1
* rootpow2tab
[quant_index
+63];
567 * Unpack the subband_coef_index and subband_coef_sign vectors.
569 * @param q pointer to the COOKContext
570 * @param category pointer to the category array
571 * @param subband_coef_index array of indexes to quant_centroid_tab
572 * @param subband_coef_sign signs of coefficients
575 static int unpack_SQVH(COOKContext
*q
, COOKSubpacket
*p
, int category
, int* subband_coef_index
,
576 int* subband_coef_sign
) {
578 int vlc
, vd
,tmp
, result
;
580 vd
= vd_tab
[category
];
582 for(i
=0 ; i
<vpr_tab
[category
] ; i
++){
583 vlc
= get_vlc2(&q
->gb
, q
->sqvh
[category
].table
, q
->sqvh
[category
].bits
, 3);
584 if (p
->bits_per_subpacket
< get_bits_count(&q
->gb
)){
588 for(j
=vd
-1 ; j
>=0 ; j
--){
589 tmp
= (vlc
* invradix_tab
[category
])/0x100000;
590 subband_coef_index
[vd
*i
+j
] = vlc
- tmp
* (kmax_tab
[category
]+1);
593 for(j
=0 ; j
<vd
; j
++){
594 if (subband_coef_index
[i
*vd
+ j
]) {
595 if(get_bits_count(&q
->gb
) < p
->bits_per_subpacket
){
596 subband_coef_sign
[i
*vd
+j
] = get_bits1(&q
->gb
);
599 subband_coef_sign
[i
*vd
+j
]=0;
602 subband_coef_sign
[i
*vd
+j
]=0;
611 * Fill the mlt_buffer with mlt coefficients.
613 * @param q pointer to the COOKContext
614 * @param category pointer to the category array
615 * @param quant_index_table pointer to the array
616 * @param mlt_buffer pointer to mlt coefficients
620 static void decode_vectors(COOKContext
* q
, COOKSubpacket
* p
, int* category
,
621 int *quant_index_table
, float* mlt_buffer
){
622 /* A zero in this table means that the subband coefficient is
623 random noise coded. */
624 int subband_coef_index
[SUBBAND_SIZE
];
625 /* A zero in this table means that the subband coefficient is a
626 positive multiplicator. */
627 int subband_coef_sign
[SUBBAND_SIZE
];
631 for(band
=0 ; band
<p
->total_subbands
; band
++){
632 index
= category
[band
];
633 if(category
[band
] < 7){
634 if(unpack_SQVH(q
, p
, category
[band
], subband_coef_index
, subband_coef_sign
)){
636 for(j
=0 ; j
<p
->total_subbands
; j
++) category
[band
+j
]=7;
640 memset(subband_coef_index
, 0, sizeof(subband_coef_index
));
641 memset(subband_coef_sign
, 0, sizeof(subband_coef_sign
));
643 q
->scalar_dequant(q
, index
, quant_index_table
[band
],
644 subband_coef_index
, subband_coef_sign
,
645 &mlt_buffer
[band
* SUBBAND_SIZE
]);
648 if(p
->total_subbands
*SUBBAND_SIZE
>= q
->samples_per_channel
){
650 } /* FIXME: should this be removed, or moved into loop above? */
655 * function for decoding mono data
657 * @param q pointer to the COOKContext
658 * @param mlt_buffer pointer to mlt coefficients
661 static void mono_decode(COOKContext
*q
, COOKSubpacket
*p
, float* mlt_buffer
) {
663 int category_index
[128];
664 int quant_index_table
[102];
667 memset(&category
, 0, 128*sizeof(int));
668 memset(&category_index
, 0, 128*sizeof(int));
670 decode_envelope(q
, p
, quant_index_table
);
671 q
->num_vectors
= get_bits(&q
->gb
,p
->log2_numvector_size
);
672 categorize(q
, p
, quant_index_table
, category
, category_index
);
673 expand_category(q
, category
, category_index
);
674 decode_vectors(q
, p
, category
, quant_index_table
, mlt_buffer
);
679 * the actual requantization of the timedomain samples
681 * @param q pointer to the COOKContext
682 * @param buffer pointer to the timedomain buffer
683 * @param gain_index index for the block multiplier
684 * @param gain_index_next index for the next block multiplier
687 static void interpolate_float(COOKContext
*q
, float* buffer
,
688 int gain_index
, int gain_index_next
){
691 fc1
= pow2tab
[gain_index
+63];
693 if(gain_index
== gain_index_next
){ //static gain
694 for(i
=0 ; i
<q
->gain_size_factor
; i
++){
698 } else { //smooth gain
699 fc2
= q
->gain_table
[11 + (gain_index_next
-gain_index
)];
700 for(i
=0 ; i
<q
->gain_size_factor
; i
++){
709 * Apply transform window, overlap buffers.
