Use 1 array with double the size instead of 2 arrays with normal size
[libav.git] / libavcodec / cook.c
1 /*
2 * COOK compatible decoder
3 * Copyright (c) 2003 Sascha Sommer
4 * Copyright (c) 2005 Benjamin Larsson
5 *
6 * This file is part of FFmpeg.
7 *
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 *
22 */
23
24 /**
25 * @file cook.c
26 * Cook compatible decoder. Bastardization of the G.722.1 standard.
27 * This decoder handles RealNetworks, RealAudio G2 data.
28 * Cook is identified by the codec name cook in RM files.
29 *
30 * To use this decoder, a calling application must supply the extradata
31 * bytes provided from the RM container; 8+ bytes for mono streams and
32 * 16+ for stereo streams (maybe more).
33 *
34 * Codec technicalities (all this assume a buffer length of 1024):
35 * Cook works with several different techniques to achieve its compression.
36 * In the timedomain the buffer is divided into 8 pieces and quantized. If
37 * two neighboring pieces have different quantization index a smooth
38 * quantization curve is used to get a smooth overlap between the different
39 * pieces.
40 * To get to the transformdomain Cook uses a modulated lapped transform.
41 * The transform domain has 50 subbands with 20 elements each. This
42 * means only a maximum of 50*20=1000 coefficients are used out of the 1024
43 * available.
44 */
45
46 #include <math.h>
47 #include <stddef.h>
48 #include <stdio.h>
49
50 #include "avcodec.h"
51 #include "bitstream.h"
52 #include "dsputil.h"
53 #include "common.h"
54 #include "bytestream.h"
55 #include "random.h"
56
57 #include "cookdata.h"
58
59 /* the different Cook versions */
60 #define MONO 0x1000001
61 #define STEREO 0x1000002
62 #define JOINT_STEREO 0x1000003
63 #define MC_COOK 0x2000000 //multichannel Cook, not supported
64
65 #define SUBBAND_SIZE 20
66 //#define COOKDEBUG
67
68 typedef struct {
69 int *now;
70 int *previous;
71 } cook_gains;
72
73 typedef struct {
74 GetBitContext gb;
75 /* stream data */
76 int nb_channels;
77 int joint_stereo;
78 int bit_rate;
79 int sample_rate;
80 int samples_per_channel;
81 int samples_per_frame;
82 int subbands;
83 int log2_numvector_size;
84 int numvector_size; //1 << log2_numvector_size;
85 int js_subband_start;
86 int total_subbands;
87 int num_vectors;
88 int bits_per_subpacket;
89 int cookversion;
90 /* states */
91 AVRandomState random_state;
92
93 /* transform data */
94 MDCTContext mdct_ctx;
95 DECLARE_ALIGNED_16(FFTSample, mdct_tmp[1024]); /* temporary storage for imlt */
96 float* mlt_window;
97
98 /* gain buffers */
99 cook_gains gains1;
100 cook_gains gains2;
101 int gain_1[9];
102 int gain_2[9];
103 int gain_3[9];
104 int gain_4[9];
105
106 /* VLC data */
107 int js_vlc_bits;
108 VLC envelope_quant_index[13];
109 VLC sqvh[7]; //scalar quantization
110 VLC ccpl; //channel coupling
111
112 /* generatable tables and related variables */
113 int gain_size_factor;
114 float gain_table[23];
115 float pow2tab[127];
116 float rootpow2tab[127];
117
118 /* data buffers */
119
120 uint8_t* decoded_bytes_buffer;
121 DECLARE_ALIGNED_16(float,mono_mdct_output[2048]);
122 float mono_previous_buffer1[1024];
123 float mono_previous_buffer2[1024];
124 float decode_buffer_1[1024];
125 float decode_buffer_2[1024];
126 } COOKContext;
127
128 /* debug functions */
129
130 #ifdef COOKDEBUG
131 static void dump_float_table(float* table, int size, int delimiter) {
132 int i=0;
133 av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
134 for (i=0 ; i<size ; i++) {
135 av_log(NULL, AV_LOG_ERROR, "%5.1f, ", table[i]);
136 if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
137 }
138 }
139
140 static void dump_int_table(int* table, int size, int delimiter) {
141 int i=0;
142 av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
143 for (i=0 ; i<size ; i++) {
144 av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
145 if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
146 }
147 }
148
149 static void dump_short_table(short* table, int size, int delimiter) {
150 int i=0;
151 av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
152 for (i=0 ; i<size ; i++) {
153 av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
154 if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
155 }
156 }
157
158 #endif
159
160 /*************** init functions ***************/
161
162 /* table generator */
163 static void init_pow2table(COOKContext *q){
164 int i;
165 q->pow2tab[63] = 1.0;
166 for (i=1 ; i<64 ; i++){
167 q->pow2tab[63+i]=(float)((uint64_t)1<<i);
168 q->pow2tab[63-i]=1.0/(float)((uint64_t)1<<i);