711 * @param q pointer to the COOKContext
712 * @param inbuffer pointer to the mltcoefficients
713 * @param gains_ptr current and previous gains
714 * @param previous_buffer pointer to the previous buffer to be used for overlapping
717 static void imlt_window_float (COOKContext
*q
, float *inbuffer
,
718 cook_gains
*gains_ptr
, float *previous_buffer
)
720 const float fc
= pow2tab
[gains_ptr
->previous
[0] + 63];
722 /* The weird thing here, is that the two halves of the time domain
723 * buffer are swapped. Also, the newest data, that we save away for
724 * next frame, has the wrong sign. Hence the subtraction below.
725 * Almost sounds like a complex conjugate/reverse data/FFT effect.
728 /* Apply window and overlap */
729 for(i
= 0; i
< q
->samples_per_channel
; i
++){
730 inbuffer
[i
] = inbuffer
[i
] * fc
* q
->mlt_window
[i
] -
731 previous_buffer
[i
] * q
->mlt_window
[q
->samples_per_channel
- 1 - i
];
736 * The modulated lapped transform, this takes transform coefficients
737 * and transforms them into timedomain samples.
738 * Apply transform window, overlap buffers, apply gain profile
739 * and buffer management.
741 * @param q pointer to the COOKContext
742 * @param inbuffer pointer to the mltcoefficients
743 * @param gains_ptr current and previous gains
744 * @param previous_buffer pointer to the previous buffer to be used for overlapping
747 static void imlt_gain(COOKContext
*q
, float *inbuffer
,
748 cook_gains
*gains_ptr
, float* previous_buffer
)
750 float *buffer0
= q
->mono_mdct_output
;
751 float *buffer1
= q
->mono_mdct_output
+ q
->samples_per_channel
;
754 /* Inverse modified discrete cosine transform */
755 ff_imdct_calc(&q
->mdct_ctx
, q
->mono_mdct_output
, inbuffer
);
757 q
->imlt_window (q
, buffer1
, gains_ptr
, previous_buffer
);
759 /* Apply gain profile */
760 for (i
= 0; i
< 8; i
++) {
761 if (gains_ptr
->now
[i
] || gains_ptr
->now
[i
+ 1])
762 q
->interpolate(q
, &buffer1
[q
->gain_size_factor
* i
],
763 gains_ptr
->now
[i
], gains_ptr
->now
[i
+ 1]);
766 /* Save away the current to be previous block. */
767 memcpy(previous_buffer
, buffer0
, sizeof(float)*q
->samples_per_channel
);
772 * function for getting the jointstereo coupling information
774 * @param q pointer to the COOKContext
775 * @param decouple_tab decoupling array
779 static void decouple_info(COOKContext
*q
, COOKSubpacket
*p
, int* decouple_tab
){
782 if(get_bits1(&q
->gb
)) {
783 if(cplband
[p
->js_subband_start
] > cplband
[p
->subbands
-1]) return;
785 length
= cplband
[p
->subbands
-1] - cplband
[p
->js_subband_start
] + 1;
786 for (i
=0 ; i
<length
; i
++) {
787 decouple_tab
[cplband
[p
->js_subband_start
] + i
] = get_vlc2(&q
->gb
, p
->ccpl
.table
, p
->ccpl
.bits
, 2);
792 if(cplband
[p
->js_subband_start
] > cplband
[p
->subbands
-1]) return;
794 length
= cplband
[p
->subbands
-1] - cplband
[p
->js_subband_start
] + 1;
795 for (i
=0 ; i
<length
; i
++) {
796 decouple_tab
[cplband
[p
->js_subband_start
] + i
] = get_bits(&q
->gb
, p
->js_vlc_bits
);
802 * function decouples a pair of signals from a single signal via multiplication.