169 }
170 }
171
172 /* table generator */
173 static void init_rootpow2table(COOKContext *q){
174 int i;
175 q->rootpow2tab[63] = 1.0;
176 for (i=1 ; i<64 ; i++){
177 q->rootpow2tab[63+i]=sqrt((float)((uint64_t)1<<i));
178 q->rootpow2tab[63-i]=sqrt(1.0/(float)((uint64_t)1<<i));
179 }
180 }
181
182 /* table generator */
183 static void init_gain_table(COOKContext *q) {
184 int i;
185 q->gain_size_factor = q->samples_per_channel/8;
186 for (i=0 ; i<23 ; i++) {
187 q->gain_table[i] = pow((double)q->pow2tab[i+52] ,
188 (1.0/(double)q->gain_size_factor));
189 }
190 }
191
192
193 static int init_cook_vlc_tables(COOKContext *q) {
194 int i, result;
195
196 result = 0;
197 for (i=0 ; i<13 ; i++) {
198 result |= init_vlc (&q->envelope_quant_index[i], 9, 24,
199 envelope_quant_index_huffbits[i], 1, 1,
200 envelope_quant_index_huffcodes[i], 2, 2, 0);
201 }
202 av_log(NULL,AV_LOG_DEBUG,"sqvh VLC init\n");
203 for (i=0 ; i<7 ; i++) {
204 result |= init_vlc (&q->sqvh[i], vhvlcsize_tab[i], vhsize_tab[i],
205 cvh_huffbits[i], 1, 1,
206 cvh_huffcodes[i], 2, 2, 0);
207 }
208
209 if (q->nb_channels==2 && q->joint_stereo==1){
210 result |= init_vlc (&q->ccpl, 6, (1<<q->js_vlc_bits)-1,
211 ccpl_huffbits[q->js_vlc_bits-2], 1, 1,
212 ccpl_huffcodes[q->js_vlc_bits-2], 2, 2, 0);
213 av_log(NULL,AV_LOG_DEBUG,"Joint-stereo VLC used.\n");
214 }
215
216 av_log(NULL,AV_LOG_DEBUG,"VLC tables initialized.\n");
217 return result;
218 }
219
220 static int init_cook_mlt(COOKContext *q) {
221 int j;
222 float alpha;
223 int mlt_size = q->samples_per_channel;
224
225 if ((q->mlt_window = av_malloc(sizeof(float)*mlt_size)) == 0)
226 return -1;
227
228 /* Initialize the MLT window: simple sine window. */
229 alpha = M_PI / (2.0 * (float)mlt_size);
230 for(j=0 ; j<mlt_size ; j++)
231 q->mlt_window[j] = sin((j + 0.5) * alpha) * sqrt(2.0 / q->samples_per_channel);
232
233 /* Initialize the MDCT. */
234 if (ff_mdct_init(&q->mdct_ctx, av_log2(mlt_size)+1, 1)) {
235 av_free(q->mlt_window);
236 return -1;
237 }
238 av_log(NULL,AV_LOG_DEBUG,"MDCT initialized, order = %d.\n",
239 av_log2(mlt_size)+1);
240
241 return 0;
242 }
243
244 /*************** init functions end ***********/
245
246 /**
247 * Cook indata decoding, every 32 bits are XORed with 0x37c511f2.
248 * Why? No idea, some checksum/error detection method maybe.
249 *
250 * Out buffer size: extra bytes are needed to cope with
251 * padding/missalignment.
252 * Subpackets passed to the decoder can contain two, consecutive
253 * half-subpackets, of identical but arbitrary size.
254 * 1234 1234 1234 1234 extraA extraB
255 * Case 1: AAAA BBBB 0 0
256 * Case 2: AAAA ABBB BB-- 3 3
257 * Case 3: AAAA AABB BBBB 2 2
258 * Case 4: AAAA AAAB BBBB BB-- 1 5
259 *
260 * Nice way to waste CPU cycles.
261 *
262 * @param inbuffer pointer to byte array of indata
263 * @param out pointer to byte array of outdata
264 * @param bytes number of bytes
265 */
266 #define DECODE_BYTES_PAD1(bytes) (3 - ((bytes)+3) % 4)
267 #define DECODE_BYTES_PAD2(bytes) ((bytes) % 4 + DECODE_BYTES_PAD1(2 * (bytes)))
268
269 static inline int decode_bytes(uint8_t* inbuffer, uint8_t* out, int bytes){
270 int i, off;
271 uint32_t c;
272 uint32_t* buf;
273 uint32_t* obuf = (uint32_t*) out;
274 /* FIXME: 64 bit platforms would be able to do 64 bits at a time.
275 * I'm too lazy though, should be something like
276 * for(i=0 ; i<bitamount/64 ; i++)
277 * (int64_t)out[i] = 0x37c511f237c511f2^be2me_64(int64_t)in[i]);
278 * Buffer alignment needs to be checked. */
279
280 off = (int)((long)inbuffer & 3);
281 buf = (uint32_t*) (inbuffer - off);
282 c = be2me_32((0x37c511f2 >> (off*8)) | (0x37c511f2 << (32-(off*8))));
283 bytes += 3 + off;
284 for (i = 0; i < bytes/4; i++)
285 obuf[i] = c ^ buf[i];
286
287 return off;
288 }
289
290 /**
291 * Cook uninit
292 */
293
294 static int cook_decode_close(AVCodecContext *avctx)
295 {
296 int i;
297 COOKContext *q = avctx->priv_data;
298 av_log(avctx,AV_LOG_DEBUG, "Deallocating memory.\n");
299
300 /* Free allocated memory buffers. */
301 av_free(q->mlt_window);
302 av_free(q->decoded_bytes_buffer);
303
304 /* Free the transform. */
305 ff_mdct_end(&q->mdct_ctx);
306
307 /* Free the VLC tables. */
308 for (i=0 ; i<13 ; i++) {
309 free_vlc(&q->envelope_quant_index[i]);
310 }
311 for (i=0 ; i<7 ; i++) {
312 free_vlc(&q->sqvh[i]);
313 }
314 if(q->nb_channels==2 && q->joint_stereo==1 ){
315 free_vlc(&q->ccpl);
316 }
317
318 av_log(NULL,AV_LOG_DEBUG,"Memory deallocated.\n");
319
320 return 0;
321 }
322
323 /**
324 * Fill the gain array for the timedomain quantization.