804 * @param q pointer to the COOKContext
805 * @param subband index of the current subband
806 * @param f1 multiplier for channel 1 extraction
807 * @param f2 multiplier for channel 2 extraction
808 * @param decode_buffer input buffer
809 * @param mlt_buffer1 pointer to left channel mlt coefficients
810 * @param mlt_buffer2 pointer to right channel mlt coefficients
812 static void decouple_float (COOKContext
*q
,
816 float *decode_buffer
,
817 float *mlt_buffer1
, float *mlt_buffer2
)
820 for (j
=0 ; j
<SUBBAND_SIZE
; j
++) {
821 tmp_idx
= ((p
->js_subband_start
+ subband
)*SUBBAND_SIZE
)+j
;
822 mlt_buffer1
[SUBBAND_SIZE
*subband
+ j
] = f1
* decode_buffer
[tmp_idx
];
823 mlt_buffer2
[SUBBAND_SIZE
*subband
+ j
] = f2
* decode_buffer
[tmp_idx
];
828 * function for decoding joint stereo data
830 * @param q pointer to the COOKContext
831 * @param mlt_buffer1 pointer to left channel mlt coefficients
832 * @param mlt_buffer2 pointer to right channel mlt coefficients
835 static void joint_decode(COOKContext
*q
, COOKSubpacket
*p
, float* mlt_buffer1
,
836 float* mlt_buffer2
) {
838 int decouple_tab
[SUBBAND_SIZE
];
839 float *decode_buffer
= q
->decode_buffer_0
;
842 const float* cplscale
;
844 memset(decouple_tab
, 0, sizeof(decouple_tab
));
845 memset(decode_buffer
, 0, sizeof(decode_buffer
));
847 /* Make sure the buffers are zeroed out. */
848 memset(mlt_buffer1
,0, 1024*sizeof(float));
849 memset(mlt_buffer2
,0, 1024*sizeof(float));
850 decouple_info(q
, p
, decouple_tab
);
851 mono_decode(q
, p
, decode_buffer
);
853 /* The two channels are stored interleaved in decode_buffer. */
854 for (i
=0 ; i
<p
->js_subband_start
; i
++) {
855 for (j
=0 ; j
<SUBBAND_SIZE
; j
++) {
856 mlt_buffer1
[i
*20+j
] = decode_buffer
[i
*40+j
];
857 mlt_buffer2
[i
*20+j
] = decode_buffer
[i
*40+20+j
];
861 /* When we reach js_subband_start (the higher frequencies)
862 the coefficients are stored in a coupling scheme. */
863 idx
= (1 << p
->js_vlc_bits
) - 1;
864 for (i
=p
->js_subband_start
; i
<p
->subbands
; i
++) {
865 cpl_tmp
= cplband
[i
];
866 idx
-=decouple_tab
[cpl_tmp
];
867 cplscale
= q
->cplscales
[p
->js_vlc_bits
-2]; //choose decoupler table
868 f1
= cplscale
[decouple_tab
[cpl_tmp
]];
869 f2
= cplscale
[idx
-1];
870 q
->decouple (q
, p
, i
, f1
, f2
, decode_buffer
, mlt_buffer1
, mlt_buffer2
);
871 idx
= (1 << p
->js_vlc_bits
) - 1;
876 * First part of subpacket decoding:
877 * decode raw stream bytes and read gain info.
879 * @param q pointer to the COOKContext
880 * @param inbuffer pointer to raw stream data
881 * @param gains_ptr array of current/prev gain pointers
885 decode_bytes_and_gain(COOKContext
*q
, COOKSubpacket
*p
, const uint8_t *inbuffer
,
886 cook_gains
*gains_ptr
)
890 offset
= decode_bytes(inbuffer
, q
->decoded_bytes_buffer
,
891 p
->bits_per_subpacket
/8);
892 init_get_bits(&q
->gb
, q
->decoded_bytes_buffer
+ offset
,
893 p
->bits_per_subpacket
);
894 decode_gain_info(&q
->gb
, gains_ptr
->now
);
896 /* Swap current and previous gains */
897 FFSWAP(int *, gains_ptr
->now
, gains_ptr
->previous
);
901 * Saturate the output signal to signed 16bit integers.
903 * @param q pointer to the COOKContext
904 * @param chan channel to saturate
905 * @param out pointer to the output vector
908 saturate_output_float (COOKContext
*q
, int chan
, int16_t *out
)
911 float *output
= q
->mono_mdct_output
+ q
->samples_per_channel
;
912 /* Clip and convert floats to 16 bits.