325 *
326 * @param q pointer to the COOKContext
327 * @param gaininfo[9] array of gain indices
328 */
329
330 static void decode_gain_info(GetBitContext *gb, int *gaininfo)
331 {
332 int i, n;
333
334 while (get_bits1(gb)) {}
335 n = get_bits_count(gb) - 1; //amount of elements*2 to update
336
337 i = 0;
338 while (n--) {
339 int index = get_bits(gb, 3);
340 int gain = get_bits1(gb) ? get_bits(gb, 4) - 7 : -1;
341
342 while (i <= index) gaininfo[i++] = gain;
343 }
344 while (i <= 8) gaininfo[i++] = 0;
345 }
346
347 /**
348 * Create the quant index table needed for the envelope.
349 *
350 * @param q pointer to the COOKContext
351 * @param quant_index_table pointer to the array
352 */
353
354 static void decode_envelope(COOKContext *q, int* quant_index_table) {
355 int i,j, vlc_index;
356
357 quant_index_table[0]= get_bits(&q->gb,6) - 6; //This is used later in categorize
358
359 for (i=1 ; i < q->total_subbands ; i++){
360 vlc_index=i;
361 if (i >= q->js_subband_start * 2) {
362 vlc_index-=q->js_subband_start;
363 } else {
364 vlc_index/=2;
365 if(vlc_index < 1) vlc_index = 1;
366 }
367 if (vlc_index>13) vlc_index = 13; //the VLC tables >13 are identical to No. 13
368
369 j = get_vlc2(&q->gb, q->envelope_quant_index[vlc_index-1].table,
370 q->envelope_quant_index[vlc_index-1].bits,2);
371 quant_index_table[i] = quant_index_table[i-1] + j - 12; //differential encoding
372 }
373 }
374
375 /**
376 * Calculate the category and category_index vector.
377 *
378 * @param q pointer to the COOKContext
379 * @param quant_index_table pointer to the array
380 * @param category pointer to the category array
381 * @param category_index pointer to the category_index array
382 */
383
384 static void categorize(COOKContext *q, int* quant_index_table,
385 int* category, int* category_index){
386 int exp_idx, bias, tmpbias1, tmpbias2, bits_left, num_bits, index, v, i, j;
387 int exp_index2[102];
388 int exp_index1[102];
389
390 int tmp_categorize_array[128*2];
391 int tmp_categorize_array1_idx=q->numvector_size;
392 int tmp_categorize_array2_idx=q->numvector_size;
393
394 bits_left = q->bits_per_subpacket - get_bits_count(&q->gb);
395
396 if(bits_left > q->samples_per_channel) {
397 bits_left = q->samples_per_channel +
398 ((bits_left - q->samples_per_channel)*5)/8;
399 //av_log(NULL, AV_LOG_ERROR, "bits_left = %d\n",bits_left);
400 }
401
402 memset(&exp_index1,0,102*sizeof(int));
403 memset(&exp_index2,0,102*sizeof(int));
404 memset(&tmp_categorize_array,0,128*2*sizeof(int));
405
406 bias=-32;
407
408 /* Estimate bias. */
409 for (i=32 ; i>0 ; i=i/2){
410 num_bits = 0;
411 index = 0;
412 for (j=q->total_subbands ; j>0 ; j--){
413 exp_idx = av_clip((i - quant_index_table[index] + bias) / 2, 0, 7);
414 index++;
415 num_bits+=expbits_tab[exp_idx];
416 }
417 if(num_bits >= bits_left - 32){
418 bias+=i;
419 }
420 }
421
422 /* Calculate total number of bits. */
423 num_bits=0;
424 for (i=0 ; i<q->total_subbands ; i++) {
425 exp_idx = av_clip((bias - quant_index_table[i]) / 2, 0, 7);
426 num_bits += expbits_tab[exp_idx];
427 exp_index1[i] = exp_idx;
428 exp_index2[i] = exp_idx;
429 }
430 tmpbias1 = tmpbias2 = num_bits;
431
432 for (j = 1 ; j < q->numvector_size ; j++) {
433 if (tmpbias1 + tmpbias2 > 2*bits_left) { /* ---> */
434 int max = -999999;
435 index=-1;
436 for (i=0 ; i<q->total_subbands ; i++){
437 if (exp_index1[i] < 7) {
438 v = (-2*exp_index1[i]) - quant_index_table[i] + bias;
439 if ( v >= max) {
440 max = v;
441 index = i;
442 }
443 }
444 }
445 if(index==-1)break;
446 tmp_categorize_array[tmp_categorize_array1_idx++] = index;
447 tmpbias1 -= expbits_tab[exp_index1[index]] -
448 expbits_tab[exp_index1[index]+1];
449 ++exp_index1[index];
450 } else { /* <--- */
451 int min = 999999;
452 index=-1;
453 for (i=0 ; i<q->total_subbands ; i++){
454 if(exp_index2[i] > 0){
455 v = (-2*exp_index2[i])-quant_index_table[i]+bias;
456 if ( v < min) {
457 min = v;
458 index = i;
459 }
460 }
461 }
462 if(index == -1)break;
463 tmp_categorize_array[--tmp_categorize_array2_idx] = index;
464 tmpbias2 -= expbits_tab[exp_index2[index]] -
465 expbits_tab[exp_index2[index]-1];
466 --exp_index2[index];
467 }
468 }
469
470 for(i=0 ; i<q->total_subbands ; i++)
471 category[i] = exp_index2[i];
472
473 for(i=0 ; i<q->numvector_size-1 ; i++)
474 category_index[i] = tmp_categorize_array[tmp_categorize_array2_idx++];
475
476 }
477
478
479 /**
480 * Expand the category vector.
481 *
482 * @param q pointer to the COOKContext
483 * @param category pointer to the category array
484 * @param category_index pointer to the category_index array
485 */
486
487 static inline void expand_category(COOKContext *q, int* category,
488 int* category_index){
489 int i;
490 for(i=0 ; i<q->num_vectors ; i++){
491 ++category[category_index[i]];
492 }
493 }
494
495 /**
496 * The real requantization of the mltcoefs
497 *
498 * @param q pointer to the COOKContext
499 * @param index index
500 * @param quant_index quantisation index
501 * @param subband_coef_index array of indexes to quant_centroid_tab
502 * @param subband_coef_sign signs of coefficients
503 * @param mlt_p pointer into the mlt buffer
504 */
505
506 static void scalar_dequant(COOKContext *q, int index, int quant_index,
507 int* subband_coef_index, int* subband_coef_sign,
508 float* mlt_p){
509 int i;
510 float f1;
511
512 for(i=0 ; i<SUBBAND_SIZE ; i++) {
513 if (subband_coef_index[i]) {
514 f1 = quant_centroid_tab[index][subband_coef_index[i]];
515 if (subband_coef_sign[i]) f1 = -f1;
516 } else {
517 /* noise coding if subband_coef_index[i] == 0 */
518 f1 = dither_tab[index];
519 if (av_random(&q->random_state) < 0x80000000) f1 = -f1;
520 }
521 mlt_p[i] = f1 * q->rootpow2tab[quant_index+63];
522 }
523 }
524 /**
525 * Unpack the subband_coef_index and subband_coef_sign vectors.
526 *
527 * @param q pointer to the COOKContext
528 * @param category pointer to the category array
529 * @param subband_coef_index array of indexes to quant_centroid_tab
530 * @param subband_coef_sign signs of coefficients
531 */
532
533 static int unpack_SQVH(COOKContext *q, int category, int* subband_coef_index,
534 int* subband_coef_sign) {
535 int i,j;
536 int vlc, vd ,tmp, result;
537
538 vd = vd_tab[category];
539 result = 0;
540 for(i=0 ; i<vpr_tab[category] ; i++){
541 vlc = get_vlc2(&q->gb, q->sqvh[category].table, q->sqvh[category].bits, 3);
542 if (q->bits_per_subpacket < get_bits_count(&q->gb)){
543 vlc = 0;
544 result = 1;
545 }
546 for(j=vd-1 ; j>=0 ; j--){
547 tmp = (vlc * invradix_tab[category])/0x100000;
548 subband_coef_index[vd*i+j] = vlc - tmp * (kmax_tab[category]+1);
549 vlc = tmp;
550 }
551 for(j=0 ; j<vd ; j++){
552 if (subband_coef_index[i*vd + j]) {
553 if(get_bits_count(&q->gb) < q->bits_per_subpacket){
554 subband_coef_sign[i*vd+j] = get_bits1(&q->gb);
555 } else {
556 result=1;
557 subband_coef_sign[i*vd+j]=0;
558 }
559 } else {
560 subband_coef_sign[i*vd+j]=0;
561 }
562 }
563 }
564 return result;
565 }
566
567
568 /**
569 * Fill the mlt_buffer with mlt coefficients.