914 for (j
= 0; j
< q
->samples_per_channel
; j
++) {
915 out
[chan
+ q
->nb_channels
* j
] =
916 av_clip_int16(lrintf(output
[j
]));
921 * Final part of subpacket decoding:
922 * Apply modulated lapped transform, gain compensation,
923 * clip and convert to integer.
925 * @param q pointer to the COOKContext
926 * @param decode_buffer pointer to the mlt coefficients
927 * @param gains_ptr array of current/prev gain pointers
928 * @param previous_buffer pointer to the previous buffer to be used for overlapping
929 * @param out pointer to the output buffer
930 * @param chan 0: left or single channel, 1: right channel
934 mlt_compensate_output(COOKContext
*q
, float *decode_buffer
,
935 cook_gains
*gains_ptr
, float *previous_buffer
,
936 int16_t *out
, int chan
)
938 imlt_gain(q
, decode_buffer
, gains_ptr
, previous_buffer
);
939 q
->saturate_output (q
, chan
, out
);
944 * Cook subpacket decoding. This function returns one decoded subpacket,
945 * usually 1024 samples per channel.
947 * @param q pointer to the COOKContext
948 * @param inbuffer pointer to the inbuffer
949 * @param outbuffer pointer to the outbuffer
951 static void decode_subpacket(COOKContext
*q
, COOKSubpacket
* p
, const uint8_t *inbuffer
, int16_t *outbuffer
) {
952 int sub_packet_size
= p
->size
;
954 // for (i=0 ; i<sub_packet_size ; i++) {
955 // av_log(q->avctx, AV_LOG_ERROR, "%02x", inbuffer[i]);
957 // av_log(q->avctx, AV_LOG_ERROR, "\n");
958 memset(q
->decode_buffer_1
,0,sizeof(q
->decode_buffer_1
));
959 decode_bytes_and_gain(q
, p
, inbuffer
, &p
->gains1
);
961 if (p
->joint_stereo
) {
962 joint_decode(q
, p
, q
->decode_buffer_1
, q
->decode_buffer_2
);
964 mono_decode(q
, p
, q
->decode_buffer_1
);
966 if (p
->num_channels
== 2) {
967 decode_bytes_and_gain(q
, p
, inbuffer
+ sub_packet_size
/2, &p
->gains2
);
968 mono_decode(q
, p
, q
->decode_buffer_2
);
972 mlt_compensate_output(q
, q
->decode_buffer_1
, &p
->gains1
,
973 p
->mono_previous_buffer1
, outbuffer
, p
->ch_idx
);
975 if (p
->num_channels
== 2) {
976 if (p
->joint_stereo
) {
977 mlt_compensate_output(q
, q
->decode_buffer_2
, &p
->gains1
,
978 p
->mono_previous_buffer2
, outbuffer
, p
->ch_idx
+ 1);
980 mlt_compensate_output(q
, q
->decode_buffer_2
, &p
->gains2
,
981 p
->mono_previous_buffer2
, outbuffer
, p
->ch_idx
+ 1);
989 * Cook frame decoding
991 * @param avctx pointer to the AVCodecContext
994 static int cook_decode_frame(AVCodecContext
*avctx
,
995 void *data
, int *data_size
,
997 const uint8_t *buf
= avpkt
->data
;
998 int buf_size
= avpkt
->size
;
999 COOKContext
*q
= avctx
->priv_data
;
1004 if (buf_size
< avctx
->block_align
)
1007 /* estimate subpacket sizes */
1008 q
->subpacket
[0].size
= avctx
->block_align
;
1010 for(i
=1;i
<q
->num_subpackets
;i
++){
1011 q
->subpacket
[i
].size
= 2 * buf
[avctx
->block_align
- q
->num_subpackets
+ i
];
1012 q
->subpacket
[0].size
-= q
->subpacket
[i
].size
+ 1;
1013 if (q
->subpacket
[0].size
< 0) {
1014 av_log(avctx
,AV_LOG_DEBUG
,"frame subpacket size total > avctx->block_align!\n");
1019 /* decode supbackets */