570 *
571 * @param q pointer to the COOKContext
572 * @param category pointer to the category array
573 * @param quant_index_table pointer to the array
574 * @param mlt_buffer pointer to mlt coefficients
575 */
576
577
578 static void decode_vectors(COOKContext* q, int* category,
579 int *quant_index_table, float* mlt_buffer){
580 /* A zero in this table means that the subband coefficient is
581 random noise coded. */
582 int subband_coef_index[SUBBAND_SIZE];
583 /* A zero in this table means that the subband coefficient is a
584 positive multiplicator. */
585 int subband_coef_sign[SUBBAND_SIZE];
586 int band, j;
587 int index=0;
588
589 for(band=0 ; band<q->total_subbands ; band++){
590 index = category[band];
591 if(category[band] < 7){
592 if(unpack_SQVH(q, category[band], subband_coef_index, subband_coef_sign)){
593 index=7;
594 for(j=0 ; j<q->total_subbands ; j++) category[band+j]=7;
595 }
596 }
597 if(index==7) {
598 memset(subband_coef_index, 0, sizeof(subband_coef_index));
599 memset(subband_coef_sign, 0, sizeof(subband_coef_sign));
600 }
601 scalar_dequant(q, index, quant_index_table[band],
602 subband_coef_index, subband_coef_sign,
603 &mlt_buffer[band * 20]);
604 }
605
606 if(q->total_subbands*SUBBAND_SIZE >= q->samples_per_channel){
607 return;
608 } /* FIXME: should this be removed, or moved into loop above? */
609 }
610
611
612 /**
613 * function for decoding mono data
614 *
615 * @param q pointer to the COOKContext
616 * @param mlt_buffer pointer to mlt coefficients
617 */
618
619 static void mono_decode(COOKContext *q, float* mlt_buffer) {
620
621 int category_index[128];
622 int quant_index_table[102];
623 int category[128];
624
625 memset(&category, 0, 128*sizeof(int));
626 memset(&category_index, 0, 128*sizeof(int));
627
628 decode_envelope(q, quant_index_table);
629 q->num_vectors = get_bits(&q->gb,q->log2_numvector_size);
630 categorize(q, quant_index_table, category, category_index);
631 expand_category(q, category, category_index);
632 decode_vectors(q, category, quant_index_table, mlt_buffer);
633 }
634
635
636 /**
637 * the actual requantization of the timedomain samples
638 *
639 * @param q pointer to the COOKContext
640 * @param buffer pointer to the timedomain buffer
641 * @param gain_index index for the block multiplier
642 * @param gain_index_next index for the next block multiplier
643 */
644
645 static void interpolate(COOKContext *q, float* buffer,
646 int gain_index, int gain_index_next){
647 int i;
648 float fc1, fc2;
649 fc1 = q->pow2tab[gain_index+63];
650
651 if(gain_index == gain_index_next){ //static gain
652 for(i=0 ; i<q->gain_size_factor ; i++){
653 buffer[i]*=fc1;
654 }
655 return;
656 } else { //smooth gain
657 fc2 = q->gain_table[11 + (gain_index_next-gain_index)];
658 for(i=0 ; i<q->gain_size_factor ; i++){
659 buffer[i]*=fc1;
660 fc1*=fc2;
661 }
662 return;
663 }
664 }
665
666
667 /**
668 * The modulated lapped transform, this takes transform coefficients
669 * and transforms them into timedomain samples.
670 * Apply transform window, overlap buffers, apply gain profile
671 * and buffer management.
672 *
673 * @param q pointer to the COOKContext
674 * @param inbuffer pointer to the mltcoefficients
675 * @param gains_ptr current and previous gains
676 * @param previous_buffer pointer to the previous buffer to be used for overlapping
677 */
678
679 static void imlt_gain(COOKContext *q, float *inbuffer,
680 cook_gains *gains_ptr, float* previous_buffer)
681 {
682 const float fc = q->pow2tab[gains_ptr->previous[0] + 63];
683 float *buffer0 = q->mono_mdct_output;
684 float *buffer1 = q->mono_mdct_output + q->samples_per_channel;
685 int i;
686
687 /* Inverse modified discrete cosine transform */
688 q->mdct_ctx.fft.imdct_calc(&q->mdct_ctx, q->mono_mdct_output,
689 inbuffer, q->mdct_tmp);
690
691 /* The weird thing here, is that the two halves of the time domain
692 * buffer are swapped. Also, the newest data, that we save away for
693 * next frame, has the wrong sign. Hence the subtraction below.
694 * Almost sounds like a complex conjugate/reverse data/FFT effect.
695 */
696
697 /* Apply window and overlap */
698 for(i = 0; i < q->samples_per_channel; i++){
699 buffer1[i] = buffer1[i] * fc * q->mlt_window[i] -
700 previous_buffer[i] * q->mlt_window[q->samples_per_channel - 1 - i];
701 }
702
703 /* Apply gain profile */
704 for (i = 0; i < 8; i++) {
705 if (gains_ptr->now[i] || gains_ptr->now[i + 1])
706 interpolate(q, &buffer1[q->gain_size_factor * i],
707 gains_ptr->now[i], gains_ptr->now[i + 1]);
708 }
709
710 /* Save away the current to be previous block. */
711 memcpy(previous_buffer, buffer0, sizeof(float)*q->samples_per_channel);
712 }
713
714
715 /**
716 * function for getting the jointstereo coupling information
717 *
718 * @param q pointer to the COOKContext
719 * @param decouple_tab decoupling array
720 *
721 */
722
723 static void decouple_info(COOKContext *q, int* decouple_tab){
724 int length, i;
725
726 if(get_bits1(&q->gb)) {
727 if(cplband[q->js_subband_start] > cplband[q->subbands-1]) return;
728
729 length = cplband[q->subbands-1] - cplband[q->js_subband_start] + 1;
730 for (i=0 ; i<length ; i++) {
731 decouple_tab[cplband[q->js_subband_start] + i] = get_vlc2(&q->gb, q->ccpl.table, q->ccpl.bits, 2);
732 }
733 return;
734 }
735
736 if(cplband[q->js_subband_start] > cplband[q->subbands-1]) return;
737
738 length = cplband[q->subbands-1] - cplband[q->js_subband_start] + 1;
739 for (i=0 ; i<length ; i++) {
740 decouple_tab[cplband[q->js_subband_start] + i] = get_bits(&q->gb, q->js_vlc_bits);
741 }
742 return;
743 }
744
745
746 /**
747 * function for decoding joint stereo data
748 *
749 * @param q pointer to the COOKContext
750 * @param mlt_buffer1 pointer to left channel mlt coefficients
751 * @param mlt_buffer2 pointer to right channel mlt coefficients
752 */
753
754 static void joint_decode(COOKContext *q, float* mlt_buffer1,
755 float* mlt_buffer2) {
756 int i,j;
757 int decouple_tab[SUBBAND_SIZE];
758 float decode_buffer[1060];
759 int idx, cpl_tmp,tmp_idx;
760 float f1,f2;
761 float* cplscale;
762
763 memset(decouple_tab, 0, sizeof(decouple_tab));
764 memset(decode_buffer, 0, sizeof(decode_buffer));
765
766 /* Make sure the buffers are zeroed out. */
767 memset(mlt_buffer1,0, 1024*sizeof(float));
768 memset(mlt_buffer2,0, 1024*sizeof(float));
769 decouple_info(q, decouple_tab);
770 mono_decode(q, decode_buffer);
771
772 /* The two channels are stored interleaved in decode_buffer. */
773 for (i=0 ; i<q->js_subband_start ; i++) {
774 for (j=0 ; j<SUBBAND_SIZE ; j++) {
775 mlt_buffer1[i*20+j] = decode_buffer[i*40+j];
776 mlt_buffer2[i*20+j] = decode_buffer[i*40+20+j];
777 }
778 }
779
780 /* When we reach js_subband_start (the higher frequencies)
781 the coefficients are stored in a coupling scheme. */
782 idx = (1 << q->js_vlc_bits) - 1;
783 for (i=q->js_subband_start ; i<q->subbands ; i++) {
784 cpl_tmp = cplband[i];
785 idx -=decouple_tab[cpl_tmp];
786 cplscale = (float*)cplscales[q->js_vlc_bits-2]; //choose decoupler table
787 f1 = cplscale[decouple_tab[cpl_tmp]];
788 f2 = cplscale[idx-1];
789 for (j=0 ; j<SUBBAND_SIZE ; j++) {
790 tmp_idx = ((q->js_subband_start + i)*20)+j;
791 mlt_buffer1[20*i + j] = f1 * decode_buffer[tmp_idx];
792 mlt_buffer2[20*i + j] = f2 * decode_buffer[tmp_idx];
793 }
794 idx = (1 << q->js_vlc_bits) - 1;
795 }
796 }
797
798 /**
799 * First part of subpacket decoding:
800 * decode raw stream bytes and read gain info.
801 *
802 * @param q pointer to the COOKContext
803 * @param inbuffer pointer to raw stream data
804 * @param gain_ptr array of current/prev gain pointers
805 */
806
807 static inline void
808 decode_bytes_and_gain(COOKContext *q, uint8_t *inbuffer,
809 cook_gains *gains_ptr)
810 {
811 int offset;
812
813 offset = decode_bytes(inbuffer, q->decoded_bytes_buffer,
814 q->bits_per_subpacket/8);
815 init_get_bits(&q->gb, q->decoded_bytes_buffer + offset,
816 q->bits_per_subpacket);
817 decode_gain_info(&q->gb, gains_ptr->now);
818
819 /* Swap current and previous gains */
820 FFSWAP(int *, gains_ptr->now, gains_ptr->previous);
821 }
822
823 /**
824 * Final part of subpacket decoding:
825 * Apply modulated lapped transform, gain compensation,
826 * clip and convert to integer.
827 *
828 * @param q pointer to the COOKContext
829 * @param decode_buffer pointer to the mlt coefficients
830 * @param gain_ptr array of current/prev gain pointers
831 * @param previous_buffer pointer to the previous buffer to be used for overlapping
832 * @param out pointer to the output buffer
833 * @param chan 0: left or single channel, 1: right channel
834 */
835
836 static inline void
837 mlt_compensate_output(COOKContext *q, float *decode_buffer,
838 cook_gains *gains, float *previous_buffer,
839 int16_t *out, int chan)
840 {
841 float *output = q->mono_mdct_output + q->samples_per_channel;
842 int j;
843
844 imlt_gain(q, decode_buffer, gains, previous_buffer);
845
846 /* Clip and convert floats to 16 bits.
847 */
848 for (j = 0; j < q->samples_per_channel; j++) {
849 out[chan + q->nb_channels * j] =
850 av_clip(lrintf(output[j]), -32768, 32767);
851 }
852 }
853
854
855 /**
856 * Cook subpacket decoding. This function returns one decoded subpacket,
857 * usually 1024 samples per channel.