1021 for(i
=0;i
<q
->num_subpackets
;i
++){
1022 q
->subpacket
[i
].bits_per_subpacket
= (q
->subpacket
[i
].size
*8)>>q
->subpacket
[i
].bits_per_subpdiv
;
1023 q
->subpacket
[i
].ch_idx
= chidx
;
1024 av_log(avctx
,AV_LOG_DEBUG
,"subpacket[%i] size %i js %i %i block_align %i\n",i
,q
->subpacket
[i
].size
,q
->subpacket
[i
].joint_stereo
,offset
,avctx
->block_align
);
1025 decode_subpacket(q
, &q
->subpacket
[i
], buf
+ offset
, (int16_t*)data
);
1026 offset
+= q
->subpacket
[i
].size
;
1027 chidx
+= q
->subpacket
[i
].num_channels
;
1028 av_log(avctx
,AV_LOG_DEBUG
,"subpacket[%i] %i %i\n",i
,q
->subpacket
[i
].size
* 8,get_bits_count(&q
->gb
));
1030 *data_size
= sizeof(int16_t) * q
->nb_channels
* q
->samples_per_channel
;
1032 /* Discard the first two frames: no valid audio. */
1033 if (avctx
->frame_number
< 2) *data_size
= 0;
1035 return avctx
->block_align
;
1039 static void dump_cook_context(COOKContext
*q
)
1042 #define PRINT(a,b) av_log(q->avctx,AV_LOG_ERROR," %s = %d\n", a, b);
1043 av_log(q
->avctx
,AV_LOG_ERROR
,"COOKextradata\n");
1044 av_log(q
->avctx
,AV_LOG_ERROR
,"cookversion=%x\n",q
->subpacket
[0].cookversion
);
1045 if (q
->subpacket
[0].cookversion
> STEREO
) {
1046 PRINT("js_subband_start",q
->subpacket
[0].js_subband_start
);
1047 PRINT("js_vlc_bits",q
->subpacket
[0].js_vlc_bits
);
1049 av_log(q
->avctx
,AV_LOG_ERROR
,"COOKContext\n");
1050 PRINT("nb_channels",q
->nb_channels
);
1051 PRINT("bit_rate",q
->bit_rate
);
1052 PRINT("sample_rate",q
->sample_rate
);
1053 PRINT("samples_per_channel",q
->subpacket
[0].samples_per_channel
);
1054 PRINT("samples_per_frame",q
->subpacket
[0].samples_per_frame
);
1055 PRINT("subbands",q
->subpacket
[0].subbands
);
1056 PRINT("random_state",q
->random_state
);
1057 PRINT("js_subband_start",q
->subpacket
[0].js_subband_start
);
1058 PRINT("log2_numvector_size",q
->subpacket
[0].log2_numvector_size
);
1059 PRINT("numvector_size",q
->subpacket
[0].numvector_size
);
1060 PRINT("total_subbands",q
->subpacket
[0].total_subbands
);
1064 static av_cold
int cook_count_channels(unsigned int mask
){
1067 for(i
= 0;i
<32;i
++){
1075 * Cook initialization
1077 * @param avctx pointer to the AVCodecContext
1080 static av_cold
int cook_decode_init(AVCodecContext
*avctx
)
1082 COOKContext
*q
= avctx
->priv_data
;
1083 const uint8_t *edata_ptr
= avctx
->extradata
;
1084 const uint8_t *edata_ptr_end
= edata_ptr
+ avctx
->extradata_size
;
1085 int extradata_size
= avctx
->extradata_size
;
1087 unsigned int channel_mask
= 0;
1090 /* Take care of the codec specific extradata. */
1091 if (extradata_size
<= 0) {
1092 av_log(avctx
,AV_LOG_ERROR
,"Necessary extradata missing!\n");
1095 av_log(avctx
,AV_LOG_DEBUG
,"codecdata_length=%d\n",avctx
->extradata_size
);
1097 /* Take data from the AVCodecContext (RM container). */
1098 q
->sample_rate
= avctx
->sample_rate
;
1099 q
->nb_channels
= avctx
->channels
;
1100 q
->bit_rate
= avctx
->bit_rate
;
1102 /* Initialize RNG. */
1103 av_lfg_init(&q
->random_state
, 0);
1105 while(edata_ptr
< edata_ptr_end
){
1106 /* 8 for mono, 16 for stereo, ? for multichannel
1107 Swap to right endianness so we don't need to care later on. */
1108 if (extradata_size
>= 8){
1109 q
->subpacket
[s
].cookversion
= bytestream_get_be32(&edata_ptr
);
1110 q
->subpacket
[s
].samples_per_frame
= bytestream_get_be16(&edata_ptr
);
1111 q
->subpacket
[s
].subbands
= bytestream_get_be16(&edata_ptr
);
1112 extradata_size
-= 8;
1114 if (avctx
->extradata_size
>= 8){
1115 bytestream_get_be32(&edata_ptr
); //Unknown unused
1116 q
->subpacket
[s
].js_subband_start
= bytestream_get_be16(&edata_ptr
);
1117 q
->subpacket
[s
].js_vlc_bits
= bytestream_get_be16(&edata_ptr
);
1118 extradata_size
-= 8;
1121 /* Initialize extradata related variables. */
1122 q
->subpacket
[s
].samples_per_channel
= q
->subpacket
[s
].samples_per_frame
/ q
->nb_channels
;
1123 q
->subpacket
[s
].bits_per_subpacket
= avctx
->block_align
* 8;
1125 /* Initialize default data states. */
1126 q
->subpacket
[s
].log2_numvector_size
= 5;
1127 q
->subpacket
[s
].total_subbands
= q
->subpacket
[s
].subbands
;
1128 q
->subpacket
[s
].num_channels
= 1;
1130 /* Initialize version-dependent variables */
1132 av_log(avctx
,AV_LOG_DEBUG
,"subpacket[%i].cookversion=%x\n",s
,q
->subpacket
[s
].cookversion
);
1133 q
->subpacket
[s
].joint_stereo
= 0;
1134 switch (q
->subpacket
[s
].cookversion
) {
1136 if (q
->nb_channels
!= 1) {
1137 av_log(avctx
,AV_LOG_ERROR
,"Container channels != 1, report sample!\n");
1140 av_log(avctx
,AV_LOG_DEBUG
,"MONO\n");
1143 if (q
->nb_channels
!= 1) {
1144 q
->subpacket
[s
].bits_per_subpdiv
= 1;
1145 q
->subpacket
[s
].num_channels
= 2;
1147 av_log(avctx
,AV_LOG_DEBUG
,"STEREO\n");
1150 if (q
->nb_channels
!= 2) {
1151 av_log(avctx
,AV_LOG_ERROR
,"Container channels != 2, report sample!\n");
1154 av_log(avctx
,AV_LOG_DEBUG
,"JOINT_STEREO\n");
1155 if (avctx
->extradata_size
>= 16){
1156 q
->subpacket
[s
].total_subbands
= q
->subpacket
[s
].subbands
+ q
->subpacket
[s
].js_subband_start
;
1157 q
->subpacket
[s
].joint_stereo
= 1;
1158 q
->subpacket
[s
].num_channels
= 2;
1160 if (q
->subpacket
[s
].samples_per_channel
> 256) {
1161 q
->subpacket
[s
].log2_numvector_size
= 6;
1163 if (q
->subpacket
[s
].samples_per_channel
> 512) {
1164 q
->subpacket
[s
].log2_numvector_size
= 7;
1168 av_log(avctx
,AV_LOG_DEBUG
,"MULTI_CHANNEL\n");
1169 if(extradata_size
>= 4)
1170 channel_mask
|= q
->subpacket
[s
].channel_mask
= bytestream_get_be32(&edata_ptr
);
1172 if(cook_count_channels(q
->subpacket
[s
].channel_mask
) > 1){
1173 q
->subpacket
[s
].total_subbands
= q
->subpacket
[s
].subbands
+ q
->subpacket
[s
].js_subband_start
;
1174 q
->subpacket
[s
].joint_stereo
= 1;
1175 q
->subpacket
[s
].num_channels
= 2;
1176 q
->subpacket
[s
].samples_per_channel
= q
->subpacket
[s
].samples_per_frame
>> 1;
1178 if (q
->subpacket
[s
].samples_per_channel
> 256) {
1179 q
->subpacket
[s
].log2_numvector_size
= 6;
1181 if (q
->subpacket
[s
].samples_per_channel
> 512) {
1182 q
->subpacket
[s
].log2_numvector_size
= 7;
1185 q
->subpacket
[s
].samples_per_channel
= q
->subpacket
[s
].samples_per_frame