858 *
859 * @param q pointer to the COOKContext
860 * @param inbuffer pointer to the inbuffer
861 * @param sub_packet_size subpacket size
862 * @param outbuffer pointer to the outbuffer
863 */
864
865
866 static int decode_subpacket(COOKContext *q, uint8_t *inbuffer,
867 int sub_packet_size, int16_t *outbuffer) {
868 /* packet dump */
869 // for (i=0 ; i<sub_packet_size ; i++) {
870 // av_log(NULL, AV_LOG_ERROR, "%02x", inbuffer[i]);
871 // }
872 // av_log(NULL, AV_LOG_ERROR, "\n");
873
874 decode_bytes_and_gain(q, inbuffer, &q->gains1);
875
876 if (q->joint_stereo) {
877 joint_decode(q, q->decode_buffer_1, q->decode_buffer_2);
878 } else {
879 mono_decode(q, q->decode_buffer_1);
880
881 if (q->nb_channels == 2) {
882 decode_bytes_and_gain(q, inbuffer + sub_packet_size/2, &q->gains2);
883 mono_decode(q, q->decode_buffer_2);
884 }
885 }
886
887 mlt_compensate_output(q, q->decode_buffer_1, &q->gains1,
888 q->mono_previous_buffer1, outbuffer, 0);
889
890 if (q->nb_channels == 2) {
891 if (q->joint_stereo) {
892 mlt_compensate_output(q, q->decode_buffer_2, &q->gains1,
893 q->mono_previous_buffer2, outbuffer, 1);
894 } else {
895 mlt_compensate_output(q, q->decode_buffer_2, &q->gains2,
896 q->mono_previous_buffer2, outbuffer, 1);
897 }
898 }
899 return q->samples_per_frame * sizeof(int16_t);
900 }
901
902
903 /**
904 * Cook frame decoding
905 *
906 * @param avctx pointer to the AVCodecContext
907 */
908
909 static int cook_decode_frame(AVCodecContext *avctx,
910 void *data, int *data_size,
911 uint8_t *buf, int buf_size) {
912 COOKContext *q = avctx->priv_data;
913
914 if (buf_size < avctx->block_align)
915 return buf_size;
916
917 *data_size = decode_subpacket(q, buf, avctx->block_align, data);
918
919 /* Discard the first two frames: no valid audio. */
920 if (avctx->frame_number < 2) *data_size = 0;
921
922 return avctx->block_align;
923 }
924
925 #ifdef COOKDEBUG
926 static void dump_cook_context(COOKContext *q)
927 {
928 //int i=0;
929 #define PRINT(a,b) av_log(NULL,AV_LOG_ERROR," %s = %d\n", a, b);
930 av_log(NULL,AV_LOG_ERROR,"COOKextradata\n");
931 av_log(NULL,AV_LOG_ERROR,"cookversion=%x\n",q->cookversion);
932 if (q->cookversion > STEREO) {
933 PRINT("js_subband_start",q->js_subband_start);
934 PRINT("js_vlc_bits",q->js_vlc_bits);
935 }
936 av_log(NULL,AV_LOG_ERROR,"COOKContext\n");
937 PRINT("nb_channels",q->nb_channels);
938 PRINT("bit_rate",q->bit_rate);
939 PRINT("sample_rate",q->sample_rate);
940 PRINT("samples_per_channel",q->samples_per_channel);
941 PRINT("samples_per_frame",q->samples_per_frame);
942 PRINT("subbands",q->subbands);
943 PRINT("random_state",q->random_state);
944 PRINT("js_subband_start",q->js_subband_start);
945 PRINT("log2_numvector_size",q->log2_numvector_size);
946 PRINT("numvector_size",q->numvector_size);
947 PRINT("total_subbands",q->total_subbands);
948 }
949 #endif
950
951 /**
952 * Cook initialization
953 *
954 * @param avctx pointer to the AVCodecContext
955 */
956
957 static int cook_decode_init(AVCodecContext *avctx)
958 {
959 COOKContext *q = avctx->priv_data;
960 uint8_t *edata_ptr = avctx->extradata;
961
962 /* Take care of the codec specific extradata. */
963 if (avctx->extradata_size <= 0) {
964 av_log(avctx,AV_LOG_ERROR,"Necessary extradata missing!\n");
965 return -1;
966 } else {
967 /* 8 for mono, 16 for stereo, ? for multichannel
968 Swap to right endianness so we don't need to care later on. */
969 av_log(avctx,AV_LOG_DEBUG,"codecdata_length=%d\n",avctx->extradata_size);
970 if (avctx->extradata_size >= 8){
971 q->cookversion = bytestream_get_be32(&edata_ptr);
972 q->samples_per_frame = bytestream_get_be16(&edata_ptr);
973 q->subbands = bytestream_get_be16(&edata_ptr);
974 }
975 if (avctx->extradata_size >= 16){
976 bytestream_get_be32(&edata_ptr); //Unknown unused
977 q->js_subband_start = bytestream_get_be16(&edata_ptr);
978 q->js_vlc_bits = bytestream_get_be16(&edata_ptr);
979 }
980 }
981
982 /* Take data from the AVCodecContext (RM container). */
983 q->sample_rate = avctx->sample_rate;