;
1189 av_log(avctx
,AV_LOG_ERROR
,"Unknown Cook version, report sample!\n");
1194 if(s
> 1 && q
->subpacket
[s
].samples_per_channel
!= q
->samples_per_channel
) {
1195 av_log(avctx
,AV_LOG_ERROR
,"different number of samples per channel!\n");
1198 q
->samples_per_channel
= q
->subpacket
[0].samples_per_channel
;
1201 /* Initialize variable relations */
1202 q
->subpacket
[s
].numvector_size
= (1 << q
->subpacket
[s
].log2_numvector_size
);
1204 /* Try to catch some obviously faulty streams, othervise it might be exploitable */
1205 if (q
->subpacket
[s
].total_subbands
> 53) {
1206 av_log(avctx
,AV_LOG_ERROR
,"total_subbands > 53, report sample!\n");
1210 if ((q
->subpacket
[s
].js_vlc_bits
> 6) || (q
->subpacket
[s
].js_vlc_bits
< 0)) {
1211 av_log(avctx
,AV_LOG_ERROR
,"js_vlc_bits = %d, only >= 0 and <= 6 allowed!\n",q
->subpacket
[s
].js_vlc_bits
);
1215 if (q
->subpacket
[s
].subbands
> 50) {
1216 av_log(avctx
,AV_LOG_ERROR
,"subbands > 50, report sample!\n");
1219 q
->subpacket
[s
].gains1
.now
= q
->subpacket
[s
].gain_1
;
1220 q
->subpacket
[s
].gains1
.previous
= q
->subpacket
[s
].gain_2
;
1221 q
->subpacket
[s
].gains2
.now
= q
->subpacket
[s
].gain_3
;
1222 q
->subpacket
[s
].gains2
.previous
= q
->subpacket
[s
].gain_4
;
1224 q
->num_subpackets
++;
1226 if (s
> MAX_SUBPACKETS
) {
1227 av_log(avctx
,AV_LOG_ERROR
,"Too many subpackets > 5, report file!\n");
1231 /* Generate tables */
1234 init_cplscales_table(q
);
1236 if (init_cook_vlc_tables(q
) != 0)
1240 if(avctx
->block_align
>= UINT_MAX
/2)
1243 /* Pad the databuffer with:
1244 DECODE_BYTES_PAD1 or DECODE_BYTES_PAD2 for decode_bytes(),
1245 FF_INPUT_BUFFER_PADDING_SIZE, for the bitstreamreader. */
1246 q
->decoded_bytes_buffer
=
1247 av_mallocz(avctx
->block_align
1248 + DECODE_BYTES_PAD1(avctx
->block_align
)
1249 + FF_INPUT_BUFFER_PADDING_SIZE
);
1250 if (q
->decoded_bytes_buffer
== NULL
)
1253 /* Initialize transform. */
1254 if ( init_cook_mlt(q
) != 0 )
1257 /* Initialize COOK signal arithmetic handling */
1259 q
->scalar_dequant
= scalar_dequant_float
;
1260 q
->decouple
= decouple_float
;
1261 q
->imlt_window
= imlt_window_float
;
1262 q
->interpolate
= interpolate_float
;
1263 q
->saturate_output
= saturate_output_float
;
1266 /* Try to catch some obviously faulty streams, othervise it might be exploitable */
1267 if ((q
->samples_per_channel
== 256) || (q
->samples_per_channel
== 512) || (q
->samples_per_channel
== 1024)) {
1269 av_log(avctx
,AV_LOG_ERROR
,"unknown amount of samples_per_channel = %d, report sample!\n",q
->samples_per_channel
);
1273 avctx
->sample_fmt
= SAMPLE_FMT_S16
;
1275 avctx
->channel_layout
= channel_mask
;
1277 avctx
->channel_layout
= (avctx
->channels
==2) ? CH_LAYOUT_STEREO
: CH_LAYOUT_MONO
;
1280 dump_cook_context(q
);
1286 AVCodec cook_decoder
=
1289 .type
= AVMEDIA_TYPE_AUDIO
,
1290 .id
= CODEC_ID_COOK
,
1291 .priv_data_size
= sizeof(COOKContext
),
1292 .init
= cook_decode_init
,
1293 .close
= cook_decode_close
,
1294 .decode
= cook_decode_frame
,
1295 .long_name
= NULL_IF_CONFIG_SMALL("COOK"),