984 q->nb_channels = avctx->channels;
985 q->bit_rate = avctx->bit_rate;
986
987 /* Initialize RNG. */
988 av_init_random(1, &q->random_state);
989
990 /* Initialize extradata related variables. */
991 q->samples_per_channel = q->samples_per_frame / q->nb_channels;
992 q->bits_per_subpacket = avctx->block_align * 8;
993
994 /* Initialize default data states. */
995 q->log2_numvector_size = 5;
996 q->total_subbands = q->subbands;
997
998 /* Initialize version-dependent variables */
999 av_log(NULL,AV_LOG_DEBUG,"q->cookversion=%x\n",q->cookversion);
1000 q->joint_stereo = 0;
1001 switch (q->cookversion) {
1002 case MONO:
1003 if (q->nb_channels != 1) {
1004 av_log(avctx,AV_LOG_ERROR,"Container channels != 1, report sample!\n");
1005 return -1;
1006 }
1007 av_log(avctx,AV_LOG_DEBUG,"MONO\n");
1008 break;
1009 case STEREO:
1010 if (q->nb_channels != 1) {
1011 q->bits_per_subpacket = q->bits_per_subpacket/2;
1012 }
1013 av_log(avctx,AV_LOG_DEBUG,"STEREO\n");
1014 break;
1015 case JOINT_STEREO:
1016 if (q->nb_channels != 2) {
1017 av_log(avctx,AV_LOG_ERROR,"Container channels != 2, report sample!\n");
1018 return -1;
1019 }
1020 av_log(avctx,AV_LOG_DEBUG,"JOINT_STEREO\n");
1021 if (avctx->extradata_size >= 16){
1022 q->total_subbands = q->subbands + q->js_subband_start;
1023 q->joint_stereo = 1;
1024 }
1025 if (q->samples_per_channel > 256) {
1026 q->log2_numvector_size = 6;
1027 }
1028 if (q->samples_per_channel > 512) {
1029 q->log2_numvector_size = 7;
1030 }
1031 break;
1032 case MC_COOK:
1033 av_log(avctx,AV_LOG_ERROR,"MC_COOK not supported!\n");
1034 return -1;
1035 break;
1036 default:
1037 av_log(avctx,AV_LOG_ERROR,"Unknown Cook version, report sample!\n");
1038 return -1;
1039 break;
1040 }
1041
1042 /* Initialize variable relations */
1043 q->numvector_size = (1 << q->log2_numvector_size);
1044
1045 /* Generate tables */
1046 init_rootpow2table(q);
1047 init_pow2table(q);
1048 init_gain_table(q);
1049
1050 if (init_cook_vlc_tables(q) != 0)
1051 return -1;
1052
1053
1054 if(avctx->block_align >= UINT_MAX/2)
1055 return -1;
1056
1057 /* Pad the databuffer with:
1058 DECODE_BYTES_PAD1 or DECODE_BYTES_PAD2 for decode_bytes(),
1059 FF_INPUT_BUFFER_PADDING_SIZE, for the bitstreamreader. */
1060 if (q->nb_channels==2 && q->joint_stereo==0) {
1061 q->decoded_bytes_buffer =
1062 av_mallocz(avctx->block_align/2
1063 + DECODE_BYTES_PAD2(avctx->block_align/2)
1064 + FF_INPUT_BUFFER_PADDING_SIZE);
1065 } else {
1066 q->decoded_bytes_buffer =
1067 av_mallocz(avctx->block_align
1068 + DECODE_BYTES_PAD1(avctx->block_align)
1069 + FF_INPUT_BUFFER_PADDING_SIZE);
1070 }
1071 if (q->decoded_bytes_buffer == NULL)
1072 return -1;
1073
1074 q->gains1.now = q->gain_1;
1075 q->gains1.previous = q->gain_2;
1076 q->gains2.now = q->gain_3;
1077 q->gains2.previous = q->gain_4;
1078
1079 /* Initialize transform. */
1080 if ( init_cook_mlt(q) != 0 )
1081 return -1;
1082
1083 /* Try to catch some obviously faulty streams, othervise it might be exploitable */
1084 if (q->total_subbands > 53) {
1085 av_log(avctx,AV_LOG_ERROR,"total_subbands > 53, report sample!\n");
1086 return -1;
1087 }
1088 if (q->subbands > 50) {
1089 av_log(avctx,AV_LOG_ERROR,"subbands > 50, report sample!\n");
1090 return -1;
1091 }
1092 if ((q->samples_per_channel == 256) || (q->samples_per_channel == 512) || (q->samples_per_channel == 1024)) {
1093 } else {
1094 av_log(avctx,AV_LOG_ERROR,"unknown amount of samples_per_channel = %d, report sample!\n",q->samples_per_channel);
1095 return -1;
1096 }
1097 if ((q->js_vlc_bits > 6) || (q->js_vlc_bits < 0)) {
1098 av_log(avctx,AV_LOG_ERROR,"q->js_vlc_bits = %d, only >= 0 and <= 6 allowed!\n",q->js_vlc_bits);
1099 return -1;
1100 }
1101
1102 #ifdef COOKDEBUG
1103 dump_cook_context(q);
1104 #endif
1105 return 0;
1106 }
1107
1108
1109 AVCodec cook_decoder =
1110 {
1111 .name = "cook",
1112 .type = CODEC_TYPE_AUDIO,
1113 .id = CODEC_ID_COOK,
1114 .priv_data_size = sizeof(COOKContext),
1115 .init = cook_decode_init,
1116 .close = cook_decode_close,
1117 .decode = cook_decode_frame,
1118 };